神经电生理基础详细
神经电生理学基础
正常肌电图
步骤:
1.插入电活动:进行记录 2.放松时,观察肌肉在完全放松时是否有异常自发电活动; 3.轻收缩时:观察运动单位电位时限、波幅、位相和发放频率; 4.大力收缩时:观察运动单位电位募集类型。
正常肌电图
一、肌电图检测步骤及正常所见 1.肌肉静息状态:包括插入电位和自发电位。
插入电位:指针电极插入时引起的电活动,正常人变 异较大;持续时间不超过300ms
自发电位:指终板噪音和终板电位,后者波幅较 高,10-40mV,频率20-40Hz,通常伴有疼痛, 退针后疼痛消失。 2.电静息:肌肉完全放松,不出现肌电活动。
正常肌电图
3.轻收缩肌电图:记录运动单位电位 (MUAPs)。测定运动单位动作电位的时 限、波幅、波形及多相波百分比,不同 肌肉有其不同的正常值范围。
临床肌电图
临床肌电图
一、肌电图检测步骤及正常所见 (1)肌肉静息状态:包括自发电位和插入 电位。 (2)肌肉随意自主收缩状态:记录运动单 位电位(MUAPs)。
(3)肌肉大力收缩状态:观察募集现象,
常用肌肉解剖定位1
第一背侧骨间肌
神经支配:尺神经,内侧束、下干和C8-T1 神经根 部位:手呈中立位,腕横纹与第二掌指关节 中点倾斜进针。 临床意义:记录尺神经深支运动传导检测。
常见病变异常肌电图类型
周围神经病变及损伤:
1.急性轴索损害:2-3周后,插入电位延长,肌肉放松时可见 大量正尖纤颤电位,轻收缩时,可见运动单位电位形态保持 正常,大力收缩时,运动单位电位募集减少。 2.慢性轴索损害:插入电位延长,正尖纤颤电位明显减少或 消失,可有复杂重复放电,主动轻用力时出现时限增宽、波 幅高的运动单位电位,即大电位,重用力时募集相减少。 3.周围神经脱髓鞘:插入电位不延长,无自发电位,运动单 位形态正常,但募集相减少。
神经科学中的电生理学技术
神经科学中的电生理学技术神经科学是研究神经系统结构、功能和疾病的学科。
电生理学技术是神经科学中最常用的技术之一,它利用电极在神经元之间测量电位变化以研究神经系统的活动。
本文将探讨神经科学中的电生理学技术。
一、电生理学技术的概述电生理学技术包括脑电图(EEG)、脑源性诱发电位(VEP)、脑干诱发电位(BAEP)、自发电位(SP)和肌电图(EMG)等技术,它们广泛应用于神经科学、精神病学、神经内科学、认知科学和行为科学等领域。
EEG是最古老、最成熟的电生理学技术之一,它能够测量头皮上的电位变化,并反映从大脑皮层发出的电信号的时间和频率。
VEP是测量视觉信息被传递给大脑皮层的速度和质量的技术,它通过记录从眼睛到大脑的电位变化来测量视觉信息的传递速度。
BAEP是测量大脑干中神经传导速度和传导路径的技术,它通过记录从耳朵到大脑干的电位变化来测量传导速度。
SP是一种记录身体的自发电活动的技术,它通过记录不同身体部位的电位变化来观察身体位置的改变。
EMG是一种记录肌肉电活动的技术,它可以用来观察肌肉的收缩和松弛。
以上的电生理学技术都具有一些优点,如非侵入性、方便快捷、成本低廉等,它们被广泛应用于临床和科学研究中,成为研究神经系统的重要工具。
二、电生理学技术在神经疾病诊断中的应用电生理学技术广泛应用于神经疾病的临床诊断中,如癫痫、帕金森病、阿尔茨海默病等。
其中,EEG是癫痫诊断的关键技术之一,它可以检测到癫痫病人大脑皮层的异常电位变化。
VEP和BAEP则常用于诊断多发性硬化症、脑干损伤等。
SP和EMG常用于肌肉病变、神经病变等疾病的诊断。
电生理学技术的应用可以提高神经疾病的诊断精确度和治疗效果。
三、电生理学技术在神经科学研究中的应用电生理学技术是神经科学研究中重要的工具之一。
通过记录从神经元发出的电信号,可以了解神经元的活动和神经网络之间的相互作用。
例如,EEG可以记录大脑皮层的电势变化,用于观察大脑不同区域之间的相互作用。
神经系统的电生理学研究
神经系统的电生理学研究神经系统的电生理学研究是现代神经科学领域中的重要分支,通过记录和分析神经元活动产生的电信号,揭示了神经系统的结构和功能。
电生理学研究的发展,为我们理解大脑功能和神经疾病的机制提供了重要的线索和工具。
一、神经细胞和动作电位神经细胞是神经系统的基本单位,它们通过产生和传递电信号来进行信息处理。
神经细胞的电信号主要表现为动作电位,是一种快速而短暂的电压变化。
动作电位的产生与离子通道的开关和离子梯度的变化密切相关。
在静息状态下,神经细胞内外的离子浓度存在差异,形成了静息电位。
当受到足够强度的刺激时,离子通道打开,离子开始跨越细胞膜并改变静息电位,产生一个动作电位。
二、膜片钳技术及其在电生理学研究中的应用膜片钳技术是电生理学研究中常用的方法之一,它能够记录单个神经细胞的电活动。
该技术通过在神经细胞周围形成一个稳定的膜片,使得记录电极可以稳定地接触到细胞膜上,并记录下来细胞的电活动。
膜片钳技术可以测量神经元的静息电位、动作电位及其形成的机制等。
三、脑电图与事件相关电位脑电图是记录大脑电活动的一种方法,通过在头皮上放置多个电极,可以测量到大脑不同区域的电信号。
脑电图记录到的信号主要是大量神经元的集体活动。
脑电图通过观察信号的频率、振幅和波形等特征,可以提供一些关于大脑功能和神经疾病的信息。
而事件相关电位是脑电图上特定刺激或任务产生的电位变化,它能够反映出大脑对刺激或任务的加工和处理。
四、多通道电生理记录技术多通道电生理记录技术在神经科学研究中扮演着重要角色。
传统的单通道记录只能获取到一部分神经元的活动信息,而多通道记录则可以同时记录多个神经元的活动,从而提供更全面的信息。
这种技术的发展使得我们能够更好地理解神经网络的功能和神经疾病的病理机制。
五、深度脑电图和脑-机接口深度脑电图是一种通过在脑内植入电极来记录大脑电信号的技术。
与传统的脑电图不同,深度脑电图可以直接记录到大脑深部结构的电活动,提供更准确和精细的信息。
神经电生理
第十章神经电生理检查神经电生理检查是神经系统检查的延伸, 范围包含周围神经和中枢神经的检查,其方法包括肌电图(electromyography,EMG)、神经传导测定、特殊检查、诱发电位(evoked potential,EP)检查,还包括低频电诊断(low frequency electrodiagnosis):即直流-感应电诊断(Galvanic-Faradic electrodiagnosis)和强度-时间曲线(intensity-time curve)检查等。
神经电生理检查在诊断及评估神经和肌肉病变时,起着非常关键的作用,同时也是康复评定的重要内容和手段之一。
第一节概述从神经电生理的角度来看人体内各种信息传递都是通过动作电位传导来实现的。
对于运动神经来说,动作电位的产生是由于刺激了运动神经纤维,冲动又通过神经肌肉接头到达肌肉,从而产生肌肉复合动作电位;对于感觉神经来说,电位是通过刺激感觉神经产生,并且沿着神经干传导;而肌电图分析的是静息状态或随意收缩时骨骼肌的电特征。
一、神经肌肉电生理特性(一)静息跨膜电位细胞膜将细胞外液和细胞内液隔离开,细胞内液钾离子浓度远远高于氯离子和钠离子浓度,胞内液较胞外液含有更多的负电荷,造成膜内外存在一定的电位差,而且细胞内相对细胞外更负,这种电位差即为静息跨膜电位(resting membrane potential)。
人类骨骼肌的静息跨膜电位是-90mV。
在正常情况下,离子流人和流出量基本相等,维持一种电平衡,而这种平衡的维持,需要有钠钾泵存在,所以静息电位,又称为钾离子的电-化学平衡电位。
(二)动作电位神经系统的各种信息,是通过动作电位传导。
在静息期,钾离子可以自由通过细胞膜,钠离子则不能。
当细胞受到刺激时,细胞膜就进行一次去极化,此时,钠离子通道打开,通透性明显提高,钠离子大量流入细胞内使细胞进一步去极化,当钠离子去极化达到临界水平即阈值时,就会产生一个动作电位(action potential)。
神经电生理基础-详细
束颤电位:
肌细胞 运动神经元
n 下运动神经元
下运动神经元损害早期
纤颤电位、束颤电位同时出现才视为有意义
.
肌电图、诱发电位的原理 及应用(EMG)
.
前言
临床神经电生理
脑电图学 肌电图学 诱发电位学
.
最简明的解释
? 肌电图学
? 用针电极刺入肌肉,观 察肌肉在不同状态下的 生物电变化。
? 用脉冲电流,刺激不同 部位的神经,观察神经 及其支配肌肉的生物电 变化。
? 反映神经肌肉功能状态
?诱发电位学
?给周围神经或其它感觉器 官以适当的刺激,观察这 刺激在中枢神经系统引发 的生物电反应,借此反映 中枢神经系统的功能状况
自发电活动(失神经电位) m 肌 细胞 受损
肌细胞膜 稳定性下降
产生机理、意义、特点
少、小
肌细胞外 环境变化
肌细胞膜 完整性破坏
针电极刺入
神经对肌肉的 抑制作用丧失
多、大
n
周围神经 轴索 中枢 下运动神经元
.
其它自发性放电
肌强直放电:
强直性肌病的特征电位
m 电位发生机理不明
声音特征:
飞机俯冲样 摩托车启动样
运动单位运动神经元 轴索Fra bibliotek肌细胞
郎飞氏结 轴突
髓鞘 轴突末 雪旺氏细梢胞分支 终板 肌原纤维
元神 经
乙酰胆硷囊泡 线粒体
突触 末梢
突触前膜 终板皱褶
肌细胞 突触间隙
.
突触后膜皱褶
运动单位
?一个脊髓α 运动神经元或脑干运动神经元及其所支配 的全部肌纤维所构成的一个功能单位,称为运动单位。 运动单位的大小有很大差别。
.
神经系统的电生理学特性
神经系统的电生理学特性神经系统的电生理学研究了神经元的电活动以及这种电活动如何在神经网络中传递和调节信息。
电生理学是神经科学领域的一个重要分支,通过研究神经元的电位变化和其它相关的电现象,揭示了神经系统活动的机制和特性。
一、神经元的膜电位变化神经元是构成神经系统的基本单位,具有特定的电势变化特性。
细胞膜分离了神经元内部和外部环境,形成了细胞内外的电势差。
神经元的膜电位变化涉及到离子通道的开闭和离子梯度的维持。
在静息状态下,神经元的膜电位维持在一个负值,称为静息电位。
二、动作电位的产生和传导动作电位是神经系统中最基本的电信号,用于将信息从一个神经元传递到另一个神经元或细胞。
动作电位的产生主要需要神经元膜电位的快速变化。
当刺激达到一定阈值时,神经元内部的离子通道将迅速开放,导致电势快速升高并发生正反馈机制。
这种正反馈过程将电势迅速提升到峰值,形成一个短暂的动作电位。
动作电位的传导主要依靠神经元的轴突,电势的传导速度取决于轴突的直径和髓鞘的存在。
三、突触传递与神经网络神经元通过突触与其他神经元形成连接,突触传递是神经信息传递的关键环节。
突触分为化学突触和电突触两种类型。
化学突触的传递是通过神经递质分子释放和受体的结合来实现的,而电突触则通过细胞间的电连接实现信息的传递。
神经网络由大量的神经元和它们之间的突触连接组成,形成功能复杂的神经回路。
神经网络的电生理学特性直接影响了信息的传递、处理和整合。
四、脑电图与神经生理学研究脑电图(Electroencephalogram,EEG)是记录大脑电活动的一种常用方法。
通过放置电极在头皮上采集脑电信号,可以识别脑电图的频率和形态特征,进而对神经系统的功能状态进行评估。
脑电图在临床医学和神经科学研究中有着广泛的应用,如睡眠障碍、癫痫发作、意识状态和认知功能等。
脑电图的分析和解读是促进神经生理学研究的重要手段之一。
结论:神经系统的电生理学特性研究了神经元的电位变化、动作电位的产生和传导、突触传递与神经网络的机制以及脑电图的应用。
神经电生理肌电图基础知识
突触传递
神经元之间通过突触进行信息传递。 突触前神经元释放神经递质,作用于 突触后神经元,从而改变其电活动状 态。
神经电信号传导机制
动作电位
神经元兴奋时,细胞膜电位发生变化,产生动作电位。动作电位 是一种全或无的电信号,沿神经元轴突传导。
离子通道与膜电位
神经元细胞膜上存在多种离子通道,如钠离子通道、钾离子通道等 。这些通道的开放与关闭调节着膜电位的变化。
运动神经元疾病分类
根据病变部位和临床表现,运动神经 元疾病可分为肌萎缩侧索硬化、进行 性脊肌萎缩、原发性侧索硬化和进行 性延髓麻痹等类型。
常见运动神经元疾病诊断依据
临床表现
运动神经元疾病的临床表现包括 肌无力、肌萎缩、锥体束征等, 不同类型的运动神经元疾病具有
不同的临床表现。
神经电生理检查
神经电生理检查是运动神经元疾病 的重要诊断手段,包括肌电图、神 经传导速度、重复神经电刺激等。
肌肉收缩时募集反应减弱或消失,提示神 经支配功能受损。
03
周围神经病变诊断与应用
周围神经病变概述及分类
周围神经病变定义
周围神经病变是指周围神经系统 结构和功能异常,导致神经信号 传导障碍,引发一系列临床症状 。
分类
根据病变部位和性质,周围神经 病变可分为神经根病变、神经丛 病变、神经干病变和末梢神经病 变等。
THANKS
感谢观看
神经递质与突触传递
突触前神经元释放神经递质,作用于突触后神经元的受体,引起突 触后神经元膜电位的变化,从而实现信息的跨突触传递。
02
肌电图检查原理及方法
肌电图检查目的与意义
评估肌肉功能
通过记录肌肉在静息、轻度收 缩和最大收缩状态下的电活动
神经电生理系列
神经电生理系列
第21页
二.异常EMG
(一)插入电位
1.增多:神经原性损害和肌原性损害 2.降低:肌萎缩;肌肉纤维化;脂肪组织。
(二)自发电位
失神经两周时出现。
1.纤颤电位 2.正锐波 3.束颤
(fasciculation) 4.肌肉颤搐(myokymic discharges) 5.复合性重复放电(肌强直样 放 电 , CRD , complex repetitive
神经电生理系列
第7页
神经传导研究补充了EMG不足,能 确定有没有周围神经病理损害及其程度 。 它们尤其有利于确定感觉症状是由后 根神经节近端还是远端病变所致(前者 周围感觉传导研究正常),以及神经肌 肉功效异常是否与周围神经病变相关。
神经电生理系列
第8页
在脱髓鞘性神经病(如GBS、CIDP、异 染性脑白质营养不良或一些遗传性神经 病)中,常表现传导速度显著减慢、终 末运动潜伏期延长以及复合运动感觉神 经动作电位离散;在这些疾病取得 性变异型中还常见传导阻滞。
神经电生理系列
神经电生理系列
第1页
概况
一. 概念 肌电图(EMG)包含广义和狭义。狭义EMG指同 心圆针电极或常规EMG。广义EMG包含SCV、 MCV和F波、RNS、反射(H-反射、瞬目反射和交 感皮肤反射)、单纤维肌电图(SFEMG)、巨肌 电图、运动单位计数等。
神经电生理系列
第2页
感觉神经传导研究则是经过刺激感觉 神经纤维一点、在沿神经走行另 一点统计反应波来确定其传导速度和 动作电位波幅。
神经电生理系列
第31页
神经电生理系列
第9页
二.当前EMG所处地位
伴随CT、MRI等应用,诱发电位价值越 来越局限。但组织化学、生物化学及基 因等检测方法进展仍不能取代EMG为正 常或异常神经肌肉提供主要信息。在神 经肌肉疾病诊疗、预后评价和检测中含 有主要意义。是神经系统检验延伸。
神经电生理__肌电图基础知识
中枢神经系统的反应包括了大脑皮层、脑干、脊髓等
临床常用的诱发电位检查项目
刺激 反应部位
1、SEP 2、BAEP 3、VEP
体感诱发电位 脑干听觉诱发电位 视觉诱发电位
电
本体感觉皮层
声
脑干
光
视觉皮层
4、MEP
5、P300
产生机理、意义、特点
少、小
肌细胞膜 完整性破坏
针电极刺入
多、大
n
周围神经 轴索 中枢 下运动神经元
其它自发性放电 肌强直放电:
强直性肌病的特征电位
m
电位发生机理不明
声音特征: 飞机俯冲样 摩托车启动样
束颤电位: n
下运动神经元
肌细胞 运动神经元
下运动神经元损害早期
纤颤电位、束颤电位同时出现才视为有意义
眶上N 三叉N 刺激 眼 R1、 R2 三叉N主核 中间N元 面N核 面N 眼 轮 轮 匝 R2’ 三叉脊束核 中间 中间N N元 元 面N核 面N 匝 肌 肌 格林巴利综合症 三叉神经压迫性病变 多发性硬化 听神经瘤
应用: 三叉神经痛
糖尿病性周围神经病 Bell麻痹 Wallenberg综合征
神经轴突末梢
腰骶干 全部S ,CO
少突胶质细胞(中枢) 雪旺氏细胞(周围神经)
运动单位
运动神经元
神 经 元
轴索
肌细胞
郎飞氏结
轴突
髓鞘 突触前膜 乙酰胆硷囊泡 突触 终板皱褶 线粒体 末梢
轴突末 梢分支 雪旺氏细胞 终板 肌原纤维
突触后膜皱褶
肌细胞 突触间隙
运动单位
一个脊髓α运动神经元或脑干运动神经元及其所支 配的全部肌纤维所构成的一个功能单位,称为运动 单位。运动单位的大小有很大差别。 小运动单位:利于做精细运动,如眼外肌运动神经 元,只支配6-12根肌纤维。
神经电生理知识(1)
(六)临床应用: 是通过研究混合神经肌肉动作电位来 评价周围神经的功能状态,首先它可以 确定是哪些神经受损,以及受损神经的 病理类型是以脱髓鞘为主还是以轴索损 害受损,为诊断和治疗提供依据。
二、感觉神经传导 (一)、潜伏期: 分起始潜伏期和峰潜伏期。 起始潜伏期是指从刺激伪迹处开始到电 位偏离基线之间的时间,它代表了神经传 导从刺激点到纪录电极之间的传导时间, 其波形可以使负相波起始,也可以是正相 波起始。
以轴索变性为主的周围神经病,包括酒精 中毒性和尿毒症性神经病,结节性多动脉 炎、某些糖尿病和癌性神经病以及大多数 中毒性和营养缺乏所致的神经病。
二、髓鞘脱失: 髓鞘是神经传导的基本物质,髓鞘脱失,就会出 现神经传导速度明显减慢,末端潜伏期延长、波形 离散或传导阻滞,但一般不伴有混合肌肉动作电位 和感觉神经电位波幅改变,而这种异常即使在很严 重的轴索损害时也不会出现。 任何运动、感觉或混合神经传导速度在上肢小 于35m/,下肢小于30m/s,均被认为是由于髓鞘脱失 而引出,但在轴索损伤后出现神经再生时传导速度 可以很慢。 如果脱髓鞘改变没有继发轴突变性,肌电图不 会发现失神经电位。 传导的减慢主要是因通过病灶处的神经冲动延 迟所致,而不单纯是因快纤维选择性传导阻滞所致。 局灶性节段性脱髓鞘,可引起通过病灶处的传导减 慢,而病灶远侧的传导是正常的。 Nhomakorabea
由于感觉神经纤维没有参与运动单位,所 以可以用来鉴别由于周围神经病、神经肌 肉接头病变以及肌肉本身病变而导致的广 泛性损害,而后两者感觉神经电位是正常 的。
注:任何年龄段当单侧感觉神经电位消失 时,则认为是异常,但对于60岁以上者, 双侧腓浅和腓肠神经感觉电位消失,均不 能认为是异常,结合临床。
神经传导速度测定
神经电生理脑电图技术《基础知识》
基础知识知识点:脑的主要结构及功能⒈总体分为三个层次:最深层称为脑干,主要与自主过程,例如心率、呼吸、吞咽和消化功能有关。
外包在这个中央结构的是边缘系统,他与动机、情感和记忆有关。
包括在这两层之外的是大脑,是人类全部心理活动产生的地方。
大脑及其表层即大脑皮层整合感觉信息,协调你的运动,促成抽象思维和推理。
⒉脑干、丘脑和小脑:⑴.脑干(brainstem)是含有综合调节体制内部状态的脑结构。
延髓(medulla)位于脊髓的最上端。
是呼吸、血压和心搏调节中枢。
从身体所发出的自上神经和自脑发出的下行神经在延脑发生交叉,这就意味着身体的左侧和右脑相连,右侧和左脑相连。
⑵.紧贴在延脑之上的是桥脑(pons),它提供传入纤维到其他脑干结构和小脑之中。
⑶.延脑和桥脑之中有一种网状结构(reticularformation),它唤醒大脑皮层去注意新的刺激,甚至在睡眠中也保持脑的警觉性。
这个区域受损会导致昏迷。
⑷.网状结构有经丘脑(thaiamus)的长纤维束,传入的感觉信息可通过丘脑到达大脑的适当区⑸.小脑(cerebellum)在头骨的基底在脑干之上,协调着身体的运动,控制姿势并维持平衡,在平滑性运动的协调方面和运动技能学习方面小脑有着重要作用。
⒊边缘系统:边缘系统(limbicsystem)与动机、情绪状态和记忆有关。
有三个结构组成:海马体、杏仁核和下丘脑⑴.海马体(hippocampus)在外显记忆中具有重要作用。
外显记忆是一类提取自己感觉到的已知晓记忆的过程。
但是海马体受损不妨碍意识觉知外的内隐记忆。
如果你的海马体受损你能学到一些新的任务,但却不能记住它,也不记得发生了什么事。
⑵.杏仁核(amygdale),杏仁核受损可能对特别活跃的的个体产生镇定作用(情绪控制),但一些地区受损也会伤害到面孔表情的识别能力(情绪记忆能力)⑶.下丘脑(hypothalamus),它调节动机行为包括摄食、饮水、体温调节和性唤醒。
神经电生理的基本概念
2 . 兴奋是如何由一个神经元传递给另一个神 经元的?
第三十四页,共44页。
3 . 兴奋的传递方向
神经内: 树突→细胞体→轴突
神经间: 一个神经元的轴突 → 另一个神
经元的细胞体或树突。
4 . 兴奋传导的点:
神经内: 双向性 绝缘性 全有全无 不衰 减
神经间: 单向性
第三十五页,共44页。
要点回顾二:
1 . 突触是由--突---触--前---膜-、---突---触--后---膜-和-----突---触---间三隙 部分组成的。
2 . 当兴奋通过--神--经---纤---维传导到突触小体时,突 触小体内的--突---触--小---泡将------递---质--释放到-------突--触-- 间隙
兴奋
定的--------神经到达------------,使效应器产生相
传出
应的活动。
效应器
第十九页,共44页。
利用反射弧进行的电生理检测
• H反射 • 瞬目反射 • SSR • 球海棉体反射 • 牵张反射
第二十页,共44页。
动作电位是如何产生的?
第二十一页,共44页。
(一)细胞的静息电位
静息电位: 细胞未受刺激时 膜两侧的电位差。
第四十一页,共44页。
一 内脏运动神经 内脏运动神经与躯体运动神经的区别:
内脏运动神经
1. 支配的结构 2.所含纤维种类
平滑肌、心肌、腺体 交感、副交感2种纤维
躯体运动神经
骨骼肌 只有一种
3.所含神经元数目
4.分布形式
5.髓鞘 6.是否受意志控制
2个神经元 节前神经元 节后神经元
节前纤维
节后纤维
神经元的电生理特性
神经元的电生理特性神经元是构成神经系统的基本单元,它们负责接收、传递和处理信息。
神经元的电生理特性是指神经元在电刺激下的响应和电活动的产生。
本文将从神经元的电刺激、动作电位和突触传递等方面介绍神经元的电生理特性。
一、神经元的电刺激神经元能够对外部环境的电刺激做出响应。
外部电刺激可以通过刺激神经元的树突、轴突或神经元细胞体,从而引发神经元的电信号传递。
这些电刺激可以是生理的,例如来自其他神经元的神经冲动;也可以是外部环境的电刺激,例如光线、声音等。
二、动作电位神经元产生的电信号主要包括动作电位和突触电位。
动作电位是神经元在电刺激下产生的一种快速且短暂的电活动。
当神经元受到足够强度的电刺激时,电压跨膜电位会发生剧烈的变化,从而触发神经元产生动作电位。
动作电位的传播是神经信号传递的基础,使得神经信息能够在神经元之间快速传递。
三、突触传递突触是神经元之间进行信息传递的特殊连接点。
通过突触结构,神经元能够将电信号转化为化学信号,进而实现神经元之间的传递。
神经元的突触传递过程中涉及到神经递质的释放、受体的结合以及离子通道的开放和闭合等一系列复杂的电生理过程。
神经元的电生理特性是神经系统正常功能的基础。
通过研究神经元的电刺激、动作电位和突触传递等特性,我们可以更好地理解神经元的功能以及神经系统的整体工作原理。
这对于研究神经相关疾病、发展神经科学技术具有重要意义。
总结:神经元的电生理特性包括电刺激、动作电位和突触传递等。
神经元能够对外部环境的电刺激做出响应,并产生动作电位进行信号传递。
通过突触结构,神经元之间实现化学信号的转化和传递。
研究神经元的电生理特性有助于深入了解神经系统的工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
诱发电活动
微伏级
诱发电位检测技术,就是要把微伏级的诱发电活动 从百微伏级的脑电背景活动中提取出来
脑电背景活动的随机性
任意时刻采样的脑电信号,其方向、振幅是随机的
诱发反应的特性:
锁时关系——刺激所引起的反应总是在刺激结束后的固定时刻出现 重复性——每一次相同的刺激所引起的反应是相同的
从脑电背景活动中提取诱发电活动使用的方法
传 导 检 测
H反射
F波 Blink反射
高频放电 n, m 肌颤搐 ?
重复电刺激试验 运动终板功能
单纤维肌电图
特殊肌电图
巨肌电图
小结
肌源性、神经源性损害
肌电图表现对照简表
插纤正 入颤相
束 颤
时限
MUP 波幅 位相
大MS 用C CH F 力V V
R N
S
N + + + +/- ↑ ↑
↑ ↓ ↓↓↑↑ ―
由SLSEP派生出来的其它检查
三叉神经SEP
刺激:眶下孔、上唇 颏(ke)孔、下唇
记录:C5、C6等—FPz 应用:三叉神经痛、脑干三叉
神经核损害等
该检查因其神经发生源尚不为明确、 出波不稳定等原因,限制了其临床应用
红色为刺激点
BAEP 脑干听觉诱发电位
BAEP 原理
方法 A2→Cz
刺激
白噪声掩蔽
Aα 初级肌梭、支配梭外肌 70-120
触觉比痛觉来得快
Aβ 皮肤触压觉 30-70
神经元 轴索
正 常 雪旺氏细胞
郎飞氏节
肌肉
完
顺
全
向
断
变
裂
性
脱
轴
髓
索
鞘
断
裂
*正常:
n 神经性损害 m 肌性损害
无自发放电
插入电位
*自发电活动 n m
失神经电位 n
纤颤电位: 时限 <=3ms 波幅几十-
几百μV
终板放电
过50%视为传导阻滞 正常 整合好
神经损害类型对应MCVs改变
轴索完全断裂 神经元完全损害 神经元部分损害
轴索部分病损 周围部分性外伤
全段性脱髓鞘 节段性脱髓鞘
MCV
节段性
CMAP
原因
运动单位(MU) 完全丧失 MU减少
MU减少
MU减少+脱髓鞘
脱髓鞘
传导阻滞
*感觉神经传导(SCVs):单位:d-mm L-ms CV-m/s
绝缘层 针芯 针体
肌电图、诱发电位仪
质量差异的关键:电极、放大器
电极 模数转换 放大器
控制器
扬声器
计算机
打印机
声
光 电
刺激器
周围神经解剖
颈丛 C1-C4
臂丛 C5-TT11
胸神经前支 TT11-TT1122 腰丛 TT1122-LL44 骶丛 LL44-L5
腰骶干
全部S ,CO
少突胶质细胞(中枢) 雪旺氏细胞(周围神经)
右腘窝
N50 P40 P60
10ms/D
SLSEP神经发生源、应用价值
N20
P40
神经发生源的研究是各种诱 发电位研究的一个很重要的 方面
明确的传导通路和神经发生 源是诱发电位应用的基础
一级皮层原发反应
SLSEP
特点:图形稳定 个体差异小 重复性好 不受意识状态影响
丘脑腹后外侧核
SLSEP观察指标与常见异常改变
BAEP 基本判定方法
观察指标:各波潜伏期、波幅,主要是Ⅰ、Ⅲ、Ⅴ波
Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ波异常 蜗性、蜗后听神经
Ⅱ、Ⅲ、Ⅳ、Ⅴ波异常
听神经颅内段
Ⅲ、Ⅳ、Ⅴ波异常
耳蜗核(脑干中段)
Ⅳ、Ⅴ波异常
上橄榄核水平
正相电位 正锐波 正尖波
自发电活动(失神经电位) m 肌 细胞 受损
肌细胞膜 稳定性下降
产生机理、意义、特点
少、小
肌细胞外 环境变化
肌细胞膜 完整性破坏
针电极刺入
神经对肌肉的 抑制作用丧失
多、大
n 周围神经 轴索
中枢 下运动神经元
其它自发性放电
肌强直放电:
强直性肌病的特征电位
m 电位发生机理不明
• 小运动单位:利于做精细运动,如眼外肌运动神经元, 只支配6-12根肌纤维。
• 大运动单位:利于产生巨大的肌张力,如四肢肌肉的 运动神经元,支配数目可达2000根肌纤维。
S 兴奋传导方向
无髓纤维 m/s
自主节后 0.7-2.3 后根痛觉 0.7-2.0
薄髓纤维
Aδ 皮肤痛温觉 10-30
厚髓纤维
肌电图、诱发电位的原理 及应用(EMG)
前言
临床神经电生理
脑电图学 肌电图学 诱发电位学
最简明的解释
• 肌电图学
➢ 用针电极刺入肌肉,观 察肌肉在不同状态下的 生物电变化。
➢ 用脉冲电流,刺激不同 部位的神经,观察神经 及其支配肌肉的生物电 变化。
➢ 反映神经肌肉功能状态
•诱发电位学
➢ 给周围神经或其它感觉器 官以适当的刺激,观察这 刺激在中枢神经系统引发 的生物电反应,借此反映 中枢神经系统的功能状况
——叠加平均技术
叠加平均技术
+
—
+
—
—
+
—
—
+
—
+
—
+
+
—
+
+
—
脑电背景活动因其随机性,在多次叠加平均后会趋于零(直线)
诱发反应因其“锁时关 系”和“重复性”,会 随着叠加次数的增加而 逐渐显现出来
不同叠加 平均次数 图形实例
SLSEP 躯体感觉诱发电位
SLSEP原理
*刺激
脉冲电流 脉宽0.1-0.2ms 、频率3-5Hz 上肢 腕 正中神经 下肢 内踝 胫神经
由SLSEP派生出来的其它检查
脊髓SEP
记
录
刺激:内踝胫神经
点
记录:分节段记录
反应性质:脊髓动作电位 记录方法:表面、脊间韧带、硬膜外
应用:准确定位脊髓 损伤平面
优点:与下肢SEP结合,可以准 确定位脊髓损害部位
缺点:操作费时、病人不易合作 诱发电位出波不太清晰稳定
T12
10ms/D
T10
T8
T6
运动单位
运动神经元 轴索
肌细胞
郎飞氏结 轴突
髓鞘 轴突末 梢分支 雪旺氏细胞 终板 肌原纤维
神 经 元
乙酰胆硷囊泡 线粒体
突触 末梢
突触前膜 终板皱褶
肌细胞 突触间隙
突触后膜皱褶
运动单位
• 一个脊髓α运动神经元或脑干运动神经元及其所支配 的全部肌纤维所构成的一个功能单位,称为运动单位。 运动单位的大小有很大差别。
肌细胞跨膜
肌细胞对神经冲动
电位下降
响应的一致性丧失
n
m
多相电位
* 干扰相
正常
n 运动单位减少
混合相 单纯相
m
病理干扰相
*运动神经传导(MCVs):单位:d-mm L-ms CV-m/s
S3
S2
S1
d2
d1
S1
L1 S2
L2
t1=L2-L1 t2=L3-L2 R CV1=d1/t1 CV2=d2/t2
*传导
脊髓深感觉(本体感觉)传导通路 到达顶叶本体感觉皮层
SLSE P记录
上肢 C3/C4 ---FPz
Cz
FPz
下肢 Cz---FPz
FPz
C3
C4
SLSEP波形及意义
上肢
N20 N35 P25
N9
波形命名
方向+时间
下肢
左 C4 右 C3
左 Cz 右 Cz
左 Erb’s 右 Erb’s
左腘窝
N8
SLSEP由派生出来的其它检查
节段性SEP
L3
L1
T11
刺激:皮节刺激
T9
T7
记录:随刺激位置 T5 上升从Cz逐渐旁开 T3
应用:脊髓损害定位
10ms/D
LD1 LD2 损害平面以下波幅下降
损害部位潜伏期差明显大于正常
优点:与下肢SEP结合,可以准确定位脊髓损害部位
缺点:操作费时、病人不易合作;诱发电位出波不太清晰稳定
Rr Ra
面N
三叉N节 三叉N主核
面N
展N核
SR
R1 R2
SL
R2’
面N核
三 叉 脊 束 核 外侧网状结构 内的中间N元
SR
R2’
SL
R1 R2
SL
Rr Ra
Blink反射意义及应用
神经传导通路:
眶上N 三叉N 三叉N主核 中间N元 面N核 面N 眼眼 R1、 R2
轮轮
刺激
三叉脊束核 中中间间NN元元 面N核 面N 匝匝 R2’
神经损害类型对应SCVs改变
轴索完全断裂 神经元完全损害
节前损害 轴索部分病损 部分周围性外伤 全段性脱髓鞘 节段性脱髓鞘
SCV
节段性
SNAP
原因
失轴索 部分性失轴索 部分性失轴索 失轴索+脱髓鞘
脱髓鞘 脱髓鞘
H反射检测原理及其意义
刺 髓激传点导至时脊间 =t/2-1/2突触延搁时间
H反射提供了一种检测(下肢) 周围神经近心端功能状况的手段
M ― ++ ― ↓
↓
↑↑ ↑ ― ― ― ― ―
MG ― ― ― ― ―
―
― ― ――――+