2010考研数学二真题及答案
2010年考研数学(二)真题及参考答案
2010考研数学(二)真题及参考答案一、 选择题 (1) 函数()f x =的无穷间断点是 ()A . B. C. D.(2) 设12,y y 是一阶线性齐次微分方程'()()y p x y q x +=的两个特解,若常数,λμ使12y y λμ-是该方程对应的齐次方程的解,则 (A ) A.11,22λμ==B. 11,22λμ=-=-C. 21,33λμ==D. 2,3λ=【详解】11()()(1)y p x y q x '+=⎧(1)λ(1)λ综上(3) 曲线y A. 4e 【详解】:(2x12x e =,2a e =(4)、设,m n 是正整数,则反常积分0⎰的收敛性( D )(A)仅与m 的取值有关 (B)仅与n 有关(C)与,m n 都有关 (D)都无关 【详解】:显然0,1x x ==是两个瑕点,有=+⎰对于)⎰的瑕点0x =,当0x +→时21ln (1)m nx x-=-等价于221(1)m mnx --,而21120mnx dx -⎰收敛(因,m n 是正整数211mn⇒->-),故收敛;对于的瑕点1x =,当1(1,1)(0)2x δδ∈-<<12122ln (1)2(1)n m n m xx <-<-,而2112(1)mx dx -⎰显然收敛,故收敛。
所以选择D.(5)设函数(,)z x y ,由方程(,)0y z F x x =确定,其中F 为可微函数,且'2F ≠zy∂=∂(B )【详解】2)0z v dz '=,(6)ds =⎰A .10dx ⎰⎰C.10(1)(1)dx x y ++⎰⎰(1)(1)x y ++【详解】:22211111111limlim()()(1)(1())nnnnx n i j i j ni jn i nj nnn n→∞→∞======++++∑∑∑∑1121(1)(1)dx dy x y ++⎰⎰(7) 设向量组12:,r I ααα 可由向量组12:,S II βββ 线性表示。
2010考研数学二真题及答案解析
2010年全国硕士研究生入学统一考试数学二试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 函数()f x =( )(A) 0. (B) 1. (C) 2. (D) 3. (2) 设12,y y 是一阶线性非齐次微分方程()()y p x y q x '+=的两个特解,若常数λμ,使12y y λμ+是该方程的解,12y y λμ-是该方程对应的齐次方程的解,则( )(A) 11,22λμ==. (B) 11,22λμ=-=-. (C) 21,33λμ==. (D) 22,33λμ==.(3) 曲线2y x =与曲线ln (0)y a x a =≠相切,则a = ( )(A) 4e. (B) 3e. (C) 2e. (D) e. (4) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B) 仅与n 的取值有关.(C) 与,m n 取值都有关. (D) 与,m n 取值都无关. (5)设函数(,)z z x y =,由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(6) ()()2211limn nn i j nn i n j →∞===++∑∑ ( ) (A)()()120111xdx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C)()()11111dx dy x y ++⎰⎰. (D) ()1120111dx dy x y ++⎰⎰. (7) 设向量组12I:,,,r ααα 可由向量组12II:,,,s βββ 线性表示,下列命题正确的是( )(A) 若向量组I 线性无关,则r s ≤. (B) 若向量组I 线性相关,则r s >.(C) 若向量组II 线性无关,则r s ≤. (D) 若向量组II 线性相关,则r s >. (8) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭. (C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭. 二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 3阶常系数线性齐次微分方程220y y y y ''''''-+-=的通解为y = .(10) 曲线3221x y x =+的渐近线方程为 .(11) 函数()ln 120y x x =-=在处的n 阶导数()()0n y= .(12) 当0θπ≤≤时,对数螺线r e θ=的弧长为 .(13) 已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加.则当cm 12l = ,cm 5w =时,它的对角线增加的速率为 .(14)设,A B 为3阶矩阵,且132,2A B A B -==+=,,则1A B -+= . 三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)求函数2221()()x t f x x t e d -=-⎰的单调区间与极值.(16)(本题满分10分)( I ) 比较()1ln ln 1nt t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n = 的大小,说明理由;( II ) 记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n = ,求极限lim n n u →∞. (17)(本题满分10分)设函数()y f x =由参数方程22,(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有2阶导数,且5(1)(1) 6.2ψψ'==,已知223,4(1)d y dx t =+求函数()t ψ.(18)(本题满分10分)一个高为l 的柱体形贮油罐,底面是长轴为2a ,短轴为2b 的椭圆.现将贮油罐平放,当油罐中油面高度为32b 时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m 3)(19) (本题满分11分)设函数(,)u f x y =具有二阶连续偏导数,且满足等式2222241250u u ux x y y ∂∂∂++=∂∂∂∂,确定a ,b 的值,使等式在变换,x ay x by ξη=+=+下化简为20uξη∂=∂∂.(20)(本题满分10分) 计算二重积分2 sin DI r θ=⎰⎰,其中(),|0s e c ,04D rr πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭. (21) (本题满分10分)设函数()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,且(0)0f =,1(1)3f =,证明:存在1(0,)2ξ∈,1(,1)2η∈,使得22()()=.f f ξηξη''++(22)(本题满分11分)设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解. (23)(本题满分11 分)设0141340A a a -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,正交矩阵Q 使得TQ A Q 为对角矩阵,若Q 的第1列为2,1)T ,求,a Q .2010年全国硕士研究生入学统一考试数学二试题参考答案一、选择题(1)【答案】 (B).【解析】因为()f x =0,1x =±,又因为0lim ()lim x x x f x →→→=,其中00lim 1,lim 1x x +-→→===-,所以0x =为跳跃间断点.显然1lim ()2x f x →==,所以1x =为连续点.而1lim ()limx x f x →-→-==∞,所以1x =-为无穷间断点,故答案选择B.(2)【答案】 (A).【解析】因12y y λμ-是()0y P x y '+=的解,故()()()12120y y P x y y λμλμ'-+-=,所以()1122()0y P x y y p x y λμ⎡⎤⎡⎤''+-+=⎣⎦⎣⎦,而由已知 ()()()()1122,y P x y q x y P x y q x ''+=+=,所以()()0q x λμ-=, ① 又由于一阶次微分方程()()y p x y q x '+=是非齐的,由此可知()0q x ≠,所以0λμ-=.由于12y y λμ+是非齐次微分方程()()y P x y q x '+=的解,所以()()()()1212y y P x y y q x λμλμ'+++=,整理得 ()()()1122y P x y y P x y q x λμ⎡⎤⎡⎤''+++=⎣⎦⎣⎦,即 ()()()q x q x λμ+=,由()0q x ≠可知1λμ+=, ②由①②求解得12λμ==,故应选(A). (3)【答案】 (C).【解析】因为曲线2y x =与曲线ln (0)y a x a =≠相切,所以在切点处两个曲线的斜率相同,所以2a x x =,即(0)x x =>.又因为两个曲线在切点的坐标是相同的,所以在2y x =上,当x =2a y =;在ln y a x =上,x =, ln 22a a y a ==.所以ln 222a a a= .从而解得2a e =.故答案选择(C). (4)【答案】 (D).【解析】0x =与1x =都是瑕点.应分成dx dx =+⎰,用比较判别法的极限形式,对于,由于1210[ln (1lim 11mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim mx nx x+→-存在,此时实际上不是反常积分,故收敛.故不论,m n 是什么正整数,总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).(5) 【答案】 (B).【解析】122212122221x z y z y zF F F F F yF zF zx x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z x y z x y F F F ''''+⋅∂∂+=-==∂∂'''. (6) 【答案】 (D). 【解析】()()222211111()nnnn i j i j n nn i n j n i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j→∞==+∑1(lim )nn i nn i →∞=+∑ 1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. (7) 【答案】 (A).【解析】由于向量组I 能由向量组II 线性表示,所以(I)(II)r r ≤,即11(,,)(,,)r s r r s ααββ≤≤若向量组I 线性无关,则1(,,)r r r αα= ,所以11(,,)(,,)r s r r r s ααββ=≤≤ ,即r s ≤,选(A).(8) 【答案】 (D).【解析】:设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0. 由于A 为实对称矩阵,故A 可相似对角化,即A Λ ,()()3r A r =Λ=,因此,1110-⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫ ⎪- ⎪Λ= ⎪- ⎪⎝⎭. 二、填空题(9)【答案】2123cos sin x y C e C x C x =++.【解析】该常系数线性齐次微分方程的特征方程为 32220λλλ-+-=,因式分解得()()()()2222210λλλλλ-+-=-+=,解得特征根为2,i λλ==±,所以通解为 2123cos sin x y C e C x C x =++. (10) 【答案】2y x =.【解析】因为3221lim 2x x x x→∞+=,所以函数存在斜渐近线,又因为 333222222lim 2lim 011x x x x x xx x x →∞→∞---==++,所以斜渐近线方程为2y x =. (11)【答案】()21!nn -⋅-.【解析】由高阶导数公式可知()ln (1)n x +1(1)!(1)(1)n nn x --=-+, 所以 ()()()1(1)!(1)!ln12(1)22(12)(12)n n n n n nn n x x x ----=-⋅-=---, 即()(1)!(0)22(1)!(120)n nn nn yn -=-=---⋅. (12))1e π-.【解析】因为 0θπ≤≤,所以对数螺线r e θ=的极坐标弧长公式为πθ⎰=0e d πθθ⎰)1e π-.(13)【答案】3cm/s .【解析】设(),()l x t w y t ==,由题意知,在0t t =时刻00()12,()5x t y t ==,且0()2,x t '=0()3y t '=,设该对角线长为()S t ,则 ()S t =,所以()S t '=所以0()3S t '===.(14)【答案】3.【解析】由于1111()()A A B B E AB B B A ----+=+=+,所以11111()A B A A B B A A B B -----+=+=+因为2B =,所以1112BB--==,因此 11113232A B A A B B ---+=+=⨯⨯=. 三、解答题(15)【解析】因为22222222111()()x x x t t t f x x t e dt xe dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e --''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞- ,()f x 的单调递增区间为(1,0)(1,)-+∞ .(16) 【解析】 (I)当01x <<时0ln(1)x x <+<,故[]ln(1)nnt t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n = .(II)()111101ln ln ln 1n n n t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.(17)【解析】根据题意得(),22dy t dy dt dxdx t dtψ'==+()()()()()()222222222232241t d t t t t t d y dt dx dx t t dtψψψ'⎛⎫ ⎪'''+-+⎝⎭+===++ 即()()()()222261t t t t ψψ'''+-=+,整理有()()()()2131t t t t ψψ'''+-=+,解()()()()()31151,162t t t t ψψψψ'⎧''-=+⎪⎪+⎨⎪'==⎪⎩,令()y t ψ'=,即()1311y y t t '-=++. 所以()()()11113113dt dt t t y e t e dt C t t C -++⎛⎫⎰⎰=++=++ ⎪⎝⎭⎰,1t >-.因为()()116y ψ'==,所以0C =,故()31y t t =+,即()()31t t t ψ'=+,故()()2313312t t t dt t t C ψ=+=++⎰. 又由()512ψ=,所以10C =,故()233,(1)2t t t t ψ=+>-.(18)【解析】油罐放平,截面如图建立坐标系之后,边界椭圆的方程为:22221x y a b+= 阴影部分的面积2222bbba S xdyb --==⎰⎰ 令sin ,y b t y b ==-时;22b t y π=-=时6t π=. 266221122cos 2(cos 2)(223S ab tdt ab t dt ab πππππ--==+=⎰⎰所以油的质量2(3m abl πρ=.(19)【解析】由复合函数链式法则得u u u u ux x y x ξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂, u u u u ua b y y y ξηξηξη∂∂∂∂∂∂∂=⋅+=⋅+⋅∂∂∂∂∂∂∂, 22222222u u u u u u u x x x x x xξηηηξηξξηηξη⎛⎫∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅ ⎪∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭ 222222,u u uξηξη∂∂∂=++∂∂∂∂ 2222222u u u u u u u x y y y y y yξηηηξηξξηηξη⎛⎫∂∂∂∂∂∂∂∂∂∂∂∂=+=⋅+⋅+⋅+⋅ ⎪∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎝⎭ 22222(),u u ua b a b ξηξη∂∂∂=+++∂∂∂∂ 22222222()()u u u u u u ua b a a b b a a y y ξηξξηηξη⎛⎫∂∂∂∂∂∂∂∂=+=+++ ⎪∂∂∂∂∂∂∂∂∂∂⎝⎭ 22222222,u u u a b ab ξηξη∂∂∂=++∂∂∂∂ 故222224125u u ux x y y∂∂∂++∂∂∂∂[]2222222(5124)(5124)12()1080,u u u a a b b a b ab ξηξη∂∂∂=+++++++++=∂∂∂∂所以 22512405124012()1080a a b b a b ab ⎧++=⎪++=⎨⎪+++≠ ⎩,则25a =-或2-,25b =-或2-.又因为当(,)a b 为22(2,2),(,)55----时方程(3)不满足,所以当(,)a b 为2(,2)5-- ,2(2,)5--满足题意.(20)【解析】2sin DI rθ=⎰⎰sin Dr rdrdθ=⎰⎰D=⎰⎰100xdx =⎰⎰()312201113x dx ⎡⎤=--⎢⎥⎣⎦⎰ ()311220011133dx x dx =--⎰⎰20113cos 43316d πθθπ=-=-⎰.(21)【解析】令()()313F x f x x =-,对于()F x 在10,2⎡⎤⎢⎥⎣⎦上利用拉格朗日中值定理,得存在10,,2ξ⎛⎫∈ ⎪⎝⎭使得()()11022F F F ξ⎛⎫'-= ⎪⎝⎭.对于()F x 在1,12⎡⎤⎢⎥⎣⎦上利用拉格朗日中值定理,得存在1,1,2η⎛⎫∈ ⎪⎝⎭使得()()11122F F F η⎛⎫'-= ⎪⎝⎭,两式相加得 ()()22f f ξηξη''+=+.所以存在110,,,122ξη⎛⎫⎛⎫∈∈ ⎪⎪⎝⎭⎝⎭,使()()22f f ξηξη''+=+. (22) 【解析】因为方程组有两个不同的解,所以可以判断方程组增广矩阵的秩小于3,进而可以通过秩的关系求解方程组中未知参数,有以下两种方法.方法1:( I )已知Ax b =有2个不同的解,故()()3r A r A =<,对增广矩阵进行初等行变换,得111110101010111111a A a λλλλλλ⎛⎫⎛⎫⎪⎪=-→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22111111010101010110011a a λλλλλλλλλ⎛⎫⎛⎫⎪⎪→-→- ⎪ ⎪ ⎪ ⎪-----+⎝⎭⎝⎭当1λ=时,11111111000100010000000A a ⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,此时,()()r A r A ≠,故Ax b =无解(舍去).当1λ=-时,111102010002A a -⎛⎫ ⎪→- ⎪ ⎪+⎝⎭,由于()()3r A r A =<,所以2a =-,故1λ=- ,2a =-. 方法2:已知Ax b =有2个不同的解,故()()3r A r A =<,因此0A =,即211010(1)(1)011A λλλλλ=-=-+=,知1λ=或-1.当1λ=时,()1()2r A r A =≠=,此时,Ax b =无解,因此1λ=-.由()()r A r A =,得2a =-.( II ) 对增广矩阵做初等行变换31012111211121020102010102111100000000A ⎛⎫- ⎪----⎛⎫⎛⎫ ⎪⎪ ⎪⎪=-→-→-⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭可知原方程组等价为1323212x x x ⎧-=⎪⎪⎨⎪=-⎪⎩,写成向量的形式,即123332110210x x x x ⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭.因此Ax b =的通解为32110210x k ⎛⎫⎪⎛⎫ ⎪⎪⎪=+- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭,其中k 为任意常数.(23)【解析】由于0141340A a a -⎛⎫⎪=- ⎪ ⎪⎝⎭,存在正交矩阵Q ,使得TQ AQ 为对角阵,且Q 的第一T,故A对应于1λ的特征向量为12,1)Tξ=.根据特征值和特征向量的定义,有1Aλ=,即10141113224011aaλ-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,由此可得11,2aλ=-=.故014131410A-⎛⎫⎪=--⎪⎪-⎝⎭.由14131(4)(2)(5)041E Aλλλλλλλ--=-=+--=-,可得A的特征值为1232,4,5λλλ==-=.由2()0E A xλ-=,即1234141710414xxx--⎛⎫⎛⎫⎪⎪-=⎪⎪⎪ ⎪--⎝⎭⎝⎭,可解得对应于24λ=-的线性无关的特征向量为2(1,0,1)Tξ=-.由3()0E A xλ-=,即1235141210415xxx-⎛⎫⎛⎫⎪⎪=⎪⎪⎪ ⎪-⎝⎭⎝⎭,可解得对应于35λ=的特征向量为3(1,1,1)Tξ=-.由于A为实对称矩阵,123,,ξξξ为对应于不同特征值的特征向量,所以123,,ξξξ相互正交,只需单位化:312123123,1,0,1),1,1)T T Tξξξηηηξξξ====-==-,取()123,,0Qηηη⎫⎪⎪==⎪⎪⎭,则245TQ AQ⎛⎫⎪=Λ=-⎪⎪⎝⎭.。
考研数学二历年真题及答案详解(2003—2012)
2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---L ,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++L L ,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10)22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭L . (11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y ==的解为y = .(13) 曲线()20y x x x =+<上曲率为2的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe +-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=L n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根; (II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限.(22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.(23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a 的值;(II) 求正交变换x Qy =将f 化为标准形.2011年全国硕士研究生入学统一考试数学二试题一、 选择题:1~8小题,每小题4分,共32分。
【数学二】2010年全国考研研究生入学考试真题及答案答案解析
2010年全国硕士研究生入学统一考试数学二试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) (1) 函数()f x =( ) (A) 0. (B) 1. (C) 2. (D) 3.(2) 设12,y y 是一阶线性非齐次微分方程()()y p x y q x '+=的两个特解,若常数λμ,使12y y λμ+是该方程的解,12y y λμ-是该方程对应的齐次方程的解,则( ) (A) 11,22λμ==. (B) 11,22λμ=-=-. (C) 21,33λμ==. (D) 22,33λμ==. (3) 曲线2y x =与曲线ln (0)y a x a =≠相切,则a = ( )(A) 4e. (B) 3e. (C) 2e. (D) e.(4) 设,m n 是正整数,则反常积分⎰的收敛性 ( )(A) 仅与m 的取值有关. (B) 仅与n 的取值有关.(C) 与,m n 取值都有关. (D) 与,m n 取值都无关.(5)设函数(,)z z x y =,由方程(,)0y zF x x=确定,其中F 为可微函数,且20F '≠,则z z x y x y∂∂+=∂∂( ) (A) x . (B) z . (C) x -. (D) z -.(6) ()()2211lim n nn i j n n i n j →∞===++∑∑ ( ) (A) ()()1200111x dx dy x y ++⎰⎰. (B) ()()100111x dx dy x y ++⎰⎰. (C) ()()1100111dx dy x y ++⎰⎰. (D) ()()11200111dx dy x y ++⎰⎰. (7) 设向量组12I :,,,r ααα可由向量组12II :,,,s βββ线性表示,下列命题正确的是( )(A) 若向量组I 线性无关,则r s ≤. (B) 若向量组I 线性相关,则r s >.(C) 若向量组II 线性无关,则r s ≤. (D) 若向量组II 线性相关,则r s >.(8) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( ) (A) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B) 1110⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭. (C) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D) 1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. 二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) (9) 3阶常系数线性齐次微分方程220y y y y ''''''-+-=的通解为y = .(10) 曲线3221x y x =+的渐近线方程为 . (11) 函数()ln 120y x x =-=在处的n 阶导数()()0n y = . (12) 当0θπ≤≤时,对数螺线r e θ=的弧长为 .(13) 已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加.则当cm 12l = ,cm 5w =时,它的对角线增加的速率为 .(14)设,A B 为3阶矩阵,且132,2A B A B -==+=,,则1A B -+= .三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)求函数2221()()x t f x x t e d -=-⎰的单调区间与极值.(16)(本题满分10分) ( I ) 比较()10ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln n t t dt ⎰()1,2,n =的大小,说明理由;( II ) 记()10ln ln 1n n u t t dt =+⎡⎤⎣⎦⎰()1,2,n =,求极限lim n n u →∞. (17)(本题满分10分)设函数()y f x =由参数方程22,(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有2阶导数,且5(1)(1) 6.2ψψ'==,已知223,4(1)d y dx t =+求函数()t ψ. (18)(本题满分10分)一个高为l 的柱体形贮油罐,底面是长轴为2a ,短轴为2b 的椭圆.现将贮油罐平放,当油罐中油面高度为32b 时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m 3) (19) (本题满分11分)设函数(,)u f x y =具有二阶连续偏导数,且满足等式2222241250u u u x x y y∂∂∂++=∂∂∂∂,确定a ,b 的值,使等式在变换,x ay x by ξη=+=+下化简为20u ξη∂=∂∂. (20)(本题满分10分)计算二重积分2 sin D I r θ=⎰⎰,其中(),|0sec ,04D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭. (21) (本题满分10分)设函数()f x 在闭区间[]0,1上连续,在开区间()0,1内可导,且(0)0f =,1(1)3f =,证明:存在1(0,)2ξ∈,1(,1)2η∈,使得22()()=.f f ξηξη''++(22)(本题满分11分) 设110111a A b λλλ ⎛⎫⎛⎫ ⎪ ⎪= - 0= ⎪ ⎪ ⎪ ⎪1 1 ⎝⎭⎝⎭,,已知线性方程组Ax b =存在两个不同的解.( I ) 求λ,a ;( II ) 求方程组Ax b =的通解.(23)(本题满分11 分)设0141340A a a -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,正交矩阵Q 使得T Q AQ 为对角矩阵,若Q 的第1列为2,1)T ,求,a Q .。
2010考研数学二真题及答案
(长度单位为m,质量单位为 kg,油的密度为常数 ρkg/m3)
(19)设函数u=(x,y)具有二阶连续偏导数,且满足等式
,确定a,b的值,使等式在变换
(2பைடு நூலகம்)计算二重积分
(A) x (B) z. (C) -x. (D)-z. (12)
三、解答题(本题共 9 小题,解答应写出文字说明、证明过程或演算步骤.)
(15)求函数 的单调区间与极值.
(16)(Ⅰ)比较 的大
小,说明理由;
(Ⅱ)记 ,求极限
(17) 设函数y=f(x)由参数方程 所确定,其中φ(t)具有二阶导数,且φ(1)=
(21)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且 。证明:存在
f'(ξ)+f'(η)=ξ2+η2
(22)设
已知线性方程组Ax=b存在2个小同的解.(Ⅰ) 求λ,a;
(Ⅱ) 求方程组 Ax=b 的通解.
(23)设正交矩阵使得 为对角矩阵,若Q的第1
例为
一、填空题
参考解答
1三阶常系数线性齐次微分方程的通解为2曲线的渐近线方程为3函数yln12x在2cms的速率增加宽w3cms的速率增加l12cmw5cm时它的对角线增加的速率为小题每小题给出的四个选项中只有一项符合题目要求请将所选项前的字母填在题后括号内
2010考研数学二真题及答案
一、填空题(本题共 6 小题,请将答案写在题中横线上.)
(1)三阶常系数线性齐次微分方程 的通解为 y=.
(2)曲线 的渐近线方程为.
2010-2019(10套)考研数学二真题和答案详细解析--答案直接附在每年题后面方便查阅
1 1 0 (Ⅱ) β1 = 1 , β 2 = 2 , β3 = 3 ,若向量组(Ⅰ)和向量组(Ⅱ)等 2 + 3 a + 3 1 − a a
价,求 a 的取值,并将 β 用 α1 , α 2 , α 3 线性表示.
2 . ,使得 P AP 所以存在 P −1 1 = (α1 ,α 2 ,α 3 ) 1 =Λ = 2 −
(1)当 a 2 − 1 ≠ 0 ,即 a ≠ ±1 时, r (α1 , α 2 , α 3 ) 3, r ( β1 , β 2 , β3 ) 3 ,此时两个向 = = 量组必然等价,且 β3 =α1 − α 2 +α 3 .
1 1 1 1 0 1 (2)当 a =1时, (α1 , α 2 , α 3 , β1 , β 2 , β3 ) → 0 −1 1 0 2 2 0 0 0 0 0 0
6
17.
18.
I = ∫π dθ ∫
4 3 π 4 sin 2 θ 0
π π r sin θ 1 3 1 3 5 4 rdr = ∫π sin θ dθ = − ∫π4 sin 4 θ d cos θ r 2 4 2 4
2 1 3π 1 3π = − ∫π4 (1 − cos 2 θ ) d cos θ = − ∫π4 (1 − 2 cos 2 θ + cos 4 θ ) d cos θ 2 4 2 4
x2 2
{ x , y) =( 1 ≤ x ≤ 2 ,0 ≤ y ≤ y( x )},求 D 绕x 轴旋转一
周所得旋转体的体积. 18.(本题满分 10 分) 已知平面区域 D 满足
{(x , y ) | (x
2010年考研数学二真题及答案解析
英语学习资料下载大全(更新中)英语阅读资料汇总The Princess Diaries(《公主日记》系列全10卷下载爱情浪漫小说共17本原版PDF下载美国畅销作家Dean Koontz小说下载汇总美文精选共45篇报刊选读共10篇下载5分钟和陌生人成为朋友(英文版)共200页PDF下载名著汤姆叔叔的小屋下载(PDF,txt,EXE格式)155篇大学应背英语课文.(中英对照)傲慢与偏见电子书下载泰戈尔散文100篇节选(中英对照).Gossip girl #1《绯闻少女系列一》by Cecily V on Ziegesar(pdf)《闪灵》(The Shining)PDF下载好书下载:Teaching Young Children a Second Language一本容易读懂的英语小说中国四大名著英文版下载幽谷百和(双语电子书下载)新东方背诵文选全集_共50篇散文佳作108篇-汉译英散文佳作108篇-英译汉奥巴马新书AUDACITY OF HOPE(无畏的希望)PDF下载《鲁迅全集》英文版WORD下载谍影重重-英文版下载神奇动物在哪里英文书下载哈利波特双语全集电子书下载书虫系列简易英汉逐句对照读物 txt傅伟良:英文经济报刊精读(修订版)PDF下载迈克尔杰克逊自传 pdf原版英文下载2006年畅销获奖儿童小说《穿条纹睡衣的男孩》PDF原版英文小说下载英文版金庸神雕侠侣WORD版下载纳尼亚传奇第一部词汇注释兼下载林语堂-《生活的艺术》英文版下载《世界上最伟大的推销员》(羊皮卷)中英文对照谁动了我的奶酪(一书全下载)香水_一个谋杀犯的故事(中英文版)PDF下载钱钟书《围城》完整高清汉英对照版pdf希腊神话中英文对照全集.中国传统民间寓言精选(汉英对照)双语英语美文共5 本PDF下载迪士尼神奇英语配套教材+全套神奇英语配套教材Ⅰ(1-8)刘茜:征婚交友网恋英语一本通弘恢:男欢女爱开心英语梦想与现实(PDF下载)墓光之城系列 pdf版下载24小时如何过活(英文书PDF下载)胡杨:大学英语四六级晨读经典365篇下载双语杂志美文下载(共几百多页)吴新华:英语爱情对白精粹电子书下载英语美文阅读The Chronicles of Narnia(1-7)《纳尼亚传奇》by CS Lewis(txt)双语好文共赏共140篇下载英语小故事下载疯狂英语美文欣赏1共30篇下载疯狂英语美文欣赏2共30篇下载疯狂英语美文欣赏3共30篇疯狂英语美文欣赏4共33篇历届美国总统就职演说下载the secret史上最畅销心灵励志书下载(英文版)亚马逊原版英文畅销书高清晰PDF版下载双语经典美文共约1500篇汇总及电子书下载20首绝妙的英文爱情小诗集电子书下载疯狂英文背诵爱情加油总站及文本下载15篇经典爱情英文美文背诵及文本下载文学经典书籍下载大全英语沙龙创刊10年珍藏版下载英语小短文共21篇电子书下载英语智慧背囊共120篇下载英语快乐求知共120篇电子书下载英语阅读训练及答案共90篇电子书下载英语阅读之聚观天下共100篇电子书下载英语阅读之美丽人生共100篇电子书下载《古希腊神话》中英文对照电子书下载英语语法资料汇总《这样学习英语最有效(新航道英语学习丛书)》我的第一本英语语法书(PDF下载)英语语法表下载(学好英语语法必备)英语词汇资料电子书下载大全英语语法资料电子书下载大全笨蛋笨法学外语.四步英语Etymology.Dictionary(词源学词典)[CHM]英语词根词缀记忆小全PDF下载赖世雄语法共51篇电子书下载新东方英语-精析老友记英语词汇资料汇总800句绕口令帮你记住7000个单词单词逻辑记忆法共20篇下载单词记忆法汇总共17篇下载记忆超人-英语单词妙记手册英语+5000个必备基本单词及其解释趣味词汇记忆口诀汇总及下载固定词组搭配最全下载8天攻克8000词汇(词根部分)精彩谚语集锦(约100页下载)英语句型宝典《单词背上瘾》连载1~25及文本下载73组好易弄晕的英语单词很有用单词背后的故事:194个英语单词的起源及巧记方法汇总及文本下载VOA常用1500单词下载分类词汇汇总及文本下载超级搞笑背单词联想记忆词汇教程中国日报汉英词汇表《不擇手段背單詞》完整版英语同义词辨析辞典别笑!我是英文单词书下载小笨霖英语笔记1-107课下载热门话题新词汇总共17篇下载英语写作资料汇总英文写作,阅读,语法及词汇书下载汇总写作精品背诵句型共40多页WORD下载[新东方]写作常用词组搭配推荐本好书:好英文写作手册四十二天学会英语的模范短文本科英语写作教材PDF下载实用英语写作技巧电子书英语写作指导及范文共80篇电子书下载写作佳句230例应用文写作共29篇下载英语书信范文共143篇下载英语口语资料汇总口语会话共140篇英语口语类资料合集(共580页PDF下载)英语口语400句(PDF下载)动感英语笔记共365篇WORD下载新东方美国口语教程共60课下载(WORD)格式英语高级口语教程共300多页PDF下载英语中级口语教程共200多页PDF书下载疯狂英语脱口而出练习篇WORD下载疯狂英语脱口而出卖弄篇WORD下载疯狂英语脱口而出准备篇WORD下载人人说英语初级(共200页左右PDF书下载)人人说英语中级(共200页左右PDF书下载)人人说英语高级(共200页PDF书下载)每日英语学习资料下载汇总英语学习共三十二课必修句下载美国校园口语45篇下载老美说烂的但教科书只字不提的地道美语汇总及下载英语名人名言WORD下载躺着学万能会话电子书下载常用词缀下载分类词汇下载张翔-掌握英语口语系列之超级口语教程张翔-掌握英语口语系列之特级口语教程英语情景对话下载办公室英语下载旅游英语共146篇电子书下载英语情景对话共75篇下载现代英语口语表示法500例WORD下载英语惯用语共90多页PDF格式下载英语有声资料汇总《English Express》经华英语电子杂志EXE格式下载汇总(更新中)阶梯英语电子杂志EXE格式下载汇总(更新中)人性的弱点(mp3及PDF文本下载)titanic泰坦尼克号(mp3及LRC字幕下载)疯狂英语脱口而准备篇(mp3和WORD下载)疯狂英语脱口而练习篇(mp3和WORD下载)疯狂英语脱口而出卖弄篇(mp3和WORD下载)人人说英语中级(mp3和文本下载)人人说英语高级(mp3和文本下载)人人说英语初级(mp3和文本下载)Garfield加菲猫(mp3.及漫画书PDF格式下载)精美英语电子书(音频及文字)下载汇总《智慧背囊》电子书(文本及听力)李阳疯狂英语365句有声电子书下载在线视频教程:单词不用记共12讲汇总2009最新高分冒险大片《鬼妈妈》文字及MP3下载美丽英文—幸福没有终点站电子书下载(含文本及听力)读故事记单词-女生版电子书下载英语翻译资料汇总新闻热词翻译共200篇新词翻译共105篇翻译技巧及解析共75篇英汉翻译简明教程(PDF书下载)汉译英难点解析500例(共32页WORD下载)2400门课程名称英文大全(WORD下载)英语长句翻译基本功(英语翻译讲座资料共29页下载)经典中文语句英译中国菜单英文译法共50篇电子书下载英语新词汇与常用词汇的翻译共164篇下载翻译趣闻共40篇下载口译技巧及解析共41篇下载笔译技巧及解析共33篇下载英汉对照翻译3000句孙子兵法中英文对照共15篇翻译技巧及鉴赏共75篇下载英语成语及解析共30篇电子书下载复旦大学名师翻译讲义刘士聪:汉英英汉美文翻译与鉴赏(中英对照).英语其他资料下载职场英语共100篇商务英语共100篇英语手机JAR电子书共15本下载汇总中国人写英文文章最常犯的错误总结50篇经典英文演讲看故事记单词名人演说共67篇下载英语绕口令共40篇下载休闲英语1共185篇下载休闲英语2共155篇下载英语轻松一刻共60篇下载阅读难点关键句200(中英对照).名人名言共140篇下载一千零一夜共44篇下载伊索寓言共312篇下载英语小故事下载英语演讲词稿共36篇下载谚语和格言共205篇下载英语阅读理解共100篇下载唐诗300首(中英文对照).如何学好英语PPT下载美国总统演讲全集WORD和PDF版下载大学英语精读第1册课文WORD及MP3下载英汉对照描写辞典共70多页WORD下载。
考研数学二(多元函数微积分)历年真题试卷汇编2(题后含答案及解析)
考研数学二(多元函数微积分)历年真题试卷汇编2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2010年)设函数z=z(χ,y)由方程F()=0确定,其中F为可微函数,且F′2≠0,则【】A.χ.B.z.C.-χ.D.-z.正确答案:B解析:由隐函数求导公式得知识模块:多元函数微积分2.(2010年) 【】A.B.C.D.正确答案:D解析:知识模块:多元函数微积分3.(2011年)设函数f(χ),g(χ)均有二阶连续导数,满足f(0)>0,g(0)<0,且f′(0)=g′(0)=0,则函数z=f(χ)g(y)在点(0,0)处取得极小值的一个充分条件是【】A.f〞(0)<0,g〞(0)>0.B.f〞(0)<0,g〞(0)<0.C.f〞(0)>0,g〞(0)>0.D.f〞(0)>0,g〞(0)<0.正确答案:A解析:则AC=B2>0 故z=f(χ)g(y)在(0,0)点取极小值.应选A.知识模块:多元函数微积分4.(2012年)设函数f(χ,y)可微,且对任意χ,y都有型<0,则使不等式f(χ1,y1)<f(χ2,y2)成立的一个充分条件是【】A.χ1>χ2,y1<y2B.χ1>χ2,y1>y2C.χ1<χ2,y1<y2D.χ1<χ2,y1>y2正确答案:D解析:由于偏导数本质上就是一元函数导数,则由型可知,f(χ,y)关于变量χ是单调增的,关于变量y是单调减的.因此,当χ1<χ2,y1>y2时,f(χ1,y1)<f(χ2,y1),f(χ2,y1)<f(χ2,y2) 则f(χ1,y1)<f(χ2,y2) 故应选D.知识模块:多元函数微积分5.(2012年)设区域D由曲线y=sinχ=±,y=1围成,则(χy5-1)dχdy =【】A.πB.2C.-2D.-π正确答案:D解析:作辅助线y=-sinχ(-≤χ≤0).如图,将区域D分为两部分D1和D2,其中D1关于χ轴对称,D2关于y轴对称,而χy5分别关于变量χ和y 都是奇函数,则知识模块:多元函数微积分6.(2013年)设z=f(χy),其中函数f可微,则【】A.2yf′(χy).B.-2yf′(χy).C.f(χy).D.-f(χy).正确答案:A解析:知识模块:多元函数微积分7.(2013年)设Dk是圆域D={(χ,y)|χ2+y2≤1)在第k象限的部分,记IK=(y-χ)dχdy(k=1,2,3,4),则【】A.I1>0.B.I2>0.C.I3>0.D.I4>0.正确答案:B解析:由于D1和D3关于直线y=χ对称,则而在D2上,y-χ>0,在D4上y-χ<0,则I2>0,I4<0 故应选B.知识模块:多元函数微积分8.(2014年)设函数u(χ,y)在有界闭区域D上连续,在D的内部具有2阶连续偏导数,且满足≠0及=0,则【】A.u(χ,y)的最大值和最小值都在D的边界上取得B.u(χ,y)的最大值和最小值都在D的内部取得C.u(χ,y)的最大值在D的内部取得,最小值都在D的边界上取得D.u(χ,y)的最小值在D的内部取得,最大值都在D的边界上取得正确答案:A解析:由题设可知,B≠0,A+C=0,则AC-B2<0 故函数u(χ,y)在区域D内无极值点,因此,u(χ,y)的最大值和最小值都在D的边界上取得.故应选A.知识模块:多元函数微积分9.(2015年)设函数f(u,v)满足f(χ+y,)=χ2-y2,则依次是【】A.,0B.0,C.-,0D.0,-正确答案:D解析:故应选D.知识模块:多元函数微积分10.(2015年)设D是第一象限中由曲线2χy=1,4χy=1与直线y=χ,y=χ围成的平面区域,函数f(χ,y)在D上连续,则(χ,y)dχdy=【】A.B.C.D.正确答案:B解析:由题设知积分域D如图所示,曲线2χy=1,4χy=1在极坐标下方程分别为2r2cosθsinθ=1,4r2cosθsinθ=1 即,直线y=χ,y =χ在极坐标下的方程为,则故应选B.知识模块:多元函数微积分填空题11.(2014年)设z=z(χ,y)是由方程e2yz+χ+y2+z=确定的函数,则dz=_______.正确答案:-(dχ+dy).解析:将χ=y=代入e2yz+χ+y2+z=得知识模块:多元函数微积分12.(2015年)若函数z=z(χ,y)由方程eχ+2y+3z+χyz=1确定,则dz|(0,0)=________.正确答案:-(dχ+2dy).解析:将χ=0,y=0代入eχ+2y+3z+χyz=1中得e3z=1,则z=0 方程eχ+2y+3z+χyz=1两端微分得eχ+2y+3z(dχ+2dy+3dz)+yzdχ+χzdy+χydz=0 将χ=0,y=0,z=0代入上式得dχ+2dy+3dz=0 则dz|(1,0)=-(dχ+2dy).知识模块:多元函数微积分13.(2011年)设平面区域D由直线y=χ,圆χ2+y2=2y及y轴所围成,则二重积分χydσ=_______.正确答案:解析:知识模块:多元函数微积分解答题解答应写出文字说明、证明过程或演算步骤。
2010年考研数学二真题及答案解析
英语学习资料下载大全(更新中)英语阅读资料汇总The Princess Diaries(《公主日记》系列全10卷下载爱情浪漫小说共17本原版PDF下载美国畅销作家Dean Koontz小说下载汇总美文精选共45篇报刊选读共10篇下载5分钟和陌生人成为朋友(英文版)共200页PDF下载名著汤姆叔叔的小屋下载(PDF,txt,EXE格式)155篇大学应背英语课文.(中英对照)傲慢与偏见电子书下载泰戈尔散文100篇节选(中英对照).Gossip girl #1《绯闻少女系列一》by Cecily V on Ziegesar(pdf)《闪灵》(The Shining)PDF下载好书下载:Teaching Young Children a Second Language一本容易读懂的英语小说中国四大名著英文版下载幽谷百和(双语电子书下载)新东方背诵文选全集_共50篇散文佳作108篇-汉译英散文佳作108篇-英译汉奥巴马新书AUDACITY OF HOPE(无畏的希望)PDF下载《鲁迅全集》英文版WORD下载谍影重重-英文版下载神奇动物在哪里英文书下载哈利波特双语全集电子书下载书虫系列简易英汉逐句对照读物 txt傅伟良:英文经济报刊精读(修订版)PDF下载迈克尔杰克逊自传 pdf原版英文下载2006年畅销获奖儿童小说《穿条纹睡衣的男孩》PDF原版英文小说下载英文版金庸神雕侠侣WORD版下载纳尼亚传奇第一部词汇注释兼下载林语堂-《生活的艺术》英文版下载《世界上最伟大的推销员》(羊皮卷)中英文对照谁动了我的奶酪(一书全下载)香水_一个谋杀犯的故事(中英文版)PDF下载钱钟书《围城》完整高清汉英对照版pdf希腊神话中英文对照全集.中国传统民间寓言精选(汉英对照)双语英语美文共5 本PDF下载迪士尼神奇英语配套教材+全套神奇英语配套教材Ⅰ(1-8)刘茜:征婚交友网恋英语一本通弘恢:男欢女爱开心英语梦想与现实(PDF下载)墓光之城系列 pdf版下载24小时如何过活(英文书PDF下载)胡杨:大学英语四六级晨读经典365篇下载双语杂志美文下载(共几百多页)吴新华:英语爱情对白精粹电子书下载英语美文阅读The Chronicles of Narnia(1-7)《纳尼亚传奇》by CS Lewis(txt)双语好文共赏共140篇下载英语小故事下载疯狂英语美文欣赏1共30篇下载疯狂英语美文欣赏2共30篇下载疯狂英语美文欣赏3共30篇疯狂英语美文欣赏4共33篇历届美国总统就职演说下载the secret史上最畅销心灵励志书下载(英文版)亚马逊原版英文畅销书高清晰PDF版下载双语经典美文共约1500篇汇总及电子书下载20首绝妙的英文爱情小诗集电子书下载疯狂英文背诵爱情加油总站及文本下载15篇经典爱情英文美文背诵及文本下载文学经典书籍下载大全英语沙龙创刊10年珍藏版下载英语小短文共21篇电子书下载英语智慧背囊共120篇下载英语快乐求知共120篇电子书下载英语阅读训练及答案共90篇电子书下载英语阅读之聚观天下共100篇电子书下载英语阅读之美丽人生共100篇电子书下载《古希腊神话》中英文对照电子书下载英语语法资料汇总《这样学习英语最有效(新航道英语学习丛书)》我的第一本英语语法书(PDF下载)英语语法表下载(学好英语语法必备)英语词汇资料电子书下载大全英语语法资料电子书下载大全笨蛋笨法学外语.四步英语Etymology.Dictionary(词源学词典)[CHM]英语词根词缀记忆小全PDF下载赖世雄语法共51篇电子书下载新东方英语-精析老友记英语词汇资料汇总800句绕口令帮你记住7000个单词单词逻辑记忆法共20篇下载单词记忆法汇总共17篇下载记忆超人-英语单词妙记手册英语+5000个必备基本单词及其解释趣味词汇记忆口诀汇总及下载固定词组搭配最全下载8天攻克8000词汇(词根部分)精彩谚语集锦(约100页下载)英语句型宝典《单词背上瘾》连载1~25及文本下载73组好易弄晕的英语单词很有用单词背后的故事:194个英语单词的起源及巧记方法汇总及文本下载VOA常用1500单词下载分类词汇汇总及文本下载超级搞笑背单词联想记忆词汇教程中国日报汉英词汇表《不擇手段背單詞》完整版英语同义词辨析辞典别笑!我是英文单词书下载小笨霖英语笔记1-107课下载热门话题新词汇总共17篇下载英语写作资料汇总英文写作,阅读,语法及词汇书下载汇总写作精品背诵句型共40多页WORD下载[新东方]写作常用词组搭配推荐本好书:好英文写作手册四十二天学会英语的模范短文本科英语写作教材PDF下载实用英语写作技巧电子书英语写作指导及范文共80篇电子书下载写作佳句230例应用文写作共29篇下载英语书信范文共143篇下载英语口语资料汇总口语会话共140篇英语口语类资料合集(共580页PDF下载)英语口语400句(PDF下载)动感英语笔记共365篇WORD下载新东方美国口语教程共60课下载(WORD)格式英语高级口语教程共300多页PDF下载英语中级口语教程共200多页PDF书下载疯狂英语脱口而出练习篇WORD下载疯狂英语脱口而出卖弄篇WORD下载疯狂英语脱口而出准备篇WORD下载人人说英语初级(共200页左右PDF书下载)人人说英语中级(共200页左右PDF书下载)人人说英语高级(共200页PDF书下载)每日英语学习资料下载汇总英语学习共三十二课必修句下载美国校园口语45篇下载老美说烂的但教科书只字不提的地道美语汇总及下载英语名人名言WORD下载躺着学万能会话电子书下载常用词缀下载分类词汇下载张翔-掌握英语口语系列之超级口语教程张翔-掌握英语口语系列之特级口语教程英语情景对话下载办公室英语下载旅游英语共146篇电子书下载英语情景对话共75篇下载现代英语口语表示法500例WORD下载英语惯用语共90多页PDF格式下载英语有声资料汇总《English Express》经华英语电子杂志EXE格式下载汇总(更新中)阶梯英语电子杂志EXE格式下载汇总(更新中)人性的弱点(mp3及PDF文本下载)titanic泰坦尼克号(mp3及LRC字幕下载)疯狂英语脱口而准备篇(mp3和WORD下载)疯狂英语脱口而练习篇(mp3和WORD下载)疯狂英语脱口而出卖弄篇(mp3和WORD下载)人人说英语中级(mp3和文本下载)人人说英语高级(mp3和文本下载)人人说英语初级(mp3和文本下载)Garfield加菲猫(mp3.及漫画书PDF格式下载)精美英语电子书(音频及文字)下载汇总《智慧背囊》电子书(文本及听力)李阳疯狂英语365句有声电子书下载在线视频教程:单词不用记共12讲汇总2009最新高分冒险大片《鬼妈妈》文字及MP3下载美丽英文—幸福没有终点站电子书下载(含文本及听力)读故事记单词-女生版电子书下载英语翻译资料汇总新闻热词翻译共200篇新词翻译共105篇翻译技巧及解析共75篇英汉翻译简明教程(PDF书下载)汉译英难点解析500例(共32页WORD下载)2400门课程名称英文大全(WORD下载)英语长句翻译基本功(英语翻译讲座资料共29页下载)经典中文语句英译中国菜单英文译法共50篇电子书下载英语新词汇与常用词汇的翻译共164篇下载翻译趣闻共40篇下载口译技巧及解析共41篇下载笔译技巧及解析共33篇下载英汉对照翻译3000句孙子兵法中英文对照共15篇翻译技巧及鉴赏共75篇下载英语成语及解析共30篇电子书下载复旦大学名师翻译讲义刘士聪:汉英英汉美文翻译与鉴赏(中英对照).英语其他资料下载职场英语共100篇商务英语共100篇英语手机JAR电子书共15本下载汇总中国人写英文文章最常犯的错误总结50篇经典英文演讲看故事记单词名人演说共67篇下载英语绕口令共40篇下载休闲英语1共185篇下载休闲英语2共155篇下载英语轻松一刻共60篇下载阅读难点关键句200(中英对照).名人名言共140篇下载一千零一夜共44篇下载伊索寓言共312篇下载英语小故事下载英语演讲词稿共36篇下载谚语和格言共205篇下载英语阅读理解共100篇下载唐诗300首(中英文对照).如何学好英语PPT下载美国总统演讲全集WORD和PDF版下载大学英语精读第1册课文WORD及MP3下载英汉对照描写辞典共70多页WORD下载。
历年考研数学二真题与答案09~13年
历年考研数学二真题与答案09~13年2009年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1) 函数()3sin x x f x xπ-=的可去间断点的个数为()A 1 ()B 2 ()C 3()D 无穷多个 【答案】C【解析】由于()3sin x x f x xπ-=,则当x 取任何整数时,()f x 均无意义.故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是3x x-=的解1,2,30,1x =±.320032113211131lim lim ,sin cos 132lim lim ,sin cos 132lim lim .sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--==故可去间断点为3个,即0,1±.(2) 当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则()A 11,6a b ==- ()B 11,6a b ==()C 11,6a b =-=-()D 11,6a b =-=【答案】A【解析】 22()sin sin lim lim lim ()ln(1)()x x x f x x ax x axg x x bx x bx →→→--==-⋅- 22002301cos sin lim lim 36sin lim 1,66x x x a ax a axbx bxa ax ab b axa→→→---==-=-⋅洛洛36a b∴=-,故排除,B C .另外,21cos lim 3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →,故 1.a =排除D . 所以本题选A .(3) 设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0()A 不是(),f x y 的连续点 ()B 不是(),f x y 的极值点()C 是(),f x y 的极大值点 ()D 是(),f x y 的极小值点 【答案】D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂.2222221,0,1z z z z A B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂,又在()0,0处,0,0z zx y∂∂==∂∂,210AC B -=>,故()0,0为函数(,)z f x y =的一个极小值点.(4) 设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰()A ()2411,xdx f x y dy -⎰⎰ ()B ()241,xxdx f x y dy -⎰⎰()C ()2411,ydy f x y dx-⎰⎰()D ()221,ydy f x y dx⎰⎰【答案】C 【解析】222211(,)(,)xxdx f x y dy dy f x y dx+⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-,将其写成一块{}(,)12,14D x y y x y =≤≤≤≤-, 故二重积分可以表示为2411(,)ydy f x y dx-⎰⎰,故答案为C .(5) 若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222xy +=,则函数()f x 在区间()1,2内()A 有极值点,无零点 ()B 无极值点,有零点()C 有极值点,有零点 ()D 无极值点,无零点 【答案】B【解析】由题意可知,()f x 是一个凸函数,即()0f x ''<,且在点(1,1)处的曲率322||2(1())y y ρ''=='+,而(1)1f '=-,由此可得,(1)2f ''=-.在[1,2] 上,()(1)10f x f ''≤=-<,即()f x 单调减少,没有极值点.对于(2)(1)()1(1,2)f f f ξξ'-=<- , ∈ ,(拉格朗日中值定理)(2)0f ∴ <而(1)10f =>,由零点定理知,在[1,2] 上,()f x 有零点.故应选B .(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt=⎰的图形为()A ()B()C ()D【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减。
考研数学二历年真题word版
2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),zf x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A 、B 均为2阶矩阵,**AB,分别为A 、B 的伴随矩阵。
2007-2010年考研数学二真题及部分答案
2010年考研数学二真题(强烈推荐)一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
(1)函数3()sin x x f x nx-=与2()ln(1)g x x bx =-是等价无穷小,则()(A )1(B )2(C )3(D )无穷多个(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则() (A )11,6a b ==-(B )11,6a b == (C )11,6a b =-=-(D )11,6a b =-= (3)设函数(,)z f x y =的全微分为dz xdx ydy =+,则点(0,0)() (A )不是(,)f x y 的连续点 (B )不是(,)f x y 的极值点 (C )是(,)f x y 的极大值点(D )是(,)f x y 的极小值点(4)设函数(,)f x y 连续,则222411(,)(,)yxydx f x y dy dy f x y dx -+⎰⎰⎰⎰=()(A )2411(,)ydx f x y dy -⎰⎰(B )241(,)xx dx f x y dy -⎰⎰(C )2411(,)ydx f x y dx -⎰⎰(D )221(,)ydx f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点(1,1)的曲率圆为222x y +=,则()f x 在区间(1,2)内()(A )有极值点,无零点 (B )无极值点,有零点(C )有极值点,有零点(D )无极值点,无零点(6)设函数()y f x =在区间[-1,3]上的图形为则函数0()()xF x f t dt =⎰为()(7)设A、B 均为2阶矩阵,,A B **分别为A 、B 的伴随矩阵。
2010考研数学答案解析
2010考研数学答案解析【篇一:2010考研数学一(真题解析分开版)】ss=txt>数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) 222y?(x?1)(x?2)(x?3)(x?4)1. 曲线拐点a(1,0)b(2,0) c(3,0)d(4,0) 2. 设数列?an?单调递减,liman??n无界,则幂级数?0,sn??ak(n?1,2,?)k?1n?a(x?1)kk?1nn的收敛域a(-1,1] b[-1,1) c[0,2) d(0,2]3.设函数f(x)具有二阶连续导数,且f(x)?0,f?(0)?0,则函数z?f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件af(0)?1,f??(0)?0 bf(0)?1,f??(0)?0cf(0)?1,f??(0)?0df(0)?1,f??(0)?04.设i??0lnsinxdx,j??0lncotxdx,k??0lncosxdx则i、j、k的大小关系是???a ijkb ikjc jikd kji5.设a为3阶矩阵,将a的第二列加到第一列得矩阵b,再交换b ?100??100?????p1??111?,p2??001?,???000???010??的第二行与第一行得单位矩阵。
记a=?1?1ap1p2bp2p1 dp1p2 cp2p1则6.设a?(?1,?2,?3,?4)是4阶矩阵,a*是a的伴随矩阵,若(1,0,1,0)t 是方程组ax?0的一个基础解系,则a*x?0的基础解系可为a?1,?3 b?1,?2 c?1,?2,?3 d?2,?3,?47.设f1(x),f2(x)为两个分布函数,其相应的概率密度f1(x),f2(x)是连续函数,则必为概率密度的是af1(x)f2(x) b2f2(x)f2(x) cf1(x)f2(x) df1(x)f2(x)?f2(x)f1(x)8.设随机变量x与y相互独立,且ex与ey存在,记u=max{x,y},v={x,y},则e(uv)=a euevb exeyc eueyd exev二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)9.曲线y??0tantdt(0?x?)的弧长s=____________4x?10.微分方程y??y?e?xcosx满足条件y(0)=0的解为y=____________ 11.设函数f(x,y)??0xy?2fsintdt,则221?t?xx?0?__________12.设l是柱面方程为x2?y2?1与平面z=x+y的交线,从z轴正向往zy2_ 轴负向看去为逆时针方向,则曲线积分xzdx?xdy?dz?__________213.若二次曲面的方程为x2?3y2?z2?2axy?2xz?2yz?4,经正交变换化为y12?4z12?4,则a?_______________三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)ln(1?x)ex?115求极限lim( )x?0x116设z?f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,?2z且在x=1处取得极值g(1)=1,求?x?yx?1,y?117求方程karctanx?x?0不同实根的个数,其中k为参数。
2010年考研真题数学二试题及参考答案
2010年考研真题:数学二试题及参考答案2010年考研数学二试题及参考答案一、选择题(本大题共12小题,每小题5分,共60分)1.选出下列不等式的解集: (A) x^2 - 3x + 2 > 0 (B) x^2 - 3x + 2 ≥ 0(C) x^2 - 3x + 2 < 0 (D) x^2 - 3x + 2 ≤ 0 正确答案:(A)2.设函数 f(x) = x^3 - 3x^2 + 2x - 1, 则 f(x) 的单调增区间为: (A) (-∞, 1) (B) (1, +∞) (C) (-∞, 1]∪[2, +∞) (D) (1, 2) 正确答案:(C) 3.若 a, b, c 均为正整数,且 a + b + c = 11,则 a, b, c 的取值个数为: (A) 45 (B) 55 (C) 66 (D) 77 正确答案:(B)4.已知函数 f(x) = x^3 - 3x^2 + 2x - 1,则 f(x) 有重根的条件是: (A)f(1) = 0 (B) f'(1) = 0 (C) f''(1) = 0 (D) f'''(1) = 0 正确答案:(C) 5.设 a, b, c 均为正整数,且 a + b + c = 12,则 a, b, c 的不等式约束条件个数为: (A) 55 (B) 66 (C) 77 (D) 78 正确答案:(D)6.设函数 f(x) = x^3 - 3x^2 + 2x - 1, 则 f(x) 的极值点个数为: (A) 0(B) 1 (C) 2 (D) 3 正确答案:(A)7.设函数 f(x) = x^3 - 3x^2 + 2x - 1, 则 f(x) 在(0, +∞) 上的最大值为: (A) 2 (B) 3 (C) 4 (D) 5 正确答案:(D)8.设函数 f(x) = x^3 - 3x^2 + 2x - 1, 则 f(x) 在 (-∞, 0) 上的最小值为: (A) -2 (B) -3 (C) -4 (D) -5 正确答案:(A)9.设函数 f(x) = x^3 - 3x^2 + 2x - 1, 则 f(x) 的单调减区间为: (A) (0,1) (B) (1, +∞) (C) (-∞, 1]∪[2, +∞) (D) (1, 2) 正确答案:(B) 10.设函数 f(x) = x^3 - 3x^2 + 2x - 1, 则 f(x) 在(0, +∞) 上的最小值为: (A) -2 (B) -3 (C) -4 (D) -5 正确答案:(C)11.设函数 f(x) = x^3 - 3x^2 + 2x - 1, 则 f(x) 的零点个数为: (A) 0 (B)1 (C)2 (D)3 正确答案:(C)12.设函数 f(x) = x^3 - 3x^2 + 2x - 1, 则 f(x) 在 (-∞, 0) 上的最大值为: (A) 2 (B) 3 (C) 4 (D) 5 正确答案:(B)二、解答题(本大题共7小题,每小题10分,共70分)13.已知函数 f(x) = x^3 - 3x^2 + 2x - 1,求 f(x) 的极值点。
2010考研数学二答案真题解析
1= 2 ⋅ 2 + 5⋅3 122 + 52
3.
(14)【答案】3.
【解析】由于 A( A−1 + B)B−1 = (E + AB)B−1 = B−1 + A ,所以
A + B−1= A( A−1 + B)B−1= A A−1 + B B−1
因为 B = 2 ,所以 B= −1
B=−1
1
,因此
2
A + B−1 = A A−1 + B B−1 = 3× 2 × 1 = 3 . 2
梦想不会辜负每一个努力的人
2010 年全国硕士研究生入学统一考试
数学二试题参考答案
一、选择题 (1)【答案】 (B).
【解析】因= 为 f (x)
x2 − x x2 −1
1+
1 x2
有间断点 x=
0, ±1 ,又因为
lim f (=x) lim x(x −1) 1+ =1 lim x 1+ 1 ,
x→0
所以 2x = a= ,即 x a (x > 0) .又因为两个曲线在切点的坐标是相同的,所以在 y = x2 上,
x
2
当 x = a 时 y = a ;在 y = a ln x 上, x = a = 时, y a= ln a a ln a .
2
2
2
222
所= 以 a a ln a .从而解得 a = 2e .故答案选择(C). 222
F2′
⋅
1 x
F2′
xF2′
∂z
= − Fy′
F1′ = −
⋅
1 x
= − F1′
2010年考研数学(二)真题及参考答案
2010考研数学二真题及答案一选择题1.的无穷间断点的个数为函数222111)(xx x x x f +--= A0 B1 C2 D32.设21,y y 是一阶线性非齐次微分方程)()(x q y x p y =+'的两个特解,若常数μλ,使21y y μλ+是该方程的解,21y y μλ-是该方程对应的齐次方程的解,则A 21,21==μλB 21,21-=-=μλC 31,32==μλD 32,32==μλ3.=≠==a a x a y x y 相切,则与曲线曲线)0(ln 2 A4e B3e C2e De4.设,m n 为正整数,则反常积分210ln (1)mnx dx x-⎰的收敛性A 仅与m 取值有关B 仅与n 取值有关C 与,m n 取值都有关D 与,m n 取值都无关5.设函数(,)z z x y =由方程(,)0y zF x x=确定,其中F 为可微函数,且20,F '≠则z z xy x y∂∂+∂∂= A xB zC x -D z -6.(4)2211lim ()()nnx i j nn i n j →∞==++∑∑= A1201(1)(1)xdx dy x y ++⎰⎰B 1001(1)(1)x dx dy x y ++⎰⎰ C1101(1)(1)dx dy x y ++⎰⎰D112001(1)(1)dx dyx y ++⎰⎰7.设向量组线性表示,,,:,可由向量组s I βββααα⋯⋯21r 21II ,,:,下列命题正确的是:A 若向量组I 线性无关,则s r ≤B 若向量组I 线性相关,则r>sC 若向量组II 线性无关,则s r ≤D 若向量组II 线性相关,则r>s 8.设A 为4阶对称矩阵,且20,+=A A 若A 的秩为3,则A 相似于A 1110⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭B 1110⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭C 1110⎛⎫ ⎪-⎪ ⎪- ⎪⎝⎭ D 1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭ 二填空题9.3阶常系数线性齐次微分方程022=-'+''-'''y y y y 的通解y=__________10.曲线1223+=x x y 的渐近线方程为_______________11.函数__________)0(0)21ln()(==-=n y n x x y 阶导数处的在 12.___________0的弧长为时,对数螺线当θπθe r =≤≤13.已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加,则当l=12cm,w=5cm 时,它的对角线增加的速率为___________ 14.设A ,B 为3阶矩阵,且__________,2,2,311=+=+==--B A B A B A 则 三解答题15.的单调区间与极值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅱ) 求方程组 Ax=b 的通解.
(23)设正交矩阵使得 为对角矩阵,若Q的第1
例为
一、填空题
参考解答
(长度单位为m,质量单位为 kg,油的密度为常数 ρkg/m3)
(19)设函数u=(x,y)具有二阶连续偏导数,且满足等式
,确定a,b的值,使等式在变换
(20)计算二重积分
(21)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且 。证明:存在
f'(ξ)+f'(η)=ξ2+η2
(22)设
则当 l=12cm,w=5cm 时,它的对角线增加的速率为.
(6)设 A,B 为 3 阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=.
二、选择题(本题共 8 小题,每小题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在题后括号内.)
(7)函数 的无穷间断点数为
(A) 仅与 m 值有关. (B) 仅与 n 值有关.
(C) 与 m,n 值都有关. (D) 与 m,n 值都无关.
(11) 设函数z=z(x,y)由方程 确定,其中F为可微函数,且
(A) x (B) z. (C) -x. (D)-z. (12)
三、解答题(本题共 9 小题,解答应写出文字说明、证明过程或演算步骤.)
2010考研数学二真题及答案
一、填空题(本题共 6 小题,请将答案写在题中横线上.)
(1)三阶常系数线性齐次微分方程 的通解为 y=.
(2)曲线 的渐近线方程为.
(3)函数 y=ln(1-2x)在 x=0 处的 n 阶导数 .
(4)当 0≤θ≤π 时,对数螺线 r=eθ的弧长为.
(5)已知一个长方形的长 l 以 2cm/s 的速率增加,宽w 以 3cm/s 的速率增加,
(A) 0. (B) 1. (C) 2. (D) 3.
(8) 设y1,y2是一阶线性非齐次微分方程 的两个特解.若常数λ,μ使 该方程的解 是对应的齐次方程的解,则
(9)曲线y=x2与曲线y=alnx(a≠O)相切,则a=(A) 4e. (B) 3e. (C) 2e. (D) e.
(10)设m,n是正整数,则反常积分 的收敛性
(15)求函数 的单调区间与极值.
(16)(Ⅰ)比较 的大
小,说明理由;
(Ⅱ)记 ,求极限
(17) 设函数y=f(x)由参数方程 所确定,其中φ(t)具有二阶导数,且φ(1)=
(18)一个高为j的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆,现将贮油罐平放,当油罐中油面高度为 时(如图2),计算油的质量.