七年级上册数学截面与三视图(讲义及答案).

合集下载

七年级数学上丰富的图形世界培优讲义最新版本

七年级数学上丰富的图形世界培优讲义最新版本

丰富的图形世界一对一讲义## ### 七年级### 性别## 教学课题丰富的图形世界2教学目标知识点:1、截一个几何体2、几何体的三视图考点:1、会画几何体的三视图。

2、会判断常见几何体的截图。

3、由三视图判断几何体方法:讲解和练习重点难点重点:常见几何体的截图、三视图。

难点:常见几何体的截图、三视图。

课前检查作业完成情况:优□良□中□差□建议__________________________________________教学内容丰富的图形世界知识点:截一个正方体:截面:用一个平面去截一个几何体(包括圆柱、球、棱柱、棱锥、长方体、正方体等等〕,截出的平面图形叫截面。

1、用一个平面截正方体,可能是三角形,四边形,五边形,六边形。

可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形截面为四边形的情况:〔2〕2、用一个截面去截圆柱,截面可能是正方形,长方形,梯形、圆或椭圆。

3、用一个截面去截圆锥,截面可能是等腰三角形、圆、抛物线形或椭圆。

4、三棱锥的截面可以是三角形、长方形、四边形。

其中四边形可以是特殊的矩形、梯形。

5、几何体中的圆台、棱锥都是课外介绍的,所以我们就在这个栏目里继续介绍这两种几何体的截面.〔1〕圆台用平面截圆台,截面形状会有_____和_______这两种较特殊图形,截法如下:〔2〕棱锥由于棱锥同时具有棱柱的侧面是平面的特点,又具备了圆锥的锥点的特征.所以截面形状必须兼顾这两方面.截面可能出现的形状是三角形、多边形、梯形.※用一个平面去截一个正方体,假设这个平面与这个正方体的几个面相交,那么截面就是几边形。

【典型例题】例1、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是_________。

例2、用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是〔〕A.①②④B.①②③C.②③④D.①③④【变式1】如图,截去正方体一角变成一个多面体,这个多面体有_________个面,有_________条棱。

北师大七年级上册数学教案 立体图形的截面与三视图

北师大七年级上册数学教案  立体图形的截面与三视图

立体图形的截面与三视图【知识要点】1.截面:一个平面与一个几何体相交所截得的图形叫做截面。

2.三视图法:(1)主视图:从正面看到的图形叫做主视图;(2)左视图:从左面看到的图形叫做左视图;(3)俯视图:从上面看到的图形叫做俯视图。

3.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

三角形、四边形、五边形、六边形等都是多边形。

4.欧拉公式:顶点数+面数-边数=2【典型例题】例1.用一个平面去截一个正方体,可能出现哪些图形。

例2.用一个平面去截三棱柱最多可以截得五边形;用一个平面去截四棱柱最多可以截得六边形,用一个平面去截五棱柱最多可以截得七边形;如果用一个平面去截n个棱柱,最多能截得几边形?例3.如图所示是由小立方体搭成的几何体的俯视图,小立方体的数字表示在该位置的小立方体的个数,请画出它的主视图和左视图。

例4.用小方块搭成的一个几何体,从不同的方向观察得到三视图如图所示,试确定该几何体用了多少块小方块。

例5.在五彩缤纷的世界里,其中有各种各样的立体图形,已知一个十二面体如图2-3所示,试求该十二面体的顶点数和棱数。

【冲刺练习】1.一个平面去截一个正方体,截面的形状不可能是( ) A .长方形B .三角形C .梯形D .七边形2.三棱柱的表面展开图形是________形和_________形。

3.正方体的截面中,边数最多的多边形是( ) A .四边形 B .五边形 C .六边形 D .七边形 4.把一个正方体截去一个角剩下的几何体最多有( )A .4个面B .5个面C .6个面D .7个面5.用一个平面去截一个三棱柱,截出的面可能是什么形状?可能是三角形吗?可能是四边形吗?可能是五边形吗?可能是六边形吗?先做一做,再想一想。

主视图左视图俯视图图2-2图2-3十二面体6.如图所示,是由几个小立方体块搭成的几何体,小正方形内的数字表示在该位置小立方块的个数,其主视图、左视图正确的是( )7.请画出图中几何体的主视图、左视图、与俯视图。

最新部编版人教初中数学七年级上册《第4章:截面与三视图 热点专题高分特训及答案》精品优秀测试题

最新部编版人教初中数学七年级上册《第4章:截面与三视图 热点专题高分特训及答案》精品优秀测试题

前言:该热点专题高分特训由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的热点专题高分特训助力考生查漏补缺,在原有基础上更进一步。

(最新精品热点专题高分特训)学生做题前请先回答以下问题问题1:举出一个几何体,使得从正面、左面、上面看到的这个几何体的形状都一样,你能举出几种?问题2:观察一个几何体的形状通常从三个方向看,从正面看(主视图),从左面看(左视图),从上面看(俯视图),从正面看可以看到几何体的________和________;从左面看可以看到几何体的________和________;从上面看可以看到几何体的________和________.问题3:在利用三视图确定小木块个数时,数字一般标在________图上.截面与三视图(人教版)一、单选题(共16道,每道6分)1.用一个平面去截五棱柱,则截面不可能是( )A.三角形B.四边形C.五边形D.圆答案:D解题思路:五棱柱的面均为平面,面面相交得直线,而不可能成为曲线,圆是由曲线构成的,所以五棱柱的截面不可能是圆.故选D.试题难度:三颗星知识点:几何体的截面2.用一个平面去截如图所示的圆锥,得到的图形不可能是( )A. B.C. D.答案:C解题思路:如果用平面去截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形;如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆;如果不与底面平行且与底面相交,得到就是选项A中的图形;不可能是C中的直角三角形.故选C.试题难度:三颗星知识点:几何体的截面3.用一个平面去截下面的几何体,所得截面是三角形,则这个几何体不可能为( )。

截一个几何体与三视图(4种题型)(解析版)(北师大版)

截一个几何体与三视图(4种题型)(解析版)(北师大版)

截一个几何体与三视图(4种题型)【知识梳理】一.截一个几何体(1)截面:用一个平面去截一个几何体,截出的面叫做截面.(2)截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.二.简单几何体的三视图(1)画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.(2)常见的几何体的三视图:圆柱的三视图:三.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.四.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.【考点剖析】一.截一个几何体(共8小题)1.(2022秋•高新区期末)用一个平面去截一个三棱柱,截面的形状不可能是()A.B.C.D.【分析】根据三棱柱的特点,考虑截面从不同角度和方向截取的情况.【解答】解:A、当截面与底面平行时,得到的截面的形状可能是该图形,故不符合题意;B、当截面与侧面平行时,截面就是长方形,故不符合题意;C、无论如何去截截面,截面的形状不可能是圆形.故符合题意;D、当截面与轴截面斜交时,得到的截面的形状可能是梯形,故不符合题意.故选:C.【点评】本题考查了截一个几何体的应用,主要考查学生的观察图形的能力、空间想象能力和动手操作能力.2.(2022秋•玄武区校级期末)用一个平面去截一个几何体,若截面(截出的面)的形状是四边形,则这个几何体可以是:①三棱柱;②三棱锥;③长方体;④圆柱,其中所有正确结论的序号是.【分析】根据三棱柱,三棱锥,长方体,圆柱的特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状是四边形.【解答】解:①用一个平面去截一个三棱柱,得到的图形可能是四边形;②用一个平面去截一个三棱锥,得到的图形可能是四边形;③用一个平面去截一个长方体,得到的图形可能是四边形;④用一个平面去截一个圆柱,得到的图形可能是四边形.故答案为:①②③④.【点评】本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.3.(2022秋•礼泉县期末)用一个平面分别去截长方体,圆锥,三棱柱,圆柱,能得到截面是三角形的几何体有个.【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:长方体沿体面对角线截几何体可以截出三角形;圆锥能截出三角形;三棱柱能截出三角形;圆柱不能截出三角形;所以截面可能是三角形的有3故答案为:3.【点评】本题考查了几何体的截面,掌握常见几何体的截面是解题的关键.4.(2022秋•吉州区期末)如图所示,用经过A、B、C三点的平面截去正方体的一角,变成一个新的多面体,若这个多面体的面数为m,棱数为n,则m+n=.【分析】截去正方体一角变成一个多面体,这个多面体多了一个面,棱数不变,少了一个顶点.【解答】解:由图可得,多面体的面数是7;正方体有12条棱,被截去了3条棱,截面为三角形,增加了3条棱,故棱数不变.所以m+n=7+12=19.故答案为:19.【点评】本题考查了正方体的截面.明确正方体的面数,顶点数,棱的条数,形数结合,求出截去一个角后得到的几何体的面数,顶点数,棱的条数是解题的关键.5.(2022秋•茂南区期末)截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.如图,下列几何体的截面是.【分析】根据圆柱和四棱柱的形状特点解答即可.【解答】解:用一个平面去截圆柱,截面形状是圆;用一个平面去截四棱柱,截面形状是长方形.故答案为:圆,长方形.【点评】此题考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关,要熟练掌握各种几何图形.6.(2022秋•柳江区月考)如图,左面立体图形中四边形APQC表示平面截正方体的截面,请在右面展开图中画出四边形APQC的四条边.【分析】根据正方体的特征解答即可.【解答】解:截面的线在展开图中如右图的A﹣C﹣Q﹣P﹣A.【点评】此题考查正方体的展开图,解决此题的关键是抓住四边形APQC四个顶点所在的位置,再进一步确定四边形的四条边所在的平面就可容易地画出.7.(2022秋•金凤区校级月考)如图是一个长为4cm,宽为3cm的长方形纸片,将该长方形纸片绕一条边所在的直线旋转一周,然后用平面沿与AB平行的方向去截所得的几何体,求截面的最大面积(结果保留π).【分析】长方形纸片绕一条边所在的直线旋转一周得到一个圆柱体,沿线段AB的方向截所得的几何体,计算截面比较即可得到最大面积.【解答】解:由题意可得,把长方形ABCD绕AB边所在的直线旋转一周,得到的几何体为圆柱,圆柱的底面半径为4cm,高为3cm,用平面沿与AB平行的方向去截所得的几何体,截面是长方形,所以截面的最大面积为4×2×3=24(cm2);由题可得,把长方形ABCD绕AD边所在的直线旋转一周,得到的几何体为圆柱,圆柱的底面半径为3cm,高为4cm,用平面沿与AB所以截面的最大面积为32×π=9π(cm2);因为9π>24,所以截面的最大面积为9πcm2.【点评】本题主要考查的是截一个几何体,点、线、面、体,能够正确得到截面的图形是解题的关键.8.(2022秋•通川区期末)如图,用一个平面去截一个三棱柱,截面的形状可能是.①三角形②四边形③五边形④六边形【分析】根据三棱柱的截面形状判断即可.【解答】解:矩形:从三棱柱的顶面垂直截下去,就会出现一个矩形截面;三角形:从三菱柱的侧面平移截过去,就可以得到一个三角形的截面;梯形:从三棱柱的顶面斜着截取下去,就可以得到一个梯形截面;五边形:从三角形的顶面往下斜着截,但是必须经过5条线,就可以得到一个五边形截面.用一个平面去截一个三棱柱,截面的形状可能是:三角形,四边形,五边形,不可能是六边形,故答案为:①②③.【点评】本题考查了截一个几何体,熟练掌握三棱柱的截面形状是解题的关键.二.简单几何体的三视图(共8小题)9.(2022秋•大东区期末)下列几何体中,从下面观察看到的形状为三角形的是()A.B.C.D.【分析】根据俯视图的定义判断即可.【解答】解:A.该圆柱的俯视图是圆,故本选项不合题意;B.该圆锥的俯视图是圆(带圆心),故本选项不合题意;C.该三棱柱的俯视图是三角形,故本选项符合题意;D.该正方体的俯视图是正方形,故本选项不合题意;故选:C.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度得出正确视图是解题关键.10.(2022秋•丰润区期末)如图几何体中,从正面看(主视图)是长方形的是()A.B.C.D.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:A图的主视图是等腰三角形,B图的主视图是长方形,C图的主视图是梯形,D图的主视图是圆形,故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.11.(2022秋•南平期末)如图,从上面看这个圆柱,看到的平面图形是.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:该几何体,从上面看到的平面图形是一个圆.故答案为:圆.【点评】本题考查了几何体的三视图,从上边看得到的图形是俯视图.12.(2022秋•禅城区期末)下列几何体中,①圆柱;②球;③棱锥;④圆锥;⑤长方体.从正面看图形是长方形的是.(填序号)【分析】从正面看图形得到是几何体的主视图,逐一分析解答即可.【解答】解:①圆柱的主视图是长方形,符合题意;②球的主视图是圆,不符合题意;③棱锥的主视图是三角形,不符合题意;④圆锥的主视图是三角形,不符合题意;⑤长方体的主视图是长方形,符合题意.故从正面看图形是长方形的是①⑤.故答案为:①⑤.【点评】本题考查了简单几何体的三视图,解题的关键是掌握常见几何体的三视图.13.(2022秋•丹徒区月考)如图所示,水平放置的长方体的底面是长为4cm、宽为2cm的长方形,它的主视图的面积为12cm2,则长方体的体积等于cm3.【分析】由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.【解答】解:依题意,得长方体的体积=12×2=24(cm3).故答案为:24.【点评】本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.14.(2022秋•密云区期末)分别从正面、上面、左面观察下列物体,得到的平面图形完全相同的是(填写序号).【分析】图①、图②、图③、图④分别是长方体,圆锥,正方体、圆柱,根据它们三视图的形状进行判断即可.【解答】解:图①、图②、图③、图④分别是长方体,圆锥,正方体、圆柱,长方体的三视图虽然都是长方形的,但它们的大小不相同,圆锥体的主视图、左视图是三角形的,而俯视图是圆形的,正方体的三视图都是正方形的,圆柱的主视图、主视图是长方形的,但俯视图是圆形的,因此从正面、上面、左面看所得到的平面图形完全相同的是正方体,故答案为:③.【点评】本题考查简单组合体的三视图,掌握简单组合体的三视图的形状是正确判断的前提.15.(2022秋•清河区校级期末)如图是由棱长都为1cm的6块小正方体组成的简单几何体.(1)请在方格中画出该几何体的三个视图.(2)如果在这个几何体上再添加一些小正方体,并保持主视图和左视图不变,最多可以再添加块小正方体,【分析】(1)根据简单组合体三视图的画法画出相应的图形即可;(2)在俯视图上相应位置备注出相应摆放的数目即可.【解答】解:(1)该几何体的主视图、左视图和俯视图如下:(2所以最多可以添加2个,故答案为:2.【点评】本题考查简单组合体的三视图,理解视图的意义是正确解答的前提.16.(2022秋•历下区期中)如图,若干个大小相同的小立方块搭成的几何体.(1)这个几何体由个小立方块搭成;(2)从正面、左面、上面观察该几何体,分别画出你所看到的几何体的形状图.【分析】(1)根据搭建组合体的形状,或根据“从上面看”所得到的图形相应位置上所摆放的小正方体的个数得出答案;(2)根据简单组合体三视图的画法画出相应的图形即可.【解答】解:由该组合体的“俯视图”相应位置上所摆放的小正方体的个数可得,1+3+1+1+2=8(个),故答案为:8;(2)这个组合体的三视图如下:键.三.简单组合体的三视图(共8小题)17.(2022秋•公安县期末)如图是一个由5个相同的正方体组成的立体图形,从其左面看,得到的平面图形是()A.B.C.D.【分析】找到从左面看的图形即可得出结果.【解答】解:从其左面看,得到的平面图形是:故选:C.【点评】本题考查三视图.熟练掌握从不同的方向观察几何体,确定三视图,是解题的关键.18.(2022秋•秀英区校级期末)如图所示的几何体的左视图是()A.B.C.D.【解答】解:从左边看,是三个长方形组成的图形.故选:B.【点评】本题考查简单几何体的三视图,注意掌握从左边看得到的图形是左视图.19.(2022秋•高邮市期末)用三个大小不等的正方体拼成了一个如图所示的几何体,若该几何体的主视图、左视图和俯视图的面积分别表示为S1、S2、S3,则S1、S2、S3的大小关系是(用“<”从小到大连接).【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,根据边角面积的大小,可得答案.【解答】解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,故S3<S2<S1,故答案为:S3<S2<S1.【点评】本题考查了简单组合体的三视图,分别得出三视图是解题关键.20.(2022秋•汝州市期末)如图是用7块相同的小长方体搭成的几何体.若拿走一块长方体后,该几何体的主视图和左视图都没改变,则这块长方体的序号是.【分析】根据几何体的主视图和左视图的定义解答即可.【解答】解:若拿走一块长方体后,该几何体的主视图和左视图都没改变,则这块长方体的序号是⑤.故答案为:⑤.【点评】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“主视图疯狂盖,左视图拆违章”就更容易得到答案.21.(2022的小立方体摆成如图所示的几何体,从上面看这个几何体得到的平面图形的面积是.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上面看的平面图形是:有3列,从左到右正方形的个数分别为:1、2、1,所以从上面看这个几何体得到的平面图形的面积是4.故答案为:4.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.22.(2022秋•市中区期末)如图,请分别画出从正面、左面和上面观察该几何体看到的形状图.【分析】根据三视图的定义结合图形可得.【解答】解:如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.(2022秋•东平县校级期末)如图,在平整的地面上,用多个棱长都为2cm的小正方体堆成一个几何体.(1)共有个小正方体;(2)求这个几何体的表面积;(3)如果现在你还有一些棱长都为2cm的小正方体,要求保持俯视图和左视图都不变,最多可以再添加个小正方体.【分析】(1)根据拼图可直接得出答案;(2)求出主视图、主视图、俯视图的面积,再根据表面积的意义进行计算即可;(3)结合三视图,在俯视图上的相应位置添加相应数量的正方体,直至最多.【解答】解:(1)根据拼图可知,堆成如图所示的几何体需要10个小正方体,故答案为:10;(2)这个组合体的三视图如图所示:因此主视图的面积为2×2×7=28(cm2),左视图为2×2×5=20(cm2),俯视图的面积为2×2×7=28(cm2),∴该组合体的表面积为(28+20+28)×2+2×2×4=168(cm2),(3)在俯视图的相应位置摆放相应数量的小正方体,使其俯视图和左视图都不变,如图所示,所以最多可以添加5个,故答案为:5.【点评】本题考查简单组合体的三视图,理解视图的意义,掌握简单三视图的画法是正确解答的关键.24.(2022秋•吉州区期末)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图.【分析】根据主视图,左视图的定义画出图形即可.【解答】解:主视图,左视图如图所示:【点评】本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.四.由三视图判断几何体(共5小题)25.(2022秋•鄄城县期末)如图①所示的组合几何体,它的下面是一个长方体,上面是一个圆柱.“左”或“俯”);(1)图②和图③是它的两个视图,在横线上分别填写两种视图的名称(填“主”、(2)根据两个视图中的尺寸,计算这个组合几何体的表面积和体积.(结果保留π)【分析】(1)找到从正面和上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.(2)根据图形中的数据可知,长方体的长为8,宽为5,高为2,圆柱的底面直径为2,高为6,根据体积和表面积表示方法进行计算即可.【解答】解:(1)如图,故答案为:左,俯.(2)表面积为:(8×5+8×2+5×2)×2+2π×6=132+12π,体积为:2×5×8+π×(2÷2)2×6=80+π×1×6=80+6π.答:这个组合几何体的表面积为132+12π,体积是80+6π.【点评】本题考查简单组合体的三视图,根据三视图得出相关数据,依据相关计算方法进行计算是得出正确答案的前提.26.(2023•东城区校级模拟)用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:这个几何体是()A.B.C.D.【分析】根据三视图的得出小正方体摆出的几何体即可.【解答】解:由俯视图可知,小正方体摆出的几何体为:,故选:B.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.27.一个几何体由若干个大小相同的小立方块搭成,从左边和上边看到的平面图形如图所示,则搭成这个几何体的小立方块的个数为.【分析】根据左面看与上面看的图形,得到俯视图解答即可.【解答】解:根据左视图和俯视图,这个几何体的底层有3个小正方体,第二层有1个小正方体,所以有3+1=4个小正方体,故答案为:4.【点评】本题考查了由三视图判断几何体,也考查了对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.28.(2022秋•驿城区校级期末)用若干大小相同的小正方体搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示完成下列问题:(1)搭成满足如图所示的几何体最多需要个小正方体,最少需要个小正方体;(2)请在网格中画出用最多小正方体搭成的几何体的左视图.【分析】(1)在俯视图中,写出最多时,写出最少时,小正方体的个数,可得结论;(2)利用俯视图,结合主视图的特征,解决问题即可.【解答】解:(1)搭成满足如图所示主视图和俯视图的几何体最多需要:2+2+2+2+2=10(个),最少需要1+2+1+1+2=7(个)小正方体故答案为:10,7;(2)左视图如图所示.【点评】本题考查由三视图判断几何体,解题的关键是理解三视图的定义,属于中考常考题型.29.(2022秋•大竹县期末)如图是分别从正面、左面、上面观察一个几何体得到的图形,请解答以下问题:(1)这个几何体的名称为;(2)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【解答】解:(1)这个几何体是三棱柱.故答案为:三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长,宽是三棱柱的高,所以三棱柱侧面展开图形的面积为:S=3×4×10=120(cm2).答:这个几何体的侧面积为120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.【过关检测】一.选择题(共6小题)1.(2021秋•连州市期末)下列说法正确的是()A.长方体的截面形状一定是长方形B.棱柱侧面的形状可能是一个三角形C.“天空划过一道流星”能说明“点动成线”D.圆柱的截面一定是长方形【分析】分别判断每个选项的对错即可.【解答】解:∵长方体的截面形状可能是长方形也可能是正方形,故A选项不符合题意,∵棱柱侧面的形状是长方形或正方形,故B选项不符合题意,∵“天空划过一道流星”能说明“点动成线”,说法正确,故C选项符合题意,∵圆柱的截面还可以是圆形,故D选项不符合题意,故选:C.【点评】本题主要考查点、线、面、体的知识,熟练利用几何直观得出正确结论是解题的关键.2.(2022•安阳一模)下列几何体的三视图不含矩形的是()A.长方体B.圆柱C.圆锥D.三棱柱【分析】分别找出四个立体图形的三视图即可解答.【解答】解:A.长方体的三视图都是矩形,故不符合题意;B.正立的圆柱的主视图和左视图都是矩形,故不符合题意;C.正立的圆锥的俯视图是圆,主视图和左视图都是等腰三角形,故符合答题;D.正立的三棱柱的主视图和左视图都是矩形,故不符合题意,故选:C.【点评】本题考查了简单几何体的三视图,注意主视图、左视图、俯视图是分别从物体正面、左面、上面看,所得到的图形.3.(2022•五华区二模)由8化前后的两个几何体的左视图和俯视图都不改变,而主视图可能改变,则取走小正方体的方法共有()A.4种B.5种C.6种D.7种【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解答】解:如图,单独取走1或2或3或同时取走1和2或1和3或2和3,变化前后的两个几何体的左视图和俯视图都不改变,所以取走小正方体的方法共有6种,故选:C.【点评】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.4.(2022•天府新区模拟)下列几何体中,截面形状不可能是圆的是()A.B.C.D.【分析】根据每一个几何体的截面形状,即可判断.【解答】解:因为圆锥、圆柱、球的截面都可能是圆,三棱柱的截面只可能是多边形,不可能是圆,故选:D.【点评】本题考查了截一个几何体,熟练掌握每一个几何体的截面形状是解题的关键.5.(2021秋•井研县期末)如图,四个几何体分别为球体、三棱柱、圆柱体和长方体,这四个几何体中截面不可能是长方形的几何体是()A.球体B.三棱柱C.圆柱体D.长方体【分析】根据球体、三棱柱、圆柱体和长方体的截面形状,即可判断.【解答】解:三棱柱、圆柱体和长方体的截面都有可能是长方形,球体的截面不可能是长方形,故选:A.【点评】本题考查了截一个几何体,熟练掌握球体、三棱柱、圆柱体和长方体的截面形状是解题的关键.6.(2021秋•碑林区校级期末)用一个平面去截下面几个几何体,截面不可能有圆的是()A.圆锥B.圆柱C.棱柱D.球【分析】根据每一个几何体的截面形状判断即可.【解答】解:用一个平面去截几何体,圆锥,圆柱,球的截面都可能是圆,棱柱的截面只可能是多边形,不。

最新七年级-(立体图形、展开图、截面、三视图)资料

最新七年级-(立体图形、展开图、截面、三视图)资料

七年级数学培优班综合集训-1一、几何体1、分类圆柱:上下底面平行且为互相重合的圆,侧面是曲面。

棱柱:上下底面平行且为互相重合的多边形,侧面是多个长方形或正方形。

圆锥:一个底面且为圆,侧面是曲面。

棱锥:一个底面且为多边形,侧面是多个三角形。

圆台:上下底面平行且为相似的圆,侧面是曲面。

棱台:上下底面平行且为相似多边形,侧面是多个梯形。

球体:只有一个曲面,在每个方向上都对称分布。

2、构成○1图形是由点、线、面构成的。

点动成线,线动成面,面动成体。

○2面面相交得线(与平面相交得直线,与曲面相交的曲线),线线相交得点。

3、顶点,棱,面4、棱柱:所有 都相等,上下底面形状大小都相同,侧面都是 。

可分为直棱柱、斜棱柱;也可分为三棱柱、四棱柱、五棱柱……二、展开图1、将某一个几何体的表面沿着它的棱剪开,展成一个平面图形,这个平面图形就叫该几何体的平面展开图。

平面展开图与折叠成几何体是一个互逆的过程。

棱柱: 棱锥: 圆柱: 圆锥:2、正方体平面展开图(留 剪 ,不会出现“田”字型,“凹”字型)1-4-1型(6种)2-3-1型或1-3-2型(3种)名称 底面形状顶点数 棱 数侧棱数 侧面形状 侧面数 总面数 n 棱柱n 棱锥2-2-2型(1种) 3-3型(1种)三、截面1、用一个平面去截一个几何体,截出的平面图形叫截面,截面与几何体形状有关,与平面截几何体的角度方向有关。

2、正方体截面圆柱截面圆锥截面♦截面必须是平面图形♦截n棱柱,最少是三角形,最多是(n+2)边形♦与平面截出是直线,与曲面截出是曲线。

四、三视图1、定义:从正面看到得图形叫主视图,从左面看到的图形叫左视图,站在正前方从上面看到得图形叫俯视图。

2、几种常见几何体的三视图○1正方体:○2长方体:○5圆台 ○6四棱锥○7球3、小正方体组合图的三视图主视图: 左视图: 俯视图:★ 要求必须会由主视图和左视图判断出小方块的个数(即往俯视图上填数字)★ 要求必须会由带数字的俯视图画出主视图和左视图。

七年级立体图形三视图

七年级立体图形三视图

七年级立体图形三视图立体图形三视图1、将如图所示的平面图形折叠成一个正方体,则“爱”字对面的字是。

(第1题)(第2题)2、一个立体图形的展开图如图所示,这个立体图形是。

3、请指出左图中的平面图形是右图所示立体图形的哪个视图。

4、下图的立体图形中,从上面看得到的图形相同的是。

知识点一几何图形1、我们把从实物中抽象出的各种图形统称为几何图形。

2、几何图形分类:立体图形和平面图形。

(1)立体图形:有些几何图形的各部分不都在同一个平面内,它们是立体图形。

如正方体、圆柱等。

(2)平面图形:有些几何图形的各部分都在同一个平面内,它们是立体图形。

如三角形、四边形等。

3、常见的几何图形【注】画从不同方向看立体图形得到的平面图形时,看得见的部分的轮廓线画实线,看不见的部分的轮廓线画虚线。

学法点睛:从不同方向看立体图形得到平面图形的画法从正面看时,可看到立体图形的长和高,画平面图形时其长和高要与原立体图形的长和高相等;从左面看时,可看到立体图形的高和宽,画平面图形时其高和宽要与原立体图形的高和宽相等;从上面看时,可看到立体图形的长和宽,画平面图形时其长和宽要与原立体图形的长和宽相等。

知识点三立体图形的展开图1、有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

2、常见立体图形的平面展开图【注】1、不是所有的立体图形都可以展开,如球体便不能展开。

2、对于同一个立体图形,当我们按不同的方式展开时,得到的平面展开图是不一样的。

【知识拓展】根据展开图判断立体图形的规律①展开图全是长方形或正方形时,应考虑长方体或正方体。

②展开图中含有三角形时,应考虑棱锥或棱柱,当展开图中只含有2个三角形和3个长方形时,必是三棱柱。

若展开图全是三角形(4 个),则必是三棱锥。

③展开图中含有圆和长方形时,一般应考虑是圆柱。

④展开图中含有扇形时,考虑圆锥。

正方体的表面展开图(共有11种,其中一四一型6种,一三二型3种,二二二型1种,三三型1种)三种情况1、正方体展开后有四个面在同一层:正方体因为有两个面必须作为底面,所以平面展开图中,最多有四个面展开后处在同一层,作为底的两个面只能处在四个面这一层的两侧,利用排列组合知识可得如下六种情况:1-4-1型2、正方体展开后有三个面在同一层,剩下的三个面分别在两侧,有如下三种情形:1-3-2型3、二面三行,像楼梯;三面二行,两台阶。

七年级数学截面与三视图(丰富的图形世界)基础练习(含答案)

七年级数学截面与三视图(丰富的图形世界)基础练习(含答案)

七年级数学截面与三视图(丰富的图形世界)基础练习试卷简介:全卷共8个选择题,5个填空题,1个大题,分值100分,测试时间30分钟。

本套试卷立足基础,主要考察了学生对特殊几何体的截面与三视图基础知识及基本运用的掌握。

各个题目难度有阶梯性,学生在做题过程中可以回顾本章知识点,认清自己对知识的掌握及灵活运用程度。

学习建议:本章主要内容是特殊几何体的截面与三视图的概念及运用,不仅是中考常考的内容之一,更是整个数学学科的重要内容之一。

本讲题目灵活多变,同学们可以在做题的同时体会截面与三视图在诸多方面的运用,并且关注问题的解决过程。

一、单选题(共8道,每道5分)1.用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()A.①②④B.①②③C.②③④D.①③④答案:B解题思路:空间几何体①②③的水平截面均为圆,④沿各种方向的截面都不是圆;答案为B易错点:对空间体的截面问题判断失误试题难度:三颗星知识点:截一个几何体2.如下图1所示,用一个平面去截一个圆柱,则截得的形状应为()A.B.C.D.答案:B解题思路:圆柱沿水平方向的截面是圆,即A,而沿倾斜方向的截面图形是椭圆;答案为B 易错点:误将圆柱沿倾斜方向的截面图形判断为沿水平方向的截面图形试题难度:三颗星知识点:截一个几何体3.正方体的截面不可能是()A.四边形B.五边形C.六边形D.七边形答案:D解题思路:平面与正方体的几个面相交就得到几边形,与四面相交是四边形,与五面相交是五边形,与六面相交是六边形,而正方体只有六个面,所以不可能是七边形;答案为D易错点:对正方体的各种截面掌握不全试题难度:三颗星知识点:截一个几何体4.一个直立在水平面上的圆柱体的主视图、俯视图、左视图分别是()A.长方形、圆、长方形B.长方形、长方形、圆C.圆、长方形、长方形D.正方形、长方形、圆答案:A解题思路:对于圆柱体,主视图与左视图是一样的,都是长方形或正方形,而俯视图是一个圆;答案为A易错点:对三种视图概念的混淆试题难度:三颗星知识点:简单几何体的三视图5.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()A.B.C.D.答案:A解题思路:从左边来看实际的物体,物体有两列,所以排除C、D两项,又因为从左边来看第一列能看到三个小正方体,所以答案为A易错点:对左视图概念的不理解试题难度:三颗星知识点:简单组合体的三视图6.如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的小正方体有()A.4B.5C.6D.7答案:B解题思路:结合主视图和左视图在俯视图中标注数字来解决问题,如图:因此答案为B易错点:对三种视图之间关系的不理解试题难度:三颗星知识点:由三视图判断几何体7.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱答案:D解题思路:A、B、C的水平截面图形都是圆,而D的各种截面图形都不是圆;答案为D易错点:截面图概念的理解试题难度:三颗星知识点:截一个几何体8.正方体的各个侧面分别标上字母a,b,c,d,e,f;其中a在后面,b在下面,c在左面,则下列结论错误的是()A.d在上面B.e在前面C.f在右面D.d在前面答案:D解题思路:由图可知,因为a在后面,b在下面,c在左面,所以容易判断,e在前面,d 在上面,f在右面;答案为:D易错点:正方体展开后各对面位置的判断试题难度:三颗星知识点:几何体的展开图二、填空题(共5道,每道8分)1.如图,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是______个.答案:9个解题思路:结合主视图,在俯视图中标注数字来解决问题,通过主视图可以知道俯视图中的第一列至少有一格中是3个小正方体,第二列中只能是一个,第三列中至少有一格中是2个小正方体,因此数量最少如图:易错点:对实际物体中小正方体数量的判断试题难度:三颗星知识点:由三视图判断几何体2.写出两个三视图形状都一样的几何体:______答案:球、正方体.解题思路:在常见的几何体中,球的三视图都是圆,正方体的三视图都是正方形;答案为:球、正方体.易错点:要求三视图的形状都一样试题难度:三颗星知识点:简单几何体的三视图3.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要______个立方块,最多要______个立方块.答案:9个,13个解题思路:结合主视图,在俯视图中标注数字来解决问题,通过主视图可以知道俯视图中的第一列至少有一格中是2个小正方体,第二列至少有一格中是3个小正方体,第三列中只能是一个,因此数量最少(如图1),数量最多(如图2)易错点:对实际物体中小正方体数量的判断试题难度:三颗星知识点:由三视图判断几何体4.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为______.答案:7个解题思路:通过主视图和左视图将俯视图先画出来,通过主视图和左视图可知实际物体有两列,三行,又因为题目中求的是最多数量,因此图为:易错点:对实际物体中小正方体数量的判断试题难度:三颗星知识点:由三视图判断几何体5.如图所示,用一个平面沿与棱平行的方向去截一个棱柱,则截面的形状可能为______.答案:长方形解题思路:如题中的图,沿竖直方向的截面是长方形,但可以通过调整截面的角度,得到正方形,而正方形也是长方形的一种,所以答案为:长方形.易错点:通过对截面角度的调整,会得到不同的截面图形试题难度:三颗星知识点:截一个几何体三、作图题(共1道,每道20分)1.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.答案:解题思路:假设俯视图是立在屏幕上的,则从下往上来看图的形状,即为主视图,因此第一列、第二列、第三列分别只能看到三个、两个、四个.易错点:错误判断主视图与左视图的形状试题难度:三颗星知识点:由三视图判断几何体。

七年级数学截面与三视图(人教版)(含答案)

七年级数学截面与三视图(人教版)(含答案)

学生做题前请先回答以下问题问题1:举出一个几何体,使得从正面、左面、上面看到的这个几何体的形状都一样,你能举出几种?问题2:观察一个几何体的形状通常从三个方向看,从正面看(主视图),从左面看(左视图),从上面看(俯视图),从正面看可以看到几何体的________和________;从左面看可以看到几何体的________和________;从上面看可以看到几何体的________和________.问题3:在利用三视图确定小木块个数时,数字一般标在________图上.截面与三视图(人教版)一、单选题(共16道,每道6分)1.用一个平面去截五棱柱,则截面不可能是( )A.三角形B.四边形C.五边形D.圆答案:D解题思路:五棱柱的面均为平面,面面相交得直线,而不可能成为曲线,圆是由曲线构成的,所以五棱柱的截面不可能是圆.故选D.试题难度:三颗星知识点:几何体的截面2.用一个平面去截如图所示的圆锥,得到的图形不可能是( )A. B.C. D.答案:C解题思路:如果用平面去截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形;如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆;如果不与底面平行且与底面相交,得到就是选项A中的图形;不可能是C中的直角三角形.故选C.试题难度:三颗星知识点:几何体的截面3.用一个平面去截下面的几何体,所得截面是三角形,则这个几何体不可能为( )A. B.C. D.答案:B解题思路:选项A中:正方体的截面可能是三角形、四边形、五边形或六边形;选项B中:圆柱的截面可能是长方形、圆或椭圆,不可能出现三角形;选项C中:用平行于上下底面的平面就可截出三角形;选项D中:用经过顶点且垂直于底面的平面可截出三角形.因此以上几种几何体只有圆柱的截面不可能是三角形.故选B.试题难度:三颗星知识点:几何体的截面4.如图是一个用5个完全相同的小立方块搭成的几何体,那么这个几何体的主视图是( )A. B.C. D.答案:C解题思路:主视图是从正面看,可以看到列数和层数,此几何体有3列,第1列最高2层,第2列最高1层,第3列最高1层,所以主视图是C.试题难度:三颗星知识点:几何体的三视图5.如图是一个用6个完全相同的小立方块搭成的几何体,那么这个几何体的俯视图是( )A. B.C. D.答案:D解题思路:俯视图是从上面看,可以看到列数和行数,此几何体有3行3列,第1列3行,第2列1行,第3列1行,所以俯视图是D.试题难度:三颗星知识点:几何体的三视图6.如图是由几个相同的小立方块组成的一个几何体,它的左视图是( )A. B.C. D.答案:B解题思路:左视图是从左面看,可以看到行数和层数,此几何体有2行,第1行最多2层,第2行最多1层,所以左视图是B.试题难度:三颗星知识点:几何体的三视图7.主视图、左视图、俯视图分别是下列三个图形的物体是( )A. B.C. D.答案:D解题思路:主视图是从正面看,可以看到列数和层数;左视图是从左面看,可以看到行数和层数;俯视图是从上面看,可以看到列数和行数.因此在俯视图上标数字,表示此位置上小立方块的个数.从主视图可以看出该几何体的第1列最多有2层,第2列最多有1层,第3列最多有1层;从左视图可以看出该几何体的第1行最多有2层,第2行最多有1层,如图所示,故选D.试题难度:三颗星知识点:几何体的三视图8.某几何体的三种视图如图所示,则该几何体是( )A.三棱柱B.长方体C.圆锥D.圆柱答案:D解题思路:根据几何体的主视图和左视图都是长方形,俯视图是圆,可知这个几何体是圆柱.故选D.试题难度:三颗星知识点:几何体的三视图9.如图是一个由多个相同小立方块堆积而成的几何体的俯视图,图中所示数字为该位置小立方块的个数,则这个几何体的主视图是( )A. B.C. D.答案:C解题思路:俯视图是从上面看,可以看到列数和行数;主视图是从正面看,可以看到列数和层数.又由俯视图中的每个数字是该位置小立方块的个数,可得此几何体有3列,第1列最多有3层,第2列最多有3层,第3列最多有2层,如图所示,所以其主视图为:故选C.试题难度:三颗星知识点:几何体的三视图10.如图是由几个完全相同的小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置上小立方块的个数,则这个几何体的左视图是( )A. B.C. D.答案:A解题思路:俯视图是从上面看,可以看到列数和行数;左视图是从左面看,可以看到行数和层数.又由俯视图中的每个数字是该位置小立方块的个数,可得此几何体有2行,第1行最多有1层,第2行最多有2层,如图所示,故选A.试题难度:三颗星知识点:几何体的三视图11.如图所示是由一些相同的小正方体构成的几何体的三视图,则这些相同的小正方体的个数是( )A.3个B.4个C.5个D.6个答案:B解题思路:主视图是从正面看,可以看到列数和层数;左视图是从左面看,可以看到行数和层数;俯视图是从上面看,可以看到列数和行数.因此在俯视图上标数字,表示此位置上小正方体的个数.由主视图可得该几何体有3列,第1列最多有1层,第2列最多有1层,第3列最多有2层;由左视图可得该几何体只有1行,且该行最多有2层,如图所示,因此小正方体一共有1+1+2=4(个).故选B.试题难度:三颗星知识点:几何体的三视图12.如图所示是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( )A.6个B.5个C.4个D.3个答案:C解题思路:主视图是从正面看,可以看到列数和层数;左视图是从左面看,可以看到行数和层数;俯视图是从上面看,可以看到列数和行数.因此在俯视图上标数字,表示此位置上小正方体的个数.由主视图可得该几何体有2列,第1列最多有2层,第2列最多有1层;由左视图可得该几何体有2行,第1行最多有1层,第2行最多有2层,如图所示,因此小正方体一共有1+2+1=4(个).故选C.试题难度:三颗星知识点:几何体的三视图13.用小正方体搭建成的几何体,下面三个图分别是它的主视图、左视图和俯视图,那么构成这个几何体的小正方体有( )A.10个B.6个C.9个D.11个答案:A解题思路:主视图是从正面看,可以看到列数和层数;左视图是从左面看,可以看到行数和层数;俯视图是从上面看,可以看到列数和行数.因此在俯视图上标数字,表示此位置上小正方体的个数.如图,所以小正方体一共有2+1+3+2+1+1=10(个).故选A.试题难度:三颗星知识点:几何体的三视图14.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最少有( )A.4个B.5个C.6个D.7个答案:B解题思路:从俯视图可得该几何体是2行2列,从主视图可得第1列最多2层,第2列最多1层.当小正方体最少时(第1列只有一个为2),如图所示,所以小正方体的个数最少为1+1+1+2=5(个).故选B.试题难度:三颗星知识点:由三视图求最多、最少问题15.如图是由一些大小相同的小正方体搭成的一个几何体的左视图和俯视图,则组成这个几何体的小正方体的个数最多有( )A.5个B.6个C.8个D.9个答案:D解题思路:从俯视图中可得该几何体是3行3列,从左视图可得第1行最多有1层,第2行最多有2层,第3行最多有1层,当小正方体最多时,如图所示,因此小正方体的个数最多有1+1+2+2+2+1=9(个).故选D.试题难度:三颗星知识点:由三视图求最多、最少问题16.用小正方体积木搭出一个主视图和俯视图如图所示的几何体,它最多需要( )个小正方体积木.A.8B.9C.10D.11答案:B解题思路:从俯视图可得该几何体是3行3列,从主视图可得第1列最多3层,第2列最多1层,第3列最多1层.当小正方体最多时,如图所示,因此小正方体积木的个数最多有3+3+1+1+1=9(个).故选B.试题难度:三颗星知识点:由三视图求最多、最少问题第11页共11页。

七年级数学秋季竞赛第2讲 立体图形的截面与三视图

七年级数学秋季竞赛第2讲      立体图形的截面与三视图

1立体图形的截面与三视图姓名: 日期:【知识要点】2.三视图法:(1)主视图:从 看到的图形叫做主视图; (2)左视图:从看到的图形叫做左视图; (3)俯视图:从 看到的图形叫做俯视图。

它们的关系:(1)主视图列数=俯视图列数;主视图行数=左视图行数;俯视图行数=左视图行数(2)主视图中每列正方体的个数就是俯视图中每列数中最大的数值; 主视图中每行正方体的个数就是坐视图中相应的行中数字最大的数; 3.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

三角形、四边形、五边形、六边形等都是多边形。

【典型例题】例1 用一个平面去截一个正方体,可能出现哪些图形?请分别画出。

例22几条棱、几个面?例3:用一个平面去截三棱柱最多可以截得五边形;用一个平面去截四棱 柱最多可以截得六边形,用一个平面去截五棱柱最多可以截得七边形;如 果用一个平面去截n 个棱柱,最多能截得几边形?例4:.把两个长 3 厘米、宽2厘米、高1厘米的小长方体先粘合成一个大长方体,再把它分成两个大小相同的小长方体,末了一个小长方体的表面积最多可比起初一个小长方体的表面积大多少?例5:用小方块搭成的一个几何体,从不同的方向观察得到三视图如图2-1,试确定该几何体用了多少块小方块。

例6:如图2-2,是由几个小正方体所搭成的两个几何体的俯视图.小正方形中的数字表示该位置小正方体的个数,请画出相应几何体的主视图主视图 左视图 图2-1和左视图。

【练习与拓展】一:选择题:1.一个平面去截一个正方体,截面的形状不可能是()A.长方形 B.三角形 C.梯形D.七边形2. 把一个正方体截去一个角剩下的几何体最多有()A.4个面 B.5个面 C.6个面 D.7个面3. 一个球的内部挖去一个最大的正方体(正方体的八个顶点都在球的表面上),用一个平面去截这个几何体,是截面形状的有()4. 如图是一个立体图形的三视图,这个立体图形是由一些相同的小正方形搭成的( )A 6B 7C 8D 9二:解答题1.一个正方体的积木堆在桌上,从前、左两个方向看去,看到的主视图、左视图都如图2-5所示,从上面看下去,看到的俯视图如图2-6所示。

2018-2019学年最新北师大版七年级数学上册《截面与三视图》同步练习题及答案-精品试题

2018-2019学年最新北师大版七年级数学上册《截面与三视图》同步练习题及答案-精品试题

截面与三视图课前预习1.点动成____,线动成_____,面动成_____.面和面相交得到_____,线和线相交得到_____.2.正方体有_____个面,每个面都是_______;圆锥有____个面,底面形状是____,侧面是_______(填“平面”或“曲面”);球有____个面,是_______.3.制作一个长方体的土豆块,试着切一刀,观察切出的面是什么形状.再换一种切法,看能否切出不同形状的面.下面是几种不同的切法,请你观察切出的面形状分别是什么,并填在下面对应的横线上._________ _______ ________ ________4.我们知道从不同的角度观察同一个物体时,可能会看到不同形状的图形,如图:桌面上放着一个三棱锥和一个圆柱体,请说出下面的三幅图分别是从“上面”、“正面”、“左面”中哪个方向看到的?________ ________ ________知识点睛1. 正方体截面有_______________________________________.2. 从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成____________个三角形. 3. n 边形的内角和为________________.4. 观察一个几何体的形状通常从三个方向看,从正面看(主视图),从左面看(左视图),从上面看(俯视图).精讲精练1. 圆柱体截面的形状可能是____________(至少写出两个).2. 用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的几何体是( ) A .①②④B .①②③C .②③④D .①③④3. 如图所示,用一个平面去截一个圆柱,则截得的形状应为( )A .B .C .D .4. 圆锥的截面不可能为( )A .三角形B .四边形C .圆D .椭圆5. 如图所示,用一个平面沿与棱平行的方向去截一个棱柱,则截面的形状是_______________.6. 正方体的截面不可能是( )A .四边形B .五边形C .六边形D .七边形网址: 或咨询电话:400-811-66887.从多边形的一个顶点出发,分别连接这个顶点与其余各个顶点,可以把五边形分割成3个三角形,把六边形分割成4个三角形,…,如果是十二边形,可以分割成_____个三角形.8.一个多边形的内角和为1 800°,则它是_____________边形.9.从一个多边形的某个顶点出发,分别连接这个顶点和其余各顶点,可以把这个多边形分割成5个三角形,则这个多边形的边数为_________,这个多边形的内角和为___________.10.写出两个三视图形状都一样的几何体:________________.11.一个直立在水平面上的圆柱的主视图、俯视图、左视图分别是()A.长方形、圆、长方形B.长方形、长方形、圆C.圆、长方形、长方形D.正方形、长方形、圆12.如图,该物体的俯视图是()A.B.C.D.13.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()A.B.C.D.14.下图是由五块积木搭成的几何体,这几块积木都是相同的立方块,请画出这个几何体的主视图、左视图和俯视图.15. 下图是由五块积木搭成的几何体,这几块积木都是相同的立方块,请画出它的三视图.16. 如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.4213217. 如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.31121118. 如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有( ) A .4个 B .5个 C .6个D .7个俯视图左视图主视图19. 如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有( ) A .4个 B .5个 C .6个 D .7个20. 用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最多要_____个立方块,最少要_____个立方块.俯视图主视图21. 如图是一个由若干个相同的小立方块组成的几何体的主视图和俯视图,则能组成这个几何体的小立方块的个数最多是________个,最少是________个.俯视图主视图22. 用小立方块搭成的几何体,主视图和俯视图如下.它最多需要多少个小立方块?最少需要多少个小立方块?请画出最多和最少时的左视图.俯视图主视图俯视图主视图左视图23.用小立方块搭成的几何体,主视图和俯视图如下.它最多需要多少个小立方块?最少需要多少个小立方块?请画出最多和最少时的左视图.主视图俯视图24.如图是由大小相同的小立方块组成的简单几何体的主视图和左视图,那么组成这个几何体的小立方块最多为________个.主视图左视图25.一个几何体是由一些大小相同的小立方块摆成的,其主视图和左视图如图所示,则组成这个几何体的小立方块最多是________块.主视图左视图26.一个几何体是由若干个相同的小立方块组成的,其主视图和左视图如图所示,则组成这个几何体需要的小立方块的个数最多是________块.主视图左视图27.已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为8 cm,俯视图中圆的半径为3 cm,求这个几何体的表面积和体积.(结果保留π)俯视图:圆左视图:长方形主视图:长方形【参考答案】课前预习1.线面体线点2.6,正方形;2,圆,曲面;1,曲面3.长方形平行四边形梯形三角形4.左面上面正面知识点睛1.三角形、四边形、五边形、六边形2.(n-2)3.(n-2)·180°精讲精练1.圆、长方形(答案不唯一,圆、长方形、椭圆任选两个即可)2. B3. B4. B5.长方形6. D7.108.十二9.7 900°10.球体、正方体11.A12.C13.A14.略15.略16.略17.略18.B19.B20.13 921.13 922.最多需要8个立方块,最少需要7个立方块,图略.23.最多需要14个立方块,最少需要10个立方块,图略.24.725.1026.1327.(1)圆柱;(2)略;(3)表面积为(66π) cm2,体积为(72π) cm3.28.。

专题讲义:立体几何中的截面

专题讲义:立体几何中的截面

专题讲义:立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。

其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。

最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。

2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。

【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。

例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是( )分析 考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D 。

例2 如图,在透明的塑料制成的长方体ABCD -A 1B 1C 1D 1容器内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:① 水的部分始终呈棱柱状; ② 水面EFGH 的面积不改变; ③ 棱A 1D 1始终与水面EFGH 平行;④当容器倾斜到如图5(2)时,BE·BF 是定值; 其中正确的命题序号是______________分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BC BF BE V ⋅⋅=21水是定值,又BC 是定值,所以BE·BF 是定值,即④正确。

截面与三视图(讲义)(含答案)

截面与三视图(讲义)(含答案)

截面与三视图(讲义)一、知识点睛1.正方体截面有____________________________________.2.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成____________个三角形.3.n边形的内角和为________________.4.几何体的三视图有_________,__________,___________.主视图可以看到___________和______________;左视图可以看到___________和______________;俯视图可以看到___________和______________.二、精讲精练1.圆柱体的截面的形状可能是____________(至少写出两个).2.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的几何体是()A.①②④B.①②③C.②③④D.①③④3.如图所示,用一个平面去截一个圆柱,则截得的形状应为()A.B.C.D.4.如图所示,用一个平面沿与棱平行的方向去截一个棱柱,则截面的形状是.5.正方体的截面不可能是()A.四边形B.五边形C.六边形D.七边形6.从多边形的一个顶点出发,分别连接这个顶点与其余各个顶点,可以把五边形分割成3个三角形,把六边形分割成4个三角形,…,如果是十二边形,可以分割成个三角形.7.一个多边形的内角和为1 800°,则它是_____________边形.8.从一个多边形的某个顶点出发,分别连接这个顶点和其余各顶点,可以把这个多边形分割成5个三角形,则这个多边形的边数为,这个多边形的内角和为___________.9.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2 012个三角形,则这个多边形的边数为()A.2 011 B.2 012 C.2 013 D.2 01410.写出两个三视图形状都一样的几何体:________________.11.一个直立在水平面上的圆柱的主视图、俯视图、左视图分别是()A.长方形、圆、长方形B.长方形、长方形、圆C.圆、长方形、长方形D.正方形、长方形、圆12.如图,该物体的俯视图是()A.B.C.D.13.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()A.B.C.D.14.下图是由五块积木搭成的几何体,这几块积木都是相同的正方体,请画出这个几何体的主视图、左视图和俯视图.15.下图是由五块积木搭成的几何体,请画出它的三视图.16. 如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.4213217. 如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.31121118. 如图是由一些相同的小正方体构成的几何体的三视图,那么构成这个立体图形的小正方体有( ) A .4个 B .5个 C .6个 D .7个19. 如图是由一些相同的小正方体构成的几何体的三视图,那么构成这个立体图形的小正方体有( ) A .4个 B .5个 C .6 个 D .7个20. 用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最多要_______个立方块,最少要______个立方块.左视图主视图俯视图主视图左视图俯视图主视图俯视图21.如图是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最多是________个,最少是________个.主视图俯视图22.用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能?它最多需要多少个小立方块,最少需要多少个小立方块,请画出最多和最少时的左视图.主视图俯视图23.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为_____________个.左视图主视图24.一个几何体是由一些大小相同的正方体摆成的,其主视图和左视图如图所示,则组成这个几何体的小正方体最多是________块.25.一个几何体是由若干个相同的小正方体组成的,其主视图和左视图如图所示,则组成这个几何体需要的小正方体的个数最多是________块.主视图左视图26.已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为10cm,俯视图中正方形的边长为4cm,求这个几何体的侧面积和体积.主视图:长方形左视图:长方形俯视图:正方形27.已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为8cm,俯视图中圆的半径为3cm,求这个几何体的表面积和体积(结果保留π).主视图:长方形左视图:长方形俯视图:圆三、回顾与思考__________________________________________________________ __________________________________________________________ ______________________【参考答案】一、知识点睛1.三角形、四边形、五边形、六边形.2.(n-2)3.(n-2)×180°4.主视图,左视图,俯视图;层数,列数;层数,行数;行数,列数二、精讲精练1.圆,长方形(或矩形)2. B3. B4.长方形5. D6.107.十二8.7,900°9. C10.球、正方体11.A12.C13.A14.略15.略16.略17.略18.B19.B20.13,921.13,922.这样的几何体有三种可能,最多需要8个立方块,最少需要7个立方块,图略.23.724.1025.1326.(1)四棱柱;(2)略;(3)侧面积为160cm2,体积为160cm3.27.(1)圆柱;(2)略;(3)表面积为66π(cm2),体积为72π(cm3).。

初中三视图试题及答案

初中三视图试题及答案

初中三视图试题及答案
1. 题目:观察下列物体的正视图和侧视图,画出其俯视图。

答案:根据正视图和侧视图,我们可以确定物体的俯视图是一个圆形。

2. 题目:给出一个物体的三视图,判断该物体的形状。

答案:该物体是一个长方体。

3. 题目:如果一个物体的正视图和俯视图都是矩形,而侧视图是一个
三角形,那么这个物体是什么形状?
答案:这个物体是一个三角柱。

4. 题目:观察下列物体的三视图,计算其体积。

答案:物体的体积为长×宽×高,具体数值根据三视图中给出的尺
寸计算得出。

5. 题目:根据下列物体的三视图,判断其表面积。

答案:物体的表面积为各面面积之和,具体数值根据三视图中给出
的尺寸计算得出。

6. 题目:如果一个物体的正视图是一个正方形,侧视图是一个矩形,
俯视图是一个圆形,那么这个物体是什么形状?
答案:这个物体是一个圆柱。

7. 题目:观察下列物体的三视图,判断其是否为对称图形。

答案:该物体是对称图形,因为它的三视图在对称轴两侧是相同的。

8. 题目:给出一个物体的三视图,计算其棱长总和。

答案:物体的棱长总和为各棱长度之和,具体数值根据三视图中给出的尺寸计算得出。

9. 题目:如果一个物体的三视图都是相同的圆形,那么这个物体是什么形状?
答案:这个物体是一个球体。

10. 题目:观察下列物体的三视图,判断其是否为多面体。

答案:该物体是一个多面体,因为它的三视图显示了多个平面的交线。

新人教版七年级数学上册:截面与三视图(随堂测试及答案)

新人教版七年级数学上册:截面与三视图(随堂测试及答案)

截面与三视图(随堂测试)1.用平面去截一个几何体,如果截面的形状是长方形,那么原来的几何体不可能是()A.正方体B.棱柱C.圆柱D.圆锥2.如图是由一些相同的小立方块构成的几何体的三视图,则构成这个几何体的小立方块有()A.3个B.4个C.5个D.6个3.用相同小立方块搭成的某几何体的主视图和俯视图如下.它最多需要多少个小立方块?最少需要多少个小立方块?请画出最多和最少时的左视图.4.一个长方体长2米,截面是边长3厘米的正方形,将这个长方体木料锯成五段后,表面积一共增加了多少平方厘米?5.一个正方体木块的体积是1000立方厘米,现要把它锯成8块同样大小的正方体木块,小木块的体积是多少?6.把一块长80厘米的长方体木块按3:5的比例,锯成两块宽与高不变的长方体后,表面积增加600平方厘米,求分成两块长方体木块的体积各是多少.7.如图所示的正方体竖直截取了一部分,求被截取的那部分的体积.8.在一个棱长为5cm的正方体一角,截去一个棱长为2cm的小正方体,求剩下的几何体的表面积和体积.9.圆柱的高为8cm,底面半径为2cm,则沿垂直于底面的平面截圆柱所截得的截面面积最大是多少?10.有一个圆柱体的面包如图所示,切一刀把它分成两块,截面将会是什么样的图形呢?请至少写出四种图形.11.用一个平面去截一个三棱柱,截面可能是什么形状?先想一想,再做一做.12.如图所示,大正方体上截去一个小正方体后,可得到图(2)中的几何体.(1)设原大正方体的表面积为S,图(2)中几何体的表面积为S′,那么S′与S的大小关系是()A、S′>SB、S′=SC、S′<SD、不确定(2)小明说:“设图1中大正方体各棱的长度之和为c,图2中几何体各棱的长度之和为c′,那么c′比c正好多出大正方体3条棱的长度.”若设大正方体的棱长为1,小正方体的棱长为x,请问x为何值时,小明的说法才正确?13.如图所示的圆柱体,它的底面半径为2cm,高为6cm.(1)想一想:该圆柱体的截面有几种不同形状的平面图形?(2)议一议:你能截出截面最大的长方形吗?(3)算一算:截得的长方形面积的最大值为多少?【参考答案】1. D2. C3.最多需要10个小立方块,最少需要9个小立方块,图略4.解:增加的表面积为8×32=72(平方厘米),答:表面积一共增加了72平方厘米.5.解:1000÷8=125(立方厘米)答:小木块的体积是125立方厘米.6.解:长方体的底面积为:600÷2=300(平方厘米),较大的长方体木块的体积为:300×(80×)=15000(立方厘米),较小的长方体木块的体积为:300×(80×)=9000(立方厘米).7.解:根据题意可知被截取的一部分为一个直三棱柱,三棱柱的体积=×2×3×5=15(cm3).8.解:剩下几何体的体积=5×5×5﹣2×2×2=117(cm3).(1)从一条棱上挖,表面积为:5×5×6+2×2×2=158(cm2);(2)从一个顶点挖,表面积为:5×5×6=150(cm2);(3)从一个面上挖,表面积为:150+2×2×4=166(cm2);答:剩下几何体的表面积是158cm2、或150cm2、也可能是166cm2.体积是117cm3.9.解:截面面积最大是8×4=32(cm2).故截得的长方形面积的最大值为32cm2.10.解:延平行于圆面切得到一个圆形;延不平行线圆面切可得到椭圆或梯形;延垂直于圆面切可得到一个长方形.11.解:当截面与底面平行时,得到的截面形状是三角形;当截面与底面垂直且经过三棱柱的四个面时,得到的截面形状是长方形;当截面与底面斜交且经过三棱柱的四个面时,得到的截面形状是等腰梯形.12.解:(1)都等于原来正方体的面积,故选B;(2)由题意得:6x=3,∴x=,所以x为时,小明的说法才正确.13.解:(1)该圆柱体的截面有三种,平行轴线截切,截面是矩形,垂直轴线截切,截面是圆,倾斜轴线截切,截面是椭圆;(2)根据题意可得:截面面积最大是长方形,并且长是6cm,宽是4cm,(3)截面面积最大是6×4=24(cm2).故截得的长方形面积的最大值为24cm2.。

七年级苏教版数学复习要点考点专题四:立体图形及三视图(教师用,附答案分析)

七年级苏教版数学复习要点考点专题四:立体图形及三视图(教师用,附答案分析)

七年级苏教版数学复习要点考点专题四:立体图形及三视图知识点一常见立体图形1.立体图形与平面图形①有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形.②有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形.3.常见立体图形的分类曲面体圆柱、圆锥、球体按是否有顶点是棱柱、棱锥、圆锥否圆柱、球体总结:在对几何体分类时首先确定分类的标准,分类标准不同,结果也就不同,不论选择哪种分类标准,都要做到不重、不漏.4、点、线、面、体体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥都是几何体,几何体也称体.面:包围着体的是面.面有平面和曲面两种.线:面和面相交的地方形成线.点:线和线相交的地方是点.用运动的观点来看:点动成线、线动成面、面动成体.例1(中山区期末)三角形ABC绕BC旋转一周得到的几何体为()A.B.C.D.【解答】解:由图形的旋转性质,可知ABC旋转后的图形为C,故选:C.例2(邳州市期末)如图,在下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.【解答】解:A、是直角梯形绕高旋转形成的圆台,故A正确;B、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B错误;C、绕直径旋转形成球,故C错误;D、绕直角边旋转形成圆锥,故D错误.故选:A.例3(皇姑区期末)下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的()A.B.C.D.【解答】解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选:D.知识点二几何体的表面展开图1.展开图:有些几何体的表面可以展开成平面图形,这个平面图形称为相应几何体的表面展开图.2.常见立体图形的平面展开图(1)圆柱的表面展开图是两个相同的圆面和一个长方形组成的;(2)圆锥的表面展开图是由一个圆面和一个扇形组成的;(3)棱柱的表面展开图是由两个相同的多边形和一个长方形组成的,侧面展开图是一个长方形。

立体图形的截面与三视图讲义知识点经典例题练习

立体图形的截面与三视图讲义知识点经典例题练习

立体图形的截面与三视图【知识要点】1.截面:一个平面与一个几何体相交所截得的图形叫做截面. 2.三视图法:(1)主视图:从正面看到的图形叫做主视图; (2)左视图:从左面看到的图形叫做左视图; (3)俯视图:从上面看到的图形叫做俯视图. 3.欧拉公式:面数+顶点数-边数=2(2=-+e v f )【典型例题】例1. 用一个平面去截三棱柱最多可以截得五边形;用一个平面去截四棱柱最多可以截得六边形,用一个平面去截五棱柱最多可以截得七边形;如果用一个平面去截n 棱柱,最多能截得几边形?例2. 如图所示是由小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出它的主视图和左视图.例3.如图是由小立方体搭成的几何体,从不同方向看几何体,分别画出它们 的三种视图, 并在小正方形内填上表示该位置的小正方体个数的数字.例4.用小方块搭成的一个几何体,从不同的方向观察得到三视图如图所示,试确定该几何体用了多少块小方块.主视图左视图例5. 用小立方块搭成一个几何体,使它的主视图和俯视图如下图所示,这样的几何体只有一种吗?它最多需要多少个小立方体?最少需要多少个立方体?如何摆放?【初试锋芒】1. 三棱柱的表面展开图是________形和_________形2. 一个平面去截一个正方体,截面的形状不可能是()A.长方形B.三角形C.梯形D.七边形3. 正方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形4. 把一个正方体截去一个角剩下的几何体最多有()A.4个面B.5个面C.6个面D.7个面5. 如图所示.是一个几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,那么这个几何体的主视图和左视图是()6. 在下列立体图形中,不属于多面体的是()A.正方体B.三棱柱 C.长方体 D.圆锥体7. 下图是一些立体图形的三视图,请在括号内填上立体图形的名称.8.请画出图中几何体的主视图、左视图、俯视图.9.一些正方体的积木堆在桌上,从前、左两个方向看去,看到的主视图、左视图都如图1所示,从上面看下去,看到的俯视图如图2所示.试求该物体由几个小正方体组成?22 112 11B22 112 221 212 11C22 123D2 12俯视图图1 图2 从10.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置 小立方块的个数,请画出这个几何体的主视图和左视图.【大显身手】1.用一个平面去截一个几何体,截出的面叫 .2.用一个平面去截一个几何体,如果截面是梯形,那么这个几何体可能为 3.如图是11个小立方体搭成的几何体,从不同方向看几何体,分别画出它们 的三种视图,并在小正方形内填上表示该位置的小正方体个数的数字.4.如图是小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置 的小立方块的个数,请你画出它们的主视图与左视图.。

截面与三视图

截面与三视图

第二讲截面与三视图(一)截一个几何体截面:用一个平面去截一个几何体,截出的面叫做截面。

(1)用一个截面去截长方体或正方体,截面可能是等腰三角形、等边三角形、但不可能是三角形,也可能是正方形,长方形,梯形,五边形等,最多可截得边形。

可能出现:锐角三角形,等边、等腰三角形;正方形,长方形,平行四边形,菱形,不等腰梯形,等腰梯形;五边形;六边形,正六边形。

不可能出现:钝角、直角三角形,直角梯形,正五边形,七边形或更多变形(2)用一个截面去截圆柱,截面可能是正方形,长方形,圆或椭圆。

(3)用一个截面去截圆锥,截面可能是等腰三角、圆、抛物线形或椭圆。

(4)三棱锥的截面可以是三角形、长方形、四边形。

其中四边形可以是特殊的矩形、梯形。

截面的形状多为圆和多边形,也可能是不规则图形,一般与下面两点有关:(1)几何体的形状;(2)切截的方向和角度一般的,截面与几何体的几个面相交,就得到几条交线,截面与平面相交就得到几边形;截面与曲面相交,得到曲线,截面是圆或不规则图形。

(二)从三个不同方向观察物体我们从不同方向观察物体时,从正面看到的图形叫做主视图,从左边看到的图形叫做左视图,从上面看到的视图叫做俯视图。

典型例题讲解:例1.用一个平面去截圆锥,截面图形不可能是()A.B.C.D.例2.把正方体的八个角切去一个角后,余下的图形有()条棱.A.12或15B.12或13C.13或14D.12或13或14或15例3.如图所示的正方体,用一个平面截去它的一个角,则截面不可能是(A.锐角三角形B.等腰三角形C.等腰直角三角形D.等边三角形例4.如图,由三个小立方体搭成的几何体的俯视图是()A.B.C.D.例5.如图是某几何体的三视图,其侧面积()A.6B.4πC.6πD.12π例6.如图是几个相同的小正方体搭成的几何体的两种视图,则搭成这个几何体的小正方体的个数是()A.7B.6C.5D.4例7.如图所示,几何体是由一些大小相同的小正方体组成,其三视图中面积最小的是()A.主视图B.左视图C.俯视图D.都一样例8.如图是一个由相同小正方体搭成的几何体俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的主视图是()A.B.C.D.随堂练习:1(易).一个平面截圆柱,则截面形状不可能是()A.圆B.三角形C.长方形D.梯形2(易).给出以下四个几何体,其中不能截出圆的几何体是()A.球B.圆锥C.正方体D.圆柱3(易).用平面去截下列几何体,不能截出三角形的是()A.B.C.D.4(易).用平面去截如图所示的三棱柱,截面形状不可能是()A.三角形B.四边形C.五边形D.六边形5(易).用一个平面分别去截:①球;①四棱柱;①圆锥;①圆柱;①正方体.截面可能是三角形的有()A.4个B.3个C.2个D.1个6(易).用一个平面去截一个几何体,不能截得三角形截面的几何体是()A.圆柱B.圆锥C.三棱柱D.正方体7(易).用平面去截下列几何体,截面的形状不可能是圆的几何体是()A.球B.圆锥C.圆柱D.正方体8(易).如图所示的几何体的主视图是()A.B.C.D.9(易).如图是一个几何体的三视图,则这个几何体的全面积是()A.14πB.24πC.26πD.36π10(中).下图是由大小一样的小正方块摆成的立体图形的三视图,它共用多少个小正方块摆成()A.5B.8C.7D.611(中).由一些完全相同的小立方块搭成的几何体的主视图、俯视图如图所示,那么搭成这个几何体最少用的小立方块的个数是()A.8B.7C.6D.512(中).某物体的展开图如图,它的左视图为()A.B.C.D.13(难).如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为()A.24πB.32πC.36πD.48π14(难).如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为()A.320cm B.395.24cm C.431.77cm D.480cm15(中).在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()A.9箱B.10箱C.11箱D.12箱16(中).用若干个小立方块搭一个几何体,使得它的左视图和俯视图如图所示,则所搭成的几何体中小立方块最多有()A.15个B.14个C.13个D.12个17(难).一个几何体是由一些大小相同的小正方块摆成的,其主视图与俯视图如图所示,则组成这个几何体的小正方块最多有()A.7个B.6个C.5个D.4个18(难).若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有()A.6桶B.7桶C.8桶D.9桶19(难)如图①是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图①几何体的体积为.(结果保留π)。

湘教七年级数学上册《三视图》课件

湘教七年级数学上册《三视图》课件










你可要仔 细观察哦
GO
2、画出如图所示的物 体的三视图
主视图
俯视图
你可要仔细观察
左视图 GO
这是一个工件的立体图,设 我计们师从们不常同的常方画向出观不察同同一方个向物看体时, 可能看它到得不到同的的图平形面.为图了形能来完表整示确切它地.
表达物体的形状和大小,必须从多方面观 察物体.在几何中,我们通常选择从正面、 上面、左面三个方向观察物体.
这样就把一个立体图形用几个平面图形来描述
6、请分别画出从正面、上面、左面看到的平面图形.
从正面看 从上面看 从左面看
笑笑
淘气
下面这些图分别是谁看到的?
点击 图片
下一步
试一试
1.
下面哪一幅图是淘气看到的?(画√)

试一试
2.
他们看到的是哪一面?连一连.
试一试
3.看一看,说一说.
(2)
下面哪幅图是淘气看到的?哪幅图是笑笑看到的?
基本几何体的三视图
•主视图(正视图)——从正面看到的图 •左视图——从左面看到的图 •俯视图——从上面看到的图
从上面看
从左面看
主视图 左视图
俯视图
从正面看
正视图
练一练
侧 视 图
俯视图
解:
正面
从正面看
从左面看
从上面看
解:
正面
从正面看
从左面看
从上面看
利用骰子,摆成下面的图形,分别从正面、 左面、上面观察这个图形,各能得到什么平 面图形?
从上面看
从左边看
长方体
从正面看
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

截面与三视图(讲义)
➢课前预习
1.制作一个长方体的土豆块,试着切一刀,观察切出的面是什
么形状.再换一种切法,看能否切出不同形状的面.下面是几种不同的切法,请你观察切出的面形状分别是什么,并填在对应的横线上.
2.我们知道从不同的角度观察同一个物体时,可能会看到不同
形状的图形,如图,
桌面上放着一个圆柱体和一个三棱锥,请说出下面的三幅图分别是从“上面”、“正面”、“左面”中哪个方向看到的?
➢知识点睛
1.正方体截面有.
2.观察一个几何体的形状通常从三个方向看,从正面看(主视
图),从左面看(左视图),从上面看(俯视图).
从正面看可以看到物体的和;
从左面看可以看到物体的和;
从上面看可以看到物体的和.
➢精讲精练
1.圆柱体截面的形状可能是(至少写出两个).
2.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得
到截面是圆的几何体是()
A.①②④ B.①②③ C.②③④D.①③④
3.如图所示,用一个平面去截一个圆柱,则截得的形状应为()
A.B.C.D.
4.圆锥的截面不可能为()
A.三角形B.四边形C.圆D.椭圆5.如图所示,用一个平面沿与棱平行的方向去截一个棱柱,则
截面的形状是.
6.正方体的截面不可能是()
A.四边形B.五边形C.六边形D.七边形
7.写出两个三视图形状都一样的几何体:.
8.一个直立在水平面上的圆柱的主视图、俯视图、左视图分别
是()
A.长方形、圆、长方形B.长方形、长方形、圆
C.圆、长方形、长方形D.正方形、长方形、圆
9.如图,该物体的俯视图是()
A.B.C.D.
10.下图是由7 个完全相同的小立方块搭成的几何体,那么这个
几何体的左视图是()
A.B.C.D.
1.下图是由五块积木搭成的几何体,这几块积木都是相同的立
方块,请画出这个几何体的主视图、左视图和俯视图.
12.下图是由五块积木搭成的几何体,这几块积木都是相同的立
方块,请画出它的三视图.
13.如图,这是一个由小立方块搭成的几何体的俯视图,小正方
形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.
14.如图,这是一个由小立方块搭成的几何体的俯视图,小正方
形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.
15.如图是由一些相同的小立方块构成的几何体的三视图,那么
构成这个立体图形的小立方块有()
A.4 个B.5 个
C.6 个D.7 个
16.如图是由一些相同的小立方块构成的几何体的三视图,那么
构成这个立体图形的小立方块有()
A.4 个B.5 个
C.6 个D.7 个
17.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,
这样的几何体最多要个立方块,最少要个立方块.
18.如图是一个由若干个相同的小立方块组成的几何体的主视图
和俯视图,则能组成这个几何体的小立方块的个数最多是
个,最少是个.
19.用小立方块搭成的几何体,主视图和俯视图如下.它最多需
要多少个小立方块?最少需要多少个小立方块?请画出最多和最少时的左视图.
20.用小立方块搭成的几何体,主视图和俯视图如下.它最多需
要多少个小立方块?最少需要多少个小立方块?请画出最多和最少时的左视图.
21.如图是由大小相同的小立方块组成的简单几何体的主视图和
左视图,那么组成这个几何体的小立方块最多为个.
2.一个几何体是由若干个相同的小立方块组成的,其主视图和
左视图如图所示,则组成这个几何体需要的小立方块的个数最多是块.
23.已知下图为一几何体的三视图:
(1)写出这个几何体的名称;
(2)任意画出它的一种表面展开图;
(3)若主视图的长为8 cm,俯视图中圆的半径为3 cm,求这个几何体的表面积和体积.(结果保留π)
【参考答案】
➢课前预习
1.长方形;平行四边形;梯形;三角形
2.左面;上面;正面
➢知识点睛
1.三角形;四边形;五边形;六边形
2.列数;层数
行数;层数
行数;列数
➢精讲精练
1.圆;长方形(答案不唯一,圆、长方形、椭圆任选两个即可)
2. B
3. B
4. B
5.长方形
6. D
7.球体;正方体
8. A
9. C
10. A
11.略
12.略
13.略
14.略
15. B
16. B
17. 13;9
18. 13;9
19.最多需要8 个立方块;最少需要7 个立方块;图略.
20.最多需要14 个立方块;最少需要10 个立方块;图略.
21. 7
22. 10
23. 13
24. (1)圆柱;
(2)略;
(3)表面积为(66π) cm2,体积为(72π) cm3.。

相关文档
最新文档