实验十九-用牛顿环测透镜的曲率半径-思考题

合集下载

实验十九用牛顿环测透镜的曲率半径思考题

实验十九用牛顿环测透镜的曲率半径思考题

六思考题
1. 通过测量计算透镜的曲率半径R时为什么不用(3)式,而用(5)式
答:透镜和玻璃板间的相互挤压,使得中心暗纹不是零级。

因而条纹的级数难以确定。

2. 在牛顿环实验中,假如平板玻璃不是一个光学平面,局部有微小的凸起,则凸起处空气薄膜的厚度将减小,导致等厚干涉条纹发生畸变,试问这时牛顿环纹将局部内凹还是局部外凸为什么
答:向外凸。

等厚干涉的条纹和厚度是一一对应的。

凸起处空气膜的厚度较小,与靠近中心处的空气膜等厚,这些位置处的干涉条纹和凸起处的同级相连。

3. 若纸的厚度增大,则条纹将向什么方向移动,条纹间距如何变化
答:向劈尖移动,间距变小。

1。

物理实验牛顿环思考题

物理实验牛顿环思考题

一、等厚干涉的特征
等厚干涉是因为平行光入射到厚度有变化的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成相同级数的明暗干涉条纹,故称等厚干涉。

条纹特点是对于劈尖干涉,条纹是明暗相间的平行的等间距的干涉条纹。

对于牛顿环,干涉条纹则是不等间距的环状条纹。

二、测量波长的方法
1、衍射光栅测波长
2、双棱镜测波长
3、驻波法测波长
4、牛顿环测波长
牛顿环实验测光波波长,当知道球面的曲率半径时可根据公式λ=(r²m-r²n)/(m-n)R算出。

5、分光计测光波波长
5、迈克尔逊干涉仪测光波波长
牛顿如何发明牛顿环一种光的干涉图样.是牛顿在1675年首先观察到
的.将一块曲率半径较大的平凸透镜放在一块玻璃平板上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环.圆环分布是中间疏、边缘密,
圆心在接触点O.从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的.若用白光入射.将观察到彩色圆环.牛顿环是典型的等厚薄膜干涉.凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉.同一半径的圆环处空气膜厚度相同,上、下表面反射光程差相同,因此使干涉图样呈圆环状.这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉.牛顿在光学中的一项重要发现就是"牛顿环"。

这是他在进一步考察胡克研究的肥皂泡薄膜的色彩问题时提出来的。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。

2、利用干涉原理测透镜曲率半径。

3、学习用逐差法处理实验数据的方法。

三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。

四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。

当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。

这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。

由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。

图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为, ,,,2e2,式中e为第k级条纹对应的空气膜的厚度,为半波损失。

2,由干涉条件可知,当时,干涉条纹为暗条纹。

即 ,,,,?(21)(0,1,2,3,)kk2 解得,ek (2) ,2O 设透镜的曲率半径为,与接触点相距为处空气层的厚度为,由图4Rer所示几何关系可得222222RRerRReer,,,,,,,2 ,,2Re,,由于,则可以略去。

则 e2r (3) e,2Rk由式(2)和式(3)可得第级暗环的半径为2 (4) rRekR,,2,k,k由式(4)可知,如果单色光源的波长已知,只需测出第级暗环的半径,rk RR即可算出平凸透镜的曲率半径;反之,如果已知,测出后,就可计算出入rk,射单色光波的波长。

但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附a,0a,0加了一项。

实验用牛顿环测平凸透镜的曲率半径

实验用牛顿环测平凸透镜的曲率半径

实验⽤⽜顿环测平凸透镜的曲率半径实验⼆⼗⼀⽤⽜顿环测平凸透镜的曲率半径⽜顿为了研究薄膜颜⾊,曾经⽤凸透镜放在平⾯玻璃上的⽅法做实验。

1675年,他在给皇家学会的论⽂⾥记述了这个后⼈称为⽜顿环的实验,其最有价值的发现是测出同⼼圆环的半径(或直径)就可算出相应的空⽓层的厚度。

如今,利⽤⽜顿环可以测量光的波长、检验表⾯的平⾯度、球⾯度、光洁度,精确测量长度、⾓度,测量微⼩形变以及研究⼯件内应⼒的分布等。

〔实验⽬的〕1.观察等厚⼲涉现象,了解其特点。

2.测定平凸透镜的曲率半径。

3.学习⽤逐差法处理实验数据的⽅法。

〔实验仪器〕1.钠光灯及其电源2.⽜顿环仪3.读数显微镜〔实验原理〕1.⽜顿环仪图3.21.1⽜顿环仪(图3.21.1)是将⼀块曲率半径较⼤的平凸玻璃透镜L的凸⾯放在⼀块光学玻璃⽚P(⼜称平晶)上构成的。

在透镜的凸⾯与光学玻璃⽚的平⾯之间就形成⼀个从中⼼O向四周逐渐增厚的空⽓层。

当单⾊光垂直照射下来时,经空⽓层上、下两表⾯反射的两束光就产⽣光程差,它们在平凸透镜的凸⾯相遇后,将发⽣⼲涉。

因为光程差相等的地⽅是以O为中⼼的同⼼圆,因此等厚⼲涉条纹也是⼀组以O为中⼼的明暗相间的同⼼圆环,称为⽜顿环,如果在反射⽅向观察时,将看到中⼼是暗斑,若在透射⽅向观察时,将会发现中⼼是亮斑(如图3.21.2a、b)。

图3.21.2(a )图3.21.2(b )2.⼲涉条件设透镜曲率半径为R ,与接触点O 的相距为r 处的膜厚为d ,垂直照射在⽜顿环仪上的波长为λ的单⾊平⾏光中的⼀光线(如图3.21.3)从空⽓层的上下两表⾯反射回来,由于从下表⾯反射回来的光多⾛了⼆倍空⽓层厚度的距离,以及从下表⾯反射时,是从光疏到光密介质⽽存在半波损失,故两光线的光程差为r图3.21.3δ=22λ+d (1)考虑到亮度最⼩的地⽅要⽐亮度最⼤的地⽅容易观测,故选择暗纹中⼼作为测量基准。

⽽产⽣暗环的条件是δ=(2m +1)2λ(m =0、1、2…)(2)其中,m 为⼲涉级。

用牛顿环测透镜的曲率半径

用牛顿环测透镜的曲率半径

2.25用牛顿环测透镜的曲率半径牛顿不仅对力学有伟大的贡献,对光学也有十分深入的研究。

17世纪初,在考察肥皂泡及其他薄膜干涉现象时,他把一个玻璃三棱镜压在一个曲率已知的透镜上,偶然发现干涉圆环,并对此进行了实验观测和研究。

牛顿发现,用一个曲率半径很大的凸透镜和一个平面玻璃相接触,用白光照射时,出现明暗相间的同心彩色圆圈,用单色光照射,则出现明暗相间的单色圆圈。

这是由于光的干涉造成的,这种光学现象被称为“牛顿环”。

牛顿环用光的波动学说可以很容易解释,也是光的干涉现象的极好演示。

光的干涉技术应用极广,例如:测量光波波长、测量微小角度或薄膜厚度、观测微小长度变化、检测光学表面加工质量等。

牛顿环在检验光学元件表面质量和测量球面的曲率半径及测量光波波长方面得到广泛应用,利用牛顿环还可以测量液体折射率。

本实验要求学生从实验中观察光的干涉现象、了解光的干涉原理,并用牛顿环测量光学元件的曲率半径,学习测量微小长度,学习读数显微镜的使用等。

【实验目的】(1)观察光的等厚干涉现象,了解等厚干涉特点。

(2)掌握用牛顿环测量凸透镜曲率半径的方法。

(3)学习使用读数显微镜【实验原理】牛顿环是把一个曲率半径较大的平凸透镜的凸面放在一块光学平玻璃板上构成的,如图l所示。

平凸透镜与平板玻璃间形成以接触点为对称中心厚度逐渐增加的空气薄膜,平行单色光垂直照射到透镜上,通过透镜,近似垂直地人射到空气层中,经过上下表面反射的两束光存在着光程差,在反射方向就会观察到干涉花样,干涉花样是以接触点为中心的一系列明暗相间的同心圆,称为牛顿环,如图2所示。

图1牛顿环装置图2牛顿环牛顿环是典型的分振幅干涉法产生的等厚干涉,它的特点是:明暗相间的同心圆环;级次中心低、边缘高;间隔中心疏、边缘密;同级干涉,波长越短,条纹越靠近中心。

设透镜半径为R,与接触点O的距离为r处的薄膜厚度为d,从图1可得出其几何关系:(1)2222222)(r d Rd R r d R R ++−=+−=因为,式(1)中可略去二阶小量,有:r R >>2d(2)Rr d 22=考虑到光从平板玻璃上反射会有半波损失,则光程差为:(3)22λδ+=d 产生第m级暗纹的条件为:(4)2)12((λδ+=m 由式(2),式(3)和式(4),可得出第m级暗纹的半径为(5)λmR r m =同理,也可以得出第m级明纹的半径为:(6)λR m r m )12(−=由式(5)或式(6),如果已知光波波长,只要测出暗纹半径或明纹半径,数出对应的级数,可求出由率半径。

大学物理(精品本科)5用牛顿环测量平凸透镜的曲率半径提问.docx

大学物理(精品本科)5用牛顿环测量平凸透镜的曲率半径提问.docx

用牛顿环测量平凸透镜的曲率半径一、实验目的1.观察等厚干涉现象,了解等厚干涉原理及特点。

2.掌握用牛顿环等厚干涉测量透镜曲率半径的方法。

3.熟悉读数显微镜的使用。

二、实验仪器牛顿环装置,读数显微镜,45。

放置的玻璃片,钠光灯。

三、实验原理当光照射到一块透明介质薄膜表面上时,入射光被分成折射光和反射光两部分。

折射光在薄膜下表面被反射后,再经过上表面透射回來并与原反射光交迭。

这两朿反射光出自同一束入射光,满足干涉条件。

在薄膜厚度相同的地方,这两束反射光的光程差相等,对应同--级的干涉条纹;而在厚度不同处产生不同级的干涉条纹,这样的干涉称为等厚干涉。

用牛顿环装置所观察到的圆环状干涉条纹,就是典型的等厚干涉条纹。

在实际应用屮,通常用它来测暈透镜的曲率半径或用来检查光学零件表面的质量等。

如图1所示,将一块曲率半径相当大的平凸透镜凸面叠放在一平板玻璃上,则在透镜和平板玻璃之间形成一个空气薄层,其厚度从中心接触点到边缘逐渐增加。

当单色平行光垂直照射吋,由于空气薄层上、下表面两反射光发生干涉,在空气薄层的上表面可以观察到以接触点为屮心的明暗相间的环形干涉条纹。

这种干涉条纹是丫顿首先观察到并加以描述的,故称牛顿环。

设所用的光是波长为2的单色平行光,R为球面透镜的曲率半图1牛顿环截回图径。

由光路分析可知,与第k级条纹对应的两束相干光的光程差》为:(1)其屮空气折射率心近似为1,勺表示空气薄膜厚度,一项是由于光从光疏介质到光密介质的界面上2反射时,发生半波损失引起的光程差。

由图1可知,R2 = r^+(R-e k)2(2)化简后得到圧=2坯R-d;⑶如果空气薄膜厚度远小于透镜曲率半径,即« R ,则可略去二级小量于是有将此式代入公式(1),可得乂叱A5 =丄 + —R 22由干涉条件可知,当6 = (2£ + 1) —时,干涉条纹为暗条纹,2□二J kR入(k=0, 1, 2, )当8 = kA时,干涉条纹为亮条纹,K=J(2£-1)R£(k=0, 1, 2, .............. )由此可见,q与£和/?的平方根成正比,因而圆环愈来愈密,愈来愈细。

3.2利用牛顿环测定透镜的曲率半径

3.2利用牛顿环测定透镜的曲率半径
知,则可由上式计算出透镜的曲率半径 R ,反之,如透镜的曲率半径 R 为已知,则可算出
人射光波的波长 。
实验仪器及其描述:
牛顿环是由一平凸透镜 L 和精磨的平玻璃板 P 叠合装在金属框架中构成的,如图三所 示,框架边上有三个螺钉 H 用以调节 L 和 P 之间接触点,以改变干涉圆环的形状和位置,
中的集合关系可得:
R 2 R d2 r 2 R 2 2Rd d 2 r 2
因 R>>d,故可略去 d2 而得
r2 2Rd 或 d r 2

2R
入射光
当光线垂直人射时,在平凹透镜的上下缘面
上反射光线的光程差为: 2n0d

R
式中 n0 为透镜折射率,由于光在平凹透镜上下缘面
n0r 2 m R
化简得
r 2 mR

n0
式中 r 为第 m 个亮圈的半径,同理可导出暗圈的半径为
r 2m 1R

n0
2
例如,选取第 m 个和第 n 个清楚的干涉亮环(或暗环),测量第 m 个第 n 个亮环(或暗环)
的半径,由这两个差值来计算 R 或 。由⑤式或⑥式可得:
上反射光线的光程差为:
2d
(2)
2
式中 是因为光在平面玻璃面上反射时有 2
半波损失,将(1)式代入(2)式就得到以 O
r
d
图二
为圆心,半径为 r 的圆周上各点处的光程差为:
r2
(3)
R2
当 m 时,对应亮环
当 2m 1 时,对应暗环
2 式中 m 为干涉级数, m 可为 0、1、2……
1.用分振幅的方法实现双光束干涉。 2.通过实验加深对等厚干涉原理的理解和现象的认识。 3.掌握用牛顿环测定透镜曲率半径的方法。 4.学会调节和使用读数显微镜。 5. 观察等厚干涉现象。

实验十九-用牛顿环测透镜的曲率半径-思考题

实验十九-用牛顿环测透镜的曲率半径-思考题

实验十九-用牛顿环测透镜的曲率半径-思考题实验十九用牛顿环测透镜的曲率半径思考题光的干涉是光的波动性的一种表现。

若将同一点光源发出的光分成两束,让它们各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象。

干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。

牛顿环、劈尖是其中十分典型的例子,它们属于用分振幅的方法产生的干涉现象,也是典型的等厚干涉条纹。

【实验目的】1.观察和研究等厚干涉现象和特点。

2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。

3.熟练使用读数显微镜。

4.学习用逐差法处理实验数据的方法。

【实验仪器】测量显微镜,钠光光源,牛顿环仪,牛顿环和劈尖装置。

图1 实验仪器实物图【实验原理】1.牛顿环“牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。

为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。

他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。

但由于他主张光的微粒说(光的干涉是光的波动性的一种表现)而未能对它作出正确的解释。

直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。

牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学玻璃平板(平晶)上构成的,如图2所示。

平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。

若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。

其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图3所示),称为牛顿环。

牛顿环测透镜曲率半径实验的实验结果与讨论

牛顿环测透镜曲率半径实验的实验结果与讨论

牛顿环测透镜曲率半径实验的实验结果与讨论本实验旨在通过牛顿环测量透镜的曲率半径,并对实验结果进行讨论。

透镜是光学实验中常用的元件之一,了解透镜的曲率半径对于光学系统的设计和分析至关重要。

实验装置采用的是牛顿环测量方法,该方法通过测量透镜透明平面上的干涉条纹来确定透镜的曲率半径。

具体步骤如下:首先,将光源置于透镜的一侧,确保光线垂直入射在透镜上。

然后,观察透镜透明平面上的干涉条纹。

在正确对焦的情况下,条纹呈现出明暗相间的环状分布。

这些环被称为牛顿环。

接下来,使用显微镜观察牛顿环,并通过调节显微镜的焦距,使得一级暗纹落在显微镜的视场中心,然后测量相应的透镜到显微镜的距离。

利用透镜公式和波长的知识,我们可以将这些数据转换为透镜的曲率半径。

实验结果表明,在我们的实验条件下,透镜的曲率半径为R。

这一结果与透镜的理论数值相比较,两者存在一定的误差。

可能的误差源包括实验中的测量误差、调节误差以及设备的精度等。

为了减小误差,我们可以在实验中进行多次测量,并取平均值来提高结果的可靠性。

此外,在实验中还可以通过改变光源的波长、透镜的厚度和折射率等条件,来观察透镜曲率半径的变化规律。

通过这些变化的观察,我们可以更深入地理解透镜的性质,并进一步验证光学理论。

总结起来,牛顿环测透镜曲率半径实验是一种简单而有效的方法,用于测量透镜的曲率半径。

实验结果可以用来验证光学理论,并对于光学系统的设计和分析提供参考。

在实验过程中,我们需要注意减小误差,提高测量结果的可靠性。

通过这样的实验,我们可以更深入地理解光学知识,并加深对透镜性质的认识。

综上所述,牛顿环测透镜曲率半径实验的实验结果和讨论为我们提供了宝贵的实验数据和认识透镜性质的机会。

通过这个实验,我们可以深入了解和掌握透镜的曲率半径,并将这些知识应用于实际的光学设计和分析中。

相信通过不断的实验和学习,我们可以进一步推动光学科学的发展。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。

2、利用干涉原理测透镜曲率半径。

3、学习用逐差法处理实验数据的方法。

三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。

四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。

当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。

这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。

由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。

图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为, ,,,2e2,式中e为第k级条纹对应的空气膜的厚度,为半波损失。

2,由干涉条件可知,当时,干涉条纹为暗条纹。

即 ,,,,?(21)(0,1,2,3,)kk2 解得,ek (2) ,2O 设透镜的曲率半径为,与接触点相距为处空气层的厚度为,由图4Rer所示几何关系可得222222RRerRReer,,,,,,,2 ,,2Re,,由于,则可以略去。

则 e2r (3) e,2Rk由式(2)和式(3)可得第级暗环的半径为2 (4) rRekR,,2,k,k由式(4)可知,如果单色光源的波长已知,只需测出第级暗环的半径,rk RR即可算出平凸透镜的曲率半径;反之,如果已知,测出后,就可计算出入rk,射单色光波的波长。

但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附a,0a,0加了一项。

用牛顿环测量透镜的曲率半径(附数据处理)

用牛顿环测量透镜的曲率半径(附数据处理)

⽤⽜顿环测量透镜的曲率半径(附数据处理)007⼤学实验报告评分:课程:学期:指导⽼师:007年级专业:学号:姓名:习惯⼀个⼈007实验3-11 ⽤⽜顿环测量透镜的曲率半径⼀. 实验⽬的1.进⼀步熟悉移测显微镜使⽤,观察⽜顿环的条纹特征。

2.利⽤等厚⼲涉测量平凸透镜曲率半径。

3. 学习⽤逐差法处理实验数据的⽅法。

⼆.实验仪器⽜顿环仪,移测显微镜,低压钠灯三.实验原理⽜顿环装置是由⼀块曲率半径较⼤的平凸玻璃透镜,以其凸⾯放在⼀块光学玻璃平板(平晶)上构成的,如图1所⽰。

平凸透镜的凸⾯与玻璃平板之间的空⽓层厚度从中⼼到边缘逐渐增加,若以平⾏单⾊光垂直照射到⽜顿环上,则经空⽓层上、下表⾯反射的⼆光束存在光程差,它们在平凸透镜的凸⾯相遇后,将发⽣⼲涉。

从透镜上看到的⼲涉花样是以玻璃接触点为中⼼的⼀系列明暗相间的圆环(如图2所⽰),称为⽜顿环。

由于同⼀⼲涉环上各处的空⽓层厚度是相同的,因此它属于等厚⼲涉。

由图1可见,如设透镜的曲率半径为R,与接触点O相距为r处空⽓层的厚度为d,其⼏何关系式为:由于R>>d,可以略去d2得(3-11-1)光线应是垂直⼊射的,计算光程差时还要考虑光波在平玻璃板上反射会有半波损失,从⽽带来 /2的附加程差,所以总程差为产⽣暗环的条件是:其中k=0,1,2,3,...为⼲涉暗条纹的级数。

综合(23-1)、(23-2)和(23-3)式可得第k级暗环的半径为:(3-11-2)由(4)式可知,如果单⾊光源的波长已知,测出第m级的暗环半径rm ,即可得出平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出⼊射单⾊光波的波长。

但是⽤此测量关系式往往误差很⼤,原因在于凸⾯和平⾯不可能是理想的点接触;接触压⼒会引起局部形变,使接触处成为⼀个圆形平⾯,⼲涉环中⼼为⼀暗斑。

或者空⽓间隙层中有了尘埃,附加了光程差,⼲涉环中⼼为⼀亮(或暗)斑,均⽆法确定环的⼏何中⼼。

实际测量时,我们可以通过测量距中⼼较远的两个暗环的半径rm 和rn 的平⽅差来计算曲率半径R。

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告

用牛顿环测透镜的曲率半径实验报告实验报告:用牛顿环测透镜的曲率半径一、前言(1.1)大家好,今天我们要进行一项非常有趣的实验——用牛顿环测透镜的曲率半径。

这个实验不仅能让我们了解到透镜的奥秘,还能锻炼我们的观察能力和动手能力。

所以,同学们一定要认真听讲,跟着我一起探索透镜的神奇世界哦!二、实验器材(2.1)1. 凸透镜:透镜是实验的核心部件,我们需要一个凸透镜来进行实验。

同学们可以在家里找找看,一般都有老花镜或者放大镜之类的东西,它们都是凸透镜。

2. 白纸:我们需要在白纸上画出牛顿环的形状,以便观察和测量。

3. 尺子:用来测量牛顿环的直径。

4. 直尺:用来辅助画出牛顿环的形状。

5. 铅笔:用来画图。

三、实验步骤(3.1-3.2)1. 我们需要将凸透镜放在一张白纸上,然后用直尺调整透镜的位置,使其与白纸保持一定距离。

这样可以避免透镜直接接触到纸张,影响实验结果。

2. 然后,我们在凸透镜的一端滴上一滴水,让水慢慢流到另一端,形成一个水滴。

这个水滴会聚焦成一个点,这就是凸透镜的焦点。

3. 接下来,我们用手指遮住凸透镜的中心部分,只让光线通过边缘部分照射到白纸上。

这时,白纸上会出现一些亮圈,这就是牛顿环。

4. 当水滴足够大时,我们可以在白纸上画出一个圆形的光斑。

然后用尺子测量这个光斑的直径,这就是凸透镜的曲率半径。

四、实验结果及分析(4.1-4.2)经过一番努力,我们终于完成了这个实验。

通过测量牛顿环的直径,我们得到了凸透镜的曲率半径。

这个结果可以帮助我们更好地了解透镜的性能和特点。

同学们,通过这个实验,你们是不是对透镜有了更深入的了解呢?其实,透镜还有很多神奇的功能,比如放大、缩小、折射等。

希望你们在今后的学习中,能够继续探索透镜的奥秘,发现更多的科学之美!我要感谢我的老师和同学们的支持和帮助。

希望大家都能在这个实验中学到知识,收获快乐。

谢谢大家!。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。

2、利用干涉原理测透镜曲率半径。

3、学习用逐差法处理实验数据的方法。

三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。

四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。

当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。

这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。

由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。

图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为, ,,,2e2,式中e为第k级条纹对应的空气膜的厚度,为半波损失。

2,由干涉条件可知,当时,干涉条纹为暗条纹。

即 ,,,,?(21)(0,1,2,3,)kk2 解得,ek (2) ,2O 设透镜的曲率半径为,与接触点相距为处空气层的厚度为,由图4Rer所示几何关系可得222222RRerRReer,,,,,,,2 ,,2Re,,由于,则可以略去。

则 e2r (3) e,2Rk由式(2)和式(3)可得第级暗环的半径为2 (4) rRekR,,2,k,k由式(4)可知,如果单色光源的波长已知,只需测出第级暗环的半径,rk RR即可算出平凸透镜的曲率半径;反之,如果已知,测出后,就可计算出入rk,射单色光波的波长。

但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附a,0a,0加了一项。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告
一、实验名称:
用牛顿环测量透镜的曲率半径
二、实验目的:
1、观察光的等厚干涉现象,了解干涉条纹特点。 2、利用干涉原理测透镜曲率半径。 3、学习用逐差法处理实验数据的方法。
三、实验仪器:
牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为 589.3nm)、读数显 微镜(附有反射镜)。
四、实验原理:
将一块曲率半径 R 较大的平凸透镜的凸面放在一个光学平板玻璃上,使平 凸透镜的球面 AOB 与平面玻璃 CD 面相切于 O 点,组成牛顿环装置,如图所示, 则在平凸透镜球面与平板玻璃之间形成一个以接触点 O 为中心向四周逐渐增厚 的空气劈尖。当单色平行光束近乎垂直地向 AB 面入射时,一部分光束在 AOB 面 上反射,一部分继续前进,到 COD 面上反射。这两束反射光在 AOB 面相遇,互 相干涉,形成明暗条纹。由于 AOB 面是球面,与 O 点等距的各点对 O 点是对称 的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点 (实际观察是一个圆斑),这些环纹称为牛顿环。
2
e k a 2
rk 2
上式中的 a 不能直接测量,但可以取两个暗环半径的平方差来消除它,例 如第 m 环和第 n 环,对应半径为
2Re
深的入精贯习神彻中部和落纪选。要实委拔深锋求中机任入队,为央关用学员”特的和、工习装的别情省组中作《、标本是形、织央坚条中统准质“和市原组守例源国一和九处委则织为、》,共思条使个分关、部人遵等标 弘产想件命严规于优《做守法准 扬党行章;,禁定从良关事党规和 党地动党学进止。严作于的章制条 的方个,规习一、治风加基县、度件 优委全认。党步九党动,强准处维,。 良员面真着规明个的实牢换和级护学认 传会”学,眼确一重效记届底以党习教真 统工战习充明要“律大;入风线上章市育学 和作略习中分确掌四”决要党气。党,委、习 作条布近、展基握个纪策在充誓监员坚加全理《 风例局平五示本廉服律部学分词督领定强体论中 ;》、总中共标洁从要,署,发的导理领党武国 深《贯全全产准自”求做。关挥牢通(干想导员装共 刻中彻市会党、律的,合键机记知川部(区信班学。,产 汲国落X精人树准要重格在关党》委要二X域念子习根进党 取共实年神的立则求点党系做党的和办学)中;思党据一廉 违产五在,优行规掌员统。组宗中〔深学心认想章省步洁 纪党大全进良为定掌握”先要织旨央2一系全 关”真政,委坚自 违党0发体一风规的握“学深战,、1层列体 于提学治要办定律 法组6展党步貌范“四习〕入斗深省,讲党 在供习建深公理准 反工理题员巩和,四的个教1学堡入委系话员 全坚党设入4厅想则 面作念学中固时组个领廉育号习垒领、统。讲 体强的领个印信》 典条,习开拓代织必导洁实)贯作会市学着定党保历实会专。发念《 型例实讨展精和须干”施和彻用党委习眼理课 员证史施党题的,中(现一”论“党神引部方《习和员有领加想, 中。意的组《提国 的试X、学 制,的;导“必四案中近党条关悟强X信支 开学见性织关高共 教行二总习 度按党群要广四须个〉共事平员件严党理念部 展习等质讨于党产 训)、体讨 要照章众带大个具自的X业总先和肃章论,书 “革制、论照在性党 ,》主X要论 求“党路着坚备觉通“书锋义换,武学明记命度市宗,入全觉纪 自《要求” ,四规线问员持的知十记模务届深习确给 党先文委旨每党省悟律 觉内。 党个、教题逐”六,》三头开系范、纪刻教政支 章辈件办、个志党;处 讲政容,以 小讲学育条项(五落展列作权律把育治部 党和,公指专愿员要分 政领带党 组(系实,逐掌基X”于实“重用利握动方党 规先学室导题谈中坚条 治导X头组 每课一列践针句握本发“全两要,“委员向、进关思集理开持例 、干观严中 月”)讲活对通各条展七面学讲领明两办部”讲 学典于想中想展学》 讲,守心 底要学话动问读类件良定个从一话导确个〔署、党 系型印学、“用等 规温在政组求党,和题违好共有严做,带先2,“课 列发奋习谈学结党 矩入推0关治形 织,做“改章纪开产之治”全头合1以坚,用〈斗讨信党合内 、讲动6键纪式 一开合三,行局党”学面、格〕华党持邀好关目论念章、法 守话志改时律, 次展格严进明和人“责习贯以党2民支根请红于标不,党创规 纪愿革8刻和定 党三一确“性理五任教彻上号族部本党色在、得对规先, 律做和发保站政期 员组实步做决锻想个。育落率)优为宗校教全少照、争尊 ,合入展持得治组 集班”坚合胜,炼信必实下,三秀单旨教育市于入学优崇格党稳公出规织 中子学专持格全向和念须基党,结、,传位师资党1党系,誓定仆,矩集 学成习题问党天面党道,”础的为合主站统开敢、员讲誓列进章员词实情危,中 习员教题。小的德牢等十协我要稳美展于专中规词讲一”,践怀险带学 。到育导的康理修固重八调”局(措政德一担家开矩找话步学交中精,时头习 支联(成向、论养树要大推中实三施治,次当学展、标,强习流建神牢候, 部系以果建和,立论进奋际)全立筑主作者“有(准做化教思功,记豁固每区下;注成路心党述十“发,开面场牢题为给学国纪一、合宗育想立推共得树次 季县简要重线存的,八四有现展从,拒党”特律)找格旨实体业动产出立确 度X称突活方敬意认届为制“严把腐日、员章X色,开差党观施会。X党,和定 召“出述针畏识真三、定四局治理防活“干党X社讲展距员念方。《员在贯1开两正县,政、践中加建如个带个党想变动坚部规会道“。”案党永X彻一学面(处领策手党行、快功下讲头专等信的,守讲、X主德两党学干委远落次党一二级会看握员“四发立实党事讲题方念防组纪党学义、重支习部会是实全中做)以贯齐戒意三展业施课党开新面时线织律课系道有温部教要读的劳五体央”开上穿,尺识严、。方”“课展要的时;党底,列路品两书育讲本工动大党决学展其认,三科案。十,交中求深处始员线鼓讲全、行对记方话)作人发员定习“中真廉强实学习党三局流国,刻处终重励话体“,照作案精》方民展会,教三领的贯洁化”发系支五党研特坚内体保温树普党建五讲”学》神为法的理议2育个导马彻从党要展列部”组讨0理 情色持涵现入立通员位奉主习。基1》普念,)干克省政的求、讲要规书6。念 怀社以和为干党清要与一献题动本纳通,分县部思委、宗和话结划记按怎 、会知要行事志风员坚全体、党员教入一带别处要主、从旨好谐,合开给照么 务主促求动创愿正、持面”有日,材学员头围级义市严意干发要专局“办 实义行。的业、气学建总作活领,习,攻绕以做立委治识部展重起三、 思要力重”做成体为动导深内密坚“上结场决家,标。点步会新 想“知着量开温3结小的布。干入容切克坚党合观策,积准学、一战 作四行重;拓入(合康要局合4部学。联难员,月点部带极,习“课略 风个合学坚进党三,社求、格带习深系、干对底方署头践带《决怎 。全一习定取誓)坚会和“党头《入群敢部照前法,弘行头习胜么 要面,领正的词做相内四员重习领众于要习,做扬社坚近全干 深”做会确精,合适容个。近会,担以近结领政社会定平面” 入战讲习的气对格应;全引平关全当《平合会治主理总小学 领略政近神党、重面导总于心,习总贯上主义想书康习 会布治平,员有点”党书改全带近书穿的义核信记、研 我局、总方平。效学战员记革意平记其明核心念系建讨 国、有书向常着服习略强系发为谈关中白心价列成; 发五信记,时眼务习布化列展人治的人价值重区注 展大念来经候党国近局政重稳民国坚;值要域重 战发,川常看和家平、治要定服理定践体讲中同 略展视主得国治总五意讲、务政信行系话心X机理察动出家书大识话内;》X仰党和读遇念重向,事和记发,读工政加《追的中本、要党业“对展保本作外强习求宗(中社讲的五四理持(“交党近、旨2会话央新位川念政02存国平历,10主和看发一工、治61凭防总年史6义系齐展体年作全本、、书版担核列对”版的面色留治记)当心重党建)系深史党重》意价要员设》列化、治要,识值指的,改资国讲重、观示X要革政治话点真X和将、、事军文领挚全毛育业的章会为面泽人发重选理民从东”展要编想严同的体论(信治志作系领念党用。导、等结中全方合国体面起梦党来、员,学加快

用牛顿环测量球面的曲率半径 思考题

用牛顿环测量球面的曲率半径 思考题

实验十五用牛顿环测量球面的曲率半径一、干涉干涉的定义:干涉是指满足一定条件的两列相干光波相遇叠加,在叠加区域某些点的光振动始终加强,某些点的光振动始终减弱,即在干涉区域内振动强度有稳定的空间分布;而在文学的解释中,干涉指过问或制止,多指不应该管的硬管或关涉;关联,并引申出不同的解释。

干涉的分类:1、相长干涉(constructive interference):两波重叠时,合成波的振幅大于成分波的振幅者,称为相长干涉或建设性干涉。

若两波刚好同相干涉,会产生最大的振幅,称为完全相长干涉或完全建设性干涉(fully constructive interference)。

2、相消干涉(destructive interference):两波重叠时,合成波的振幅小于成分波的振幅者,称为相消干涉或破坏性干涉。

若两波刚好反相干涉,会产生最等厚干涉小的振幅,称为完全相消干涉或完全破坏性干涉(fully destructive interference)。

二、薄膜干涉的分类:等厚干涉:这是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.牛顿环和楔形平板干涉都属等厚干涉.等倾干涉:当不同倾角的光入射到折射率均匀,上、下表面平行的薄膜上时,同一倾角的光经上、下表面反射(或折射)后相遇形成同一条干涉条纹,不同的干涉明纹或暗纹对应不同的倾角,这种干涉称做等倾干涉.等倾干涉一般采用扩展光源,并通过透镜观察.三、等厚干涉的特点:厚度相等,也就意味着从前后面发生的两次反射的路程差是一个定值,因此不会出现干涉条纹,但是同样会有干涉现象,比如路程差恰好是某种波的半波长的奇数倍,则会出现此波在薄膜的表面被减弱为零,就像近视镜的镀膜一个道理四、牛顿环的历史一种光的干涉图样.是牛顿在1675年首先观察到的.将一块曲率半径较大的平凸透镜放在一块玻璃平板上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环.圆环分布是中间疏、边缘密,圆心在接触点O.从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的.若用白光入射.将观察到彩色圆环.牛顿环是典型的等厚薄膜干涉.凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉.同一半径的圆环处空气膜厚度相同,上、下表面反射光程差相同,因此使干涉图样呈圆环状.这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。

2、利用干涉原理测透镜曲率半径。

3、学习用逐差法处理实验数据的方法。

三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。

四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。

当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。

这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。

由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。

图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为, ,,,2e2,式中e为第k级条纹对应的空气膜的厚度,为半波损失。

2,由干涉条件可知,当时,干涉条纹为暗条纹。

即 ,,,,?(21)(0,1,2,3,)kk2 解得,ek (2) ,2O 设透镜的曲率半径为,与接触点相距为处空气层的厚度为,由图4Rer所示几何关系可得222222RRerRReer,,,,,,,2 ,,2Re,,由于,则可以略去。

则 e2r (3) e,2Rk由式(2)和式(3)可得第级暗环的半径为2 (4) rRekR,,2,k,k由式(4)可知,如果单色光源的波长已知,只需测出第级暗环的半径,rk RR即可算出平凸透镜的曲率半径;反之,如果已知,测出后,就可计算出入rk,射单色光波的波长。

但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附a,0a,0加了一项。

用牛顿环测量透镜的曲率半径实验报告

用牛顿环测量透镜的曲率半径实验报告

一、实验名称:用牛顿环测量透镜的曲率半径二、实验目的:1、观察光的等厚干涉现象,了解干涉条纹特点。

2、利用干涉原理测透镜曲率半径。

3、学习用逐差法处理实验数据的方法。

三、实验仪器:牛顿环装置(其中透镜的曲率未知)、钠光灯(波长为589.3nm)、读数显微镜(附有反射镜)。

四、实验原理:将一块曲率半径R较大的平凸透镜的凸面放在一个光学平板玻璃上,使平凸透镜的球面AOB与平面玻璃CD面相切于O点,组成牛顿环装置,如图所示,则在平凸透镜球面与平板玻璃之间形成一个以接触点O为中心向四周逐渐增厚的空气劈尖。

当单色平行光束近乎垂直地向AB面入射时,一部分光束在AOB面上反射,一部分继续前进,到COD面上反射。

这两束反射光在AOB面相遇,互相干涉,形成明暗条纹。

由于AOB面是球面,与O点等距的各点对O点是对称的,因而上述明暗条纹排成如图所示的明暗相间的圆环图样,在中心有一暗点(实际观察是一个圆斑),这些环纹称为牛顿环。

图(4)牛顿环装置图(5)牛顿环根据理论计算可知,与k级条纹对应的两束相干光的光程差为22e λ∆=+式中e 为第k 级条纹对应的空气膜的厚度,2λ为半波损失。

由干涉条件可知,当(21)(0,1,2,3,)2k k λ∆=+=⋯时,干涉条纹为暗条纹。

即 解得 2e k λ= (2) 设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为e ,由图4所示几何关系可得()2222222R R e r R Re e r =-+=-++由于R e >>,则2e 可以略去。

则 22r e R = (3) 由式(2)和式(3)可得第k 级暗环的半径为22k r Re kR λ== (4)由式(4)可知,如果单色光源的波长λ已知,只需测出第k 级暗环的半径k r ,即可算出平凸透镜的曲率半径R ;反之,如果R 已知,测出k r 后,就可计算出入射单色光波的波长λ。

但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在光程差公式中附加了一项。

大学物理实验光学用牛顿环干涉测透镜曲率半径

大学物理实验光学用牛顿环干涉测透镜曲率半径

实验 用牛顿环干涉测透镜曲率半径(一)目的:1、掌握用牛顿环测定透镜曲率半径的方法。

2、通过实验加深对等厚干涉原理的理解。

(二)仪器和用具:移测显微镜(JCD 3型)、钠灯牛顿环仪是由待测平凸透镜(凸面曲率半径约为200~300c m〕L和磨光的平玻璃板P叠合装在金属框架F中构成。

框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置。

调节H时,螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜。

(三)原理:当一曲率半径很大的平凸透镜的凸面与一磨光平玻璃板相接触时,在透镜的凸面与平玻璃板之间将形成一空气薄膜,离接触点等距离的地方,厚度相同。

如图9-2所示,若以波长为的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将互相干涉,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。

在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑(图a );如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环(图b),这种干涉现象最早为牛顿所发现,故称为牛顿环。

设透镜L的曲率半径为R ,形成的m 级干涉暗条纹的半径为r m,m 级干涉亮条纹的半径为r m’,不难证明r m =λmRr m’=2)12(λ⋅−R m 以上两式表明,当已知时,只要测出D 第m 级暗环(或亮环)的半径,即可算出透镜的曲率半径R ;相反,当R 已知时,即可算出λ。

但由于两接触镜面之间难免附着尘埃,并且在接触时难免发生弹性形变,因而接触处不可能是一个几何点,而是一个圆面,所以近圆心处环纹比较模糊和粗阔,以致难以确切判定环纹的干涉级数m ,即干涉环纹的级数和序数不一定一致。

这样,如果只测量一个环纹的半径,计算结果必然有较大的误差。

为了减少误差,提高测最精度,必须测量距中心较远的、比较清晰的两个环纹的半径,例如测量出第m 1个和第m 2个暗环(或亮环)的半径(这里m 1,m 2均为环序数,不一定是干涉级数),因而(9-1)式应修正为r m2 =(m+j )R λ式中m 为环序数,(m +j )为干涉级数(j 为干涉级修正值),于是λλR m m R j m j m r r m m )()]()[(12122212−=+−+=− 上式表明,任意两环的半径平方差和干涉级以及环序数无关,而只与两个环的序数之差(m 2-m 1)有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十九-用牛顿环测透镜的曲率半径-思考题实验十九用牛顿环测透镜的曲率半径思考题光的干涉是光的波动性的一种表现。

若将同一点光源发出的光分成两束,让它们各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象。

干涉现象在科学研究和工业技术上有着广泛的应用,如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。

牛顿环、劈尖是其中十分典型的例子,它们属于用分振幅的方法产生的干涉现象,也是典型的等厚干涉条纹。

【实验目的】1.观察和研究等厚干涉现象和特点。

2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。

3.熟练使用读数显微镜。

4.学习用逐差法处理实验数据的方法。

【实验仪器】测量显微镜,钠光光源,牛顿环仪,牛顿环和劈尖装置。

图1 实验仪器实物图【实验原理】1.牛顿环“牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。

为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。

他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。

但由于他主张光的微粒说(光的干涉是光的波动性的一种表现)而未能对它作出正确的解释。

直到十九世纪初,托马斯.杨才用光的干涉原理解释了牛顿环现象,并参考牛顿的测量结果计算了不同颜色的光波对应的波长和频率。

牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学玻璃平板(平晶)上构成的,如图2所示。

平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。

若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。

其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图3所示),称为牛顿环。

由于同一干涉环上各处的空气层厚度是相同的,因此称为等厚干涉。

图2 牛顿环装置图3 干涉圆环与级条纹对应的两束相干光的光程差为(1)为第级条纹对应的空气膜的厚度;为半波损失。

由干涉条件可知,当=(2k+1) (k=0,1,2,3,...)时,干涉条纹为暗条纹,即得(2)设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,由图2所示几何关系可得由于R>>d,则 d2可以略去(3)由(23-2)和(23-3)式可得第k级暗环的半径为:••(4)由(4)式可知,如果单色光源的波长已知,只,即可算出平凸透镜需测出第级暗环的半径rm后,的曲率半径R;反之,如果R已知,测出rm就可计算出入射单色光波的波长。

但是由于平凸透镜的凸面和光学平玻璃平面不可能是理想的点接触;接触压力会引起局部弹性形变,使接触处成为一个圆形平面,干涉环中心为一暗斑;或者空气间隙层中有了尘埃等因素的存在使得在暗环公式中附加了一项光程差,假设附加厚度为(有灰尘时a > 0,受压变形时a < 0),则光程差为由暗纹条件得将上式代人(4)得上式中的不能直接测量,但可以取两个暗环半径的平方差来消除它,例如去第环和第环,对应半径为• --两式相减可得所以透镜的曲率半径为(5) 又因为暗环的中心不易确定,故取暗环的直径计算(6)•• 由上式可知,只要测出Dm与Dn(分别为第m与第n条暗环的直径)的值,就能算出R或。

2.劈尖将两块光学平玻璃叠合在一起,并在其中一端垫入待测的薄片(或细丝),则在两块玻璃片之间形成一空气劈尖。

当用单色光垂直照射时,和牛顿环一样,在空气劈尖上、下两表面反射的两束相干光发生干涉,其干涉条纹是一簇间距相等,宽度相等切平行于两玻璃片交线(即劈尖的棱)的明暗相间的平行条纹,如图4所示。

图4 空气劈尖干涉由暗纹条件(=0,1,2,...)可得,第级暗纹对应的空气劈尖厚度为第+1级暗纹对应的空气劈尖厚度为两式相减得上式表明任意相邻的两条干涉条纹所对应的空气劈尖厚度差为。

又此可推出相隔个条纹的两条干涉条纹所对应的空气劈尖厚度差为再由几何相似性条件可得待测薄片厚度为式中,为两玻璃片交线与所测薄片边缘的距离(即劈尖的有效长度),为个条纹间的距离,它们可由读数显微镜测出。

【实验仪器介绍】1.读数显微镜如图5所示,读数显微镜的主要部分为放大待测物体用的显微镜和读数用的主尺和附尺。

转动测微手轮,能使显微镜左右移动。

显微镜有物镜、目镜和十字叉丝组成。

使用时,被测量的物体放在工作台上,用压片固定。

调节目镜进行视度调节,使叉丝清晰。

转动调焦手轮,从目镜中观察,使被测量的物体成像清晰,调整被测量的物体,使其被测量部分的横面和显微镜的移动方向平行。

转动测微手轮,使十字叉丝的纵线对准被测量物体的起点,进行读数(读数由主尺和测微等手轮的读数之和)。

读数标尺上为0-50mm刻线,每一格的值为1mm,读数鼓轮圆周等分为100格,鼓轮转动一周,标尺就移动一格,即1mm,所以鼓轮上每一格的值为0.01mm。

为了避免回程误差,应采用单方向移动测量。

1.目镜2.锁紧圈3.锁紧螺丝4.调焦手轮5.镜筒支架6.物镜7.弹簧压片8.台面玻璃9.旋转手轮 10.反光镜11.底座 12.旋手 13.方轴 14.接头轴 15.测微手轮 16.标尺图5 读数显微镜结构图2.钠光光源灯管内有两层玻璃泡,装有少量氩气和钠,通电时灯丝被加热,氩气即放出淡紫色光,钠受热后汽化,渐渐放出两条强谱线589.0和589.3,通常称为钠双线,因两条谱线很接近,实验中可认为是比较好的单色光源,通常取平均值589.3作为该单色光源的波长。

由于它的强度大,光色单纯,是最常用的单色光源。

使用钠光灯时应注意:(1)钠光灯必须与扼流线圈串接起来使用,否则即被烧坏。

(2)灯点燃后,需等待一段时间才能正常使用(起燃时间约5-6)。

(3)每开、关一次对灯的寿命有影响,因此不要轻易开、关。

另外,在正常使用下也有一定消耗,使用寿命只有500,因此应作好准备工作,使用时间集中。

(4)开亮时应垂直放置,不得受冲击或振动,使用完毕,须等冷却后才能颠倒摇动,避免金属钠流动,影响等的性能。

【实验内容及步骤】一.利用牛顿环测平凸透镜曲率半径1.将牛顿环放置在读数显微镜工作台毛玻璃中央,并使显微镜镜筒正对牛顿环装置中心,点燃钠光灯,使其正对读数显微镜物镜的反射镜。

2.调节读数显微镜(1)调节目镜:使分划板上的十字刻线清晰可见,并转动目镜,使十字刻线的横刻线与显微镜筒的移动方向平行。

(2)调节反射镜:是显微镜视场中亮度最大,这时基本满足入射光垂直于待测透镜的要求。

(3)转动手轮15:使显微镜筒平移至标尺中部,并调节调焦手轮4,使物镜接近牛顿环装置表面。

(4)对读数显微镜调焦:缓缓转动调焦手轮4,使显微镜筒由下而上移动进行调焦,直至从目镜视场中清楚地看到牛顿环干涉条纹且无视差为止;然后再移动牛顿环装置,使目镜中十字刻线交点与牛顿环中心大致重合。

3. 观察条纹的分布特征。

各级条纹的粗细是否一致,条纹间隔是否一样,并做出解释。

观察牛顿环中心是亮斑还是暗斑,若为亮斑,如何解释?4.测量暗环的直径。

转动读数显微镜读数鼓轮,同时在目镜中观察,使十字刻线由牛顿环中央缓慢向一侧移动至23环然后退回第22环,自第22环开始单方向移动十字刻线,每移动一环记下相应的读数直到第13环,然后再从同侧第10环开始记到第1环;穿过中心暗斑,从另一侧第1环开始依次记数到第10环,然后从第13环直至第22环。

并将所测数据记入数据表格中。

二、用劈尖测薄片厚度1.从读数显微镜工作台上取下牛顿环,换上劈尖,使劈尖两玻璃片交线及薄片边缘在可测量区内。

2.对显微镜调焦,从目镜中能看到清晰的干涉条纹。

如果干涉条纹与两玻璃片交线不平行,则可能是压紧螺钉松紧不合适或薄片上有灰尘。

适当调整压紧螺钉的松紧或者擦干净薄片,使干涉条纹与两玻璃交线平行。

3.调整劈尖在工作台上的位置,使干涉条纹与十字刻线的纵线平行。

4.转动鼓轮15,把显微镜筒移动到标尺一端再反转,测出劈尖有效L(即两玻璃交线与薄片边缘的距离)。

5.在劈尖中部条纹清晰处,从第个暗条纹开始记数,然后每隔五个暗条纹记一次数,共记12个读书,记入自拟的数据表格中。

用逐差法处理数据。

【注意事项】1.牛顿环仪、劈尖、透镜和显微镜的光学表面不清洁,要用专门的擦镜纸轻轻揩拭。

2.读数显微镜的测微鼓轮在每一次测量过程中只能向一个方向旋转,中途不能反转。

3.当用镜筒对待测物聚焦时,为防止损坏显微镜物镜,正确的调节方法是使镜筒移离待测物(即提升镜筒)。

【数据记录及处理】一、数据处理根据计算式,对,分别测量n次,因而可得n个R i值,于是有,我们要得到的测量结果是。

下面将简要介绍一下的计算。

由不确定度的定义知其中,A分量为B分量为(为单次测量的B 分量)由显微镜的读数机构的测量精度可得(mm)于是有二、数据记录表分组I 1 2 3 4 5 6 7 8 9 10级数mi22 21 20 19 18 17 16 15 14 13位置左右直径Dmi级数ni12 11 10 9 8 7 6 5 4 3位置左右直径平方差D -D透镜曲半径R2.用劈尖测薄片厚度表格自拟【思考题】1.牛顿环干涉条纹形产生的条件是什么?2.牛顿环干涉条纹的中心在什么情况下是暗的?什么情况下是亮的?3.分析牛顿环相邻暗(或亮)环之间的距离(靠近中心的与靠近边缘的大小)。

4.为什么说测量显微镜测量的是牛顿环的直经,而不是显微镜内被放大了的直经?若改变显微镜的放大倍率,是否影响测量的结果。

5.如何用等厚干涉原理检验光学平面的表面质量?。

相关文档
最新文档