第十章 双线性函数与辛空间
白国仲《高等代数》§10.3 双线性函数
i 1
i 1
则 g( , ) x1 x2
y1
xn
B
y2
,
yn
是V上的一个双线性函数. 为满射.
§10.3 双线性函数
若双线性函数 f ( , ) g( , ), 但 ( f ) ( g).
设 f ( , ) A f (i , j ) ,
第十章 双线性函数
§10.1 线性函数 §10.2 对偶空间 §10.3 双线性函数 §10.4 对称双线性函数
§10.3 双线性函数
一、双线性函数 二、度量矩阵 三、非退化双线性函数
§10.3 双线性函数
一、双线性函数
定义 设V 是数域 P上的n 维线性空间,映射 f :V V P 为 V上的二元函数. 即对 , V , 根据 f 唯一地对应于P 中一个数 f ( , ) , 如果 f ( , ) 具有性质:
易证 f g, kf 仍为V上双线性函数.
并且 ( f g)(i , j ) f (i , j ) g(i , j )
f g A B f (i , j ) g(i , j ) kf kA k f (i , j )
§10.3 双线性函数
而 A' X 0只有零解 A' 0. 即 A 0, 即 A 非退化.
推论: V , 由 f ( , ) 0 可推出 0,
则 f 非退化.
§10.3 双线性函数
例、设 A P mm , 定义 Pmn 上的一个二元函数 f ( X ,Y ) Tr( X ' AY )nn, X ,Y P mn (1) 证明 f 是 Pmn上得双线性函数; (2) 求 f ( X ,Y ) 在基 E11, , E1n , E21, , E2n , , Em1, , Emn 下的度量矩阵.
北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品
第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。
高等代数(第三版)10.3双线性函数
f ( , ) x1 y1
xr yr (0 r n)
第十章 双线性函数与辛空间 10.3 双线性函数
推论2 设V为实数域上n维线性空间, f ( , )V上的一个对称双线性函数, 则存在V的一组基1, 2, , n, 对V中任意向量= xi i , = yi i , 有
结论2 V上的反对称双线性函数f ( , ) 如果是非退化的,则存在V的一组基
1, -1 , r , -r使
f ( i , i ) 1 i 1, , r f ( , ) 0 i j 0 i j
第十章 双线性函数与辛空间 10.3 双线性函数
式中1 , 2 ,1 ,2是V中任意向量, k1 ,k2是P中任意数,则称f ( , ) 为V上的一个双线性函数.
第十章 双线性函数与辛空间 10.3 双线性函数
例1 欧氏空间V的内积是V上双线性函 数 例2 设 f1 ( ), f 2 ( ) 都是线性空间V上的线性函数,则
f ( , ) f1 ( ) f 2 ( )
i=1 i=1 n n
f ( , ) x1 y1 (0 p r n)
x p y p x p 1 y p 1
xr yr
第十章 双线性函数与辛空间 10.3 双线性函数
定义7 设V为数域P上线性空间, f ( , )是V上的对称双线性函数, 当= 时,V上函数f ( , )称为 f ( , )对应的二次齐次函数.
第十章 双线性函数与辛空间 10.3 双线性函数
结论
双线性函数是对称的
当且仅当f ( , )=f ( , ) 当且仅当它在任一组基下的 度量矩阵是对称矩阵. 双线性函数是反对称的 当且仅当f ( , )=-f ( , ) 当且仅当它在任一组基下的 度量矩阵是反对称矩阵.
(完整版)高等代数(北大版第三版)习题答案II
证 1)作变换 ,即
,
则
。
因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而
,
令
,
则
。
由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设
。
其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换
,
使得
。
下面证明 。采用反证法。设 ,考虑线性方程组
,
该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
,
上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以
。
同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有
。
即证。
5.设 是反对称矩阵,证明: 合同于矩阵
。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型
,
其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即
,
这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使
,
即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
高等代数(第三版)10.1线性函数
, an
(2)对于 x11 x2 2
xn n V,
满足上述条件的线性函数为
f ( ) a1 x1 a2 x2
an xn
结论:数域P上的任意n维线性空间上的任 一个线性函数都可表示为
f ( ) a1 x1 a2 x2
一、线性函数 对偶空间 二、双线性函数 辛空间
第十章 双线性函数与辛空间 10.1线性函数
第一节 线性函数
线性函数的定义 线性函数的性质 结论
第十章 双线性函数与辛空间 10.1线性函数
一、线性函数的概念
设V是数域P上的线性空间,f是V到P的 一个映射,如果f满足
(1) f ( ) f ( ) f ( ) (2) f (k ) kf ( )
例3、 A是数域P上一个n级矩阵,设
a11 a12 a21 a22 A an1 an 2 a1n a2 n ann
则A的迹 Tr ( A) a11 a22
ann
是P上全体n级矩阵构成的线性空间上的一 个线性函数
第十章 双线性函数与辛空间 10.1线性函数
例4、设 V Pnn , A Pnn ,
定义V到P的映射
f ( X ) Tr ( AX ) X P
问f是否是V上的线性函数?
nn
第十章 双线性函数与辛空间 10.1线性函数
例5、设V P[ x], T是P中一个取定的数
定义 P[ x]上的函数 Lt 为:
Lt ( p( x)) p(t ), p( x) P[ x]
f (0) 0, f ( ) f ( )
2、 如果 是1,2, ,S
十双线性函数与辛空间
第十章 双线性函数与辛空间§1 线性函数定义1 设V 是数域P 上的一个线性空间,f 是V 到P 的一个映射,如果f 满足1))()()(βαβαf f f +=+;2))()(ααkf k f =,式中βα,是V 中任意元素,k 是P 中任意数,则称f 为V 上的一个线性函数.从定义可推出线性函数的以下简单性质:1. 设f 是V 上的线性函数,则)()(,0)0(ααf f f -=-=.2. 如果β是s ααα,,,21 的线性组合:s s k k k αααβ+++= 2211那么)()()()(2211s s f k f k f k f αααβ+++=例1设n a a a ,,,21 是P 中任意数,),,,(21n x x x X =是n P 中的向量.函数n n n x a x a x a x x x f X f +++== 221121),,,()( (1)就是P 上的一个线性函数.当021====n a a a 时,得0)(=X f ,称为零函数,仍用0表示零函数.实际上,n P 上的任意一个线性函数都可以表成这种形式.令n i i ,,2,1,)0,,0,1,0,,0( ==ε.第i 个中任一向量),,,(21n x x x X =可表成n n x x x X εεε+++= 2211.设f 是上一个线性函数,则∑∑====i i i i i i f x x f X f 11)()()(εε令,21,)(n i f a i i ,,, ==ε则n n x a x a x a X f +++= 2211)(就是上述形式.例2 A 是数域P 上一个n 级矩阵,设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211, 则A 的迹 nn a a a A Tr +++= 2211)(是P 上全体n 级矩阵构成的线性空间n n P ⨯上的一个线性函数.例3 设t x P V ],[=是P 中一个取定的数.定义][x P 上的函数t L 为][)(,)())((x P x p t p x P L t ∈=,即))((x p L t 为)(x p 在t 点的值,))((x p L t 是][x P 上的线性函数.如果V 是数域P 上一个n 维线性空间.取定V 的一组基n εεε,,,21 .对V 上任意线性函数f 及V 中任意向量α:n n x x x εεεα+++= 2211都有∑∑====ni i i n i i i f x x f f 11)()()(εεα. (2)因此,)(αf 由)(,),(),(21n f f f εεε 的值唯一确定.反之,任给P 中n 个数n a a a ,,,21 ,用下式定义V 上一个函数f :∑∑===i i i i i i x a x f 11)(ε.这是一个线性函数,并且n i a f i i ,,2,1,)( ==ε因此有定理1 设V 是P 上一个n 维线性空间,n εεε,,,21 是V 的一组基,n a a a ,,,21 是P 中任意n 个数,存在唯一的V 上线性函数f 使n i a f i i ,,2,1,)( ==ε.§2 对偶空间设V 是数域P 上一个n 维线性空间. V 上全体线性函数组成的集合记作),(P V L .可以用自然的方法在),(P V L 上定义加法和数量乘法.设g f ,是V 的两个线性函数.定义函数g f +如下:V g f g f ∈+=+αααα,)()()(.g f +也是线性函数:,))(())(()()()()()()())((βαβαβαβαβαβαg f g f g g f f g f g f +++=+++=+++=++))(()()()()())((ααααααg f k kg kf k g k f k g f +=+=+=+.g f +称为f 与g 的和.还可以定义数量乘法.设f 是V 上线性函数,对于P 中任意数k ,定义函数kf 如下:V f k kf ∈=ααα,))(())((,kf 称为k 与f 的数量乘积,易证kf 也是线性函数.容易检验,在这样定义的加法和数量乘法下,),(P V L 成为数域P 上的线性空间.取定V 的一组基n εεε,,,21 ,作V 上n 个线性函数n f f f ,,,21 ,使得.,,2,1,,,0;,1)(n j i i j i j f j i =⎩⎨⎧≠==ε (1) 因为i f 在基n εεε,,,21 上的值已确定,这样的线性函数是存在且唯一的.对V 中向量∑==ni i i x 1εα,有i i x f =)(α, (2)即)(αi f 是α的第i 个坐标的值.引理 对V 中任意向量α,有∑==ni i i f 1)(εαα, (3)而对),(P V L 中任意向量f ,有∑==ni i i f f f 1)(ε. (4)定理2 ),(P V L 的维数等于V 的维数,而且n f f f ,,,21 是),(P V L 的一组基. 定义2 ),(V P L 称为V 的对偶空间.由(1)决定),(P V L 的的基,称为n εεε,,,21 的对偶基.以后简单地把V 的对偶空间记作*V .例 考虑实数域R 上的n 维线性空间n x P V ][=,对任意取定的n 个不同实数n a a a ,,,21 ,根据拉格朗日插值公式,得到n 个多项式.,,2,1,)())(()()())(()()(111111n i a a a a a a a a a x a x a x a x x p n i i i i i i n i i i =--------=+=+- 它们满足.,,2,1,,,0;,1)(n j i i j i j a p j i =⎩⎨⎧≠==)(,,)(),(21x p x p x p n 是线性无关的,因为由0)()()(2211=+++x p c x p c x p c n n用i a 代入,即得n i c a p c a p ci i p i n k i k k ,,2,1,0)()(1 ====∑=.又因V 是n 维的,所以)(,,)(),(21x p x p x p n 是V 的一组基.设),,2,1(n i V L i =∈*是在点i a 的取值函数:.,,2,1.)(,)())((n i V x p a p x p L i i =∈=则线性函数i L 满足.,,2,1,,,,0;,1)())((n j i j i j i a p x p L i j j i =⎩⎨⎧≠=== 因此,n L L L ,,,21 是)(,,)(),(21x p x p x p n 的对偶基.下面讨论V 的两组基的对偶基之间的关系.设V 是数域P 上一个n 维线性空间.n εεε,,,21 及n ηηη,,,21 是V 的两组基.它们的对偶基分别是n f f f ,,,21 及n g g g ,,,21 .再设A n n ),,,(),,,(2121εεεηηη =B f f f g g g n n ),,,(),,,(2121 =其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n b b b b b b b b b B 212222111211 由假设 n i a a a n ni i i i ,,2,1,2211 =+++=εεεη,n j f b f b f b g n nj j j i ,,2,1,2211 =+++=.因此n j i j i j i a b a b a b a a a f b g ninj i j i j n ni i i nk k kj i j ,,2,1,,,0;,1)()(221122111 =⎩⎨⎧≠==+++=+++=∑=εεεη由矩阵乘法定义,即得 E A B ='即1-='A B定理3 设n εεε,,,21 及n ηηη,,,21 是线性空间V 的两组基,它们的对偶基分别为n f f f ,,,21 及n g g g ,,,21 .如果由n εεε,,,21 到n ηηη,,,21 的过渡矩阵为A ,那么由n f f f ,,,21 到n g g g ,,,21 的过渡矩阵为1)(-'A .设V 是P 上一个线性空间,*V 是其对偶空间,取定V 中一个向量x ,定义*V 的一个函数**x 如下:***∈=V f x f f x ,)()(.根据线性函数的定义,容易检验**x 是*V 上的一个线性函数,因此是*V 的对偶空间****=V V )(中的一个元素.定理 4 V 是一个线性空间,**V 是V 的对偶空间的对偶空间. V 到**V 的映射**→x x是一个同构映射.这个定理说明,线性空间V 也可看成*V 的线性函数空间,V 与*V 实际上是互为线性函数空间的.这就是对偶空间名词的来由.由此可知,任一线性空间都可看成某个线性空间的线性函数所成的空间,这个看法在多线性代数中是很重要的.§3 双线性函数定义3 V 是数域P 上一个线性空间,),(βαf 是V 上一个二元函数,即对V 中任意两个向量βα,,根据f 都唯一地对应于P 中一个数),(βαf .如果),(βαf 有下列性质:1)),(),(),(22112211βαβαββαf k f k k k f +=+;2)),(),(),(22112211βαβαβααf k f k k k f +=+,其中2121,,,,,βββααα是V 中任意向量,21,k k 是P 中任意数,则称),(βαf 为V 上的一个双线性函数.这个定义实际上是说对于V 上双线性函数),(βαf ,将其中一个变元固定时是另一个变元的线性函数.例1 欧氏空间V 的内积是V 上双线性函数.例2 设)(),(21ααf f 都是线性空间V 上的线性函数,则V f f f ∈=βαβαβα,,)()(),(21是V 上的一个双线性函数.例3 设n P 是数域P 上n 维列向量构成的线性空间.n P Y X ∈,再设A 是P 上n 级方阵.令AY X Y X f '=),(, (1)则),(Y X f 是n P 上的一个双线性函数.如果设),,,(,),,,(2121n n y y y Y x x x X ='=',并设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 则 ∑∑===n i nj j i ij y x a Y X f 11),(. (2)(1)或(2)实际上是数域P 上任意n 维线性空间V 上的双线性函数),(βαf 的一般形式.可以如下地说明这一事实.取V 的一组基n εεε,,,21 .设X x x x n n n ),,,(),,,(212121εεεεεεα =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=, Y y y y n n n ),,,(),,,(212121εεεεεεβ =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=, 则∑∑∑∑======n i nj j i j i n i n j j j i i y x f y x f f 1111),(),(),(εεεεβα. (3)令n j i f a j i ij ,,2,1,,),( ==εε,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 则(3)就成为(1)或(2). 定义 4 设),(βαf 是数域P 上n 维线性空间V 上的一个双线性函数. n εεε,,,21 是V 的一组基,则矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=),(),(),(),(),(),(),(),(),(212221212111n n n n n n f f f f f f f f f A εεεεεεεεεεεεεεεεεε (4) 叫做),(βαf 在n εεε,,,21 下的度量矩阵.上面的讨论说明,取定V 的一组基n εεε,,,21 后,每个双线性函数都对应于一个n 级矩阵,就是这个双线性函数在基n εεε,,,21 下的度量矩阵.度量矩阵被双线性函数及基唯一确定.而且不同的双线性函数在同一基下的度量矩阵是不同的.反之,任给数域P 上一个n 级矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 对V 中任意向量X n ),,,(21εεεα =及Y n ),,,(21εεεβ =,其中),,,(21n x x x X =',),,,(21n y y y Y ='用∑∑==='=n i nj j i ij y x a AY X f 11),(βα定义的函数是V 上一个双线性函数.容易计算出),(βαf 在n εεε,,,21 下的度量矩阵就是A .因此,在给定的基下,V 上全体双线性函数与P 上全体n 级矩阵之间的一个双射.在不同的基下,同一个双线性函数的度量矩阵一般是不同的,它们之间的什么关系呢?设n εεε,,,21 及n ηηη,,,21 是线性空间V 的两组基:C n n ),,,(),,,(2121εεεηηη =βα,是V 中两个向量12121),,,(),,,(X X n n ηηηεεεα ==,12121),,,(),,,(Y Y n n ηηηεεεβ ==那么11,CY Y CX X ==如果双线性函数),(βαf 在n εεε,,,21 及n ηηη,,,21 下的度量矩阵分别为B A ,,则有1111)()()(),(Y AC C X CY A CX AY X f ''='='=βα.又11),(BY X f '=βα.因此AC C B '=这说明同一个双线性函数在不同基下的度量矩阵是合同的.定义5 设),(βαf 是线性空间V 上一个双线性函数,如果0),(=βαf对任意V ∈β,可推出0=α,f 就叫做非退化的.可以应用度量矩阵来判断一个双线性函数是不是退化的.设双线性函数),(βαf 在基n εεε,,,21 下的度量矩阵为A ,则对X n ),,,(21εεεα =,Y n ),,,(21εεεβ =,有AY X f '=),(βα如果向量α满足V f ∈∀=ββα,0),(,那么对任意Y 都有0='A Y X因此0='A X而有非零向量X '使上式成立的充要条件为A 是退化的,因此易证双线性函数),(βαf 是非退化的充要条件为其度量矩阵A 为非退化矩阵.对度量矩阵作合同变换可使度量矩阵化简.但对一般矩阵用合同变换化简是比较复杂的.对于对称矩阵已有较完整的理论.定义6 ),(βαf 是线性空间V 上的一个双线性函数,如果对V 上任意两个向量βα,都有),(),(αββαf f =,则称),(βαf 为对称双线性函数.如果对V 中任意两个向量βα,都有),(),(αββαf f -=则称),(βαf 为反对称双线性函数.设),(βαf 是线性空间V 上的一个对称双线性函数,对V 的任一组基n εεε,,,21 ,由于),(),(i j j i f f εεεε=故其度量矩阵是对称的,另一方面,如果双线性函数),(βαf 在n εεε,,,21 下的度量矩阵是对称的,那么对V 中任意两个向量X n ),,,(21εεεα =及Y n ),,,(21εεεβ =都有),(),(αββαf AX Y X A Y AY X f ='=''='=.因此),(βαf 是对称的,这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称的.同样的,双线性函数是反对称的的充要条件是它在任一组基下的度量矩阵是反对称矩阵.我们知道,欧氏空间的内积不仅是对称双线性函数,而且它在任一基下的度量矩阵是正交矩阵.定理5 设V 是数域P 上n 维线性空间,),(βαf 是V 上对称双线性函数,则存在V 的一组基n εεε,,,21 ,使),(βαf 在这组基下的度量矩阵为对角矩阵.如果),(βαf 在n εεε,,,21 下的度量矩阵为对角矩阵,那么对∑∑====ni i i n i i i y x 11,εβεα,),(βαf 有表示式n n n y x d y x d y x d f +++= 222111),(βα.这个表示式也是),(βαf 在n εεε,,,21 下的度量矩阵为对角形的充分条件.推论1 设V 是复数上n 维线性空间,),(βαf 是V 上对称双线性函数,则存在V 的一组基n εεε,,,21 ,对V 中任意向量∑∑====ni i i n i i i y x 11,εβεα,有)0(),(2211n r y x y x y x f r r ≤≤+++= βα.推论2 设V 是实数n 上维线性空间,),(βαf 是V 上对称双线性函数,则存在V 的一组基n εεε,,,21 ,对V 中任意向量∑∑====ni i i n i i i y x 11,εβεα,有)0(),(1111n r p y x y x y x y x f r r p p p p ≤≤≤---++=++ βα.对称双线性函数与二次齐次函数是1—1对应的.定义7 设V 是数域P 上线性空间,),(βαf 是V 上双线性函数.当βα=时,V 上函数),(ααf 称为与),(βαf 对应的二次齐次函数.给定V 上一组基n εεε,,,21 ,设),(βαf 的度量矩阵为()n n ija A ⨯=.对V 中任意向量∑==n i i i x 1εα有∑∑===n i nj j i ij x x a f 11),(αα. (5)式中j i x x 的系数为ji ij a a +.因此如果两个双线性函数的度量矩阵分别为()n n ij a A ⨯= 及()n n ij b B ⨯=只要n j i b b a a ji ij ji ij ,,2,1,, =+=+,那么它们对应的二次齐次函数就相同,因此有很多双线性函数对应于同一个二次齐次函数,但是如果要求A 为对称矩阵,即要求双线性函数为对称的,那么一个二次齐次函数只对应一个对称双线性函数.从(1)式看出二次齐次函数的坐标表达式就是以前学过的二次型.它与对称矩阵是1—1对应的,而这个对称矩阵就是唯一的与这个二次齐次函数对应的对称双线性函数.定理6 设),(βαf 是n 维线性空间V 上的反对称双线性函数,则存在V 的一组基s r r ηηεεεε,,,,,,,111 --使⎪⎩⎪⎨⎧=∈=≠+===-.,,1,,0),(;0,0),(;,,1,1),(s k V f j i f r i f k j i i i αηαεεεε (6) 从定理5可知,V 上的对称双线性函数),(βαf 如果是非退化的则有V 的一组基n εεε,,,21 满足⎩⎨⎧≠==≠.,0),(;,,2,1,0),(i j f n i f j i i i εεεε 前面的不等式是非退化条件保证的,这样的基叫做V 的对于),(βαf 的正交基.而从定理6可知,V 上的反对称双线性函数),(βαf 如果是非退化的,则有V 的一组基r r --εεεε,,,,11 使⎩⎨⎧≠+===-.0,0),(;,,2,1,1),(j i f r i f j i i i εεεε 由于非退化的条件,定理6中的s ηη,,1 不可能出现.因此具有非退化反对称双线性函数的线性空间一定是偶数维的.对于具有非退化对称、反对称双线性函数的线性空间V ,也可以将这些双线性函数看成V 上的一个“内积”,仿照欧氏空间来讨论它的度量性质,一般的长度,角度很难的进去,但是还能讨论“正交性”、“正交基”以及保持这个双线性函数的线性变换等.定义8 设V 是数域P 上的线性空间,在V 上定义一个非退化线性函数,则V 称为一个双线性度量空间.当f 是非退化对称双线性函数时,V 称为P 上的正交空间;当V 是n 维实线性空间,f 是非退化对称双线性函数时,V 称为准欧氏空间;当f 是非退化反对称双线性函数时,称V 为辛空间.有着非退化双线性函数f 的双线性度量空间常记为),(f V .§4 辛空间由前一节的讨论,已经得到下面的两点性质:1. 辛空间),(f V 中一定能找到一组基n n ---εεεεεε,,,,,,,2121 满足,1,1),(n i f i i ≤≤=-εε0,,,0),(≠+≤≤-=j i n j i n f j i εε.这样的基称为),(f V 的辛正交基.还可看出辛空间一定是偶数维的.2.任一n 2级非退化反对称矩阵K 可把一个数域P 上n 2维空间V 化成一个辛空间,且使K 为V 的某基n n ---εεεεεε,,,,,,,2121 下度量矩阵.又此辛空间在某辛正交基n n ---εεεεεε,,,,,,,2121 下的度量矩阵为nn O E E O J 22⨯⎪⎪⎭⎫ ⎝⎛-=, (1) 故K 合同于J .即任一n 2级非退化反对称矩阵皆合同于J .两个辛空间),(11f V 及),(22f V ,若有1V 到2V 的作为线性空间的同构ℜ,它满足),(),(21Kv Ku f v u f =,则称ℜ是),(11f V 到),(22f V 的辛同构.),(11f V 到),(22f V 的作为线性空间的同构是辛同构当且仅当它把),(11f V 的一组辛正交基变成),(22f V 的辛正交基.两个辛空间是辛同构的当且仅当它们有相同的维数.辛空间),(f V 到自身的,辛同构称为),(f V 上的辛变换.取定),(f V 的一组辛正交基n n ---εεεεεε,,,,,,,2121 ,V 上的一个线性变换ℜ,在该基下的矩阵为K ,⎪⎪⎭⎫ ⎝⎛=D C B A K , 其中D C B A ,,,皆为n n ⨯方阵.则ℜ是辛变换当且仅当J JK K =',亦即当且仅当下列条件成立:E B C D A B D D B A C C A ='-''=''=',,且易证0||≠K ,及辛变换的乘积、辛变换的逆变换皆为辛变换.设),(f V 是辛空间,V v u ∈,,满足0),(=v u f ,则称v u ,为辛正交的. W 是V 的子空间,令{}W w w u f V u W ∈∀=∈=⊥,0),(|. (2)⊥W 显然是V 的子空间,称为W 的辛正交补空间.定理7 ),(f V 是辛空间,W 是V 的子空间,则W V W dim dim dim -=⊥.定义9 ),(f V 为辛空间,W 为V 的子空间.若⊥⊂W W ,则称W 为),(f V 的迷向子空间;若⊥=W W ,即W 是极大的(按包含关系)迷向子空单间,也称它为拉格朗日子空间;若{}0=⊥W W ,则W 称W 为),(f V 的辛了空间.例如,设n n ---εεεεεε,,,,,,,2121 是),(f V 的辛正交基,则),,,(21k L εεε 是迷向子空间. ),,,(21n L εεε 是极大迷向子空间,即拉格朗日子空间),,,,,,,(2121k k L ---εεεεεε 是辛子空间.对辛空间),(f V 的子空间W U ,.通过验证,并利用定理7,可得下列性质:(1) W W =⊥⊥)(,(2) ⊥⊥⊂⇒⊂U W W U ,(3) 若U 是辛子空间,则⊥⊕=U U V(4) 若U 是迷向子空间,则V U dim 21dim ≤(5) 若U 是拉格朗日子空间,则V U dim 21dim = 定理8 设L 是辛空间),(f V 的拉格朗日子空间,{}n εεε,,,21 是L 的基,则它可扩充为),(f V 的辛正交基.推论 设W 是),(f V 的迷向子空间,{}k εεε,,,21 是L 的基,则它可扩充成),(f V 的辛正交基.对于辛子空间U ,U f |也是非退化的.同样⊥U f |也非退化.由定理7还有⊥⊕=U U V .定理9 辛空间),(f V 的辛子空间)|,(U f U 的一组辛正交基可扩充成),(f V 的辛正交基..定理10 令),(f V 为辛空间,U 和W 是两个拉格朗日子空间或两个同维数的辛子空间,则有),(f V 的辛变换把U 变成W .辛空间),(f V 的两个子空间V 及W 之间的(线性)同构ℜ若满足V v W u Kv Ku f v u f ∈∈∀=,,),(),(则称ℜ为V 与W 间的等距.Witt 定理 辛空间),(f V 的两个子空间V ,W 之间若有等距,则此等距可扩充成),(f V 的一个辛变换.下面是辛变换的特征值的一些性质.ℜ是辛空间),(f V 上的辛变换,则ℜ的行列式为1.取定),(f V 的辛正交基n n ---εεεεεε,,,,,,,2121 .设ℜ在基下矩阵为K ,这时有J JK K ='.定理11 设ℜ是n 2维辛空间中的辛变换,K 是ℜ在某辛正交基下的矩阵.则它的特征多项式||)(K E f -=λλ满足)1()(2λλλf f n =.若设 n n n n a a a a f 21212120)(++++=--λλλλ ,则n i a a i n i ,,1,0,2 ==-.由定理11可知,辛变换ℜ的特征多项式)(λf 的(复)根λ与λ1是同时出现的,且具有相同的重数.它在P 中的特征值也如此.又||K 等于)(λf 的所有(复)根的积,而1||=K .故特征值1-的重数为偶数.又不等于1±的复根的重数的和及空间的维数皆为偶数,因此特征值为1+的重数也为偶数.定理12 设j i λλ,是数域P 上辛空间),(f V 上辛变换ℜ在P 中的特征值,且1≠j i λλ.设iV λ,j V λ分别是V 中对应于特征值i λ及j λ的特征子空间.则j i V v V u λλ∈∈∀,,有0),(=v u f ,即i V λ与j V λ是辛正交的.特别地,当1≠i λ时iV λ是迷向子空间.第十章 双线性函数与辛空间(小结)一、基本概念线性函数;对偶空间。
北京大学数学系《高等代数》(第3版)(课后习题 双线性函数与辛空间)
第10章 双线性函数与辛空间1.V是数域P上一个3维线性空间,ε1,ε2,ε3是它的一组基,f是V上一个线性函数,已知f(ε1+ε3)=1,f(ε2-2ε3)=-1,f(ε1+ε2)=-3,求f(x1ε1+x2ε2+x3ε3).解:先计算出f(ε1)=4,f(ε2)=-7,f(ε3)=-3,就得到f(x1ε1+x2ε2+x3ε3)=4x1-7x2-3x3.2.V及ε1,ε2,ε3同上题,试找出一个线性函数f,使f(ε1+ε3)=f(ε1-2ε3)=0,f(ε1+ε2)=1.解:可算出f(ε1)=f(ε3)=0,f(ε2)=1,就得到f(x1ε1+x2ε2+x3ε3)=x2.3.设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,a1=ε1-ε3,a2=ε1+ε2+ε3,a3=ε2+ε3.试证a1,a2,a3是V的一组基并求它的对偶基(用f1,f2,f3表出).解:可利用定理3.计算由于右端的矩阵的行列式≠0,故a1,a2,a3是V的一组基.设g1,g2,g3是a1,a2,a3的对偶基,则即g1=f2-f3,g2=f1-f2+f3,g3=-f1+2f2-f3.4.设V是一个线性空间,f1,f2,…,f n是V*中非零向量,试证,存在a∈V,使f(a)≠0,i=1,2, (5)证明:每个f i(a)=0作为V上向量的方程,其全体解向量构成V的一个子空间V,且都不等于V.由第六章补充题第5题的结论及解答后面的注,必有a∈V,a∈,i=1,2,…,s.所以a满足f i(a)≠0,i=1,2,V…,s.5.设a1,a2,…,a s是线性空间V中非零向量,证明有f∈V*使f(a i)≠0,i=1,2,…,s.证明:由于a i**∈(V*)*,a i**(f)=f(a i),f∈V*,a i**是(V*)*上的非零向量.由第四题必有f∈V*使f(a i)=a i**(f)≠0.6.V=P[x]3,对p(x)=c0+c1x+c2x2∈V定义试证f1,f2,f3都是V上线性函数,并找出V的一组基p1(x),p2(x),p3(x)使f1,f2,f3是它的对偶基.证明:易证f1,f2,f3都是V=P[x]3上线性函数.令p1(x)=c0+c1x+c2x2使得f1(p1(x))=1,f2(p1(x))=f3(p1(x))=0,即有解出得同样可算出满足由于p1(x),p2(x),p3(x)是V的一组基,而f1,f2,f3是它的对偶基.7.设V是一个n维欧氏空间,它的内积为(α,β),对V中确定的向量α,定义V 上一个函数α*:α*(β)=(α,β).(1)证明α*是V上线性函数;(2)证明V到V*的映射:α→α*是V到V*的一个同构映射.(在这个同构下,欧氏空间可看成自身的对偶空间)证明:(1)易证α*是V上线性函数,即α*∈v*.(2)现在令映射φ为下面逐步证明φ是线性空间的同构.①φ是单射.即证明当φ(α)=φ(β)时有α=β.对γ∈V,(φ(α))(γ)=α*(γ)=(α,γ),(φ(β))(γ)=(β,γ).故(α,γ)=(β,γ),∨γ∈V.这样(α,α)=(β,α),(α,β)=(β,β).于是(α-β,α-β)=(α,α)-(α,β)-(β,α)-(β,β)=0,即有α-β=0,因此α=β.②φ是满射.取ε1,ε2,…,εn 是V 的一组标准正交基,令f 1,f 2,…,f n 是它们的对偶基,对f =l 1f 1+…+l n f n ∈V*,令a =l 1ε1+l 2ε2+…+l n εn 则对所有εi ,∀故对所有εi ,有φ(α)(εi )=f (εi ),即φ(α)=f .③φ是线性映射.对α,β,γ∈V,k∈R,∀ φ(α+β)(γ)=(α+β,γ)=(α,γ)+(β,γ)=φ(α)(γ)+φ(β)(γ)=[φ(α)+φ(β)](γ).故φ(α+β)=φ(α)+φ(β).又φ(kα)(γ)=(kα,γ)=k (α,γ)=kφ(α)(γ)=(kφ(α))(γ),故φ(kα)=kφ(α).以上证明了φ是线性空间V 到V *的同构.8.设A 是P 上n 维线性空间V 的一个线性变换.(1)证明:对V 上的线性函数f ,fA 仍是V 上线性函数;(2)定义V *到自身的映射A *为f→fA证明A *是V *上的线性变换(3)设ε1,ε2,…,εn 是V 的一组基,f 1,f 2,…,f n 是它的对偶基,并设A 在ε1,ε2,…,εn 下的矩阵为A .证明:A *在f 1,f 2,…,f n 下的矩阵为A'.(因此A *称作A 的转置映射)证明:(1)α,β∈V,k∈P,有∀∀f A (α+β)=f (A (α+β))=f (A α+A β)=f A α+f A β,f A (kα)=f (A (kα))=f (k A α)=kf A α.故f A 是V 上线性函数.(2)由定义A *f =f A ,对f ,g∈V *,k∈P,α∈V 有∀A *(f +g )(α)=[(f +g )A ](α)=(f +g )(A (α))=f A (α)+g A (α)=(f A +g A )(α)=(A *f +A *g )(α)故A *(f +g )=A *(f )+A *(g ).又(A *(kf ))(α)=(kf )A (α)=kf (A (α))=k (A *f )(α),故A *(kf )=k (A *f ).以上证明了A *是V *上的线性变换.(3)由A (ε1,ε2,…,εn )=(ε1,ε2,…,εn )A ,f i A (ε1,ε2,…,εn )=(f i (ε1),…,f i (εn ))A =(a i1,a i2,…,a in ),于是即有。
高等代数(第三版)10.4 辛空间.
第十章 双线性函数与辛空间 10.4 辛空间
辛子空间的概念
定义8 设V为数域P上线性空间,在V 上定义了一个非退化双线性函数,则 V称为一个双线性度量空间. 当f 是非退化对称双线性函数时,V称 为P上的正交空间;当V是n维实线性 空间时,f 是非退化对称双线性函数时, V称为准欧氏空间;当f 是非退化反对称 双线性函数时,V称为辛空间.
第十章 双线性函数与辛空间 10.4 辛空间
定义 两个辛空间(V1 , f1 )及(V 2, f 2),若 有V1到V2的作为线性空间的同构,满足 f1 ( , ) f 2 ( , ), 则称 是(V1 , f1 )到(V 2, f 2)的辛同构
两个辛空间是辛同构当且仅当 它们有相同的维数
第十章 双线性函数与辛空间 10.4 辛空间
小 结
辛空间的概念及性质
作业:P423:15,17
第十章 双线性函数与辛空间 10.4 辛空间
第十章 双线性函数与辛空间ห้องสมุดไป่ตู้10.4 辛空间
定理11 设 是2n维辛空间中的 则它的特征多项式f ( ) | I K | 满足 f ( ) f ( ).若设
2n
辛变换,K是 在某辛正交基下的矩阵, 1
f ( ) a0
2n
a1
2 n 1
a2 n 1 a2 n
则ai a2 n i , i 0,1,
,n
第十章 双线性函数与辛空间 10.4 辛空间
定理12 设i , j 是数域P上辛空间(V , f ) 上的辛变换 在P中的特征值,且i j 1, 设Vi ,V j 是V中对应于特征值i 及 j的特征 子空间,则u Vi , v V j , 有f (u , v) 0, 即Vi 与V j 是辛正交的特别地,当 . i 1时, Vi 是迷向子空间.
高等代数(第三版)10.2对偶空间
, gn
的过渡矩阵为 ( AT )1
第十章 双线性函数与辛空间 10.2 对偶空间
证明: 设A (aij )nn,设由f1 , f 2 , , f n到 g1 , g 2 , , g n的过渡矩阵为B (bij ) nn , 则 (1 ,2 , ,n ) (1 , 2 , , n ) A ( g1 , g 2 , , g n ) ( f1 , f 2 , , f n ) B
第十章 双线性函数与辛空间 10.2 对偶空间
小 结
线性函数运算的定义 对偶空间的定义及性质
作业:P420:3,4
第十章 双线性函数与辛空间 10.2 对偶空间
, f n线性表示,
, f 是V *的一组基, divV * n.
第十章 双线性函数与辛空间 10.2 对偶空间
定义2
设n维线性空间V的基为1 , 2 , 由上面定理所确定V 的基f1 , f 2 , 称为1 , 2 , , n的对偶基.
*
, n, , fn
第十章 双线性函数与辛空间 10.2 对偶空间
n
kj
f k (i )
b
k 1 n
n
kj
f k ( ali l )
l 1
n
b ( a
k 1
li
f k ( l ))
b
k 1
kj
aki , n)
1 又g j (i ) 0 从而, b1 j a1i b2 j a2 i
j i ji
(i, j 1, 2,
*
第十章 双线性函数与辛空间 10.2 对偶空间
定理2
n维线性空间V的对偶空间V 的维数也是n维的.
第十章 双线性函数
第十章 双线性函数§10.1 线性函数1.设V 是数域F 上的一个线性空间, f 是V 到F 的一个映射, 若f 满足:(1)()()();(2)()(),f f f f k kf αβαβαα+=+=式中,αβ是V 中任意元素, k 是F 中任意数, 则称f 为V 上的一个线性函数.2.简单性质:设f 是V 上的线性函数 (1) (0)0,()().f f f αα=−=−(2)11221122()()()()t t t t f k k k k f k f k f αααααα+++=++L L例1 对数域F 上的任意方阵()ijn nA a ×=, 我们已定义1122()nn tr A a a a =+++L为A 的对角元之和, 称为A 的迹. 容易验证映射 :,()n n tr A tr A ×→→F F满足条件:(1)()()(),,;(2)()(),,.n n n ntr A B tr A tr B A B tr kA k tr A A k ××+=+∀∈=∀∈∈ F F F因此tr 是n n×F的线性函数.例2 设[]V F x =, a 是F 中一个取定的数. 定义[]F x 上的函数a L 为: (())(),()[],a L f x f a f x F x =∈即(())a L f x 为()f x 在a 点的值, (())a L f x 是[]F x 上的线性函数.如果V 是数域F 上的一个n 维线性空间, 取定V 的一组基12,,,n εεεL . 对V 上任意线性函数f 及V 中任意向量α:1122n n x x x αεεε=+++L都有1122()()()()n n f x f x f x f αεεε=+++L因此, ()f α由12(),(),,()n f f f εεεL 的值唯一确定. 反之, 任给F 中n 个数12,,,n a a a L , 用下式定义V 上一个函数f :11()n ni ii ii i f x a x ε===∑∑这是一个线性函数, 而且(),1,2,,i i f a i n ε==L我们有:3. 设V 是数域F 上的一个n 维线性空间, 取定V 的一组基12,,,n εεεL , 对于任给F 中n 个数12,,,n a a a L , 存在唯一的V 上线性函数f 使(),1,2,,i i f a i n ε==L .§10.2 对偶空间1.对偶空间定义设V 是数域F 上的n 维线性空间. V 上全体线性函数组成的集合记为*V .*V 上定义加法与数乘:()()()(),f g f g V αααα+=+∈.()()(()),.kf k f V ααα=∈则,f g kf +都是线性函数, 故*V 成为F 上的线性空间. *V 称为V 的对偶空间3.对偶基取定V 的一组基12,,,n εεεL ,定义V 上的n 个线性函数(1,2,,)i f i n =L 如下: ()i j ij f εδ= 则12,,,n f f f L 是*V 中线性无关的向量组, 构成*V 的一组基. 我们称之为12,,,n εεεL 的对偶基.4.对偶空间的维数*dim dim V V n ==.5.对偶基之间的关系 设12,,,n εεεL 及12,,,n ηηηL 是线性空间V 的两组基, 它们的对偶基分别是12,,,n f f f L 及12,,,n g g g L . 再设由12,,,n εεεL 到12,,,n ηηηL 的过渡矩阵为A , 那么由12,,,n f f f L 到12,,,n g g g L 的过渡矩阵为1()T A −.6.V 到**V 的同构(1)取定V 中一个向量x , 定义*V 的一个函数**x 如下: ***()(),x f f x f V =∈.(2)函数**x 具有下列性质 z****x V ∈z 若**()0x f =对一切x V ∈成立, 则0f =;z 若**()0x f =对一切*f V ∈成立的充分必要条件是0x =. (3)同构V 是一个线性空间, **V 是V 的对偶空间的对偶空间. V 到**V 的映射 **x x → 是一个同构映射.如果把V 与**V 在这个同构下等同起来, 则V 可以看成*V 的对偶空间. 这样V 与**V 具有同等的地位, 它们互为对偶.§10.3 双线性函数一、 双线性函数的定义与矩阵1.定义设V 是数域F 上一个线性空间, (,)f αβ是V 上一个二元函数, 即将V 中任意两个向量,αβ对应于F 中一个数(,)f αβ, 并且满足如下条件:1122112211221122(1)(,)(,)(,);(2)(,)(,)(,)f k k k f k f f k k k f k f αββαβαβααβαβαβ+=++=+这里121212,,,,,;,V k k αααβββ∈∈F . 我们称(,)f αβ是V 上一个双线性函数.注:将V 中一个变元固定时的映射 :,(,)f V f αβαβ→a F 和:,(,)V αϕβϕβα→a F都是V 上的线性函数, 就是说,f ααϕ都是V 的对偶空间*V 中的向量.2. 定理(双线性函数的形式)设在数域F 上的线性空间V 上定义了双线性函数f ,12,,,n εεεL 是V 的任意一组基.则任意,V αβ∈在f 下的值(,)f αβ可以由,αβ在该基下的坐标,X Y 按下列公式计算: (,)Tf X AY αβ=,其中()ij n n A a ×=由(,)ij i j a f εε=组成, 称为双线性函数f 在12,,,n εεεL 下的度量矩阵.3.简单性质设,f g 在12,,,n εεεL 下的度量矩阵分别是,A B , 则 (1)f g +在12,,,n εεεL 下的矩阵分别是A B +; (2)kf 在12,,,n εεεL 下的矩阵分别是kA 。
§10.3 双线性函数
§10.3 双线性函数
一,双线性函数 二,度量矩阵 三,非退化双线性函数
第十章 双线性函数
一,双线性函数 定义1 设V是数域F上的一个线性空间,f (α , β ) 是V上一个二 元函数,即对 α , β ∈ V , f 确定F中唯一的数 f (α , β ) 与之对应. 若对 α , α 1 , α 2 , β , β 1 , β 2 ∈ V , k1 , k2 ∈ F , f (α , β ) 满足以下两点: (1) f (α , k1 β 1 + k2 β 2 ) = k1 f (α , β 1 ) + k2 f (α , β 2 ); (2) f ( k1α 1 + k2α 2 , β ) = k1 f (α 1 , β ) + k2 f (α 2 , β ) . 则称 f (α , β ) 为V上的一个双线性函数. 由定义知:双线性函数是这样一个二元函数 f (α , β ) :对每 个变元,它都是线性函数.
f (α , k1 β 1 + k2 β 2 ) = f1 (α ) f 2 ( k1 β 1 + k2 β 2 )
= f1 (α )[k1 f 2 ( β 1 ) + k2 f 2 ( β )] = k1 f1 (α ) f 2 ( β 1 ) + k2 f1 (α ) f 2 ( β 2 ) = k1 f (α , β 1 ) + k2 f (α , β 2 ) f ( k1α 1 + k2α 2 , β ) = f1 ( k1α 1 + k2α 2 ) f 2 ( β ) = [ k1 f1 (α 1 ) + k2 f1 (α 2 )] f 2 ( β )= k1 f1 (α 1 ) f 2 ( β ) + k2 f1 (α 2 ) f 2 ( β ) = k1 f (α 1 , β ) + k2 f (α 2 , β )
高等代数(北大版)第10章习题参考答案
所以 + ∈W, ∈W,即证 W 是 V 的一个子空间。
2)设 W 1 是 V 的任一子空间,且 dim(W 1 )=m,则当 m=n 时,只要取 f 为 V 的零函数 ,就有
2
故
3
P1(x)=1+x-
x2
2
同理可得
p2(x)=-
11
+
x2
62
11
p3(x)= - +x-
x2
32
7.设 V 是个 n 维线性空间,它得内积为( , ),对 V 中确定得向量 ,定义 V 上的
一个函数 * :
* ( )=( , )
1) 证明 * 是 V 上的线性函数
2) 证明 V 到 V * 的映射是 V 到 V * 的一个同构映射(在这个同构下,欧氏空间可看成 自身的对偶空间。)
f m1 ( )= f m2 ( )=… =f n ( )=0
因而 ∈U1,即 W1 U1。
反之, =b 1 1+b 2
2 +…+b m
m +b m1
m1 +…b n
n ∈U1,
由 f m1 ( )= f m2 ( )= … =f n ( )=0 , 可 得 b m1 = b m2 = … =b n =0, 因 而 =
fi( )≠0 (i=1,2…,s)
证:对 s 采用数学归纳法。
当 s=1 时,f1≠0,所以 ∈V,使 fi( )≠0,即当 s=1 时命题成立。 假设当 s=k 时命题成立,即 ∈V,使 fi( )= i≠0 (i=1,2…,k)
高等代数第十章双线性代数
f ( 1 3 ) 1, f ( 2 2 3 ) 1, f ( 1 2 ) 3
求 f ( x1 1 x2 2 x3 3 ). 解: f ( ) f ( ) 1 f ( ) 4 1 3 1 f ( 2 ) 2 f ( 3 ) 1 f ( 2 ) 7 f ( 3 ) 3 f ( 1 ) f ( 2 ) 3
n g( i ) f i ( ) i 1
g g ( i ) f i g ( 1 ) f1 g( 2 ) f 2 g( n ) f n
i 1 n
综合②与③即得
定理2 取定线性空间V的一组基 1 , 2 ,, n ,
b1 j a1i b2 j a2 i bnj ani 1, i j . 0, i j
所以, B ' A E .
1 1 1 B ' A B ( A )' ( A ') . 即 或
因此有下述定理
定理3 设 1 , 2 ,, n 与 1 ,2 ,,n 为线性
i 1,2,, n
则
pi (a j ) 1, 0,
ji ji
i 1,2,, n
且 p1 ( x ), p2 ( x ),, pn ( x ) 为 P[ x ]n 的一组基.
这是因为:
① p1 ( x ) p2 ( x ) pn ( x ) 线性无关. 事实上,若有
c1 p1 ( x ) c2 p2 ( x ) cn pn ( x ) 0.
(1) f ( ) f ( ) f ( ) (2) f ( k ) kf ( )
高代第十章双线性函数与辛空间
§10.1 线性函数
这是因为: ① p1( x) p2( x) pn( x) 线性无关. 事实上,若有
c1 p1( x) c2 p2( x) cn pn( x) 0. 用 ai 依次代入上式则得: ci 0, i 1, 2, , n. p1( x), p2( x), , pn( x) 线性无关.
§10.1 线性函数
1. 对偶基
设 1, 2 , , n为数域 P上线性空间V 的一组基,
作映射
fi ( j )
1, 0,
i i
j j
,
i, j 1,2,
,n
则 fi L(V , P) V *,且
① 对任意 x11 x2 2
xn n V ,
有, fi ( ) xi , i 1, 2, , n
f ( ) x2 f ( 2 ) x2 .
§10.1 线性函数
定理1 设V为数域 P上的一个n 维线性空间,
1, 2 , , n为V的一组基, a1,a2 , ,an 为 P中
任意n 个数. 则存在唯一的V上线性函数 f 使
f i ai, i 1,2, ,n.
§10.1 线性函数
证明:映射 f :V P,
pi
(
x)
( x a1) (ai a1 )
( x ai1 )( x ai1 ) (ai ai1 )(ai ai1 )
( x an ) , (ai an )
i 1,2, ,n
则
pi (a j )
1, 0,
ji ji
i 1,2, ,n
且 p1( x), p2( x), , pn( x) 为 P[ x]n的一组基.
§10.1 线性函数
例1.设1, 2 , 3 是线性空间 V 的一组基, f1, f2 , f3
十双线性函数与正交空间,辛空间
下的坐标.设 ,由(4)得
,(6)
即β在基α1,…,αn下的坐标的第i个分量等于fi(β).因此
.(7)
高等代数第1011第十章双线性函数与正交空间辛空间引言本章从线性函数入手开拓上一章的度量性考察阐述一般数域上向量空间的度量性方法在阐述双线性函数的一般概念之后介绍颇有应用价值的正交空间辛空间的一些基本结论
第十章双线性函数与正交空间、辛空间
引言
本章从线性函数入手,开拓上一章的度量性考察,阐述一般数域上向量空间的度量性方法,在阐述双线性函数的一般概念之后,介绍颇有应用价值的正交空间、辛空间的一些基本结论.
.(19)
这样,我们找到了V到V**的一个同构映射σ=σ2σ1,它把V中向量α映成V**中元素α**,其中
α**(f)=f(α), f∈V*.(20)
因此证得
定理10.1.4设V是F上的n维向量空间,V**是V的双重对偶空间,则
V≌V**;
并且V到V**的一个同构映射是σ:α α**,其中α**(f)如(20)所示.
则称f为V上的一个线性函数,也称为余向量(covectors).
由于f∈Hom(V,F),因而第七章§1-§3中关于线性映射的基本结果对于线性函数也成立.
线性函数是十分重要的函数类,在数学的各个分支和许多实际问题中都将遇到它.下面举几个例子.
例1定积分使每一个连续函数f(x)对应一个实数 ,并
且满足
课外作业:
P513:2、1);3;4;5
Li(p(x))=p(ai)p(x)∈V,i=1,2,…,n,
第十章双线性函数及辛空间
第十章 双线性函数与辛空间§1 线性函数定义1 设V 是数域P 上的一个线性空间,f 是V 到P 的一个映射,如果f 满足1))()()(βαβαf f f +=+;2))()(ααkf k f =,式中βα,是V 中任意元素,k 是P 中任意数,则称f 为V 上的一个线性函数.从定义可推出线性函数的以下简单性质:1. 设f 是V 上的线性函数,则)()(,0)0(ααf f f -=-=.2. 如果β是s ααα,,,21 的线性组合:s s k k k αααβ+++= 2211那么)()()()(2211s s f k f k f k f αααβ+++=例1设n a a a ,,,21 是P 中任意数,),,,(21n x x x X =是n P 中的向量.函数n n n x a x a x a x x x f X f +++== 221121),,,()( (1)就是P 上的一个线性函数.当021====n a a a 时,得0)(=X f ,称为零函数,仍用0表示零函数.实际上,n P 上的任意一个线性函数都可以表成这种形式.令n i i ,,2,1,)0,,0,1,0,,0( ==ε.第i 个n P 中任一向量),,,(21n x x x X =可表成n n x x x X εεε+++= 2211.设f 是n P 上一个线性函数,则∑∑====i i i i i i f x x f X f 11)()()(εε令,21,)(n i f a i i ,,, ==ε则n n x a x a x a X f +++= 2211)(就是上述形式.例2 A 是数域P 上一个n 级矩阵,设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211, 则A 的迹 nn a a a A Tr +++= 2211)(是P 上全体n 级矩阵构成的线性空间n n P ⨯上的一个线性函数.例3 设t x P V ],[=是P 中一个取定的数.定义][x P 上的函数t L 为][)(,)())((x P x p t p x P L t ∈=,即))((x p L t 为)(x p 在t 点的值,))((x p L t 是][x P 上的线性函数.如果V 是数域P 上一个n 维线性空间.取定V 的一组基n εεε,,,21 .对V 上任意线性函数f 及V 中任意向量α:n n x x x εεεα+++= 2211都有∑∑====ni i i n i i i f x x f f 11)()()(εεα. (2)因此,)(αf 由)(,),(),(21n f f f εεε 的值唯一确定.反之,任给P 中n 个数n a a a ,,,21 ,用下式定义V 上一个函数f :∑∑===i i i i i i x a x f 11)(ε.这是一个线性函数,并且n i a f i i ,,2,1,)( ==ε因此有定理1 设V 是P 上一个n 维线性空间,n εεε,,,21 是V 的一组基,n a a a ,,,21 是P 中任意n 个数,存在唯一的V 上线性函数f 使n i a f i i ,,2,1,)( ==ε.§2 对偶空间设V 是数域P 上一个n 维线性空间. V 上全体线性函数组成的集合记作),(P V L .可以用自然的方法在),(P V L 上定义加法和数量乘法.设g f ,是V 的两个线性函数.定义函数g f +如下:V g f g f ∈+=+αααα,)()()(.g f +也是线性函数:,))(())(()()()()()()())((βαβαβαβαβαβαg f g f g g f f g f g f +++=+++=+++=++))(()()()()())((ααααααg f k kg kf k g k f k g f +=+=+=+.g f +称为f 与g 的和.还可以定义数量乘法.设f 是V 上线性函数,对于P 中任意数k ,定义函数kf 如下:V f k kf ∈=ααα,))(())((,kf 称为k 与f 的数量乘积,易证kf 也是线性函数.容易检验,在这样定义的加法和数量乘法下,),(P V L 成为数域P 上的线性空间.取定V 的一组基n εεε,,,21 ,作V 上n 个线性函数n f f f ,,,21 ,使得.,,2,1,,,0;,1)(n j i i j i j f j i =⎩⎨⎧≠==ε (1) 因为i f 在基n εεε,,,21 上的值已确定,这样的线性函数是存在且唯一的.对V 中向量∑==ni i i x 1εα,有i i x f =)(α, (2)即)(αi f 是α的第i 个坐标的值.引理 对V 中任意向量α,有∑==ni i i f 1)(εαα, (3)而对),(P V L 中任意向量f ,有∑==ni i i f f f 1)(ε. (4)定理2 ),(P V L 的维数等于V 的维数,而且n f f f ,,,21 是),(P V L 的一组基. 定义2 ),(V P L 称为V 的对偶空间.由(1)决定),(P V L 的的基,称为n εεε,,,21 的对偶基.以后简单地把V 的对偶空间记作*V .例 考虑实数域R 上的n 维线性空间n x P V ][=,对任意取定的n 个不同实数n a a a ,,,21 ,根据拉格朗日插值公式,得到n 个多项式.,,2,1,)())(()()())(()()(111111n i a a a a a a a a a x a x a x a x x p n i i i i i i n i i i =--------=+=+- 它们满足.,,2,1,,,0;,1)(n j i i j i j a p j i =⎩⎨⎧≠==)(,,)(),(21x p x p x p n 是线性无关的,因为由0)()()(2211=+++x p c x p c x p c n n用i a 代入,即得n i c a p c a p ci i p i n k i k k ,,2,1,0)()(1 ====∑=.又因V 是n 维的,所以)(,,)(),(21x p x p x p n 是V 的一组基.设),,2,1(n i V L i =∈*是在点i a 的取值函数:.,,2,1.)(,)())((n i V x p a p x p L i i =∈=则线性函数i L 满足.,,2,1,,,,0;,1)())((n j i j i j i a p x p L i j j i =⎩⎨⎧≠=== 因此,n L L L ,,,21 是)(,,)(),(21x p x p x p n 的对偶基.下面讨论V 的两组基的对偶基之间的关系.设V 是数域P 上一个n 维线性空间.n εεε,,,21 及n ηηη,,,21 是V 的两组基.它们的对偶基分别是n f f f ,,,21 及n g g g ,,,21 .再设A n n ),,,(),,,(2121εεεηηη =B f f f g g g n n ),,,(),,,(2121 =其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n b b b b b b b b b B 212222111211 由假设 n i a a a n ni i i i ,,2,1,2211 =+++=εεεη,n j f b f b f b g n nj j j i ,,2,1,2211 =+++=.因此n j i j i j i a b a b a b a a a f b g ninj i j i j n ni i i nk k kj i j ,,2,1,,,0;,1)()(221122111 =⎩⎨⎧≠==+++=+++=∑=εεεη由矩阵乘法定义,即得 E A B ='即1-='A B定理3 设n εεε,,,21 及n ηηη,,,21 是线性空间V 的两组基,它们的对偶基分别为n f f f ,,,21 及n g g g ,,,21 .如果由n εεε,,,21 到n ηηη,,,21 的过渡矩阵为A ,那么由n f f f ,,,21 到n g g g ,,,21 的过渡矩阵为1)(-'A .设V 是P 上一个线性空间,*V 是其对偶空间,取定V 中一个向量x ,定义*V 的一个函数**x 如下:***∈=V f x f f x ,)()(.根据线性函数的定义,容易检验**x 是*V 上的一个线性函数,因此是*V 的对偶空间****=V V )(中的一个元素.定理 4 V 是一个线性空间,**V 是V 的对偶空间的对偶空间. V 到**V 的映射**→x x是一个同构映射.这个定理说明,线性空间V 也可看成*V 的线性函数空间,V 与*V 实际上是互为线性函数空间的.这就是对偶空间名词的来由.由此可知,任一线性空间都可看成某个线性空间的线性函数所成的空间,这个看法在多线性代数中是很重要的.§3 双线性函数定义3 V 是数域P 上一个线性空间,),(βαf 是V 上一个二元函数,即对V 中任意两个向量βα,,根据f 都唯一地对应于P 中一个数),(βαf .如果),(βαf 有下列性质:1)),(),(),(22112211βαβαββαf k f k k k f +=+;2)),(),(),(22112211βαβαβααf k f k k k f +=+,其中2121,,,,,βββααα是V 中任意向量,21,k k 是P 中任意数,则称),(βαf 为V 上的一个双线性函数.这个定义实际上是说对于V 上双线性函数),(βαf ,将其中一个变元固定时是另一个变元的线性函数.例1 欧氏空间V 的内积是V 上双线性函数.例2 设)(),(21ααf f 都是线性空间V 上的线性函数,则V f f f ∈=βαβαβα,,)()(),(21是V 上的一个双线性函数.例3 设n P 是数域P 上n 维列向量构成的线性空间.n P Y X ∈,再设A 是P 上n 级方阵.令AY X Y X f '=),(, (1)则),(Y X f 是n P 上的一个双线性函数.如果设),,,(,),,,(2121n n y y y Y x x x X ='=',并设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 则 ∑∑===n i nj j i ij y x a Y X f 11),(. (2)(1)或(2)实际上是数域P 上任意n 维线性空间V 上的双线性函数),(βαf 的一般形式.可以如下地说明这一事实.取V 的一组基n εεε,,,21 .设X x x x n n n ),,,(),,,(212121εεεεεεα =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=, Y y y y n n n ),,,(),,,(212121εεεεεεβ =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=, 则∑∑∑∑======n i nj j i j i n i n j j j i i y x f y x f f 1111),(),(),(εεεεβα. (3)令n j i f a j i ij ,,2,1,,),( ==εε,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 则(3)就成为(1)或(2). 定义 4 设),(βαf 是数域P 上n 维线性空间V 上的一个双线性函数. n εεε,,,21 是V 的一组基,则矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=),(),(),(),(),(),(),(),(),(212221212111n n n n n n f f f f f f f f f A εεεεεεεεεεεεεεεεεε (4) 叫做),(βαf 在n εεε,,,21 下的度量矩阵.上面的讨论说明,取定V 的一组基n εεε,,,21 后,每个双线性函数都对应于一个n 级矩阵,就是这个双线性函数在基n εεε,,,21 下的度量矩阵.度量矩阵被双线性函数及基唯一确定.而且不同的双线性函数在同一基下的度量矩阵是不同的.反之,任给数域P 上一个n 级矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n a a a a a a a a a A 212222111211 对V 中任意向量X n ),,,(21εεεα =及Y n ),,,(21εεεβ =,其中),,,(21n x x x X =',),,,(21n y y y Y ='用∑∑==='=n i nj j i ij y x a AY X f 11),(βα定义的函数是V 上一个双线性函数.容易计算出),(βαf 在n εεε,,,21 下的度量矩阵就是A .因此,在给定的基下,V 上全体双线性函数与P 上全体n 级矩阵之间的一个双射.在不同的基下,同一个双线性函数的度量矩阵一般是不同的,它们之间的什么关系呢?设n εεε,,,21 及n ηηη,,,21 是线性空间V 的两组基:C n n ),,,(),,,(2121εεεηηη =βα,是V 中两个向量12121),,,(),,,(X X n n ηηηεεεα ==,12121),,,(),,,(Y Y n n ηηηεεεβ ==那么11,CY Y CX X ==如果双线性函数),(βαf 在n εεε,,,21 及n ηηη,,,21 下的度量矩阵分别为B A ,,则有1111)()()(),(Y AC C X CY A CX AY X f ''='='=βα.又11),(BY X f '=βα.因此AC C B '=这说明同一个双线性函数在不同基下的度量矩阵是合同的.定义5 设),(βαf 是线性空间V 上一个双线性函数,如果0),(=βαf对任意V ∈β,可推出0=α,f 就叫做非退化的.可以应用度量矩阵来判断一个双线性函数是不是退化的.设双线性函数),(βαf 在基n εεε,,,21 下的度量矩阵为A ,则对X n ),,,(21εεεα =,Y n ),,,(21εεεβ =,有AY X f '=),(βα如果向量α满足V f ∈∀=ββα,0),(,那么对任意Y 都有0='A Y X因此0='A X而有非零向量X '使上式成立的充要条件为A 是退化的,因此易证双线性函数),(βαf 是非退化的充要条件为其度量矩阵A 为非退化矩阵.对度量矩阵作合同变换可使度量矩阵化简.但对一般矩阵用合同变换化简是比较复杂的.对于对称矩阵已有较完整的理论.定义6 ),(βαf 是线性空间V 上的一个双线性函数,如果对V 上任意两个向量βα,都有),(),(αββαf f =,则称),(βαf 为对称双线性函数.如果对V 中任意两个向量βα,都有),(),(αββαf f -=则称),(βαf 为反对称双线性函数.设),(βαf 是线性空间V 上的一个对称双线性函数,对V 的任一组基n εεε,,,21 ,由于),(),(i j j i f f εεεε=故其度量矩阵是对称的,另一方面,如果双线性函数),(βαf 在n εεε,,,21 下的度量矩阵是对称的,那么对V 中任意两个向量X n ),,,(21εεεα =及Y n ),,,(21εεεβ =都有),(),(αββαf AX Y X A Y AY X f ='=''='=.因此),(βαf 是对称的,这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称的.同样的,双线性函数是反对称的的充要条件是它在任一组基下的度量矩阵是反对称矩阵.我们知道,欧氏空间的内积不仅是对称双线性函数,而且它在任一基下的度量矩阵是正交矩阵.定理5 设V 是数域P 上n 维线性空间,),(βαf 是V 上对称双线性函数,则存在V 的一组基n εεε,,,21 ,使),(βαf 在这组基下的度量矩阵为对角矩阵.如果),(βαf 在n εεε,,,21 下的度量矩阵为对角矩阵,那么对∑∑====ni i i n i i i y x 11,εβεα,),(βαf 有表示式n n n y x d y x d y x d f +++= 222111),(βα.这个表示式也是),(βαf 在n εεε,,,21 下的度量矩阵为对角形的充分条件.推论1 设V 是复数上n 维线性空间,),(βαf 是V 上对称双线性函数,则存在V 的一组基n εεε,,,21 ,对V 中任意向量∑∑====ni i i n i i i y x 11,εβεα,有)0(),(2211n r y x y x y x f r r ≤≤+++= βα.推论2 设V 是实数n 上维线性空间,),(βαf 是V 上对称双线性函数,则存在V 的一组基n εεε,,,21 ,对V 中任意向量∑∑====ni i i n i i i y x 11,εβεα,有)0(),(1111n r p y x y x y x y x f r r p p p p ≤≤≤---++=++ βα.对称双线性函数与二次齐次函数是1—1对应的.定义7 设V 是数域P 上线性空间,),(βαf 是V 上双线性函数.当βα=时,V 上函数),(ααf 称为与),(βαf 对应的二次齐次函数.给定V 上一组基n εεε,,,21 ,设),(βαf 的度量矩阵为()n n ija A ⨯=.对V 中任意向量∑==n i i i x 1εα有∑∑===n i nj j i ij x x a f 11),(αα. (5)式中j i x x 的系数为ji ij a a +.因此如果两个双线性函数的度量矩阵分别为()n n ij a A ⨯= 及()n n ij b B ⨯=只要n j i b b a a ji ij ji ij ,,2,1,, =+=+,那么它们对应的二次齐次函数就相同,因此有很多双线性函数对应于同一个二次齐次函数,但是如果要求A 为对称矩阵,即要求双线性函数为对称的,那么一个二次齐次函数只对应一个对称双线性函数.从(1)式看出二次齐次函数的坐标表达式就是以前学过的二次型.它与对称矩阵是1—1对应的,而这个对称矩阵就是唯一的与这个二次齐次函数对应的对称双线性函数.定理6 设),(βαf 是n 维线性空间V 上的反对称双线性函数,则存在V 的一组基s r r ηηεεεε,,,,,,,111 --使⎪⎩⎪⎨⎧=∈=≠+===-.,,1,,0),(;0,0),(;,,1,1),(s k V f j i f r i f k j i i i αηαεεεε (6) 从定理5可知,V 上的对称双线性函数),(βαf 如果是非退化的则有V 的一组基n εεε,,,21 满足⎩⎨⎧≠==≠.,0),(;,,2,1,0),(i j f n i f j i i i εεεε 前面的不等式是非退化条件保证的,这样的基叫做V 的对于),(βαf 的正交基.而从定理6可知,V 上的反对称双线性函数),(βαf 如果是非退化的,则有V 的一组基r r --εεεε,,,,11 使⎩⎨⎧≠+===-.0,0),(;,,2,1,1),(j i f r i f j i i i εεεε 由于非退化的条件,定理6中的s ηη,,1 不可能出现.因此具有非退化反对称双线性函数的线性空间一定是偶数维的.对于具有非退化对称、反对称双线性函数的线性空间V ,也可以将这些双线性函数看成V 上的一个“内积”,仿照欧氏空间来讨论它的度量性质,一般的长度,角度很难的进去,但是还能讨论“正交性”、“正交基”以及保持这个双线性函数的线性变换等.定义8 设V 是数域P 上的线性空间,在V 上定义一个非退化线性函数,则V 称为一个双线性度量空间.当f 是非退化对称双线性函数时,V 称为P 上的正交空间;当V 是n 维实线性空间,f 是非退化对称双线性函数时,V 称为准欧氏空间;当f 是非退化反对称双线性函数时,称V 为辛空间.有着非退化双线性函数f 的双线性度量空间常记为),(f V .§4 辛空间由前一节的讨论,已经得到下面的两点性质:1. 辛空间),(f V 中一定能找到一组基n n ---εεεεεε,,,,,,,2121 满足,1,1),(n i f i i ≤≤=-εε0,,,0),(≠+≤≤-=j i n j i n f j i εε.这样的基称为),(f V 的辛正交基.还可看出辛空间一定是偶数维的.2.任一n 2级非退化反对称矩阵K 可把一个数域P 上n 2维空间V 化成一个辛空间,且使K 为V 的某基n n ---εεεεεε,,,,,,,2121 下度量矩阵.又此辛空间在某辛正交基n n ---εεεεεε,,,,,,,2121 下的度量矩阵为nn O E E O J 22⨯⎪⎪⎭⎫ ⎝⎛-=, (1) 故K 合同于J .即任一n 2级非退化反对称矩阵皆合同于J .两个辛空间),(11f V 及),(22f V ,若有1V 到2V 的作为线性空间的同构ℜ,它满足),(),(21Kv Ku f v u f =,则称ℜ是),(11f V 到),(22f V 的辛同构.),(11f V 到),(22f V 的作为线性空间的同构是辛同构当且仅当它把),(11f V 的一组辛正交基变成),(22f V 的辛正交基.两个辛空间是辛同构的当且仅当它们有相同的维数.辛空间),(f V 到自身的,辛同构称为),(f V 上的辛变换.取定),(f V 的一组辛正交基n n ---εεεεεε,,,,,,,2121 ,V 上的一个线性变换ℜ,在该基下的矩阵为K ,⎪⎪⎭⎫ ⎝⎛=D C B A K , 其中D C B A ,,,皆为n n ⨯方阵.则ℜ是辛变换当且仅当J JK K =',亦即当且仅当下列条件成立:E B C D A B D D B A C C A ='-''=''=',,且易证0||≠K ,及辛变换的乘积、辛变换的逆变换皆为辛变换.设),(f V 是辛空间,V v u ∈,,满足0),(=v u f ,则称v u ,为辛正交的. W 是V 的子空间,令{}W w w u f V u W ∈∀=∈=⊥,0),(|. (2)⊥W 显然是V 的子空间,称为W 的辛正交补空间.定理7 ),(f V 是辛空间,W 是V 的子空间,则W V W dim dim dim -=⊥.定义9 ),(f V 为辛空间,W 为V 的子空间.若⊥⊂W W ,则称W 为),(f V 的迷向子空间;若⊥=W W ,即W 是极大的(按包含关系)迷向子空单间,也称它为拉格朗日子空间;若{}0=⊥W W ,则W 称W 为),(f V 的辛了空间.例如,设n n ---εεεεεε,,,,,,,2121 是),(f V 的辛正交基,则),,,(21k L εεε 是迷向子空间. ),,,(21n L εεε 是极大迷向子空间,即拉格朗日子空间),,,,,,,(2121k k L ---εεεεεε 是辛子空间.对辛空间),(f V 的子空间W U ,.通过验证,并利用定理7,可得下列性质:(1) W W =⊥⊥)(,(2) ⊥⊥⊂⇒⊂U W W U ,(3) 若U 是辛子空间,则⊥⊕=U U V(4) 若U 是迷向子空间,则V U dim 21dim ≤(5) 若U 是拉格朗日子空间,则V U dim 21dim = 定理8 设L 是辛空间),(f V 的拉格朗日子空间,{}n εεε,,,21 是L 的基,则它可扩充为),(f V 的辛正交基.推论 设W 是),(f V 的迷向子空间,{}k εεε,,,21 是L 的基,则它可扩充成),(f V 的辛正交基.对于辛子空间U ,U f |也是非退化的.同样⊥U f |也非退化.由定理7还有⊥⊕=U U V .定理9 辛空间),(f V 的辛子空间)|,(U f U 的一组辛正交基可扩充成),(f V 的辛正交基..定理10 令),(f V 为辛空间,U 和W 是两个拉格朗日子空间或两个同维数的辛子空间,则有),(f V 的辛变换把U 变成W .辛空间),(f V 的两个子空间V 及W 之间的(线性)同构ℜ若满足V v W u Kv Ku f v u f ∈∈∀=,,),(),(则称ℜ为V 与W 间的等距.Witt 定理 辛空间),(f V 的两个子空间V ,W 之间若有等距,则此等距可扩充成),(f V 的一个辛变换.下面是辛变换的特征值的一些性质.ℜ是辛空间),(f V 上的辛变换,则ℜ的行列式为1.取定),(f V 的辛正交基n n ---εεεεεε,,,,,,,2121 .设ℜ在基下矩阵为K ,这时有J JK K ='.定理11 设ℜ是n 2维辛空间中的辛变换,K 是ℜ在某辛正交基下的矩阵.则它的特征多项式||)(K E f -=λλ满足)1()(2λλλf f n =.若设 n n n n a a a a f 21212120)(++++=--λλλλ ,则n i a a i n i ,,1,0,2 ==-.由定理11可知,辛变换ℜ的特征多项式)(λf 的(复)根λ与λ1是同时出现的,且具有相同的重数.它在P 中的特征值也如此.又||K 等于)(λf 的所有(复)根的积,而1||=K .故特征值1-的重数为偶数.又不等于1±的复根的重数的和及空间的维数皆为偶数,因此特征值为1+的重数也为偶数.定理12 设j i λλ,是数域P 上辛空间),(f V 上辛变换ℜ在P 中的特征值,且1≠j i λλ.设iV λ,j V λ分别是V 中对应于特征值i λ及j λ的特征子空间.则j i V v V u λλ∈∈∀,,有0),(=v u f ,即i V λ与j V λ是辛正交的.特别地,当1≠i λ时iV λ是迷向子空间.第十章 双线性函数与辛空间(小结)一、基本概念线性函数;对偶空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章双线性函数与辛空间1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的一个线性函数,已知f (ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3求f (X1ε1+X2ε2+X3ε3).解因为f是V上线性函数,所以有f (ε1)+ f (ε3)=1f (ε2)-2 f (ε3)=-1f (ε1)+f (ε2)=-3解此方程组可得f (ε1)=4,f (ε2)=-7,f (ε3)=-3 于是f (X1ε1+X2ε2+X3ε3).=X1f (ε1)+X2 f (ε2)+X3 f (ε3)=4 X1-7 X2-3 X32、设V及ε1,ε2,ε3同上题,试找出一个线性函数f ,使f (ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1解设f为所求V上的线性函数,则由题设有f (ε1)+ f (ε3)=0f (ε2)-2 f (ε3)=0f (ε1)+f (ε2)=1解此方程组可得f (ε1)=-1,f (ε2)=2,f (ε3)=1于是∀a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为a= X1ε1+X2ε2+X3ε3时,就有f (a)=f (X1ε1+X2ε2+X3ε3)= X 1 f (ε1)+X 2 f (ε2)+X 3 f (ε3)=-X 1+2 X 2+ X 3 3、 设ε1,ε2,ε3是线性空间V 的一组基,f1,f2,f3是它的对偶基,令α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3试证:α1,α2,α3是V 的一组基,并求它的对偶基。
证: 设(α1,α2,α3)=(ε1,ε2,ε3)A由已知,得A =110011111⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦因为A ≠0,所以α1,α2,α3是V 的一组基。
设g1,g2,g3是α1,α2,α3得对偶基,则 (g1,g2,g3)=(f1,f2,f3)(A ˊ)1-=(f1,f2,f3)011112111-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦因此g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f34.设V 是一个线性空间,f1,f2,…fs 是V *中非零向量,试证:∃α∈V ,使 fi(α)≠0 (i=1,2…,s) 证:对s 采用数学归纳法。
当s =1时,f1≠0,所以∃α∈V ,使fi(α)≠0,即当s =1时命题成立。
假设当s=k 时命题成立,即∃α∈V ,使fi(α)=αi ≠0 (i=1,2…,k) 下面证明s=k+1时命题成立。
若f 1k +(α)≠0,则命题成立,若f 1k +(α)=0,则由f 1k +≠0知,一定∃β∈V 使f 1k +(β)=b,设fi(β)=di(i=1,2…,k),于是总可取数c ≠0,使 ai+cdi ≠0(i=1,2…,k) 令c γαβ=+,则γ∈V ,且fi(γ)=ai+cdi≠0(i=1,2…,k)f1k+(γ)=cb≠0即证。
5.设α1,α2,…αs是线性空间V中得非零向量,试证:fi(αi)≠0 (i=1,2…,s)证:因为V是数域P上得一个线性空间,V*是其对偶空间,若取定V中得一个非零向量α,则可定义V*的一个线性函数α**如下:α**(f)=f(α) (f∈V*)且α**是V*的对偶空间(V*)*中的一个元素,于是,V到其对偶空间的对偶空间(V*)*的映射α→α**是一个同构映射,又因为α1,α2,…αs是V中的非零向量,所以α1**,α2**,…αs**对偶空间V*的对偶空间(V*)*中的非零向量,从而由上题知,∃f∈V*使f(αi)=αi**(f) ≠0 (i=1,2…,s)即证.6.设V=P[x]3,对P(x)=C0+C1x+C2x2∈V,定义f1(p(x))=1()p x dx⎰f2(p(x))=2()p x dx⎰f3(p(x))=1()p x dx-⎰试证f1, f2, f3都是V上线性函数,并找出V的一组基p1(x),p2(x),p3(x),使f 1, f2, f3是它的对偶基。
证:先证是V上线性函数,即f1∈V*,对∀g(x),h(x) ∈V, ∀k∈P,由定义有f1(g(x)+h(x))=1(()())g x h x dx+⎰=1()g x dx⎰+10()h x dx⎰=f1(g(x))+ f1(h(x))f1(kg(x))=1()kg x dx⎰=k10()g x dx⎰=k f1(g(x))即证f1。
同理可证f2, f3∈V*。
再设p1(x),p2(x),p3(x) 为V的一组基,且f1, f2, f3是它的对偶基。
若记P1(x)= C0+C1x+C2x2则由定义可得f1(p(x))=1()p x dx⎰=C0+12C1+13C2=1f2(p(x))=2()p x dx⎰=2C0+2C1+83C2=0f3(p(x))=1()p x dx-⎰=-C0+12C1-13C2=0解此方程组得C0=C1=1,C2=-3 2故P1(x)=1+x-32x2同理可得p2(x)=- 16+12x2p3(x)= -13+x-12x27.设V是个n维线性空间,它得内积为(α,β),对V中确定得向量α,定义V上的一个函数α*:α*(β)=(α,β)1)证明α*是V上的线性函数2)证明V到V*的映射是V到V*的一个同构映射(在这个同构下,欧氏空间可看成自身的对偶空间。
)3)证:1)先证明α*是V上的线性函数,即α*∈V*,对∀β1,β2∈V,∀k∈P,由定义有:α*(β1+β2)=(α,β1+β2)=(α,β1)+(α,β2)=α*(β1)+α*(β2)α*(kβ1)=(α,kβ1)=k(α,β1)=kα*(β1)故α*是V上的线性函数。
2)设ε1,ε2…εn是V的一组标准正交基,且对∀β∈V由定义εi*(β)=(εiβ)(i=1,2…,n)知εi *(εj)=(εi,εj)=1,0,i ji j=⎧⎨≠⎩于是ε1*,ε2*…εn*是ε1,ε2…εn的对偶基,从而V到V*的映射是V与V*中两基间的一个双射因此它也是V到V*的一个同构映射8.设A是数域P上N维线性空间V得一个线性变换。
1)证明,对V上现行函数f,f A仍是V上的线性函数;2)定义V*到自身的映射为f→f A证明A*是V*上的线性变换;3)设ε1,ε2…εn是V的一组基,f1, f2, f n是它的对偶基,并设A在ε1,ε2…εn 的矩阵为A。
证明:A*在f1, f2,… fn下的矩阵为A′。
证:1)对∀α∈V,由定义知(f A)(α)=f(A(α))是数域P中唯一确定的元,所以f A是V到P的一个映射。
又因为∀α,β∈V,∀k∈P,有(f A)(α+β)=f(A(α+β))=f(A(α)+A(β))=(f A)(α)+(f A)(β)(f A)(kα)=f(A(kα))=f(k A(α))=k f(A(α))=k(f A)(α)所以f A是V上线性函数。
2)对∀f∈V*,有A*(f)= f A∈V*,故A*是V*上的线性变换。
3)由题设知A(ε1,ε2…εn)=(ε1,ε2…εn)A设A*(f1, f2,… fn)=(f1, f2,… fn)B其中A=(aij )n n⨯,B=(bij)n n⨯,且f1, f2,… fn是ε1,ε2…εn的对偶基,于是fj A=A*(fj),所以aji= bij(i,j=1,2,…n),即证A*在f1, f2,… fn下的矩阵为B=A′.9.设V是数域P上的一个线性空间,f1, f2,… fn是V上的n个线性函数。
1)证明:下列集合W={α∈V︱f i(α)=0(1≤i≤n)}是V的一个子空间,W成为线性函数f1, f2,… fn的零化子空间;2)证明:V的任一子空间皆为某些线性函数的零化子空间。
证:1)因为f1, f2,… fn是V上的n个线性函数,所以f∈V*(1≤i≤n),且fi(0)=0(i=1,2,…n),因而0∈W,即证W非空。
又因为∀α,β∈V,∀λ∈P,有fi(α+β)=f i(α)+f i(β)=0 (i=1,2,…n)fi(λα)=λ f i(α)=0所以α+β∈W,λα∈W,即证W是V的一个子空间。
2)设W1是V的任一子空间,且dim(W1)=m,则当m=n时,只要取f为V的零函数,就有W1=V={α∈V ︱f (α)=0}所以W1是f的零化子空间。
当m<n时,不妨设ε1,ε2…εm为W1的一组基,将其扩充为V的一组基ε1,ε2…εm,ε1m+,…εn,并取这组基的对偶基f1, f2,… f n的后n-m个线性函数f1 m+,f2m+,…,fn,则W1=V={α∈V︱f i(α)=0(m+1≤i≤n)}即W1是f1m+,f2m+,…,fn的零化子空间,事实上,若令U1={α∈V︱f i(α)=0(m+1≤i≤n)}则对∀α=a1ε1+a2ε2+…+a mεm∈W1,有f1m+(α)= f2m+(α)=…=f n(α)=0因而α∈U1,即W1⊆ U1。
反之,∀β=b1ε1+b2ε2+…+b mεm+b1m+ε1m++…b nεn∈U1,由f1m+(α)= f2m+(α)=…=f n(α)=0,可得b1m+=b2m+=…=b n=0,因而β=b 1ε1+b2ε2+…+bmεm+b1m+ε1m++…bnεn∈W1,即U1⊆W1,故U1=W1。
10.设A是数域P上的一个m极矩阵,定义P m n+上的一个二元函数f(X,Y)=tr(X′AY) (X,Y∈P m n+)1)证明f(X,Y)是P m n+上的双线性函数;2)求f(X,Y)在基E11,E12,…,E1n,E21,…,E2n,…,E1m,E2m,…,Emn下的度量矩阵。
证:1)先证f(X,Y)是P m n+上的双线性函数,对∀X,Y,Z∈P m n+,∀k1,k2∈P 由定义有f (X, k1Y+ k2,Z)=tr(X′A(k1Y+ k2Z))= k1tr(X′AY)+ k2tr(X′AZ)= k1f(X,Y) + k2f(Y,Z)因而f(X,Y)是P m n+上的双线性函数。
2)由E'ijAEks=aikEjs知f (Eij, Eks)=tr(E'ijAEks)=tr(aikEjs)=,0,ika j sj s=⎧⎨≠⎩以下设f(X,Y)在基E11,E12,…,E1n,E21,…,E2n,…,E1m,E2m,…,Emn下的度量矩阵为B,则B=111212122212mm m m mma E a E a E a E a E a E a E a E a E ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭其中,E为n阶单位矩阵。
11.在P4中定义一个双线性函数f(X,Y),对X=(x1,x2,x3,x4),Y=(y1,y2,y3,y4)∈P4有f (X,Y)=3x1y2-5x2y1+x3x4-4x4y31)给定P4的一组基ε1=(1,-2,-1,0),ε2=(1,-1,1,0)ε3=(-1,2,1,1),ε4=(-1,-1,0,1)求f (X,Y)在这组基下的度量矩阵;2)另取一组基η1,η2,η3,η4,且(η1,η2,η3,η4)=(ε1,ε2,ε3,ε4)T 其中T=1111 1111 1111 1111⎛⎫ ⎪-- ⎪⎪-- ⎪--⎝⎭求f (X,Y)在这组基下的度量矩阵。