中考数学专题复习-轨迹问题

合集下载

中考热点题型:最常见轨迹问题解题策略靠套路就能拿高分!

中考热点题型:最常见轨迹问题解题策略靠套路就能拿高分!

中考热点题型:最常见轨迹问题解题策略靠套路就能拿高分!对于初中数学中动点轨迹的问题,一般有两种情况:线段或圆弧。

在研究动点问题时,可以在运动中寻找不变的量,即不变的数量关系或位置关系:如果动点的轨迹是一条线段,那么其中不变的量便是该动点到某条直线的距离始终保持不变;如果动点的轨迹是一段圆弧,那么其中不变的量便是该动点到某个定点的距离始终保持不变。

因此,解决此类动点轨迹问题便可转化为寻找定直线或定点。

轨迹问题三部曲:猜测轨迹形状——证明轨迹形状——代入图形应用其中第二步很重要,初中证明轨迹有两种证明方法:几何法和解析法。

所谓几何法就是通过纯几何证明,抓紧不变量,得出轨迹形状,一般是圆或直线(线段)证明方法:01圆弧——圆周角法已知Rt△ABC,AB=6cm,BC=8cm,AC=10cm,∠ABC=90°。

半径为1cm的圆,若将圆心由点A沿ABCA的方向运动回到点A,求圆扫过的区域面积为。

02圆弧——定义法如图,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交予点E,过点O作直线ME的垂线,垂足为H(如图7).当点P从点O向点C运动时,点H也随之运动,请直接写出点H所经过的路径长.(不必写解答过程)解析此题中主动点是P,动点H是因点P的变化而变化.动点P在运动过程中始终保持不变的量是OH始终垂直ME,即日始终为垂足.而求动点H的运动轨迹,则需考虑点H是到某条直线的距离始终不变,还是到某个定点的距离始终保持不变.由于OH⊥ME,连结OM后,△AMH始终为直角三角形,而斜边OM不变,因此根据直角三角形的性质容易得到动点日到DM的中点的距离始终不变,从而可得到点H 的运动轨迹是一段圆弧。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。

最新中考数学专题复习-轨迹问题

最新中考数学专题复习-轨迹问题

学习-----好资料更多精品文档中考数学核心知识专题复习----轨迹问题探究符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹六种常用的基本轨迹:①到已知线段的两个端点距离相等的点的轨迹是这条线段的垂直平分线。

②到已知角的两边距离相等的点的轨迹是这个角的平分线。

③到已知直线的距离等于定长的点的轨迹是与这条直线平行,且与已知直线的距离等于定长的两条直线。

④到两条平行线距离相等的点的轨迹是和这两条平行线平行且到这两条平行线距离相等的一条直线。

⑤到定点的距离等于定长的点轨迹是与定点为圆心,定长为半径的圆。

⑥和已知线段的两个端点的连线的夹角等于已知角的点的轨迹是以已知线段为弦,所含圆周角等于已知角的两段弧(端点除外)。

一、 尺规作图:轨迹法确定动点位置1) 已知AOB ∠,求作点P ,使得点P 到角两边距离相等,且满足OP=22) 已知AOB ∠和直线L,在直线L 上确定点P ,使得使得点P 到角两边距离相等 3)已知AOB ∠和线段CD,使得点P 到角两边距离相等且满足PC=PD 4) 已知线段AB 和直线L ,在直线L 上确定点P 使得060=∠APB 1) 2)OBOOBAB学习-----好资料 更多精品文档3) 4)二 交轨法应用1.在正方形ABCD 中,E 为AD 边上一点,以BE 边所在直线为折痕将ABE ∆对折之PBE ∆位置。

若AB=2,且PC=1.1) 不全图形2) 求tan ∠PCD 的值2.如图,在Rt △ABC 中,∠CAB =90°,∠ACB=300,BC =8,D 为线段AB 上的动点,过点A 作AH ⊥CD 于点H ,连接BH ,则 ② 求AB 的长②求BH 的最小值。

3.等边三角形ABC 的边长为6,在AC ,BC 边上各取一点E ,F ,连接AF ,BE 相交于点P .且AE =CF ;A AB C DH学习-----好资料更多精品文档(1)求证:AF =BE ,并求∠APB 的度数; (2)若AE =2,试求AP •AF 的值;(3)当点E 从点A 运动到点C 时,试求点P 经过的路径长.4.如图,以G (0,1)为圆心,半径为2的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,CF AE 于F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长5.如图,已知AB =10,P 是线段AB 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△ACP 和△PDB ,连接 CD ,设CD 的中点为G ,当点P 从点A 运动到点B 时, 求点G 移动路径的长学习-----好资料 更多精品文档6.问题探究:(1)请在图①的正方形ABCD 内,画出使∠APB=90°的一个点,并说明理由.(2)请在图②的正方形ABCD 内(含边),画出使∠APB=60°的所有的点P ,并说明理由. 问题解决:(3)如图③,现在一块矩形钢板ABCD ,AB=4,BC=3.工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP′D 钢板,且∠APB=∠CP'D=60度.请你在图③中画出符合要求的点和,并求出△APB 的面积(结果保留根号).三、坐标系中的动点问题动点P(a,2)的运动轨迹是____________________________________________________动点P(a,a+2)的运动轨迹是__________________________________________________动点P (a,a 2-2a )的运动轨迹是_________________________________________________1.在平面直角坐标系中,A (2,0)、B (0,3), 过点B 作直线∥x 轴,点P (,3)a 是直线上的动点,以AP 为边在AP 右侧作等腰Rt APQ , ∠APQ =90°,直线AQ 交y 轴于点C . (1)当a =1时,求点Q 的坐标(2)当点P 在直线上运动时,点Q 也随之运动.当a = _______ 时,AQ +BQ 的值最小为 _________ .8.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数1y x的图象上.设点B 的坐标为(,)m n ,则n 与m 的等量关系是______________.更多精品文档。

初中中考数学轨迹问题集锦.doc

初中中考数学轨迹问题集锦.doc

动点问题讲义1 、如图 1 ,已知线段AB = 6 , C、 D 是 AB 上两点,且AC = DB = 1 , P 是线段 CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF, G 为线段 EF 的中点,点P 由点 C 移动到点 D 时, G 点移动的路径长度为_______.2 、正△ABC 的边长为3cm ,边长为1cm 的正△RPQ 的顶点 R 与点 A 重合,点 P, Q 分别在 AC ,AB 上,将△RPQ 沿着边 AB ,BC,CA 逆时针连续翻转(如图所示),直至点P 第一次回到原来位置,则点P 运动的路径长为_______ cm.(结果保留π)3 、如图, AB 为⊙ O 的直径, AB=8 ,点 C 为圆上任意一点,OD ⊥ AC 于 D ,当点 C 在⊙ O 上运动一周,点D 运动的路径长为 _______4 、如图,一块边长为6cm 的等边三角形木板ABC ,在水平桌面上绕 C 点按顺时针方向旋转到△ A ′B′C′的位置,则边AB 的中点 D 运动的路径长是_______5 、如图所示,扇形OAB 从图①无滑动旋转到图②,再由图②到图③,∠O=60 °,OA=1 .(1 )求 O 点所运动的路径长;(2 )O 点走过路径与直线 L 围成图形的面积.6 、如图, OA ⊥OB ,垂足为O , P、 Q 分别是射线OA 、 OB 上两个动点,点 C 是线段 PQ 的中点,且PQ=4 .则动点 C 运动形成的路径长是______7 、如图,半径为2cm ,圆心角为90 °的扇形 OAB 的弧 AB 上有一运动的点P.从点 P 向半径 OA 引垂线PH 交 OA 于点 H .设△OPH 的内心为I,当点 P 在弧 AB 上从点 A 运动到点 B 时,内心 I 所经过的路径长为______ .8 .如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点 B 停止.连接EM 并延长交射线CD于点,过M作EF的垂线交射线BC于点G,连结、.F EG FG( 1 )设AE=x时,△EGF的面积为y ,求 y 关于 x 的函数关系式,并写出自变量x 的取值范围;( 2 )P是MG的中点,请直接写出点P 运动路线的长.FFAM DA M DEEP PB C GB C G9 、某数学兴趣小组对线段上的动点问题进行探究,已知AB=8 .问题思考:如图 1,点 P 为线段 AB 上的一个动点,分别以AP 、BP 为边在同侧作正方形APDC 、 BPEF.(1)当点 P 运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.(2)分别连接 AD 、 DF、 AF ,AF 交 DP 于点 K,当点 P 运动时,在△ APK 、△ADK 、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3 )如图 2,以 AB 为边作正方形ABCD ,动点 P、 Q 在正方形ABCD 的边上运动,且PQ=8 .若点 P 从点A 出发,沿 A → B→ C→D 的线路,向点 D 运动,求点 P 从 A 到 D 的运动过程中, PQ 的中点 O 所经过的路径的长.(4)如图 3,在“问题思考”中,若点M 、 N 是线段 AB 上的两点,且 AM=BN=1 ,点 G、H 分别是边CD 、EF 的中点,请直接写出点P 从 M 到 N 的运动过程中, GH 的中点 O 所经过的路径的长及OM+OB的最小值.10 、如图 1 ,在 Rt △ABC 中,∠C=90 °,AC=6 , BC=8 ,动点 P 从点 A 开始沿边AC 向点 C 以 1 个单位长度的速度运动,动点 Q 从点 C 开始沿边CB 向点 B 以每秒 2个单位长度的速度运动,过点P作PD∥BC,交AB 于点 D,连接 PQ 分别从点 A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为 t 秒( t ≥0).(1 )直接用含 t 的代数式分别表示: QB=____ ,PD=____(2 )是否存在 t 的值,使四边形 PDBQ 为菱形?若存在,求出 t 的值;若不存在,说明理由.并探究如何改变 Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;( 3 )如图 2 ,在整个运动过程中,求出线段PQ 中点 M 所经过的路径长.11 、在直角坐标系中,O 是坐标原点,点 A 坐标为( 0 , -1 ),点 C 是 x 轴上一个动点。

中考压轴专题:轨迹圆问题

中考压轴专题:轨迹圆问题

中考压轴专题:轨迹圆问题
考点考查背景:
•在强调综合能力全面发展的前提下,中学数学会越来越注重数学逻辑分析,此类问题通常需要学生能够在辨别基本模型的前提下,分析轨迹问题基本成立条件,结合基本模型的形成原理以及题目要求,综合运用最值以及轨迹长问题的解决方法完成对题目的辨别/分析/解决,从而达到最终目的;
考点辨别解析:
•定义法-平面内某一动点到定点的距离定值;
•定弦直角-动点处线段夹角90°恒成立,根据直径所对圆周角是直角,可知点的运动轨迹是以线段为直径的半圆;
•定弦定角-动点处线段夹角定值(非直角)恒成立,根据同弦所对圆周角是定值,反向推定可知点的运动轨迹是以线段为弦的半圆;
考点方法突破:
此类题型的分析推定方向界定在以下两个方向
•动点处线段长度定值-定义法轨迹圆问题;
•动点处角度定值-定弦直角/定弦定角;
考点结果导向分析:
•最值类问题-定点到动点线段长度最值;
•轨迹长问题-动点轨迹长度;。

中考数学轨迹问题集锦

中考数学轨迹问题集锦

动点问题讲义1、如图1,已知线段AB=6,C、D是AB上两点,且AC=DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_______.2、正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ 沿着边AB,BC,CA逆时针连续翻转(如图所示),直至点P第一次回到原来位置,则点P运动的路径长为_______ cm.(结果保留π)3、如图,AB为⊙O的直径,AB=8,点C为圆上任意一点,OD⊥AC于D,当点C在⊙O上运动一周,点D运动的路径长为_______4、如图,一块边长为6cm的等边三角形木板ABC,在水平桌面上绕C点按顺时针方向旋转到△A′B′C′的位置,则边AB的中点D运动的路径长是_______5、如图所示,扇形OAB从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1.(1)求O点所运动的路径长;(2)O点走过路径与直线L围成图形的面积.6、如图,OA ⊥OB ,垂足为O ,P 、Q 分别是射线OA 、OB 上两个动点,点C 是线段PQ 的中点,且PQ=4.则动点C 运动形成的路径长是______7、如图,半径为2cm ,圆心角为90°的扇形OAB 的弧AB 上有一运动的点P .从点P 向半径OA 引垂线PH 交OA 于点H .设△OPH 的内心为I ,当点P 在弧AB 上从点A 运动到点B 时,内心I 所经过的路径长为______ .8.如图,正方形ABCD 的边长是2,M 是AD 的中点,点E 从点A 出发,沿AB 运动到点B 停止.连接EM 并延长交射线CD 于点F ,过M 作EF 的垂线交射线BC 于点G ,连结EG 、FG .(1)设AE =x 时,△EGF 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)P 是MG 的中点,请直接写出点P 运动路线的长.FDC A B M P G EFD C A B M PGE9、某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.10、如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t ≥0).(1)直接用含t的代数式分别表示:QB=____ ,PD=____(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.11、在直角坐标系中,O是坐标原点,点A坐标为(0,-1),点C是x轴上一个动点。

中考数学复习轨迹问题的解题策略

中考数学复习轨迹问题的解题策略

轨迹问题的解题策略对于初中数学中动点轨迹的问题,一般有两种情况:线段或圆弧.在研究动点问题时,可以在运动中寻找不变的量,即不变的数量关系或位置关系.如果动点的轨迹是一条线段,那么其中不变的量便是该动点到某条直线的距离始终保持不变;如果动点的轨迹是一段圆弧,那么其中不变的量便是该动点到某个定点的距离始终保持不变.因此,解决此类动点轨迹问题便可转化为寻找定直线或定点,下面就以原文中两个例题来阐明这类动点轨迹问题的解题策略.一、运动路径是线段例1(2012年张家界中考题)如图1,已知线段AB=6,C、D是AB上两点,且AC =DB=1,P是线段CD上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点C移动到点D时,G点移动的路径长度为_______.解析此题中主动点是P,动点G是因点P的变化而变化,动点P在运动过程中始终保持不变的量是AP+BP=6.另外,题中还有不变的量是△APE和△PBF始终为等边三角形.解答此问题需牢牢把握住这两个不变的量,而既然是求动点G的运动轨迹,则需考虑点G是到某条直线的距离保持不变,还是到某个定点的距离保持不变,显然此题首先考虑的是点G是否到直线AB的距离保持不变,因此尝试作GQ⊥AB,垂足为Q.又根据△APE 和△PBF均是等边三角形这一性质,不难想到分别作EM⊥AB和FN⊥AB,垂足分别为M,N(如图2).此时容易得到EM =2AP ,FN =2BP ,所以EM +FN (AP +BP )=.再根据梯形中位线的性质,可得到CQ =12(EM +FN . 因此得到点G 到直线AB 的距离始终保持不变,从而得证点G 的运动轨迹是一条线段.而此时就点G 的运动路径长,便可转化为求点Q 的运动路径长,这时只要分别求出点P 在C 点和D 点时AQ 的长度即可.当点P 在点C 时(如图3),MQ 1=12MN =32, 所以AQ 1=AM +MQ 1=12+32=2.当点P 在点D 时(如图4),MQ 2=12MN =32, 所以AQ 2=AM +MQ 2=5322 =4. 所以点G 运动的路径长为4-2=2.事实上,点G 在运动过程中,MQ 的长度也是始终保持不变,因此G 的运动路径长度就是M 点的运动路径长度,而整个运动过程中M 点是从AC 的中点运动到AD 的中点,即M 1M 2(如图5).笔者认为,如果用这样的方式去分析问题,那么最终学生头脑中对整个变化过程会有一个全面而清晰的了解.此题的解题思路中还体现了转化思想,对培养学生的数学思维是有积极作用的.二、运动路径是圆弧例2(2011年湖州中考题)如图6,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交予点E,过点O作直线ME的垂线,垂足为H(如图7).当点P从点O向点C运动时,点H也随之运动,请直接写出点H所经过的路径长.(不必写解答过程)解析(1)、(2)略.(3)此题中主动点是P,动点H是因点P的变化而变化.动点P在运动过程中始终保持不变的量是OH始终垂直ME,即日始终为垂足.而求动点H的运动轨迹,则需考虑点H 是到某条直线的距离始终不变,还是到某个定点的距离始终保持不变.由于OH⊥ME,连结OM后,△AMH始终为直角三角形,而斜边OM不变,因此根据直角三角形的性质容易得到动点日到DM的中点的距离始终不变,从而可得到点H的运动轨迹是一段圆弧.下面只需确定圆弧的度数即可,即要找到动点H的始点和终点,根据图形的变化容易分析得动点H无限接近点C,因此可将点C定为动点H的终点.当点P在O点时,点H 在始点,记为H1,由对称性可知,此时点E的坐标为(3,0),作MN⊥OE,垂足为N,取DM的中点F,再连结FC、F H1(如图8).因为M点的坐标为(1,2),所以可得MN=NE=2,所以得到∠MEN=45°,所以∠H1OE =45°,所以∠H1OC=45°.因为C,D,H1,M四点共圆,所以∠CFH1=90°.又因为FC=OM,所以弧CH1的长为:902180π∙,所以点H所经过.以上两个例题刚好反映了初中数学轨迹问题中的两种典型情况.此类问题的解题策略便是确定动点到定直线的距离保持不变,还是到定点的距离保持不变.沿着这个思路走下去,便能找到变化过程中不变的量,从而找到解题的突破口.。

初中数学竞赛中考讲义之轨迹问题之直线轨迹

初中数学竞赛中考讲义之轨迹问题之直线轨迹

第23讲轨迹问题之直线轨迹点的轨迹问题近年来在考试中经常出现,解决这类问题,首先得要了解,哪些条件会产生这类轨迹?模型讲解模型一:轨迹为直线动点P到定直线距离保持不变,点P的轨迹为一直线点P与定线段一端点连接后,与该线段所夹角保持不变,点P的轨迹为一直线【例题讲解】例题1、如图,已知A=10,点C、D在线段AB上,且AC=DB=2,P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C 运动到点D时,则点G移动路径的长是.【解析】延长AE、BF,相交于点H,连接HP易得△HAB为等边三角形,四边形HEPF为平行四边形∵平行四边形的对角线互相平分,且G为FE中点∴G在HP上,且G为HP的中点∴当P从点C运动到点D时,G始终为HP的中点∴G到AB的距离始终为点H到AB的距离的半∴点G的轨迹为直线∴MN即为G点运动的路径长例题2、如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是.【解析】连接AN易证△ANB≌△CMB∴∠BAN=∠BCM=30°∵AB边为定边∴N在与AB夹角为30°的直线上运动∴当HN⊥AN时,HN最短(即为图中N′点)∵∠BAN=30°,AH=12AB=a∴HN′=12AH=12a例题3、在平面直角坐标系中,点P的坐标为(0,2),点M的坐标为(m-1,-34m-94)(其中m为实数),则PM的最小值为.【解析】∵点M的坐标为(m-1,-34m-94)∴设x=m-1,y=-34m-94……①∴m=x+1……②将②式代入①式化简得y=-34x-3∴点M在函数y=-34x-3上运动,轨迹为直线∴当PM⊥AB时,PM最小根据△PMB∽△AOB,即可得PM=4∴PM的最小值为4【巩固训练】1、等边三角形ABC中,BC=6,D、E是边BC上两点,且BD=CE=1,点P是线段DE上的一个动点,过点P分别作AC、AB的平行线交AB、AC于点M、N,连接MN、AP交于点G,则点P由点D移动到点E的过程中,线段BG扫过的区域面积为.2、如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD 上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BROP,E、F分别为MN、QR 的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为.3、如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P从点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为.4、在△ABC中,∠BAC=90°,AB=AC=2cm,线段BC上一动点P从C点开始运动,到B点停止,以AP为边在AC的右侧做等边△APQ,则Q点运动的路径长为cm.5、如图,在平面直角坐标系中,A(1,4),B(3,2),C(m,-4m+20),若OC恰好平分四边形OACB的面积,则C点坐标为.6、如图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2,现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线Ox上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是.图1图2图37、在直角梯形ABCD中,AB∥CD,BC⊥CD,AB=3,CD=4,在BC上取点P(P与B、C不重合),连接PA延长至E,使PA=2AE,连接PD并延长到F,使PD=4FD,以PE、PF为边作平行四边形,另一个顶点为G,则PG长度的最小值为.8、如图,已知点A3AC⊥x轴于点M,交直线y=-x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动,求当点P从点O运动到点N时,点B运动的路径长是.9、如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P从O点出发沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP,CA,过点P作PD⊥OB于点D.(1)填空:PD的长为(用含t的代数式表示);(2)求点C的坐标(用含t的代数式表示);(3)在点P从O向A运动的过程中,求点C运动路线的长.10、如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD ∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=,PD=.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.图1图2参考答案1.【解答】解:∵PM∥AC,PN∥AB,∴四边形AMPN是平行四边形,∵MN与AP相交于点G,∴G是AP的中点,∴如图点G的运动路线是△APP′的中位线,∵BC=6,BD=CE=1,∴GG′==2,∵BC=6,∴△BGG′的底边GG′上的高=×(6×)=,∴线段BG扫过的区域面积=×2×=.故答案为:.2.【解答】解:如图,设KH的中点为S,连接PE,PF,SE,SF,PS,∵E为MN的中点,S为KH的中点,∴A,E,S共线,F为QR的中点,S为KH的中点,∴B、F、S共线,由△AME∽△PQF,得∠SAP=∠FPB,∴ES∥PF,△PNE∽△BRF,得∠EPA=∠FBP,∴PE∥FS,则四边形PESF为平行四边形,则G为PS的中点,∴G的轨迹为△CSD的中位线,∵CD=AB﹣AC﹣BD=6﹣1﹣1=4,∴点G移动的路径长.故答案为:2.3.【解答】解:如图所示:过点M作GH⊥AD.∵AD∥CB,GH⊥AD,∴GH⊥BC.在△EGM和△FHM中,∴△EGM≌△FHM.∴MG=MH.∴点M的轨迹是一条平行于BC的线段.当点P与A重合时,BF1=AE=2,当点P与点B重合时,∠F2+∠EBF1=90°,∠BEF1+∠EBF1=90°,∴∠F2=∠EBF1.∵∠EF1B=∠EF1F2,∴△EF1B∽△∠EF1F2.∴,即:,∴F1F2=18,∵M1M2是△EF1F2的中位线,∴M1M2=F1F2=9.故答案为:9.4.【解答】解:如图,Q点运动的路径为QQ′的长,∵△ACQ和△ABQ′是等边三角形,∴∠CAQ=∠BAQ′=60°,AQ=AC=AQ′=2cm,∵∠BAC=90°,∴∠QAQ′=90°,由勾股定理得:QQ′===2,∴Q点运动的路径为2cm;故答案为:2.5.【解答】解:AB的中点D的坐标是:(,),即(2,3),设直线OD的解析式是y=kx,则2k=3,解得:k=,则直线的解析式是:y=x,根据题意得:,解得:,则C的坐标是:(,).故答案是:(,).6.【解答】解:如图3,连接OG.∵∠AOB是直角,G为AB中点,∴GO=AB=半径,∴原点O始终在⊙G上.∵∠ACB=90°,AB=6,AC=2,∴BC=4.连接OC.则∠AOC=∠ABC,∴tan∠AOC==,∴点C在与x轴夹角为∠AOC的射线上运动.如图4,C1C2=OC2﹣OC1=6﹣2=4;如图5,C2C3=OC2﹣OC3=6﹣4;∴总路径为:C1C2+C2C3=4+6﹣4=10﹣4.故选:D.7.分析与解答8.【解答】解:由题意可知,OM=,点N在直线y=﹣x上,AC⊥x轴于点M,则△OMN为等腰直角三角形,ON=OM=×=.如答图①所示,设动点P在O点(起点)时,点B的位置为B0,动点P在N点(终点)时,点B的位置为B n,连接B0B n∵AO⊥AB0,AN⊥AB n,∴∠OAC=∠B0AB n,又∵AB0=AO•tan30°,AB n=AN•tan30°,∴AB0:AO=AB n:AN=tan30°(此处也可用30°角的Rt△三边长的关系来求得),∴△AB0B n∽△AON,且相似比为tan30°,∴B0B n=ON•tan30°=×=.现在来证明线段B0B n就是点B运动的路径(或轨迹).如答图②所示,当点P运动至ON上的任一点时,设其对应的点B为B i,连接AP,AB i,B0B i∵AO⊥AB0,AP⊥AB i,∴∠OAP=∠B0AB i,又∵AB0=AO•tan30°,AB i=AP•tan30°,∴AB0:AO=AB i:AP,∴△AB0B i∽△AOP,∴∠AB0B i=∠AOP.又∵△AB0B n∽△AON,∴∠AB0B n=∠AOP,∴∠AB0B i=∠AB0B n,∴点B i在线段B0B n上,即线段B0B n就是点B运动的路径(或轨迹).综上所述,点B运动的路径(或轨迹)是线段B0B n,其长度为.故选:C.9.【解答】解:(1)∵△AOB是等边三角形,∴OB=OA=AB=4,∠BOA=∠OAB=∠ABO=60°.∵PD⊥OB,∴∠PDO=90°,∴∠OPD=30°,∴OD=OP.∵OP=t,∴OD=t,在Rt△OPD中,由勾股定理,得PD=故答案为:(2)如图(1)过C作CE⊥OA于E,∴∠PEC=90°,∵OD=t,∴BD=4﹣t.∵线段BP的中点绕点P按顺时针方向旋转60°得点C,∴∠BPC=60°.∵∠OPD=30°,∴∠BPD+∠CPE=90°.∴∠DBP=∠CPE∴△PCE∽△BPD∴,∴,,∴CE=,PE=,OE=,∴C(,).(3)如图(3)当∠PCA=90度时,作CF⊥PA,∴△PCF∽△ACF,∴,∴CF2=PF•AF,∵PF=2﹣t,AF=4﹣OF=2﹣tCF=,∴()2=(2﹣t)(2﹣t),求得t=2,这时P是OA的中点.如图(2)当∠CAP=90°时,C的横坐标就是4,∴2+t=4∴t=(4)设C(x,y),∴x=2+t,y=,∴y=x﹣,∴C点的运动痕迹是一条线段(0≤t≤4).当t=0时,C1(2,0),当t=4时,C2(5,),∴由两点间的距离公式得:C1C2=2.故答案为:2.10.【解答】解:(1)根据题意得:CQ=2t,PA=t,∴QB=8﹣2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tan A==,∴PD=t.故答案为:(1)8﹣2t,t.(2)不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD=t,∴BD=AB﹣AD=10﹣t,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8﹣2t=,解得:t=.当t=时,PD==,BD=10﹣×=6,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8﹣vt,PD=t,BD=10﹣t,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即t=10﹣t,解得:t=当PD=BQ,t=时,即=8﹣,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=﹣2x+6.∵点Q(0,2t),P(6﹣t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x=代入y=﹣2x+6得y=﹣2×+6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2单位长度.。

2024年中考数学复习几何专项练习:动点运动路径之瓜豆原理(含答案解析)

2024年中考数学复习几何专项练习:动点运动路径之瓜豆原理(含答案解析)

2024年中考数学复习几何专项练习:动点运动路径之瓜豆原理(含答案解析)一、填空题1.如图,等边三角形ABC 中,AB =4,高线AHD 是线段AH 上一动点,以BD 为边向下作等边三角形BDE ,当点D 从点A 运动到点H 的过程中,点E 所经过的路径为线段CM ,则线段CM 的长为,当点D 运动到点H ,此时线段BE 的长为.【答案】2【分析】由“SAS ”可得△ABD ≌△CBE ,推出AD =EC ,可得结论,再由勾股定理求解2,BH =当,D H 重合时,2,BE BH ==从而可得答案.【详解】解:如图,连接EC .∵△ABC ,△BDE 都是等边三角形,∴BA =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,在△ABD 和△CBE 中,BA BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBE (SAS ),∴AD =EC ,∵点D 从点A 运动到点H ,∴点E的运动路径的长为CM AH ==,当,D H 重合,而BDE △(即BHE )为等边三角形,,BE BH \=4,,AB AH AH BC ==^Q2,BH ==2,BE ∴=故答案为:.【点睛】本题考查等边三角形的性质,全等三角形的判定和性质,动点的轨迹等知识,解题的关键是正确寻找全等三角形解决问题.2.如图,正方形ABCD 的边长为4,E 为BC 上一点,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边EFG∆,连接CG ,则CG 的最小值为.【答案】52【分析】由题意分析可知,点F 为主动点,G 为从动点,所以以点E 为旋转中心构造全等关系,得到点G 的运动轨迹,之后通过垂线段最短构造直角三角形获得CG 最小值.【详解】由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将EFB ∆绕点E 旋转60︒,使EF 与EG 重合,得到EFB EHG ∆≅∆,从而可知EBH ∆为等边三角形,点G 在垂直于HE 的直线HN 上,作CM HN ⊥,则CM 即为CG 的最小值,作EP CM ⊥,可知四边形HEPM 为矩形,则1351222CM MP CP HE EC =+=+=+=.故答案为52.【点睛】本题考查了线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G 的运动轨迹,是本题的关键.3.如图,等边ABC 中,8AB =,O 是BC 上一点,且14BO BC =,点M 为AB 边上一动点,连接OM ,将线段OM 绕点O 按逆时针方向旋转60︒至ON ,连接BN CN 、,则BCN △周长的最小值为.【答案】8+8【分析】过点N 作ND BC ⊥于点D ,过点O 作OH BM ⊥于点H ,则90OHM ODN ∠=∠=︒,证明HOM DNO ≌,可得DN OH =,从而得到点N 的运动轨迹是直线,且该直线与直线BC 平行,在BC 的左侧,与BCC 关于该直线的对称点E ,连接BE 交该直线于N ,即当点B ,N ,E 三点共线时,BCN △的周长最小,连接CE 交该直线于G ,则22CE CG DN ===CE BC ⊥,求出BE ,即可求解.【详解】解:如图,过点N 作ND BC ⊥于点D ,过点O 作OH BM ⊥于点H ,则90OHM ODN ∠=∠=︒,∵ABC 为等边三角形,∴60ABC ∠=︒,8BC AB ==,∴120BMO BOM ∠+∠=︒,根据题意得:60MON ∠=︒,OM ON =,∴120NOD BOM ∠+∠=︒,∴NOD BMO ∠=∠,∴HOM DNO ≌,∴DN OH =,∵14BO BC =,∴2BO =,∵60ABC ∠=︒,∴30BOH ∠=︒,∴112BH OB ==,∴DN OH ==∴点N 的运动轨迹是直线,且该直线与直线BC 平行,在BC 的左侧,与BC作点C 关于该直线的对称点E ,连接BE 交该直线于N ,即当点B ,N ,E 三点共线时,BCN △的周长最小,连接CE 交该直线于G ,则22CE CG DN ===,CE BC ⊥,∴BE =∴△ACN 的周长的最小值为8+故答案为:8+.【点睛】本题考查旋转变换,全等三角形的判定和性质,轴对称,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.4.如图,正方形ABCD 的边长为P 是CD 边上的一动点,连接AP ,将AP 绕点A 顺时针方旋转60︒后得到AQ ,连接CQ ,则点P 在整个运动过程中,线段CQ 所扫过的图形面积为.【答案】3-【分析】根据题意画出点P 在CD 上移动的过程,线段CQ 所扫过的面积就是COQ 的面积,根据正方形的性质,等边三角形的性质以及全等三角形的判定和性质,得出线段CQ 所扫过的图形面积()12ACQ AOQ S S S =- ,再根据等边三角形,等腰直角三角形面积的计算方法进行计算即可.【详解】解:如图,当点P 在点D 时,相应的点Q 落在点O ,当点P 移动到点C 时,相应的点Q 在点Q ,CQ 扫过的面积就是COQ 的面积,由题意可知,AOD △、ACQ 都是等边三角形,AO DO AD ∴===AQ CQ AC ====,四边形ABCD 是正方形,AOD △是等边三角形,906030ODC ∴∠=︒-︒=︒,45ACD ∠=︒,OD CD = ,18030752DOC DCO ︒-︒∴∠=∠==︒,754530ACO ∴∠=︒-︒=︒,45607530QCO QCD DCO ∠=∠-∠=︒+︒-︒=︒,ACO QCO ∴∠=∠,AC QC = ,CO CO =,AOC ∴ ≌()SAS QOC ,AO QO ∴=,604515CQO CAO ∠=∠=︒-︒=︒,()3601801530290AOQ ∴∠=︒-︒-︒-︒⨯=︒,即AOQ △是等腰直角三角形,∴线段CQ 所扫过的图形面积()12ACQ AOQ S S S =- 111222⎛=⨯⨯⨯ ⎝3=,故答案为:3.【点睛】本题考查正方形、等边三角形,等腰直角三角形以及全等三角形的判定和性质,掌握正方形、等边三角形,等腰直角三角形以及全等三角形的判定和性质是正确解答的前提.5.如图,点D 是等边ABC 边AB 上的一动点(不与端点重合),点D 绕点C 引顺时针方向旋转60 得点E ,所得的CDE 边DE 与BC 交于点F ,则CF DE的最小值为.【分析】由旋转的性质得CDE 为等边三角形,由CEF CAD ∽△△得到CF CE CD AC =,即CF CD DE AC =,从而得到当CD 最小时,比值最小,再由“垂线段最短”得到当CD AB ⊥时,CD 值最小,作出对应图形,利用“ACD 是含30︒角的直角三角形”求出CD AC,从而得解.【详解】解:由旋转的性质得:CD CE =,60DCE ∠=︒,CDE ∴ 为等边三角形,DE CD CE ∴==,60A DEC ∠=∠=︒60ACD DCB ∠+∠=︒60DCB ECF ∠+∠=︒ACD ECF∴∠=∠∵60A DEC ∠=∠= ,ACD ECF∠=∠CEF CAD∴ ∽CF CE CD AC ∴=,即CF CD DE AC=AC 为定值,∴当CD 最小时,比值最小.根据“垂线段最短”可知:当CD AB ⊥时,CD 值最小,过点C 作CD AB ⊥于D ,并补全图形如下:ABC 是等边三角形,CD AB ⊥,60ACB ∠=︒∴1302ACD ACB ∠=∠=︒设AC 2a =,则12AD AC a ==∴CD ==,∴此时CF CD DE AC ==即CF DE 的最小值为2.故答案为:2.【点睛】此题考查图形的旋转变化与性质,等边三角形的判定和性质,相似三角形的判定与性质,含30︒角的直角三角形的性质,垂线段最短,理解“垂线段最短”和利用相似三角形的性质将CF DE转化为CD AC 是解题的关键.6.如图,在ACB △中,60ACB ∠=︒,75BAC ∠=︒,12AC =,点D 是边BC 上的一动点,连接AD ,将线段AD 绕点A 按逆时针方向旋转75︒得到线段AE ,连接CE ,则线段CE 长度的最小值是.【答案】/-【分析】过点A 作AF BC ⊥于点F ,在AB 上取点N ,使12AN AC ==,连接DN ,过点N 作点NM BD ⊥于点M ,证明()SAS NAD DAE ≌,求出CE DN =,得出当DN 最小时,CE 最小,根据垂线段最短,得出当点D 与点M 重合时,DN 最小,则CE 最小,求出最小结果即可.【详解】解:过点A 作AF BC ⊥于点F ,在AB 上取点N ,使12AN AC ==,连接DN ,过点N 作点NM BD ⊥于点M ,如图所示:根据旋转可知,AD AE =,75DAE ∠=︒,∵75BAC DAE ==︒∠∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,即NAD CAE =∠∠,∵AN AC =,AD AE =,∴()SAS NAD CAE ≌,∴CE DN =,∴当DN 最小时,CE 最小,∵垂线段最短,∴当点D 与点M 重合时,DN 最小,则CE 最小,∵90AFC ∠=︒,60BCA ∠=︒,∴906030CAF ∠=︒-︒=︒,∴162CF AC ==,∴AF ==,∵45BAF BAC CAF =-=︒∠∠∠,90AFB ∠=︒,∴904545B ∠=︒-︒=︒,∴B BAF ∠=∠,∴BF AF ==∴AB ==∴12BN AB AN =-=-,∵90BMN ∠=︒,45B ∠=︒,∴904545BNM =︒-︒=︒∠,∴B BNM =∠∠,∴BM NM =,∵222BN NM BM =+,∴()22212NM =-,解得:NM =-,∴CE 的最小值为-.故答案为:【点睛】本题主要考查了全等三角形的判定和性质,勾股定理,等腰三角形的判断和性质,直角三角形的性质,垂线段最短,解题的关键是作出辅助线,构造全等三角形,证明CE DN =.7.如图,点A 的坐标为3⎫⎪⎪⎝⎭,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60︒得到线段AC .若点C 的坐标为(,4)k ,则k 的值为.【分析】连接BC ,过A 点作AF x ⊥轴于F ,C 作CD x ⊥轴于点D ,CE AF ⊥于点E ,则四边形DCEF 是矩形,根据将线段AB 绕点A 按逆时针方向旋转60︒得到线段AC ,可得ABC 是等边三角形,AB AC BC ==,由点A 的坐标为,(,4)C k ,有AC ==,而BD ==FB ==OF BF BD OD k ++==,可得k =,解方程可得答案.【详解】解:连接BC ,过A 点作AF x ⊥轴于F ,C 作CD x ⊥轴于点D ,CE AF ⊥于点E ,则四边形DCEF 是矩形,如图:∵将线段AB 绕点A 按逆时针方向旋转60︒得到线段AC ,∴AB AC =,60BAC ∠=︒,∴ABC 是等边三角形,∴AB AC BC ==,∵点A 的坐标为,(,4)C k ,,∴3CE k FD =-=,4CD =,3AF =,∴1AE EF AF CD AF =-=-=,∴AC BC AB ====,在Rt BCD 中,BD =,在Rt AFB 中,FB =∵OF BF BD OD k ++==,∴3k =,设k x =x =,化简变形得:42346490x x -=-,解得21x =-(舍去)或2493x =,∴3x =或3x =-(不符合题意,舍去),∴k ,∴k =,.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含k 的代数式表示相关线段的长度.8.如图,在边长为6的等边ABC 中,直线AD BC ⊥,E 是AD 上的一个动点连接EC ,将线段EC 绕点C 逆时针方向旋转60︒得到FC ,连接DF ,则点E 运动过程中,DF 的最小值是.【答案】32【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质可得出CD CG =以及FCD ECG Ð=Ð,由旋转的性质可得出EC FC =,由此即可利用全等三角形的判定定理SAS 证出FCD ≌ECG ,进而即可得出DF GE =,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解.【详解】解:取线段AC 的中点G ,连接EG ,如图所示.ABC 为等边三角形,6AC BC ==,且AD 为ABC 的对称轴,132CD CG AB ∴===,60ACD ∠=︒,60ECF =︒∠ ,FCD ECG \Ð=Ð.FCD ∴ ≌()ECG SAS ,DF GE ∴=.当EG BC ∥时,EG 最小,点G 为AC 的中点,∴此时1133222EG DF CD ===⨯=.故答案为:32.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.9.如图,在ABC ∆中,90ACB ︒∠=,点D 在BC 边上,5BC =,2CD =,点E 是边AC 所在直线上的一动点,连接DE ,将DE 绕点D 顺时针方向旋转60︒得到DF ,连接BF ,则BF 的最小值为.【答案】72【分析】当E 与点C 重合时,点F 与等边三角形CDG 的点G 重合,当点F 开始运动时,△ECD ≌△FGD ,故点F 在线段GF 上运动,根据垂线段最短原理,当BF ⊥GF 时,BF 有最小值,根据直角三角形的性质计算即可.【详解】当E与点C重合时,点F与等边三角形CDG的点G重合,∵DE绕点D顺时针方向旋转60 得到DF,∴△DEF是等边三角形,∴∠GDC=∠FDE=60°,ED=FD,∴∠GDC-∠GDE=∠FDE-∠GDE,∴∠EDC=∠FDG,∵△DEF是等边三角形,∴CD=GD,∴△ECD≌△FGD,∴EC=GF,∠ECD=∠FGD=90°,∴点F在线段GF上运动,根据垂线段最短原理,当BF⊥GF时,BF有最小值,如图,当旋转到BF∥DG 时,BF⊥GF,垂足为F,过点D作DH⊥BF,垂足为H,∵∠FGD=90°,∴四边形FGDH是矩形,∴∠GDH=90°,GD=FH=2,∵∠GDC=60°,∴∠BDH=30°,∵BD=BC-CD=5-2=3,∴BH=1232 BD=,∴BF=FH+BH=2+32=72,故答案为:7 2.【点睛】本题考查了等边三角形的判定和性质,矩形的判定和性质,垂线段最短,直角三角形的性质,熟练掌握等边三角形的判定,灵活运用直角的判定和直角三角形的性质是解题的关键.10.如图,正方形ABCD的边长为4,E为BC上一点,且1BE=,F为AB边上的一个动点,连接EF,将EF 烧点E顺时什旋转60°得到EG,连接CG,则CG的最小值为.【答案】5 2【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G 的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转60°,使EF与EG重合,得到△EBH为等边三角形,△EBF≌△EHG,∴∠EHG=∠ABC=90°,HE=BE=1,∠BEH=60°,∴点G在垂直于HE的直线HN上.作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,∴∠CEP=180°-60°-90°=30°,∴CP=12CE=12×(4-1)=32,则CM=MP+CP=35122 HE PC+=+=,即CG的最小值为5 2.故答案为5 2.【点睛】本题考查了旋转的性质,线段最值问题,全等三角形的性质,正方形的性质,矩形的判定与性质,含30°角的直角三角形的性质,以及垂线段最短等知识,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.11.如图,△ABC是边长为4的等边三角形,点D是AB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°得△BCE,则旋转过程中△BDE周长的最小值【答案】.【分析】由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD ,由垂线段最短得到当CD ⊥AB 时,△BDE 的周长最小,于是得到结论.【详解】∵将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,∴∠DCE=60°,DC=EC ,∴△CDE 是等边三角形,由旋转的性质得,BE=AD ,∴C △DBE =BE+DB+DE=AB+DE=4+DE ,∵△CDE 是等边三角形,∴DE=CD ,∴C △DBE =CD+4,由垂线段最短可知,当CD ⊥AB 时,△BDE 的周长最小,此时,∴△BDE 的最小周长,故答案为.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,熟练掌握旋转的性质是解题的关键.12.如图,在ABC 中,8AC BC ==,60BCA ∠= ,直线AD BC ⊥,E 是AD 上的一个动点,连接EC ,将线段EC 绕点C 按逆时针方向旋转60 得到FC ,连接DF ,则点E 运动过程中,DF 的最小值是.【答案】2【分析】根据题意取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD=CG 以及∠FCD=∠ECG ,由旋转的性质可得出EC=FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF=GE ,再根据点G 为AC 的中点,即可得出EG 的最小值.【详解】取线段AC 的中点G ,连接EG,如图所示.8AC BC == ,60BCA ∠= ,ABC ∴为等边三角形,且AD 为ABC 的对称轴,142CD CG AB ∴===,60ACD ∠= ,60ECF ∠= ,FCD ECG ∴∠=∠.在FCD 和ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩,FCD ∴ ≌()ECG SAS ,DF GE ∴=.当//EG BC 时,EG 最小,点G 为AC 的中点,∴此时11224EG DF CD BC ====.故答案为2.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出.DF GE =本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.13.如图,等边△AOB 的边长为4,点P 从点O 出发,沿OA 以每秒1个单位的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA .在点P 从O 向A 运动的过程中,当△PCA 为直角三角形时t 的值为.【答案】2或83【详解】如图(1)过点P 作PD ⊥OB 于点D ,过C 作CE ⊥OA 于E ,∴∠PDO=∠PEC=90°,∵∠O=60°,∴∠OPD=30°,∴OD=12t ,∴BD=4-12t ,,∵线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,∴∠BPC=60°,BP=2PC ,∵∠OPD=30°,∴∠BPD+∠CPE=90°,∴∠DBP=∠CPE ,∴△PCE ∽△BPD ,∴CE PE PC PD BD PB==,11242PE t ==-,∴,PE=2-14t ,OE=2+34t ,如图(2)当∠PCA=90度时,作CF ⊥PA ,∴△PCF ∽△ACF ,∴△PCF ∽△ACF ,∴PF CF CF AF =,∴CF 2=PF•AF ,∵PF=2-14t ,AF=4-OF=2-34t ,,)2=(2-14t )(=2-34t ),∴t=2,这时P 是OA 的中点;如图(3)当∠CAP=90°时,此时OA=OE ,∴2+34t=4,∴t=83,故答案为2或83.【点睛】本题考查了相似三角形的判定与性质,勾股定理的运用,等边三角形的性质,直角三角形的性质,旋转的性质等,正确地添加辅助线,求出OE 的长是解题的关键.二、解答题14.在平面直角坐标系中,A (a ,0)、B (b ,0),且a ,b 满足26930a a b -+++=,C 、D 两点分别是y 轴正半轴、x 轴负半轴上的两个动点;(1)如图1,若C (0,4),求△ABC 的面积;(2)如图1,若C (0,4),BC =5,BD=AE ,且∠CBA=∠CDE ,求D 点的坐标;(3)如图2,若∠CBA =60°,以CD 为边,在CD 的右侧作等边△CDE ,连接OE ,当OE 最短时,求A ,E 两点之间的距离.【答案】(1)△ABC 的面积为12;(2)D 点的坐标为(-2,0);(3)A ,E 两点之间的距离为32【分析】(1)利用完全平方式和绝对值的性质求出a ,b ,然后确定A 、B 两点坐标,从而利用三角形面积公式求解即可;(2)根据题意判断出CBD DAE △≌△,从而得到CB AD =,然后利用勾股定理求出CB ,及可求出结论;(3)首先根据“双等边”模型推出DCB ECA ≌,得到120DBC EAC ∠=∠=︒,进一步推出AE BC ∥,从而确定随着D 点的运动,点E 在过点A 且平行于BC 的直线PQ 上运动,再根据点到直线的最短距离为垂线段的长度,确定OE 最短时,各点的位置关系,最后根据含30°角的直角三角形的性质求解即可.【详解】解:(1)∵26930a a b -+++=,∴()2330a b -++=,由非负性可知,3030a b -=⎧⎨+=⎩,解得:33a b =⎧⎨=-⎩,∴()3,0A ,()3,0B -,()336AB =--=,∵()0,4C ,∴4OC =,∴11641222ABC S AB OC ==⨯⨯= ;(2)由(1)知()3,0A ,()3,0B -,∴OA OB =,∵OC AB ⊥,∴90AOC BOC ∠=∠=︒,在AOC 和BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴()AOC BOC SAS △≌△,∴CBO CAO ∠=∠,∵CDA CDE ADE BCD CBA ∠=∠+∠=∠+∠,CBA CDE ∠=∠,∴ADE BCD ∠=∠,在BCD △和ADE V 中,BCD ADE CBD DAE BD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BCD ADE AAS ≌,∴CB AD =,∵()3,0B -,()0,4C ,∴3OB =,4OC =,∴5BC ==,∴5AD BC ==,∵()3,0A ,∴()2,0D -;(3)由(2)可知CB =CA ,∵∠CBA =60°,∴△ABC 为等边三角形,∠BCA =60°,∠DBC =120°,∵△CDE 为等边三角形,∴CD =CE ,∠DCE =60°,∵∠DCE =∠DCB +∠BCE ,∠BCA =∠BCE +∠ECA ,∴∠DCB =∠ECA ,在△DCB 和△ECA 中,CD CE DCB ECA CB CA =⎧⎪∠=∠⎨⎪=⎩∴()DCB ECA SAS ≌,∴120DBC EAC ∠=∠=︒,∵12060180EAC ACB ∠+∠=︒+︒=︒,∴AE BC ∥,即:随着D 点的运动,点E 在过点A 且平行于BC 的直线PQ 上运动,∵要使得OE 最短,∴如图所示,当OE ⊥PQ 时,满足OE 最短,此时∠OEA =90°,∵120DBC EAC ∠=∠=︒,60CAB ∠=︒,∴60OAE EAC CAB ∠=∠-∠=︒,30AOE ∠=︒,∵()3,0A ,∴3OA =,∴1322AE OA ==,∴当OE 最短时,A ,E 两点之间的距离为32.【点睛】本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使用全等三角形的判定与性质是解题关键.15.在▱ABCD中,∠ABC=60°,AB=4,BC=6.点E'在BC边上且BE'=4,将B E'绕点B逆时针旋转a°得到BE(0°<a<180°).(1)如图1,当∠EBA=90°时,求S△BCE;(2)如图2,在旋转过程中,连接CE,取CE中点F,作射线BF交直线AD于点G.①求线段BF的取值范围;②当∠EBF=120°时,求证:BC﹣DG=2BF;(3)如图3.当∠EBA=90°时,点S为线段BE上一动点,过点E作EM⊥射线AS于点M,N为AM中点,直接写出BN的最大值与最小值.=6;【答案】(1)S△BCE(2)①1<BF<5;②证明见解答;(3)BNBN的最大值为【分析】(1)如图1,过点E 作EF ⊥BC 交CB 的延长线于点F ,根据题意求得∠EBF =180°-∠EBA -∠ABC =180°-90°-60°=30°,再根据特殊直角三角形的性质进而求得BC 上的高EF =2,代入面积公式算出结果;(2)①如图,在线段FG 上截取FK =BF ,连接EK 、CK ,可证得四边形BCKE 是平行四边形,得出:BE =CK =BE '=4,BC =6,再运用三角形三边关系即可求得答案;②可证△EKB ≌△BGA (AAS ),得出BK =AG ,由AG =AD -DG ,即可推出结论;(3)连接AE ,取AE 的中点P ,PA 的中点Q ,连接BP 、NP 、NQ 、BQ ,可证△ABE 是等腰直角三角形,得出:AE AB P 是AE 的中点,可得:BP ⊥AE ,且BP =AP =EP ,利用勾股定理得BQ,当B 、Q 、N 三点共线时,BN 的最小值=BQ -NQ,当点S 与点E 重合时,EM =0,PN =0,此时,BN 的最大值=BP 【详解】(1)解:如图1,过点E 作EH ⊥BC 交CB 的延长线于点H ,∴∠EHC =90°,∵∠ABC =60°,∠EBA =90°,∴∠EBH =180°-∠EBA -∠ABC =180°-90°-60°=30°,∵点E '在BC 边上且BE '=4,将B E '绕点B 逆时针旋转α°得到BE ,∴BE =B E '=4,∴EH =12BE =12×4=2,又∵BC =6,∴S △BCE =12BC •EH =12×6×2=6;(2)解:①如图,在线段FG 上截取FK =BF ,连接EK 、CK ,∵EF=FC,BF=FK,∴四边形BCKE是平行四边形,∴BE=CK=BE'=4,BC=6,在△BCK中,BC-CK<BK<BC+CK,∴6-4<BK<6+4,即2<2BF<10,∴1<BF<5;②证明:∵四边形ABCD是平行四边形,且∠ABC=60°,AB=4,∴∠A=180°-∠ABC=180°-60°=120°,AD∥BC,AD=BC,BE=AB,∵∠EBF=120°,即∠EBK=120°,∴∠EBK=∠A,∵EK∥BC,∴EK∥AD,∴∠EKB=∠BGA,在△EKB和△BGA中,EKB BGAEBK ABE AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EKB≌△BGA(AAS),∴BK=AG,由①知:BK=2BF,又∵AG=AD-DG,∴2BF =BC -DG ;(3)解:连接AE ,取AE 的中点P ,PA 的中点Q ,连接BP 、NP 、NQ 、BQ ,∵∠ABE =90°,AB =BE =4,∴△ABE 是等腰直角三角形,∴AE ,∵点P 是AE 的中点,∴BP ⊥AE ,且BP =AP =EP ,∵N 是AM 的中点,P 是AE 的中点,∴PN 是△AEM 的中位线,∴PN ∥EM ,∴∠ANP =∠AME =90°,∵点Q 是AP 的中点,∴QN =PQ =12AP在Rt △BPQ 中,BQ =当B 、Q 、N 三点共线时,BN 的最小值=BQ -NQ 当点S 与点E 重合时,EM =0,PN =0,此时,BN 的最大值=BP 【点睛】本题是几何变换综合题,主要考查了旋转的性质,平行四边形的性质,等腰直角三角形的性质,全等三角形的判定与性质,三角形中位线定理及勾股定理等知识,解题的关键是灵活运用所学知识解决问题.16.如图,线段AB =10cm ,C 是线段AB 上的一个动点(不与A 、B 重合),在AB 上方分别以AC 、BC 为边作正△ACD 和正△BCE ,连接AE ,交CD 于M ,连接BD ,交CE 于N ,AE 、BD 交于H ,连接CH .(1)求sin ∠AHC ;(2)连接DE ,设AD =x ,DE =y ,求y 与x 之间的函数关系式;(3)把正△BCE 绕C 顺时针旋转一个小于60°的角,在旋转过程中H 到△DCE 的三个顶点距离和最小,即HC +HD +HE 的值最小,HC +HD +HE 的值总等于线段BD 的长.若AC =,旋转过程中某一时刻2AH =3DH ,此刻△ADH 内有一点P ,求PA +PD +PH 的最小值.【答案】(1)2;(2)y0<x <10);【分析】(1)过点C 作CT ⊥AE 于点T ,CR ⊥BD 于点R ,先证△ACE ≌△DCB 得∠CAM =∠HDM ,由直角三角函数可得sin sin =CT CA CAM CD HDM CR ∠=∠= ,从而得CH 平分∠AHB ,进而求得∠AHC =∠BHC =60°即可求解;(2)如图2中,如图,过点D 作DP ⊥CE 于点P ,先由三角函数求得CP =12CD =12x ,DP =2x ,又由AB =10cm ,得CE =CB =(10﹣x )cm ,进而得PE =|10﹣x ﹣12x |=|10﹣32x |,最后由勾股定理即可求得y 与x 之间的函数关系式;(3)如图3中,以AD 为边向外作等边△ADW ,连接WH ,由题意WH 是PA +PD +PH .过点D 作DS ⊥AH 于H ,过点W 作WG ⊥AD 于点G ,过点H 作HK ⊥AD 于K ,过点W 作WQ ⊥HK 于点Q .假设AH =3k ,DH =2k ,由勾股定理得AH =6,DH =4,DSHKDKWQ =KGGW =KWHQWH 的长即PA +PD +PH 的最小值.【详解】(1)解:过点C 作CT ⊥AE 于点T ,CR ⊥BD 于点R.∵△ADC ,△ECB 都是等边三角形,∴CA =CD ,CE =CB ,∠ACD =∠ECB =60°,∴∠ACE =∠DCB ,在△ACE 和△DCB 中,CA CD ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠CAM =∠HDM ,∵CT ⊥AE ,CR ⊥BD ,∴sin sin =CT CA CAM CD HDM CR ∠=∠= ,∴CH 平分∠AHB ,∵∠AMC =∠DMH ,∴∠AHM =∠ACM =60°,∴∠AHC =∠BHC =60°,∴sin ∠AHC =2;(2)解:如图2中,如图,过点D 作DP ⊥CE 于点P .∵AC =CD =x (cm ),∠DCE =60°,∴CP =12CD =12x ,DP ,∵AB =10cm ,∴BC =AB ﹣AC =(10﹣x )cm ,∴CE =CB =(10﹣x )cm ,∴PE =|10﹣x ﹣12x |=|10﹣32x |,∴y =DE (0<x <10);(3)解:如图3中,以AD 为边向外作等边△ADW ,连接WH ,由题意WH 是PA +PD +PH .过点D 作DS ⊥AH 于H ,过点W 作WG ⊥AD 于点G ,过点H 作HK ⊥AD 于K ,过点W 作WQ ⊥HK 于点Q .∵2AH =3DH ,∴可以假设AH =3k ,DH =2k ,∵∠DHS =60°,DS ⊥AH ,∴SH =12DH =k ,DS ,AM =2k ,∵AD 2=AS 2+DS 2,∴()2=(2k )2+)2,∴k =2(负根已经舍弃),∴AH =6,DH =4,DS∵12•AH •DS =12•AD •HK ,∴HK =7,DK 7,∵AG =DG WQKG 是矩形,∴WQ =KG GW =KW∴HQ =KH +KQ =7,∴WH =∴PA +PD +PH 的最小值为【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,解直角三角形等知识,添加常用辅助线,构造直角三角形解决问题是解本题的关键.17.在学习了图形的旋转知识后,某数学兴趣小组对教材中有关图形旋转的问题进行了进一步探究.(1)问题梳理,问题呈现:如图1,点D 在等边ABC 的边BC 上,过点C 画AB 的平行线l ,在l 上取CE BD =,连接AE ,则在图1中会产生一对旋转图形.请结合问题中的条件,证明:ABD ACE ≌△△;(2)初步尝试:如图2,在ABC 中,AB AC =,点D 在BC 边上,且BD DC <,将ABD △沿某条直线翻折,使得AB 与AC 重合,点D 与BC 边上点F 重合,再将ACF △沿AC 所在直线翻折,得到ACE △,则在图2中会产生一对旋转图形.若30BAC ∠=︒,6AD =,连接DE ,求ADE V 的面积;(3)深入探究:如图3,在ABC 中,60ACB ∠=︒,75BAC ∠=︒,6AC =,点D 是边BC 上的任意一点,连接AD ,将线段AD 绕点A 按逆时针方向旋转75°,得到线段AE ,连接CE ,求线段CE 长度的最小值.【答案】(1)见解析;(2)9;(3)【分析】(1)根据△ABC 是等边三角形,可得AB =AC ,∠BAC =∠B =60°,进而利用SAS 可证明△ABD ≌△ACE .(2)如图2,过点E 作EH ⊥AD 于H ,由翻折可得△ACE ≌△ABD ≌△ACF ,可得AE =AD =6,EH =3,再运用S △ADE =12×AD ×EH ,即可求得答案.(3)如图3中,在AB 上截取AN =AC ,连接DN ,作NH ⊥BC 于H ,作AM ⊥BC 于M .利用SAS 证明△EAC ≌△DAN ,推出当DN 的值最小时,EC 的值最小,求出HN 的值即可解决问题.【详解】(1)如图1,∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠B =60°,∵CE ∥AB ,∴∠ACE =∠BAC =60°,∴∠B =∠ACE ,在△ABD 和△ACE 中,AB AC B ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );(2)如图2,过点E 作EH ⊥AD 于H,∵由翻折可得:△ACF ≌△ABD ,△ACE ≌△ACF ,∴△ACE ≌△ABD ≌△ACF ,∴AE =AD =6,∠CAE =∠BAD ,∴∠DAE =∠BAC =30°,∵EH ⊥AD ,∴EH =12AE =3,∴S △ADE =12×AD ×EH =12×6×3=9;(3)如图3中,在AB 上截取AN =AC ,连接DN ,作NH ⊥BC 于H ,作AM ⊥BC 于M.∵∠CAB =∠DAE ,∴∠EAC =∠DAN ,∵AE =AD ,AC =AN ,∴△EAC ≌△DAN (SAS ),∴CE =DN ,∴当DN 的值最小时,EC 的值最小,在Rt △ACM 中,∵∠ACM =60°,AC =6,∴30CAM ∠=︒,∴132CM AC ==,∴AM∵∠MAB =∠BAC −∠CAM =75°−30°=45°,∴AMB 为等腰直角三角形,∴AB=,∴NB =AB −AN =−6,在Rt △NHB 中,∵∠B =45°,∴NBH △为等腰直角三角形,∴NH根据垂线段最短可知,当点D 与H 重合时,DN 的值最小,∴CE 的最小值为.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.18.(一)发现探究在△ABC中AB=AC,点P在平面内,连接AP并将线段AP绕点A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ;【发现】如图1如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究】如图2,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用【应用】如图3,在△DEF中,DE=6,∠EDF=60°,∠DEF=90°,P是线段EF上的任意一点连接DP,将线段DP绕点D顺时针方向旋转60°,得到线段DQ,连接EQ请求出线段EQ长度的最小值.【答案】【发现】BQ=PC;【探究】BQ=PC仍然成立,证明见解析;【应用】线段EQ长度的最小值为3.【分析】[发现]先判断出∠BAQ=∠CAP,进而用SAS判断出△BAQ≌△CAP,即可得出结论;[探究]结论BQ=PC仍然成立,理由同【发现】的方法;[应用]在DF上取一点H,使DH=DE,连接PH,过点H作HM⊥EF于M,构造出△DEQ≌△DHP,得出EQ=HP,当HP⊥EF(点P和点M重合)时,EQ最小,求HM即可.【详解】[发现]由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ﹣∠BAP=∠BAC﹣∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,故答案为:BQ=PC;【探究】结论:BQ=PC仍然成立,理由:由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ﹣∠BAP=∠BAC﹣∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,【应用】如图3,在DF上取一点H,使DH=DE,连接PH,过点H作HM⊥EF于M,由旋转知,DQ=DP,∠PDQ=60°,∵∠EDF=60°,∴∠PDQ=∠EDF,∴∠EDQ=∠HDP,∴△DEQ≌△DHP(SAS),∴EQ=HP,求EQ最小,就是求HP最小,当HP⊥EF(点P和点M重合)时,HP最小,最小值为HM,∵∠EDF=60°,∠DEF=90°,∴∠F=30°,∵DE=6,∴DF=2DE=12,∵DH=DE=6,∴FH=6,∵∠F=30°,∴HM=3.线段EQ长度的最小值为3..【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,含30°角的直角三角形的性质,恰当的作辅助线,把所求线段转化为与动点P有关的线段,根据垂线段最短确定线段位置是解本题的关键.。

平面几何中的轨迹问题例题和知识点总结

平面几何中的轨迹问题例题和知识点总结

平面几何中的轨迹问题例题和知识点总结在平面几何的世界里,轨迹问题是一个既有趣又具有挑战性的领域。

它不仅要求我们对几何图形的性质有深入的理解,还需要我们具备灵活的思维和解题技巧。

接下来,让我们通过一些具体的例题来深入探讨平面几何中的轨迹问题,并对相关的知识点进行总结。

一、轨迹问题的基本概念轨迹,简单来说,就是一个动点在平面内按照一定的条件运动所形成的图形。

要确定一个轨迹,需要明确两个关键要素:动点满足的条件和动点运动的范围。

例如,一个点到定点的距离等于定长,那么这个点的轨迹就是一个圆。

这就是根据点的运动条件来确定轨迹的典型例子。

二、常见的轨迹类型1、直线型轨迹到两定点距离之和为定值的点的轨迹是椭圆(当定值大于两定点间的距离时)。

到两定点距离之差的绝对值为定值的点的轨迹是双曲线(当定值小于两定点间的距离时)。

到一条定直线的距离等于定长的点的轨迹是两条平行于该直线且与直线距离为定长的直线。

2、圆型轨迹到定点的距离等于定长的点的轨迹是圆。

3、抛物线型轨迹到定点和定直线的距离相等的点的轨迹是抛物线。

三、例题解析例 1:已知点 A(-2,0),B(2,0),动点 P 满足|PA| |PB| = 2,求点 P 的轨迹方程。

解:因为|PA| |PB| = 2 <|AB| = 4,所以点 P 的轨迹是以 A、B 为焦点的双曲线的右支。

2a = 2,a = 1,c = 2,b²= c² a²= 3所以点 P 的轨迹方程为 x² y²/3 = 1(x ≥ 1)例 2:一动点到直线 x = 4 的距离等于它到点 A(1,0)的距离,求动点的轨迹方程。

解:设动点坐标为(x,y),则动点到直线 x = 4 的距离为|x 4|,动点到点 A(1,0)的距离为√(x 1)²+ y²由题意可得:|x 4| =√(x 1)²+ y²两边平方得:(x 4)²=(x 1)²+ y²展开化简得:y²= 6x 15所以动点的轨迹方程为 y²= 6x 15例 3:在平面直角坐标系中,点 P 到点 F(1,0)的距离比它到 y 轴的距离大 1,求点 P 的轨迹方程。

轨迹问题

轨迹问题

轨迹问题轨迹专题动点的轨迹在初中范围内一般有两种(1)弧线(2)线段判定方法:描出三个点:起点,终点,中间点如果是弧线要做到以下几点:确定圆心(一般按照斜边中线等于斜边的一半来确定)确定半径确定圆心角(把圆心和起点,终点相连)注意:点的轨迹有时候存在返回典例:1、例1、已知AB是⊙O的直径,点C是圆上一个动点,OD⊥AC于D,如果点C在圆上运动一周,则点D运动的路线长是2、一个矩形按照如图翻转61次,AB=2,AD=1,则点D走过的路程为如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为______.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()如图,将半径为1cm的圆形纸板,沿着边长分别为8cm和6cm的矩形外侧滚动一周并回到开始的位置,则圆心所经过的路线长约为(精确到0.01)如图,将半径为1cm的圆形纸板,沿着周长为8cm三角形外侧滚动一周并回到开始的位置,则圆心所经过的路线长约为1、如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点。

P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D。

(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动。

请直接写出点H所经过的路径长。

(不必写解答过程)2、如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO 向终点O运动,动点O从A点出发沿AB向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了xs。

初三轨迹问题解题技巧

初三轨迹问题解题技巧

初三轨迹问题解题技巧如下:
1. 直接法:根据动点所满足的等量关系列出方程,通过化简得到轨迹方程。

2. 定义法:根据各种已知曲线(直线、圆、圆锥曲线等)的定义,结合题意直接设出这些曲线的方程,再利用已知条件求出方程中各项系数的方法。

3. 相关点法:当曲线上一个动点的变动与另外一个动点相关时,可用曲线上该动点的坐标表示出另外一个点的坐标,把此点的坐标代入制约条件就可得到所求曲线的方程,这种方法就叫相关点法(又叫代入法)。

4. 参数法:参数法就是把曲线上动点的坐标先用相关参数表示出来,然后消去参数就得到。

以上是初三轨迹问题解题的一些技巧,希望对解决您的问题有所帮助。

中考数学压轴题轨迹问题

中考数学压轴题轨迹问题

与路径有关的问题姓名1.如图,已知点A是第一象限内横坐标为2的一个定点,⊥x轴于点M,交直线﹣x于点N.若点P是线段上的一个动点,∠30°,⊥,则点P在线段上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径是.2.如图,E,F是正方形的边上两个动点,满足.连接交于点G,连接交于点H.若正方形的边长为2,则线段长度的最小值是.3.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A,B两点,与y 轴交于C,D两点,点E为⊙G上一动点,CF AE⊥于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A.32πB.33π C.34πD.36πyxGFOEDCBA5.如图,正方形的边长是2,M 是的中点,点E 从点A 出发,沿运动到点B 停止.连接并延长交射线于点F ,过M 作的垂线交射线于点G ,连结、.(1)设=x 时,△的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)P 是的中点,请直接写出点P 运动路线的长.6x上,=4,=2.点P 从点O A 匀速运动,当点P到达点A 时停止运动,设点P 运动的时间是t 秒.将线段的中点绕点P 按顺时针方向旋转90°得点D ,点D 随点P 的运动而运动,连接、.(1)请用含t 的代数式表示出点D 的坐标; (2)求t 为何值时,△的面积最大,最大为多少?(3)在点P 从O 向A 运动的过程中,△能否成为直角三角形?若能,求t 的值;若不能,请说明理由; (4)请直接写出随着点P 的运动,点D 运动路线的长.7.如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿向终点O运动,动点Q从A点出发沿向终点B运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了x秒.(1)Q点的坐标为( , )(用含x的代数式表示);(2)当x为何值时,△是一个以为腰的等腰三角形?(3)记的中点为G.请你直接写出点G随点P,Q运动所经过的路线的长度.G G9.如图1,已知正方形的边长为2,顶点A、C分别在x、y轴的正半轴上,M是的中点.P(0,m)是线段上一个动点(点C除外),直线交的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△是等腰三角形时,求m的值;(3)设过点P、M、B的抛物线与x轴的正半轴交于点E,过点O作直线图1图2备用图1备用图2的垂线,垂足为H (如图2).当点P 从原点O 向点C 运动时,点H 也随之运动.请直接写出点H 所经过的路径长(不写解答过程).10、问题探究:(1)请在图①的正方形内,画出使∠90°的一个点,并说明理由.(2)请在图②的正方形内(含边),画出使∠60°的所有的点P,并说明理由.问题解决:(3)如图③,现在一块矩形钢板,4,3.工人师傅想用它裁出两块全等的、面积最大的△和△′D钢板,且∠∠'60度.请你在图③中画出符合要求的点和,并求出△的面积(结果保留根号).。

中考数学轨迹问题集锦

中考数学轨迹问题集锦

合用标准文案动点问题讲义1、如图 1,已知线段AB = 6, C、 D 是 AB 上两点,且AC = DB = 1, P 是线段 CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF, G 为线段 EF 的中点,点P 由点 C 搬动到点D 时, G 点搬动的路径长度为_______.2 、正△ABC 的边长为3cm ,边长为1cm 的正△RPQ 的极点 R 与点 A 重合,点 P, Q 分别在 AC ,AB 上,将△RPQ 沿着边 AB ,BC,CA 逆时针连续翻转(以下列图),直至点P 第一次回到原来地址,则点P 运动的路径长为_______ cm.(结果保留π)3 、如图, AB 为⊙ O 的直径, AB=8 ,点 C 为圆上任意一点,OD ⊥ AC 于 D ,当点 C 在⊙ O 上运动一周,点 D 运动的路径长为 _______4 、如图,一块边长为6cm 的等边三角形木板ABC ,在水平桌面上绕 C 点按顺时针方向旋转到△ A ′B′C′的位置,则边AB 的中点 D 运动的路径长是_______5 、以下列图,扇形OAB 从图①无滑动旋转到图②,再由图②到图③,∠O=60 °,OA=1 .(1 )求 O 点所运动的路径长;(2 )O 点走过路径与直线 L 围成图形的面积.6 、如图, OA ⊥OB ,垂足为O , P、 Q 分别是射线OA 、 OB 上两个动点,点 C 是线段 PQ 的中点,且PQ=4 .则动点 C 运动形成的路径长是______7 、如图,半径为2cm ,圆心角为90 °的扇形 OAB 的弧 AB 上有一运动的点P.从点 P 向半径 OA 引垂线PH 交 OA 于点 H .设△OPH 的内心为I,当点 P 在弧 AB 上从点 A 运动到点 B 时,内心 I 所经过的路径长为______ .8 .如图,正方形ABCD的边长是2,M是AD的中点,点E从点A出发,沿AB运动到点 B 停止.连接 EM 并延长交射线 CD 于点 F,过 M 作 EF 的垂线交射线BC 于点 G,连接 EG、 FG.( 1 )设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x 的取值范围;( 2 )P是MG的中点,请直接写出点P 运动路线的长.FFAMA MD DEEP PBB C GC G9 、某数学兴趣小组对线段上的动点问题进行研究,已知AB=8 .问题思虑:如图 1,点 P 为线段 AB 上的一个动点,分别以AP 、BP 为边在同侧作正方形APDC 、 BPEF.(1)当点 P 运动时,这两个正方形的面积之和是定值吗?若是,央求出;若不是,央求出这两个正方形面积之和的最小值.(2)分别连接 AD 、 DF、 AF ,AF 交 DP 于点 K,当点 P 运动时,在△ APK 、△ADK 、△DFK 中,可否存在两个面积向来相等的三角形?请说明原由.问题拓展:(3 )如图 2,以 AB 为边作正方形ABCD ,动点 P、 Q 在正方形ABCD 的边上运动,且PQ=8 .若点 P 从点 A 出发,沿 A → B→ C→D 的线路,向点 D 运动,求点 P 从 A 到 D 的运动过程中, PQ 的中点 O 所经过的路径的长.(4)如图 3,在“问题思虑”中,若点M 、 N 是线段 AB 上的两点,且 AM=BN=1 ,点 G、H 分别是边CD 、EF 的中点,请直接写出点P 从 M 到 N 的运动过程中, GH 的中点 O 所经过的路径的长及OM+OB的最小值.10 、如图 1 ,在 Rt △ABC 中,∠C=90 °,AC=6 , BC=8 ,动点 P 从点 A 开始沿边AC 向点 C 以 1 个单位长度的速度运动,动点 Q 从点 C 开始沿边CB 向点 B 以每秒 2个单位长度的速度运动,过点P作PD∥BC,交AB 于点 D,连接 PQ 分别从点 A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为 t 秒( t ≥0).(1 )直接用含 t 的代数式分别表示: QB=____ ,PD=____(2 )可否存在 t 的值,使四边形 PDBQ 为菱形?若存在,求出 t 的值;若不存在,说明原由.并研究如何改变 Q 的速度(匀速运动),使四边形PDBQ 在某一时辰为菱形,求点Q 的速度;( 3 )如图 2 ,在整个运动过程中,求出线段PQ 中点 M 所经过的路径长.11 、在直角坐标系中,O 是坐标原点,点 A 坐标为( 0 , -1 ),点 C 是 x 轴上一个动点。

中考数学一轮复习:轨迹路径长度问题(无答案)

中考数学一轮复习:轨迹路径长度问题(无答案)

轨迹路径长度问题轨迹的定义:符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

常见的平面内点的轨迹:到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.到已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线.到已知角的两边距离相等的点的轨迹,是这个角的角平分线.到直线L的距离等于定长D的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.1.到直线l的距离等于2的点的轨迹是()A.半径为2的圆B.与l平行且到l的距离等于2的一条直线C.与l平行且到l的距离等于2的两条直线D.与l垂直的一条直线2.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分 C.双曲线的一部分 B.圆的一部分 D.抛物线的一部分3.如图,在等边△ABC 中,AB=10,BD=4,BE=2,点P 从点E 出发沿EA 方向运动,连接PD ,以PD 为边,在PD 右侧按如图方式作等边△DPF ,当点P 从点E 运动到点A 时,点F运动的路径长是 .4.如图,⊙P 在第一象限,半径为3.动点A 沿着⊙P 运动一周,在点A 运动的同时,作点A 关于原点O 的对称点B ,再以AB 为边作等边三角形△ABC ,点C 在第二象限,点C 随点A 运动所形成的图形的面积为第4题 第5题5.如图:已知AB =10,点C 、D 在线段AB 上且AC =DB =2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.6.如图,A(2,2),Q(5,7),AB ⊥y 轴,AC ⊥x 轴,OA,BC 交于点P,若正方形OCAB 以O 为位似中心在第一象限内放大,点P 随正方形一起运动,当PQ 达到最小值时停止运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E 中考数学核心知识专题复习----轨迹问题探究
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹
六种常用的基本轨迹:
①到已知线段的两个端点距离相等的点的轨迹是这条线段的垂直平分线。

②到已知角的两边距离相等的点的轨迹是这个角的平分线。

③到已知直线的距离等于定长的点的轨迹是与这条直线平行,且与已知直线的距离等于定长的两条直线。

④到两条平行线距离相等的点的轨迹是和这两条平行线平行且到这两条平行线距离相等的一条直线。

⑤到定点的距离等于定长的点轨迹是与定点为圆心,定长为半径的圆。

⑥和已知线段的两个端点的连线的夹角等于已知角的点的轨迹是以已知线段为弦,所含圆周角等于已知角的两段弧(端点除外)。

一、尺规作图:轨迹法确定动点位置
1)已知∠AOB,求作点P,使得点P到角两边距离相等,且满足OP=2
2)已知∠AOB和直线L,在直线L上确定点P,使得使得点P到角两边距离相等
3)已知∠AOB和线段CD,使得点P到角两边距离相等且满足PC=PD
4)已知线段AB和直线L,在直线L上确定点P使得∠APB=600
C A
A
D
O B O
B
1)2)
L
A
L
O B A B
3)4)
二交轨法应用
1.在正方形ABCD中,为AD边上一点,以BE边所在直线为折痕将∆ABE对折之∆PBE位置。

若AB=2,且PC=1.
1)不全图形
B
2) 求 tan ∠ PCD 的值
A
D
B
C
2.如图,在 △Rt ABC 中,∠CAB =90°,∠ACB=300,BC =8,D 为线段 AB 上的动点,过点 A 作 AH ⊥CD
于点 H ,连接 BH ,则
② 求 AB 的长
②求 BH 的最小值。

A
D H
C
B
3.等边三角形 ABC 的边长为 6,在 AC ,BC 边上各取一点 E ,F ,连接 AF ,BE 相交于点 P .且 AE =CF ;
(1)求证:AF =BE ,并求∠APB 的度数; (2)若 AE =2,试求 AP AF 的值;
(3)当点 E 从点 A 运动到点 C 时,试求点 P 经过的路径长.
4.如图,以 G (0,1)为圆心,半径为 2 的圆与 x 轴交于 A ,B 两点,与 y 轴交于 C ,D 两点,点 E 为⊙G 上一动点, CF ⊥ AE 于 F .当点 E 从点 B 出发顺时针运动到点 D 时,点 F 所经过的路径长
y
C
G
E
A
D
5.如图,已知AB=10,P是线段AB上的动点,分别以AP、
PB为边在线段AB的同侧作等边△ACP和△PDB,连接
CD,设CD的中点为G,当点P从点A运动到点B时,
求点G移动路径的长
6.问题探究:
(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点,并说明理由.
(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由.
问题解决:
(3)如图③,现在一块矩形钢板ABCD,AB=4,BC=3.工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP′D钢板,且∠APB=∠CP'D=60度.请你在图③中画出符合要求的点和,并求出△APB的面积(结果保留根号).
三、坐标系中的动点问题
动点P(a,2)的运动轨迹是____________________________________________________
动点P(a,a+2)的运动轨迹是__________________________________________________
动点P(a,a2-2a)的运动轨迹是_________________________________________________
1.在平面直角坐标系中,A(2,0)、B(0,3),
过点B作直线∥x轴,点P(a,3)是直线上的
动点,以AP为边在AP右侧作等腰RtAPQ,
∠APQ=90°,直线AQ交y轴于点C.
y
B
O
C
P
Q
A x
D (1)当 a =1 时,求点 Q 的坐标
(2)当点 P 在直线上运动时,点 Q 也随之运
动.当 a = _______ 时,AQ +BQ 的值最小为 _________ .
△8.如图, AOB 是直角三角形,∠AOB =90°,OB =2OA ,
1 点 A 在反比例函数 y
的图象上.设点 B 的坐标
x
B
y
A
为 (m , n ) ,则 n 与 m 的等量关系是______________.
O x
3.如图,在直角坐标系中,O 为坐标原点为,直线 y = kx +2 与 x 轴、y 轴分别交于 A 、
B 两点,动点 D 在射线 AO 上,将线段 DB 绕着点 D 顺时针旋转 90°得到线段 D
C .设
点 D 的横坐标为 m .
(1)请直接写出 B 点的坐标;
(2)当 k 为何值时,四边形 ADCB 为平行四边形?
y
B
C
(△3)当 BOC 的周长最小时,求 m 的值.
A
O x。

相关文档
最新文档