2020—2021学年海口市初二上数学期末模拟试题含答案
人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)
2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。
2020-2021上海市北初级中学八年级数学上期末一模试题(含答案)
2020-2021上海市北初级中学⼋年级数学上期末⼀模试题(含答案)2020-2021上海市北初级中学⼋年级数学上期末⼀模试题(含答案)⼀、选择题1.下列边长相等的正多边形能完成镶嵌的是()A.2个正⼋边形和1个正三⾓形B.3个正⽅形和2个正三⾓形C.1个正五边形和1个正⼗边形D.2个正六边形和2个正三⾓形2.如图, BD 是△ABC 的⾓平分线, AE⊥ BD ,垂⾜为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°3.在平⾯直⾓坐标系中,点A坐标为(2,2),点P在x轴上运动,当以点A,P、O为顶点的三⾓形为等腰三⾓形时,点P的个数为()A.2个B.3个C.4个D.5个4.如果解关于x的分式⽅程2122m xx x-=--时出现增根,那么m的值为A.-2B.2C.4D.-45.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆⼼,以相同的长(⼤于12 AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 6.如图①,在边长为a的正⽅形中剪去⼀个边长为b(bA.a2+b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.a2-b2=(a+b)(a-b)7.若△ABC 三边分别是a 、b 、c ,且满⾜(b ﹣c )(a 2+b 2)=bc 2﹣c 3 ,则△ABC 是()A .等边三⾓形B .等腰三⾓形C .直⾓三⾓形D .等腰或直⾓三⾓形 8.下列计算中,结果正确的是()A .236a a a ?=B .(2)(3)6a a a ?=C .236()a a =D .623a a a ÷= 9.尺规作图要求:Ⅰ、过直线外⼀点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上⼀点作这条直线的垂线;Ⅳ、作⾓的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ 10.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的⼀个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°D .130°11.如图,⽤四个螺丝将四条不可弯曲的⽊条围成⼀个⽊框,不计螺丝⼤⼩,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两⽊条的夹⾓均可调整.若调整⽊条的夹⾓时不破坏此⽊框,则任两螺丝的距离之最⼤值为何?A .5B .6C .7D .1012.下列条件中,不能作出唯⼀三⾓形的是( )A .已知三⾓形两边的长度和夹⾓的度数B .已知三⾓形两个⾓的度数以及两⾓夹边的长度C .已知三⾓形两边的长度和其中⼀边的对⾓的度数D .已知三⾓形的三边的长度⼆、填空题13.分解因式:3327a a -=___________________.14.如图,直线a ∥b ,∠l =60°,∠2=40°,则∠3=______.15.三⾓形三边长分别为 3,1﹣2a ,8,则 a 的取值范围是 _______.16.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO ,CO ,则∠BOC=________.17.若a m =5,a n =6,则a m+n =________.18.因式分解:3a 2﹣27b 2=_____.19.已知16x x +=,则221x x +=______ 20.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E , AE=3cm,△ADC?的周长为9cm ,则△ABC 的周长是____ ___21.已知,关于x 的分式⽅程1235a b x x x --=+-. (1)当1a =,0b =时,求分式⽅程的解;(2)当1a =时,求b 为何值时分式⽅程1235a b x x x --=+-⽆解:(3)若3a b =,且a 、b 为正整数,当分式⽅程1235a b x x x --=+-的解为整数时,求b 的值.22.先化简再求值:(a +2﹣52a -)?243a a --,其中a =12-. 23.如图,上午8时,⼀艘轮船从A 处出发以每⼩时20海⾥的速度向正北航⾏,10时到达B 处,则轮船在A 处测得灯塔C 在北偏西36°,航⾏到B 处时,⼜测得灯塔C 在北偏西72°,求从B到灯塔C的距离.24.如图,已知AB⽐AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.25.如图,点B、E、C、F在同⼀条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【参考答案】***试卷处理标记,请不要删除⼀、选择题1.D解析:D【解析】【分析】只需要明确⼏个⼏何图形在⼀点进⾏平铺就是⼏个图形与这⼀点相邻的所有内⾓之和等于360°即可。
2021-2022学年八年级上学期期末数学试题(含解析)
一、选择题(本大题共有6小题,每小题3分,共18分)
1.下列图案不是轴对称图形的是( )
A B.
C. D.
2.若二次根式 有意义,则x的取值范围是( )
A. B. C. D.
3.若△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则DF的长为( )
10.已知A(x1,y1)、B(x2,y2)两点在一次函数y=(m﹣1)x+7的图象上,且当x1<x2时,y1<y2,则m的取值范围是_____.
【答案】
【解析】
【分析】由题意知 ,由一次函数图象性质可知 ,进而可得 的取值范围.
【详解】解:由题意知 ,由一次一次函数定义、图象与性质.解题的关键在于对一次函数知识的熟练掌握.
15.如图,在平面直角坐标系xOy中,点A的坐标为(2,0),点B在第一象限角平分线上,且BA⊥x轴,现将点A、B绕点O同时逆时针匀速旋转,当点A绕点O旋转90°到达y轴上的点C时,点B刚好绕点O旋转了45°到达y轴上的点D'处.则当点A旋转一周回到(2,0)时,点B所在的位置坐标为_____.
16.如图,点A、B在x轴上,点C在y轴的正半轴上,且AC=BC= ,OC=1,P为线段AB上一点,则PC2+PA⋅PB的值为_____.
【详解】解:过点D作DE⊥AB于E,如图所示:
则CD=BE,DE=BC=1 2米= 米,
在Rt△ADE中,AD=1.5米= 米,
(1)当点B的横坐标为﹣ 时,求d(A,B)的值;
(2)若d(A,B)=5,求点B 坐标;
(3)若B点的横、纵坐标都为整数,且d(A,B)=3,则写出符合条件的点B的坐标
26.如图,在平面直角坐标系xOy中,A(0,3)、B(-4,0),连接AB,点C为线段AB上的一个动点(点C不与A、B重合),过点C作CP⊥x轴,垂足为P,将线段AP绕点A逆时针旋转至AQ,且∠PAQ=∠BAO.连接OQ,设点C的横坐标为m.
2021-2022学年八上学期期末数学试题(含解析)
A. B.
C. D. 或
10.如图,在四边形 中,连接 、 ,已知 , , , ,则四边形 的面积为()
A. B.3C. D.4
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)
答案与解析
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)
1.第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是历届的冬奥会会徽设计的部分图形,其中不是轴对称图形的是()
A. B. C. D.
6.下列函数中,属于正比例函数的是()
A. B. C. D.
7.已知 , , 分别是 的三边,根据下列条件能判定 为直角三角形的是()
A. , , B. , ,
C. , , D. , ,
8.等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()
A.5cmB.11cmC.8cm或5cmD.11cm或5cm
17.如图, 中, , 为 中点, 在 上,且 ,若 , ,则边 的长度为______.
18.如图,在边长为2的等边 中,射线 于点 ,将 沿射线 平移,得到 ,连接 、 ,则 的最小值为______.
三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
【答案】A
【解析】
【分析】题目给出等腰三角形一条边长为5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
2020-2021学年人教版八年级下册数学期末冲刺试题【含答案】
2020-2021学年人教新版八年级下册数学期末冲刺试题一.选择题(共6小题,满分18分,每小题3分)1.下列二次根式中,无论x取什么值都有意义的是( )A.B.C.D.2.如果正比例函数y=(a﹣1)x(a是常数)的图象在第一、三象限,那么a的取值范围是( )A.a<0B.a>0C.a<1D.a>13.若样本x1,x2,x3,…,x n的平均数为10,方差为4,则对于样本x1﹣3,x2﹣3,x3﹣3,…,x n﹣3,下列结论正确的是( )A.平均数为10,方差为2B.众数不变,方差为4C.平均数为7,方差为2D.中位数变小,方差不变4.已知直角三角形的两条直角边的长分别为1和2,则斜边的长为( )A.B.C.3D.55.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为( )A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)6.如图,用正方形制作的“七巧板”拼成了一只小猫,若小猫头部(图中涂色部分)的面积是100cm2,则原正方形的边长为( )A.10cm B.15cm C.20cm D.25cm二.填空题(共6小题,满分18分,每小题3分)7.若最简根式与是可以合并的二次根式,则a的值是 .8.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则关于x+y= .9.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种5kg,乙种10kg,丙种10kg混在一起,则售价应定为每千克 .10.如图所示,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC、BD相交于点O,E、F分别是AB、AO的中点,则△AEF的周长是 cm.11.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC= .12.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为 千米.三.解答题(共5小题,满分30分,每小题6分)13.计算题:(1)()×;(2)(+1)(﹣1)﹣()2.14.如图,用两个面积为200cm2的小正方形拼成一个大的正方形.(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为4:3,且面积为360cm2?15.已知一次函数y=(m﹣2)x|m|﹣1﹣m+10.(1)求出m的值;(2)当一次函数与x轴、y轴的交点分别为A和B时,求△AOB的面积.16.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:△ABC的周长.17.如图,AD是△ABC的角平分线,请利用尺规作图法,在AB,AC边上分别求作点E、点F,使四边形AEDF是菱形.(保留作图痕迹,不写作法)四.解答题(共3小题,满分24分,每小题8分)18.如图,在▱AB CD中,点P在对角线AC上一动点,过点P作PM∥DC,且PM=DC,连接BM,CM,AP,BD.(1)求证:△ADP≌△BCM;(2)若PA=PC,设△ABP的面积为S,四边形BPCM的面积为T,求的值.19.2020年3月,有关部门颁布了《关于全面加强新时代大中小学劳动教育的意见》,某地教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,在该校七、八年级中各随机抽取20名学生进行调查,并将结果整理描述和分析,下面给出了部分信息.七年级20名学生的一周劳动次数为:22233333333445556677八年级20名学生的一周劳动次数条形统计图如图.七、八年级抽取的学生的一周劳动次数的平均数、众数,中位数、5次及以上人数所占百分比如表所示:年级平均数众数中位数5次及以上人数所占百分比七年级 3.95a335%八年级 3.953b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)若规定:每名学生的劳动次数的绝对差=|劳动次数﹣平均数|,则七年级这20名学生的劳动次数的绝对差的总和 八年级这20名学生的劳动次数的绝对差的总和(填“>”、“=”或“<”);(3)若一周劳动次数3次及以上为合格,该校七年级有600名学生,八年级有800名学生,估计该校七年级和八年级一周劳动次数合格的学生总人数是多少.20.定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.五.解答题(共2小题,满分18分,每小题9分)21.在“一带一路”倡议的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10千克A级茶和20千克B级茶的利润为4000元,销售20千克A级茶和10千克B级茶的利润为3500元.(1)求每千克A级茶、B级茶的利润分别为多少元?(2)若该经销商一次决定购进A、B两种级别的茶叶共200千克用于出口,设购进A 级茶x千克,销售总利润为y元.①求y与x之间的函数关系式;②若其中B级别茶叶的进货量不超过A级别茶叶的3倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.22.已知,四边形ABCD是菱形,∠B=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;(2)如图2,当点E在线段CB的延长线上,连接AC,在不添加任何辅助线的情况下,直接写出图2中三对相等的线段(菱形ABCD相等的边除外).六.解答题(共1小题,满分12分,每小题12分)23.如图,直线y=﹣x﹣4交x轴和y轴于点A和点C,点B(0,2)在y轴上,连接AB,点P为直线AB上一动点.(1)直线AB的解析式为 ;(2)若S△APC=S△AOC,求点P的坐标;(3)当∠BCP=∠BAO时,求直线CP的解析式及CP的长.答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.解:A、当x=1时,无意义,故此选项错误;B、当x=1时,无意义,故此选项错误;C、当x<0时,无意义,故此选项错误;D、无论x取什么值,都有意义,故此选项正确;故选:D.2.解:因为正比例函数y=(a﹣1)x(a是常数)的图象在第一、三象限,所以a﹣1>0,解得:a>1,故选:D.3.解:∵样本x1,x2,x3,…,x n的平均数为10,方差为4,∴样本x1﹣3,x2﹣3,x3﹣3,…,x n﹣3的平均数为7,方差为4,众数和中位数变小.故选:D.4.解:∵直角三角形的两条直角边的长分别为1和2,∴斜边的长为:.故选:B.5.解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.6.解:100÷=400(cm2),=20(cm).∴原正方形的边长为20cm.故选:C.二.填空题(共6小题,满分18分,每小题3分)7.解:根据题意得a+3=11﹣3a,解得a=2.故答案为2.8.解:∵直线y=ax+b和直线y=kx交点P的坐标为(1,2),∴二元一次方程组的解为,∴x+y=1+2=3.故答案为3.9.解:根据题意售价应该定为=7.2(元/千克),故答案为7.2元.10.解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AB的中点,∴EF是△AOB的中位线,EF=OB=BD=AC=cm,AE=AB=×6=3cm,AF=AO=AC=cm ,∴△AEF的周长=AE+AF+EF=8cm.故8.11.解:设AE=ED=x,CD=y,∴BD=2y,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∴AB2=4x2+4y2,∴x2+y2=1,在Rt△CDE中,∴EC2=x2+y2=1∵EC>0∴EC=1.另解:依据AD⊥BC,BD=2CD,E是AD的中点,即可得判定△CDE∽△BDA,且相似比为1:2,∴=,即CE=1.故112.解:设甲的速度为akm/h,乙的速度为bkm/h,,解得,,设第二次甲追上乙的时间为m小时,100m﹣25(m﹣1)=600,解得,m=,∴当甲第二次与乙相遇时,乙离B地的距离为:25×()=千米,故.三.解答题(共5小题,满分30分,每小题6分)13.解:(1)===;(2)===.14.解:(1)大正方形的边长是==20(cm);故20cm;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x•3x=360,解得:x=,4x=4=>20,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为360cm2.15.解:(1)根据题意得:,解得:m=﹣2;(2)函数y=﹣4x+12.当y=0,0=﹣4x+12.解得:x=3,∴与x轴交点A为(3,0),当x=0,y=12,∴与y轴交点B为(0,12),∴一次函数的图象与两坐标轴所围成的三角形面积为:S△AOB=|x||y|==18.16.解:在Rt△ABD和Rt△ACD中,根据勾股定理得:AB2=AD2+BD2,AC2=AD2+CD2,∴AB==20,AC==13,∴△ABC的周长=AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54,即△ABC的周长是54.17.解:如图,四边形AEDF为所作.四.解答题(共3小题,满分24分,每小题8分)18.解:(1)∵PM∥DC,且PM=DC,∴四边形CDPM是平行四边形,∴PD=MC,∵AB∥DC,且AB=DC,PM∥DC,且PM=DC,∴AB∥PM,且AB=PM,∴四边形ABMP是平行四边形,∴AP=BM,∵四边形ABCD是平行四边形,∴AD=BC,∴△ADP≌△BCM(SSS);(2)由(1)可得S△ADP=S△BCM,∴S四边形BMCP=S△BCM+S△BCP=S△ADP+S△BCP=S平行四边形ABCD,又∵PA=PC,∴S△ABP=S△ABC=S平行四边形ABCD,∴的值为=.19.解:(1)由表格可得,a=3,由统计图可得,b=(3+4)÷2=3.5,c=×100%=40%,即a,b,c的值分别为3,3.5,40%;(2)由题意可得,七年级这20名学生的劳动次数的绝对差的总和是:|2﹣3.95|×3+|3﹣3.95|×8+|4﹣3.95|×2+|5﹣3.95|×3+|6﹣3.95|×2+|7﹣3.95|×2=26.9,八年级这20名学生的劳动次数的绝对差的总和是:|2﹣3.95|×4+|3﹣3.95|×6+|4﹣3.95|×2+|5﹣3.95|×4+|6﹣3.95|×3+|7﹣3.95|×1=27,∵26.9<27,∴七年级这20名学生的劳动次数的绝对差的总和<八年级这20名学生的劳动次数的绝对差的总和,故<;(3)600×+800×=30×17+40×16=510+640=1150(人),答:估计该校七年级和八年级一周劳动次数合格的学生总人数是1150人.20.(1)解:“直角三角形是勾股三角形”是假命题;理由如下:反例:30°,60°,90°的直角三角形中302+602≠902,它不是勾股三角形,故“直角三角形是勾股三角形”是假命题;(2)解:由题意可得:,解得:x+y=102;(3)证明:过B作BH⊥AC于H,如图所示:设AH=xRt△ABH中,BH=,Rt△CBH中,()2+(1+﹣x)2=4,解得:x=,∴AH=BH=,HC=1,∴∠A=∠ABH=45°,∴tan∠HBC===,∴∠HBC=30°,∴∠BCH=60°,∠B=75°,∴452+602=752∴△ABC是勾股三角形.五.解答题(共2小题,满分18分,每小题9分)21.解:(1)设每千克A级茶、B级茶的利润分别为a元、b元,,解得,,答:每千克A级茶、B级茶的利润分别为100元、150元;(2)①由题意可得,y=100x+150(200﹣x)=﹣50x+30000,即y与x的函数关系式为y=﹣50x+30000;②∵其中B级别茶叶的进货量不超过A级别茶叶的3倍,∴200﹣x≤3x,解得,x≥50,∵y=﹣50x+30000,∴当x=50时,y取得最大值,此时y=27500,200﹣x=150,即当进货方案是A级茶叶50千克,B级茶叶150千克时,使销售总利润最大,总利润的最大值是27500元.22.(1)证明:∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(ASA),∴BE=CF.(2)解:AE=AF,BE=CF,CE=DF.由(1)知△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=∠ACD=60°,∵∠BAC=∠EAF=60°,∠ABE=∠ACF,∴∠BAE=∠CAF,∵AB=AC,∴△BAE≌△CAF(ASA),∴AE=AF,BE=CF,∴BE+BC=CF+CD,即CE=DF.六.解答题(共1小题,满分12分,每小题12分)23.解:(1)∵直线y=﹣x﹣4交x轴和y轴于点A和点C,∴点A(﹣4,0),点C(0,﹣4),设直线AB的解析式为y=kx+b,由题意可得:,解得:,∴直线AB的解析式为y=x+2,故y=x+2;(2)∵点A(﹣4,0),点C(0,﹣4),点B(0,2),∴OA=OC=4,OB=2,∴BC=6,设点P(m, m+2),当点P在线段AB上时,∵S△APC=S△AOC,∴S△ABC﹣S△PBC=×4×4,∴×6×4﹣×6×(﹣m)=8,∴m=﹣,∴点P(﹣,);当点P在BA的延长线上时,∵S△APC=S△AOC,∴S△PBC﹣S△ABC=×4×4,∴×6×(﹣m)﹣×6×4=8,∴m=﹣,∴点P(﹣,﹣),综上所述:点P坐标为(﹣,)或(﹣,﹣);(3)如图,当点P在线段AB上时,设CP与AO交于点H,在△AOB和△COH中,,∴△AOB≌△COH(ASA),∴OH=OB=2,∴点H坐标为(﹣2,0),设直线PC解析式y=ax+c,由题意可得,解得:,∴直线PC解析式为y=﹣2x﹣4,联立方程组得:,解得:,∴点P(﹣,),∴CP==,当点P'在AB延长线上时,设CP'与x轴交于点H',同理可求直线P'C解析式为y=2x﹣4,联立方程组,∴点P(4,4),∴CP==4,综上所述:CP的解析式为:y=﹣2x﹣4或y=2x﹣4;CP的长为或4.。
2020-2021学年人教版八年级数学上册第11章《三角形》单元测试含答案
2020-2021学年人教版八年级数学上册第11章《三角形》单元测试含答案第11章《三角形》单元测试时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.下列长度的每组三根小木棒,能组成三角形的一组是()A.3,3,6 B.4,5,10 C.3,4,5 D.2,5,3 2.在△ABC中,∠A=21°,∠B=34°,则△ABC()A.锐角三角形B.直角三角形C.钝角三角形D.锐角或钝角三角形3.已知三角形两边长为5和8,则第三边长a的取值范围是()A.3<a<13 B.3≤a≤13 C.a>3 D.a<11 4.下列四个图形,具有稳定性的有()A.1个B.2个C.3个D.4个5.若n边形的内角和等于外角和的4倍,则边数n为()A.10 B.8 C.7 D.56.如图,在△ABC中,∠A=35°,∠DCA=100°,则∠B的度数为()A.45°B.55°C.65°D.75°7.下列说法中正确的是()A.三角形的角平分线是一条射线B.三角形的一个外角大于任何一个内角C.任意三角形的外角和都是180°D.内角和是1080°的多边形是八边形8.把一副直角三角板按如图所示的方式摆放在一起,其中∠C=90°,∠F=90°,∠D=30°,∠A=45°,则∠1+∠2等于()A.270°B.210°C.180°D.150°9.如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°10.如图,平面上有两个全等的正八边形ABCDEFGH、A′B′C′D′E′F′G′H′,若点B与点B′重合,点H与点H′重合,则∠ABA′的度数为()A.15°B.30°C.45°D.60°二.填空题(每题4分,共20分)11.在△ABC中∠A:∠B=2:1,其中∠C的外角等于120°,则∠B=.12.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上根木条.13.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A=.14.三角形一边长为4cm,另一边长为3cm,且第三边长为偶数,则第三边的长为cm.15.如图,在一个三角形的纸片(△ABC)中,∠C=90°,将这个纸片沿直线DE剪去一个角后变成一个四边形ABED,则图中∠1+∠2的度数为°.三.解答题(每题10分,共50分)16.如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF 的度数.17.如图,已知点D为△ABC的边BC延长线上一点,DF⊥AB于点F,并交AC于点E,其中∠A=∠D=40°.(1)求∠B的度数;(2)求∠ACD的度数.18.(1)把下面的证明补充完整已知:如图,直线AB、CD被直线EF所截,AB∥CD,EG平分∠BEF,FG平分∠DFE,EG、FG交于点G.求证:EG⊥FG.证明:∵AB∥CD(已知)∴∠BEF+∠DFE=180°(),∵EG平分∠BEF,FG平分∠DFE(已知),∴,(),∴∠GEF+∠GFE=(∠BEF+∠DFE)(),∴∠GEF+∠GFE=×180°=90°(),在△EGF中,∠GEF+∠GFE+∠G=180°(),∴∠G=180°﹣90°=90°(等式性质),∴EG⊥FG().(2)请用文字语言写出(1)所证命题:.19.如图,在△ABC中,AD平分∠BAC(1)若P为线段AD上的一个点,过点P作PE⊥AD交线段BC 的延长线于点E①若∠B=34°,∠ACB=86°,则∠E=°;②猜想∠E与∠B、∠A CB之间的数量关系,并给出证明.(2)若P在线段AD的延长线上,过点P作PE⊥AD交直线BC 于点E.请你直接写出∠PED与∠ABC、∠ACB的数量关系.20.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出∠A、∠B、∠C、∠D之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出∠A、∠B、∠C、∠D之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在△ABC中,BD、CD分别平分∠ABC和∠ACB,请直接写出∠A和∠D的关系;②如图4,∠A+∠B+∠C+∠D+∠E+∠F=.(4)如图5,∠BAC与∠BDC的角平分线相交于点F,∠GDC与∠CAF的角平分线相交于点E,已知∠B=26°,∠C=54°,求∠F和∠E 的度数.参考答案一.选择1.解:A、3+3=6,不能构成三角形;B、4+5<10,不能构成三角形;C、3+4>5,能够组成三角形;D、2+3=5,不能组成三角形.故选:C.2.解:由题意∠C=180°﹣∠A﹣∠B=180°﹣21°﹣34°=125°,∴△ABC是钝角三角形,故选:C.3.解:∵三角形的第三边大于两边之差小于两边之和,∴三角形的两边长分别是5、8,则第三边长a的取值范围是3<a <13.故选:A.4.解:第一个图形为个三角形,具有稳定性,第二个图形是四边形,不具有稳定性;第三个图形中左侧含有一个四边形,不具有稳定性;第四个图形被分成了三个三角形,具有稳定性,所以具有稳定性的有2个.故选:B.5.解:设这个多边形的边数为n,则依题意可得:(n﹣2)×180°=360°×4,解得n=10.故选:A.6.解:∵∠DCA=∠A+∠B,∠DCA=100°,∠A=35°,∴∠B=100°﹣35°=65°,故选:C.7.解:A、三角形的角平分线是一条线段,故本选项错误;B、三角形的一个外角大于任何一个和它不相邻的内角,故本选项错误;C、任意多边形的外角和都是360°,故本选项错误;D、1080°÷180°+2=8,即内角和是1080°的多边形是八边形,故本选项正确.故选:D.8.解:如图:∵∠1=∠D+∠DOA,∠2=∠F+∠FPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠F+∠COP+∠CPO=∠D+∠F+180°﹣∠C=30°+90°+180°﹣90°=210°.故选:B.9.解:∵CE∥DF,∴∠AEC=∠AFD=58°,∵∠AEC=∠B+∠BCE,∴∠BCE=∠AEC﹣∠B=58°﹣30°=28°;故选:B.10.解:∵两个图形为全等的正八边形,∴ABA′H为菱形,∵∠HAB=∠HA′B==135°∴∠ABA′=180°﹣135°=45°.故选:C.二.填空题(共5小题)11.解:设∠A=2x,则∠B=x,∵∠C的外角等于120°,∴∠A+∠B=120°,即2x+x=120°,解得,x=40°,即∠B=40°,故答案为:40°.12.解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;故答案为:3.13.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.14.解:设第三边长为x,则4﹣3<x<4+3,即1<x<7.又x为偶数,因此x=2或4或6.故答案为:2或4或6.15.解:∵∠C=90°,∴∠A+∠B=90°,∵∠1+∠A+∠B+∠2=360°,∴∠1+∠2=360°﹣90°=270°,故答案为:270.三.解答题(共5小题)16.解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.17.解:(1)∵DF⊥AB,∴∠BFD=90°,∴∠B+∠D=90°,∵∠D=40°∴∠B=90°﹣∠D=90°﹣40°=50°;(2)∠ACD=∠A+∠B=40°+50°=90°.18.证明:∵AB∥CD(已知)∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补),∵EG平分∠BEF,FG平分∠DFE(已知),∴∠BEG=∠FEG,∠DFG=∠EFG,(角平分线的定义),∴∠GEF+∠GFE=(∠BEF+∠DFE)(等量代换),∴∠GEF+∠GFE=×180°=90°(等式的性质),在△EGF中,∠GEF+∠GFE+∠G=180°(三角形的内角和),∴∠G=180°﹣90°=90°(等式性质),∴EG⊥FG(垂直的定义);(2)请用文字语言写出(1)所证命题:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.故答案为:两直线平行,同旁内角互补,∠BEG=∠FEG,∠DFG =∠EFG,角平分线定义,等量代换,三角形的内角和,垂直的定义,两条平行线被第三条直线所截,同旁内角的平分线互相垂直19.解:(1)①∵∠B=34°,∠ACB=86°,∴∠BAC=180°﹣∠B﹣∠ACB=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠PDE=∠B+∠BAD=64°,∵PE⊥AD,∴∠E=90°﹣∠PDE=26°;故答案为:26;②数量关系:∠E=(∠ACB﹣∠B);理由如下:设∠B=x,∠ACB=y,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠B+∠ACB+∠BAC=180°,∴∠CAB=180°﹣x﹣y.∴∠BAD=(180°﹣x﹣y).∴∠PDE=∠B+∠BAD=x+(180°﹣x﹣y)=90°+(x﹣y).∵PE⊥AD,∴∠PDE+∠E=90°,∴∠E=90°﹣[90°+(x﹣y)]=(y﹣x)=(∠ACB﹣∠B).(2)∠PED=(∠ACB﹣∠ABC),理由如下:①当点E在线段BC上时,如图1所示:设∠ABC=n°,∠ACB=m°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠B+∠ACB+∠BAC=180°,∴∠CAB=(180﹣n﹣m)°,∴∠BAD=(180﹣n﹣m)°,∴∠PDE=∠ADC=∠ABC+∠BAD=n°+(180﹣n﹣m)°=90°+n°﹣m°,∵PE⊥AD,∴∠DPE=90°,∴∠PED=90°﹣(90°+n°﹣m°)=(m﹣n)°=(∠ACB﹣∠ABC),②当点E在CB的延长线时,如图2所示:同(2)①可得:∠PDE=∠ADC=∠ABC+∠BAD=n°+(180﹣n ﹣m)°=90°+n°﹣m°,∵PE⊥AD,∴∠DPE=90°,∴∠PED=90°﹣(90°+n°﹣m°)=(m﹣n)°=(∠ACB﹣∠ABC),综上所述,∠PED=(∠ACB﹣∠ABC).20.解:(1)∴∠D=∠A+∠B+∠C;理由如下:如图1,∠BDE=∠B+∠BAD,∠CDE=∠C+∠CAD,∴∠BDC=∠B+∠BAD+∠C+∠CAD=∠B+∠BAC+∠C,∴∠D=∠A+∠B+∠C;(2)∠A+∠D=∠B+∠C;理由如下:如图2,在△ADE中,∠AED=180°﹣∠A﹣∠D,在△BCE中,∠BEC=180°﹣∠B﹣∠C,∵∠AED=∠BEC,∴∠A+∠D=∠B+∠C;(3)①∠A=180°﹣∠ABC﹣∠ACB,∠D=180°﹣∠DBC﹣∠DCB,∵BD、CD分别平分∠ABC和∠ACB,∴∠ABC+∠ACB=∠DBC+∠DCB,∴∠D=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,故答案为∠D=90°+∠A,②连结BE,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠ABE+∠F+∠BEF=360°;故答案为360°;(4)由(1)知,∠BDC=∠B+∠C+∠BAC,∵∠B=26°,∠C=54°,∴∠BDC=80°+∠BAC,∴∠CDF=40°+2∠CAE,∵∠BAC=4∠CAE,∠BDC=2∠CDF,∴∠GDE=90°﹣∠CDF,∠AGD=∠B+∠GDB=26°+180°﹣∠CDF,∠GAE=3∠CAE,∴∠E=360°﹣∠GAE﹣∠AGD﹣∠GDE=64°﹣(2∠CAE﹣∠CDF)=64°+×40°=124°;∠F=180°﹣∠AGF﹣∠GAF=180°﹣(206°﹣∠CDF)﹣2∠CAE =﹣26°+∠CDF﹣2∠CAE=﹣26°+40°=14°;。
2021-2022学年八上期末数学题(含答案)
周长=4+5+5=14.
故选D.
【点睛】本题考查的知识点是等腰三角形的性质和三角形的三边关系,解题关键是进行分类讨论,还应验证各种情况是否能构成三角形进行解答.
4.平面直角坐标系中,点(a2+1,2020)所在象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
故选A.
【点睛】本题主要考查轴对称图形,掌握轴对称图形的定义并能正确识别轴对称图形是解答本题的关键.
2.下列实数0, , ,π,其中,无理数共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分:无理数有: , .
故选B.
【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
6.如图,点B,C在线段AD上,AB=CD,AE∥BF,添加一个条件仍不能判定△AEC≌△BFD的是( )
A.AE=BFB.CE=DFC.∠ACE=∠BDFD.∠E=∠F
【答案】B
【解析】
【分析】根据三角形全等的判定定理逐项分析即可.
【详解】解:∵AE∥BF,
∴∠A=∠FBD,
∵AB=CD,
∴AC=BD,
7.满足下列条件时, 不是直角三角形的是( )
A. , , B.
C. D. ,
【答案】C
【解析】
【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.
【详解】解:A、 符合勾股定理的逆定理,故A选项是直角三角形,不符合题意;
B、32+42=52,符合勾股定理的逆定理,故B选项是直角三角形,不符合题意;
(3)乙车出发后小时追上甲车.
2021-2022学年第一学期初二数学期终模拟试卷(三)及答案
2021-2022学年第一学期八年级期末数学模拟试卷三班级:姓名:学号:成绩:考试范围:苏科版2013年教材八年级数学上册全部内容及八下第七章《数据的收集、整理、描述》及第八章《认识概率》。
考试题型:选择、填空、解答三大类;考试时间:120分钟;试卷分值:130分。
一、选择题(本大题共8小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.4的平方根是()A.2 B.﹣2 C.±2 D.±42.下列运算正确的是()A.4a2﹣2a2=2a2B.(a2)3=a5 C.a2•a3=a6D.a3+a2=a53.以下列各组数为一个三角形的三边长,能构成直角三角形的是()A.2,3,4 B.3,4,5 C.5,6,7 D.7,8,94.八年级(1)班有60位学生,秋游前,班长把全班学生对秋游地点的意向绘制成了扇形统计图,其中想去“动物园”的学生数的扇形的圆心角为60°,则下列说法正确的是()A.想去动物园的学生占全班学生的60%B.想去动物园的学生有36人C.想去动物园的学生肯定最多D.想去动物园的学生占全班学生的5.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.﹣1 B.1 C.3 D.56.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()(第6题)(第9题)(第10题)A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD7.下列选项中,可以用来说明命题“若|x|>1,则x>1”是假命题的反例是()A.x=﹣2 B.x=﹣1 C.x=1 D.x=28.在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A. 1个 B. 2个 C. 3个 D. 4个9.已知一次函数y=mx+n﹣3的图象如图,则m、n的取值范围是()A. m>0,n<3 B. m>0,n>3 C. m<0,n<3 D. m<0,n>310. 如图,正方形ABCD的面积为36,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A. 5 B. 6 C. 7 D. 8二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.比较大小:______.(选填“>”、“=”、“<”).12.8的立方根是______.13.如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB 的距离是______cm.(第13题)(第16题)14.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是______.15.在实数、0.3•、π、中,无理数是______.16.如图,已知△ABC≌△ABD,∠CAB=30°,∠D=40°,则∠CBE=______°.17.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=40°,则∠BAE的度数为______°.(第17题)18.已知无论n取什么实数,点P(n,4n﹣3)都在直线l上,若Q(a,b)是直线l上的点,则(4a﹣b)2的值等于.三、解答题(本大题共10小题,共76分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算: +﹣(﹣1)2.20.先化简,再求值:(3+a)(3﹣a)+(a﹣1)2,其中a=.21.如图,已知线段AD、BC交于点E,AE=CE,BE=DE.求证:△ABE≌△CDE.22.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.23.某中学采取随机抽样的方式在学生中进行“最常用的交流方式”的问卷调查,问卷调查的结果分为四类:A.面对面交谈;B.微信和QQ等聊天软件交流;C.短信与电话交流;D.书信交流.要求接受调查的人每人从中选择一个选项,不能多选或不选.根据调查数据结果绘制成以下两幅不完整的统计图:(1)由图中信息可知:调查人数为______人;(2)请在图甲中补全条形统计图;(3)若全校有学生500名,请根据调查结果估计这些学生中以“C.短信与电话交流”为最常用的交流方式的人数约为多少?24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:可用图A来解释a2+2ab+b2=(a+b)2,事实上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)根据图B完成因式分解:2a2+2ab=2a______.(2)现有足够多的正方形和长方形卡片(如图C),试在右边的虚线方框中画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形,使该长方形的面积为a2+3ab+2b2,要求:每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),并利用你所画的图形面积对a2+3ab+2b2进行因式分解a2+3ab+2b2______.(直接填空)25.如图所示,四边形ABCD中,AC⊥BD于点O,且AO=CO=12,BO=DO=5,点P为线段AC上的一个动点.(1)填空:AD=CD=______.(2)过点P分别作PM⊥AD于M点,作PH⊥DC于H点.①试说明PM+PH为定值.②连结PB,试探索:在点P运动过程中,是否存在点P,使PM+PH+PB的值最小?若存在,请求出该最小值;若不存在,请说明理由.26.如图所示,在△ACB中,∠ACB=90°,CA=CB,D为AB边上一点,连结CD,CD绕点C逆时针旋转90度与线段CE重合,连结AE.(1)填空:∠B=______度;∠BCD=∠______(在图中找出一个与∠BCD相等的角).(2)求证:△BCD≌△ACE.(3)当AB=2CE时,求证:CD垂直平分AB.27.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.28.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数的图象的交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标.答案与解析一、单项选择题(每小题3分,共30分).1.4的平方根是()A.2 B.﹣2 C.±2 D.±4【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是:±2.故选C.2.下列运算正确的是()A.4a2﹣2a2=2a2B.(a2)3=a5 C.a2•a3=a6D.a3+a2=a5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并法则,可以得到结果.【解答】解:A、正确;B、(a2)3=a6故错误;C、a2•a3=a5故错误;D、a3+a2不能合并故错误;故选A.3.以下列各组数为一个三角形的三边长,能构成直角三角形的是()A.2,3,4 B.3,4,5 C.5,6,7 D.7,8,9【考点】勾股定理的逆定理.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、32+42=52,能构成直角三角形,故本选项正确;C、52+62≠72,不能构成直角三角形,故本选项错误;D、72+82≠92,不能构成直角三角形,故本选项错误;故选B.4.八年级(1)班有60位学生,秋游前,班长把全班学生对秋游地点的意向绘制成了扇形统计图,其中想去“动物园”的学生数的扇形的圆心角为60°,则下列说法正确的是()A.想去动物园的学生占全班学生的60%;B.想去动物园的学生有36人C.想去动物园的学生肯定最多;D.想去动物园的学生占全班学生的【考点】扇形统计图.【分析】根据扇形统计图的相关知识,“想去“动物园”的学生数”的扇形圆心角为60°,而一个圆的圆心角是360°,因而,“想去“动物园”学生数”就是总人数=,据此即可求解.【解答】解:A、想去“动物园”的学生数占全班学生的百分比为60÷360=,故选项错误;B、想去动物园的学生有48×=8人,故选项错误;C、想去动物园的学生肯定最多,没有其它去处的数据,不能确定为最多,故选项错误;D、想去动物园的学生占全班学生的,故选项正确.故选D.5.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.﹣1 B.1 C.3 D.5【考点】整式的混合运算—化简求值.【分析】利用多项式的乘法法则把所求式子展开,然后代入已知的式子即可求解.【解答】解:(1+x)(1+y)=x+y+xy+1,则当x+y=3,xy=1时,原式=3+1+1=5.故选D.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【考点】全等三角形的判定.【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD ≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:B.7.下列选项中,可以用来说明命题“若|x|>1,则x>1”是假命题的反例是()A.x=﹣2 B.x=﹣1 C.x=1 D.x=2【考点】命题与定理.【分析】由于反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【解答】解:因为x=﹣2满足|x|>1,但不满足x>1,所以x=﹣2可作为说明命题“若|x|>1,则x>1”是假命题的反例.故选A.8. (2015秋•邗江区期末)在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】等腰三角形的判定与性质;三角形内角和定理.【专题】证明题;分类讨论.【分析】假如∠A=100°,求出∠B=100°,不符合三角形的内角和定理,即可判断①;假如∠C=100°,能够求出∠A、∠B的度数;关键等腰三角形的判定推出AC=BC,即可判断③④.【解答】解:∠A=∠B=100°时,∠A+∠B+∠C>180°,不符合三角形的内角和定理,∴①错误;∠C=100°时,∠A=∠b=(180°﹣∠c)=40°,∴②正确;∵∠A=∠B,∴AC=BC,③正确;④错误;正确的有②③,2个,故选B.【点评】本题考查了等腰三角形的判定和三角形的内角和定理等知识点的应用,能根据定理进行说理是解此题的关键,分类讨论思想的运用.9.已知一次函数y=mx+n﹣3的图象如图,则m、n的取值范围是()A. m>0,n<3 B. m>0,n>3 C. m<0,n<3 D. m<0,n>3考点:一次函数图象与系数的关系.分析:先根据一次函数的图象经过二、四象限可知m<0,再根据函数图象与y轴交于正半轴可知n﹣3>0,进而可得出结论.解答:解:∵一次函数y=mx+n﹣3的图象过二、四象限,∴m<0,∵函数图象与y轴交于正半轴,∴n﹣3>0,∴n>3.故选D.点评:本题考查的是一次函数的图象,即直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.如图,正方形ABCD的面积为36,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A. 5 B. 6 C. 7 D. 8考点:轴对称-最短路线问题;正方形的性质.分析:如图,由正方形的性质可以得出D点的对称点F与B点重合,EF=EP+DP,解一个直角三角形就可以求出结论.解答:解:如图,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BO=DO.AC⊥BD,∴B、D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE.∵△ABE是等边三角形,∴AB=BE=AE.∵正方形ABCD的面积为36,∴AB=6,∴BE=6.∴PD+PE的和最小值为6.故选B.点评:本题考查了正方形的面积公式的运用,正方形的性质的运用,轴对称的性质的运用.最短路径问题的运用等边三角形的性质的运用,解答时正确作出图形找到对称点是关键.二、填空题(每小题3分,共24分).11.比较大小:>.(选填“>”、“=”、“<”).【考点】实数大小比较.【分析】把2化成,再比较即可.【解答】解:2=,即2>,故答案为:>.12.8的立方根是2.【考点】立方根.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.13.如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB 的距离是6cm.【考点】角平分线的性质.【分析】根据角平分线的性质,可得答案.【解答】解:由OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是6cm,故答案为:6.14.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是0.3.【考点】频数与频率.【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数进行计算即可.【解答】解:出现“6”向上的频率是:3÷10=0.3,故答案为:0.3.15.在实数、0.、π、中,无理数是π、.【考点】无理数.【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【解答】解:无理数有π、,故答案为:π、.16.如图,已知△ABC≌△ABD,∠CAB=30°,∠D=40°,则∠CBE=70°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠C=∠D=40°,再根据三角形的外角与内角的关系可得答案.【解答】解:∵△ABC≌△ABD,∴∠C=∠D=40°,∵∠CAB=30°,∴∠CBE=∠C+∠CAB=70°,故答案为:70.17.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=40°,则∠BAE的度数为10°.【考点】线段垂直平分线的性质.【分析】由ED是AC的垂直平分线,可得AE=CE,继而求得∠BAE=∠C=40°,然后由在Rt△ABC中,∠B=90°,即可求得∠BAC的度数,继而求得答案.【解答】解:∵ED是AC的垂直平分线,∴AE=CE,∴∠EAC=∠C=40°,∵在Rt△ABC中,∠B=90°,∴∠BAC=90°﹣∠C=50°,∴∠BAE=∠BAC﹣∠EAC=10°.故答案为:10.18.已知无论n取什么实数,点P(n,4n﹣3)都在直线l上,若Q(a,b)是直线l上的点,则(4a﹣b)2的值等于9 .考点:一次函数图象上点的坐标特征.分析:先令n=0,则P(0,﹣3);再令n=1,则P(1,1),由于a不论为何值此点均在直线l上,设此直线的解析式为y=kx+b(k≠0),把两点代入即可得出其解析式,再把Q(a,b)代入即可得出(4n﹣b)2的值.解答:解:∵令n=0,则P(0,﹣3);再令n=1,则P(1,1),由于n不论为何值此点均在直线l上,∴设此直线的解析式为y=kx+b(k≠0),∴,解得,∴此直线的解析式为:y=4x﹣3,∵Q(a,b)是直线l上的点,∴4a﹣3=b,即4a﹣b=3,∴(4a﹣b)2的=32=9.故答案是:9.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此函数的解析式.三、解答题(共76分).19.计算: +﹣(﹣1)2.【考点】实数的运算.【分析】原式第一项利用立方根定义计算,第二项利用算术平方根定义计算,最后一项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=﹣2+5﹣1=﹣3+5=2.20.先化简,再求值:(3+a)(3﹣a)+(a﹣1)2,其中a=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(3+a)(3﹣a)+(a﹣1)2=9﹣a2+a2﹣2a+1=﹣2a+10,当a=时,原式=﹣2×+10=9.21.如图,已知线段AD、BC交于点E,AE=CE,BE=DE.求证:△ABE≌△CDE.【考点】全等三角形的判定.【分析】根据全等三角形的判定定理SAS证得结论即可.【解答】证明:在△ABE和△CDE中,∵,∴△ABE≌△CDE(SAS).22.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.【考点】勾股定理的逆定理;勾股定理.【分析】(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理即可证明△ABC为直角三角形;(2)根据S阴影=S Rt△ABC﹣S Rt△ACD,利用三角形的面积公式计算即可求解.【解答】(1)证明:∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC为直角三角形;(2)解:S阴影=S Rt△ABC﹣S Rt△ACD=×10×24﹣×8×6=96.23.某中学采取随机抽样的方式在学生中进行“最常用的交流方式”的问卷调查,问卷调查的结果分为四类:A.面对面交谈;B.微信和QQ等聊天软件交流;C.短信与电话交流;D.书信交流.要求接受调查的人每人从中选择一个选项,不能多选或不选.根据调查数据结果绘制成以下两幅不完整的统计图:(1)由图中信息可知:调查人数为200人;(2)请在图甲中补全条形统计图;(3)若全校有学生500名,请根据调查结果估计这些学生中以“C.短信与电话交流”为最常用的交流方式的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据C类别40人占被调查人数的20%,列式可计算调查人数;(2)由题意可知,B类别人数占被调查200人的20%,可得B类别人数并补全图形;(3)根据C类别占调查人数的20%,估计全校500中选择C方式的人数也为20%,计算可得.【解答】解:(1)由题意可知,C类别40人占被调查人数的20%,故调查人数为:40÷20%=200(人);(2)B类别人数为:200×50%=100(人),补全图形如下(3)最常用C短信与电话交谈的人数约为:500×20%=100(人).24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:可用图A来解释a2+2ab+b2=(a+b)2,事实上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)根据图B完成因式分解:2a2+2ab=2a(a+b).(2)现有足够多的正方形和长方形卡片(如图C),试在右边的虚线方框中画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形,使该长方形的面积为a2+3ab+2b2,要求:每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),并利用你所画的图形面积对a2+3ab+2b2进行因式分解a2+3ab+2b2=(a+b)(a+2b).(直接填空)【考点】因式分解的应用.【分析】(1)看图即可得出所求的式子;(2)通过画图能更好的理解题意,从而得出结果.由于构成的是正方形,它的面积等于所给图片的面积之和,从而画出图形.【解答】解:(1)2a2+2ab=2a(a+b),故答案为:(a+b);(2)画图如下:a2+3ab+2b2=(a+b)(a+2b),故答案为:(a+b)(a+2b)25.如图所示,四边形ABCD中,AC⊥BD于点O,且AO=CO=12,BO=DO=5,点P为线段AC上的一个动点.(1)填空:AD=CD=13.(2)过点P分别作PM⊥AD于M点,作PH⊥DC于H点.①试说明PM+PH为定值.②连结PB,试探索:在点P运动过程中,是否存在点P,使PM+PH+PB的值最小?若存在,请求出该最小值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)在△ADO 中,由勾股定理可求得AD=13,由AC ⊥BD ,AO=CO ,可知DO 是AC 的垂直平分线,由线段垂直平分线的性质可知AD=DC ;(2)连接DP ,根据题意可知:S △ADP +S △CDP =S △ADC ,由三角形的面积公式可知: AD •PM +DC •PH=AC •OD ,将AC 、OD 、AD 、DC 的长代入化简即可;(3))由PM +PH 为定值,当PB 最短时,PM +PH +PB 有最小值,由垂线的性质可知当点P 与点O 重合时,OB 有最小值.【解答】解:(1)∵AC ⊥BD 于点O ,∴△AOD 为直角三角形.∴AD===13.∵AC ⊥BD 于点O ,AO=CO ,∴CD=AD=13.故答案为:13.(2)如图1所示:连接PD .∵S △ADP +S △CDP =S △ADC , ∴AD •PM +DC •PH=AC •OD ,即×13×PM +×13×PH=.∴13×(PM +PH )=24×5.∴PM +PH=. (3)∵PM +PH 为定值,∴当PB 最短时,PM +PH +PB 有最小值.∵由垂线段最短可知:当BP ⊥AC 时,PB 最短.∴当点P 与点O 重合时,PM +PH +PB 有最小,最小值=+5=.26.如图所示,在△ACB 中,∠ACB=90°,CA=CB ,D 为AB 边上一点,连结CD ,CD 绕点C 逆时针旋转90度与线段CE 重合,连结AE .(1)填空:∠B= 45 度;∠BCD=∠ ACE (在图中找出一个与∠BCD 相等的角). (2)求证:△BCD ≌△ACE .(3)当AB=2CE 时,求证:CD 垂直平分AB .【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质得出∠B的度数和旋转的性质得出∠BCD=∠ACE 即可;(2)根据旋转的性质和SAS证明三角形全等即可;(3)根据全等三角形的判定和性质以及等腰直角三角形的判定解答即可.【解答】解:(1)∵在△ACB中,∠ACB=90°,CA=CB,∴∠B=45°;∵CD绕点C逆时针旋转90度与线段CE重合,∴∠DCE=90°,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE;故答案为:45;ACE;(2)∵CD绕点C逆时针旋转90度与线段CE重合,∴CD=CE,又由(1)可知,∠BCD=∠ACE,∵CA=CB,在△BCD与△ACE中,,∴△BCD≌△ACE;(3)∵∠ACB=90°,CA=CB,∴∠CAB=∠B=45°,∵△BCD≌△ACE,∴∠CAE=∠B=45°,∴∠DAE=∠CAE+∠CAB=90°,设AD=a,CE=b,则AB=2CE=2b,DC=CE=b,∴△ECD为等腰直角三角形又△ADE为直角三角形,∴DE2=CD2+CE2=2b2,AE2=DE2﹣AD2=2b2﹣a2又∵△BCD≌△ACE,∴AE=BD=AB﹣AD=2b﹣a,∴2b2﹣a2=(2b﹣a)2化简得:a2﹣2ab+b2=0,∴(a﹣b)2=0,∴a=b,∴BD=2b﹣a=a=AD,∴D为AB中点,又∵△ABC为等腰直角三角形.∴CD垂直平分AB.27.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.考点:一次函数的应用.分析:(1)x=0时甲的y值即为A、B两地的距离;(2)根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义;(3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可.解答:解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示小时后两车相遇,此时距离B地20千米;(3)设x小时时,甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是到达B地前,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于(3)要分情况讨论.28.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数的图象的交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标.考点:两条直线相交或平行问题.分析:(1)首先利用待定系数法把C(m,4)代入正比例函数中,计算出m的值,进而得到C点坐标,再利用待定系数法把A、C两点坐标代入一次函数y=kx+b中,计算出k、b的值,进而得到一次函数解析式.(2)利用△BED1≌△AOB,△BED2≌△AOB,即可得出点D的坐标.解答:解:(1)∵点C(m,4)在直线上,∴,解得m=3;∵点A(﹣3,0)与C(3,4)在直线y=kx+b(k≠0)上,∴,解得,∴一次函数的解析式为.(2)过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,即可得出点D的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D的坐标为(﹣5,3).综上所述:点D的坐标为(﹣2,5)或(﹣5,3).点评:此题主要考查了全等三角形的判定与性质以及待定系数法求一次函数解析式等知识,根据已知得出△BED1≌△AO B,△BED2≌△AOB是解题关键.。
人教版2020---2021学年度八年级数学(上)期末考试卷及答案(含两套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4C .x ≠0D .x ≠42.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007平方毫米,将数字0.0000007用科学记数法可以表示为( ) A .6710-⨯ B .60.710-⨯C .7710-⨯D .87010-⨯3.下列式子,成立的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 5C .a –1=–aD .(–a +b )(–a –b )=a 2–b 24.如果把分式xyx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大4倍B .扩大2倍C .不变D .缩小2倍5.若等腰三角形中有两边长分别为3和7,则这个三角形的周长为( ) A .13 B .13或17C .10D .176.在平面直角坐标系中,将点A (–1,2)向右平移4个单位长度得到点B ,则点B 关于y 轴的对称点B ′的坐标为( ) A .(–3,2) B .(3,–2) C .(3,2)D .(2,–3)7.如图,在△ABC 和△BDE 中,点C在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠DB .∠EC .∠EBDD .∠ABF8.点O 在ABC △(非等边三角形)内,且OA OB OC ==,则点O为( )A .ABC △的三条角平分线的交点题号一 二 三 总分 得分B .ABC △的三条高线的交点C .ABC △的三条边的垂直平分线的交点D .ABC △的三条边上的中线的交点9.如图,AE ∥DF ,AE =DF ,则添加下列条件还不能使△EAC≌△FDB 的为( )A .AB =CD B .CE ∥BFC .∠E =∠FD .CE =BF10.如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,△ABC 的面积为10,AB =6,DE =2,则AC 的长是( )A .4B .4.5C .4.8D .5 11.从3-,2-,1-,32-,1,3这六个数中,随机抽取一个数,记为a .关于x 的方程211x ax +=-的解是正数,那么这6个数中所有满足条件的a 的值有( ) A .3个B .2个C .1个D .4个12.如图,在等边三角形ABC 中,BC 边上的中线AD =6,是AD 上的一个动点,F 是边AB 上的一个动点,在点F 运动的过程中,EB +EF 的最小值是A .5B .6C .7D .8第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.若23a b =,则a b b -=__________.14.若3a b +=,1ab =,则22ab +=__________.15.若一个多边形的内角和是900º,则这个多边形是__________边形.16.如图,依据尺规作图的痕迹,计算α∠=__________°.17.已知ABC ∆中,它的三边长a 、b 、c 都是正整数,其中a 是最长边,且满足22106340a b a b +--+=,则符合条件的c密线学校 班级 姓名 学号密 封 线 内 不 得 答 题值为__________.18.如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°−12∠ABC ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有__________(填序号)三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分) (1)解方程:22+11x x x x+=+;(2)解方程:2227361x x x x x -=+--. 20.(本小题满分6分)(1)因式分解22(2)(22)1a ab b a b -++-++;(2)先化简,再求值24512(1)(),11a a a a a a-+-÷----其中1a =-. 21.(本小题满分6分)如图,点B 、C 、D 、E 在同一条直线上,已知AB =FC ,AD =FE ,BC =DE . (1)求证:△ABD ≌△FCE .(2)AB 与FC 的位置关系是_________(请直接写出结论)22.(本小题满分8分)如图,在△ABC 中,AB =AC ,∠A =36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数; (2)若CE =5,求BC 的长.23.(本小题满分8分)超市用2500元购进某品牌苹果,以每千克8元的单价试销.销售良好,超市又安排4500元补货.补货进价比上次每千克少0.5元,数量是上次的2倍.(1)求两次进货的单价分别是多少元.(2)当售出大部分后,余下200千克按7.5折售完,求两次销售苹果的毛利.24.(本小题满分10分)如图,△ABC 中,∠BAC =90°,AD⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于E ,F 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明:AE=AF.25.(本小题满分10分)如图,网格中有格点△ABC与△DEF.(1)△ABC与△DEF是否全等?(不说理由.)(2)△ABC与△DEF是否成轴对称?(不说理由)(3)若△ABC与△DEF成轴对称,请画出它的对称轴l.并在直线l上画出点P,使PA+PC最小.26.(本小题满分12分)探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.(2)运用你所得到的公式计算:①10.7×9.3;②(23)(23)x y z x y z+---.27.(本小题满分12分)在△ABC中,∠BAC=100°,∠∠ACB,点D在直线BC上运动(不与点B、C点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=(1)如图①,当点D在边BC上时,且n=36°BAD=__________,∠CDE=__________;(2)如图②,当点D运动到点B变,请猜想∠BAD和∠CDE(3)当点D运动到点C的右侧时,其他条件不变,∠和∠CDE还满足(2)中的数量关系吗?请画出图形,明理由.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一1 2 3 4 5 6 7 8 9 10 11 12 DCDBDACCDABB二、13.【答案】3-【解析】∵23a b =,∴设a =2k ,b =3k (k ≠0),则23133a b k k b k --==-, 故答案为:13-.14.【答案】7【解析】∵a +b =3,ab =1,∴22a b +=(a +b )2–2ab =9–2=7;故答案为7. 15.【答案】七【解析】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为:7. 16.【答案】56【解析】如图,∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DAC =∠ACB =68°, ∵由作法可知,AF 是∠DAC 的平分线,∴∠EAF =12∠DAC =34°,∵由作法可知,EF 是线段AC 的垂直平分线,∴∠AEF =90°, ∴∠AFE =90°−34°=56°,∴∠α=56°.故答案为:56.17.【答案】6或7【解析】a 2+b 2–10a –6b +34=0, a 2–10a +25+b 2–6b +9=0,(a –5)2+(b –3)2=0, 则a –5=0,b –3=0,解得,a =5,b =3, 则5–3<c <3+5,即2<c <8,∴△ABC 的最大边c 的值为6或7, 故答案为:6或7. 18.【答案】①②③⑤【解析】∵AD 平分∠EAC ,∴∠EAC =2∠EAD , ∵∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD ∥BC ,∴①正确; ∵AD ∥BC ,∴∠ADB =∠DBC ,∵BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB =2∠DBC ,∴∠ACB =2∠ADB ,∴②正确;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=12∠EAC,∠DCA=12∠ACF,∵∠EAC=∠ABC+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°−(∠DAC+∠ACD)=180°−12(∠EAC+∠ACF)=180°−12(∠ABC+∠ACB+∠ABC+∠BAC)=180°−12(180°+∠ABC)=90°−12∠ABC,∴③正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°−12∠ABC,∴∠ADB不一定等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∴∠BAC=2∠BDC,∴∠BDC=12∠BAC,∴⑤正确;故答案为:①②③⑤.三、19.【解析】(1)方程两边都乘x(x+1),得x2+x2+x=2(x+1)2,解得:x=−23,检验:当x=−23时,x(x+1)≠0,∴x=−23是原方程的解.(3分)(2)去分母得:7x−7+3x+3=6x,解得:x=1,经检验x=1是增根,分式方程无解.(6分)20.【解析】(1)原式=(a2–2ab+b2)–(2a–2b)+1=(a–b)2–2(a–b)+1=(a–b–1)2.(3分)(2)原式()()()211452(2)111a a a a aa a a a+--+--=÷=---•()12a aa-=-a(a–2当a=–1时,原式=–1×(–1–2)=3.(6分)21.【解析】(1)∵BC=DE,∴BC+CD=DE+CD,即BD=CE.在△ABD和△FCE中,AB FCAD FEBD CE=⎧⎪=⎨⎪=⎩,∴△ABD≌△FCE(SSS).(4分)(2)AB∥FC.(6分)由(1)可知△ABD≌△FCE,∴∠B=∠FCE(全等三角形的对应角相等),∴AB∥FC(同位角相等,两直线平行).22.【解析】(1)∵DE垂直平分AC,∠A=36°,∴CE=AE,∴∠ECD=∠A=36°;(4分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴∠BEC =∠A +∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.(8分)23.【解析】(1)设第一次进货的单价是x 元,则第二次进货的单价是(0.5)x -元,根据题意,得2500450020.5x x ⨯=-,解得5x =. 经检验:5x =是原方程的解.第二次进货的单价是:50.5 4.5()-=元.答:第一次进货的单价是5元,第二次进货的单价是4.5元.(4分)(2)两次销售苹果的毛利:25004500200820080.752500450046005 4.5⎛⎫+-⨯+⨯⨯--=⎪⎝⎭(元). 答:两次销售苹果的毛利为4600元.(8分) 24.【解析】(1)如图所示,射线BF 即为所求:(4分)(2)证明:∵AD ⊥BC ,∴∠ADB =90°,∴∠BED +∠EBD =90°,∵∠BAC =90°,∴∠AFE +∠ABF =90°,(7分) ∵∠EBD =∠ABF ,∴∠AFE =∠BED ,∵∠AEF =∠BED ,∴∠AEF =∠AFE ,∴AE =AF .(10分) 25.【解析】(1)全等.(3分)根据坐标系可以看出AB DEBC EFAC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≅△DEF ;(2)成轴对称.(6分)根据坐标系可以看出△ABC 与△DEF 关于直线l 成轴对称; (3)如图所示:点P 即为所求.(10分)26.【解析】(1)a 2–b 2=(a +b )(a −b );平方差.(6分)由图知:大正方形减小正方形剩下的部分面积为a 2–b 2; 拼成的长方形的面积:(a +b )×(a −b ),所以得出:a 2–b 2=(a +b )(a −b );故答案为:a 2–b 2=(a +b )(a −b );平方差. (2)①原式=(10+0.7)×(10–0.7) =102–0.72 =100–0.49 =99.51.(9分)②原式=(x –3z +2y )(x –3z –2y ) =(x –3z )2–(2y )2 =x 2–6xz +9z 2–4y 2.(12分)27.【解析】(1)∠BAD =∠BAC –∠DAC =100°–36°=64°.∵在△ABC 中,∠BAC =100°,∠ABC =∠ACB , ∴∠ABC =∠ACB =40°,∴∠ADC =∠ABC +∠BAD =40°+64°=104°. ∵∠DAC =36°,∠ADE =∠AED , ∴∠ADE =∠AED =72°,∴∠CDE =∠ADC –∠ADE =104°–72°=32°. 故答案为64°,32°;(4分)(2)∠BAD =2∠CDE ,理由如下:(5分) 如图②,在△ABC 中,∠BAC =100°, ∴∠ABC =∠ACB =40°. 在△ADE 中,∠DAC =n ,∴∠ADE =∠AED =1802n︒-.(6分)∵∠ACB =∠CDE +∠AED ,∴∠CDE =∠ACB –∠AED =40°–1802n ︒-=1002n -︒. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =n –100°,∴∠BAD =2∠CDE ;(8分) (3)∠BAD =2∠CDE ,理由如下: 如图③,在△ABC 中,∠BAC =100°,∴∠ABC =∠ACB =40°,∴∠ACD =140°.(9分) 在△ADE 中,∠DAC =n , ∴∠ADE =∠AED =1802n︒-.(10分)∵∠ACD =∠CDE +∠AED , ∴∠CDE =∠ACD –∠AED =140°–1802n ︒-=1002n︒+. ∵∠BAC =100°,∠DAC =n , ∴∠BAD =100°+n , ∴∠BAD =2∠CDE .(12分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期八年级数学(上)期末测试卷及答案(满分:150分 时间: 120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列图形中,是轴对称图形的是( )A .B .C .D .2.下列分式中,属于最简分式的是( )A .1113xB .221xx +C .211x x +-D .11x x --3.以下列各组线段为边,能组成三角形的是( ) A .2cm ,5cm ,8cm B .3cm ,3cm ,6cm C .3cm ,4cm ,5cmD .1cm ,2cm ,3cm4.如果一个多边形的每一个内角都是108°,那么这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形5.下列运算正确的是( ) A .236a a a ⋅= B .220a a ÷=C .2353()a b a b =D .752a a a ÷=6.下列各式分解因式正确的是( ) A .()()2919191x x x -=+- B .()()422111a a a -=+- C .()()228199a b a b a b --=--+D .()()()32a ab a a b a b -+=-+-7.已知ab ≠0,则坐标平面内四个点A (a ,b ),B (a ,–b ),C (–a ,b ),D (–a ,–b )中关于y 轴对称的是( ) A .A 与B ,C 与DB .A 与D ,B 与C C .A 与C ,B 与DD .A 与B ,B 与C8.如图,△ABC ≌△ADE ,若∠E =70°,∠D =30°,∠CAD =35°,则∠BAD 的度数为( )A .40°B .45°C .50°D .55°9.光明家具厂生产一批学生课椅,计划在30天内完成并交付题号一 二 三 总分 得分不得答题使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为( )A.3020023100xx+=+B.3020023100xx-=+C.3020023100xx+=-D.3020023100xx-=-10.解关于x的方程6155x mx x-+=--(其中m为常数)产生增根,则常数m的值等于( )A.–2 B.2C.–1 D.111.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.6cm B.7cmC.8cm D.9cm12.如图,BP平分ABC∠交CD于点F,DP平分ADC∠交AB于点E,若40A∠=︒,38P∠=︒,则C∠的度数为( )A.36︒B.39︒C.38︒D.40︒第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)13.一种细菌的半径是0.00003厘米,数据0.00003数法表示为_________.14.计算:2232aa a a---=_________.15.若分式33xx--的值为零,则x=_________.16.如图,ABC∆中,90C∠=︒,30A∠=︒,AB的垂直平分线交于D,交AB于E,2CD=,则AC=_________.17.在等腰ABC∆中,一腰上的高与另一腰的夹角为26︒角的度数为__________.18.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC线与AB的垂直平分线交于点O,将∠C沿EF(E在上,F在AC上)折叠,点C与点O恰好重合,则∠为________度.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题三、解答题(本大题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)计算:(1)()()22x y x y x ---;(2)2344(1)11x x x x x ++-+÷++.20.(本小题满分6分)因式分解:(1)4x 2–16;(2)(x +y )2–10(x +y )+25.21.(本小题满分6分)如图,AD 与BC 交于E ,∠1=∠2=∠3,∠4=∠5.求证:BD =E C .22.(本小题满分8分)如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .23.(本小题满分8分)如图,△ABC 的顶点均在格点上.(1)分别写出点A ,点B ,点C 的坐标.(2)若△A 'B 'C '与△ABC 关于y 轴对称,在图中画出△A 'B 'C ',并写出相应顶点的坐标.24.(本小题满分10分)如图,ABC ∆与DCB ∆中,AC 与BD 交于点E ,且A D ∠=∠,AB DC =.(1)求证:ABC DCB ∆≅∆;(2)当50AEB ∠=︒,求EBC ∠的度数.25.(本小题满分10分)嘉嘉同学动手剪了如图①所示的正方形与长方形卡片若干张.(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是________. (2)如果要拼成一个长为(a +2b ),宽为(a +b )的大长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张.26.(本小题满分12分)市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天;若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?27.(本小题满分12分)如图,在ABC ∆中,已知45ABC ∠=,过点C 作CD AB ⊥于点D ,过点B 作BM AC ⊥于点M ,连接MD ,密线学校 班级 姓名 学号密 封 线 内 不 得 答 题故答案为:11a --.15.【答案】–3【解析】依题意,得|x |–3=0且x –3≠0,解得x =–3.故答案是:–3.16.【答案】6【解析】连接BD ,∵在△ABC 中,∠C =90°,∠A =30°,∴∠ABC =60°, ∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴AD =BD ,DE ⊥AB ,∴∠ABD =∠A =30°,∴∠DBC =30°, ∵CD =2,∴BD =2CD =4,∴AD =4,∴AC =6.17.【答案】58°或32°【解析】①如图①,∵AB =AC ,∠ABD =26°,BD ⊥AC ,∴∠A =64°,∴∠ABC =∠C =(180°–64°)÷2=58°;②如图②,∵AB =AC ,∠ABD =26°,BD ⊥AC , ∴∠BAC =26°+90°=116°,∴∠ABC =∠C =(180°–116°)÷2=32°,故答案为:58°或32°.18.【答案】50°【解析】如图,连接OB ,OC ,∵∠BAC =50°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×50°=25°.又∵AB =AC ,∴∠ABC =∠ACB =65°.∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =25°,∴∠OBC =∠ABC –∠ABO =65°–25°=40°.∵AO 为∠BAC 的平分线,AB =AC ,∴直线AO 垂直平分BC ,∴OB =OC ,∴∠OCB =∠OBC =40°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,题∴OE =CE .∴∠COE =∠OCB =40°;在△OCE 中,∠OEC =180°–∠COE –∠OCB =180°–40°–40°=100°,∴∠CEF =12∠CEO =50°.故答案为:50°. 三、19.【解析】(1)原式=22222x xy y xy x -+-+=2233x xy y -+;(3分)(2)原式=231x+11(2)x x x x --+⨯++()(1)=223111(2)x x x x -++⨯++=2(2)(2)11(2)x x x x x -++⨯++=22xx -+.(6分)20.【解析】(1)4x 2–16=4(x 2–4)=4(x +2)(x –2);(3分) (2)(x +y )2–10(x +y )+25 =(x +y –5)2.(6分) 21.【解析】1=2314,43AEC ABD ∠∠=∠∠=∠+∠∠=∠+∠,,∴AEC ABD ∠=∠.(2分)45∠=∠,AB AE =∴.在ABD △和AEC 中1=2AB AE ABD AEC ∠∠⎧⎪=⎨⎪∠=∠⎩,(4分)∴ABD AEC ≅.∴BD =EC .(6分)22.【解析】∵五边形ABCDE 的内角都相等,∴∠C =∠D =∠AED =180°×(5–2)÷5=108°,(2分)又EF 平分∠AED , ∴°1542FED AED ∠=∠=,(4分)∴在四边形DEFC 中360EFC D C FED ︒∠=-∠-∠-∠=90°,∴EF ⊥BC .(8分)23.【解析】(1)点A (3,4),B (1,2),C (5,1(3分)(2)如图所示,△A 'B 'C '即为所求,(5分)点A ′(﹣3,4),B ′(﹣1,2),C ′(﹣5,1).(8密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.【解析】(1)在△ABE 和△DCE中,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (AAS ),∴BE =EC ,∠ABE =∠DCE ,(4分)∴∠EBC =∠ECB ,∵∠EBC +∠ABE =∠ECB +∠DCE ,∴∠ABC =∠DBC ,(6分)在△ABC 和△DCB中,A DAB DC ABC DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DCB (ASA );(8分) (2)∵∠AEB =50°,∴∠EBC +∠ECB =50°, ∵∠EBC =∠ECB ,∴∠EBC =25°.(10分)25.【解析】(1)这个乘法公式是(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(4分)(2)要拼成一个长为(a +2b ),宽为(a +b )的大长方形,根据(a +2b )(a +b )=a 2+3ab +2b 2,则需要1号卡片1张,2号卡片2张,3号卡片3张.故答案为:1;2;3.(10分)26.【解析】(1)设乙队单独完成这项工程需要x 天,依题意,得:101212130x ++=,解得x =45,经检验,x =45是所列分式方程的解,且符合题意. 答:乙队单独完成这项工程需要45天.(6分) (2)甲乙两队全程合作需要1÷(11+3045)=18(天),甲队单独完成该工程所需费用为3.5×30=105(万元); ∵乙队单独完成该工程需要45天,超过35天的工期, ∴不能由乙队单独完成该项工程;甲、乙两队全程合作完成该工程所需费用为(3.5+2)×18=99(万元).∵105>99,∴在不超过计划天数的前提下,由甲、乙两队全程合作完成该工程省钱.(12分) 27.【解析】(1)∵45ABC ∠=,CD AB ⊥,∴45ABC DCB ∠=∠=,∴BD DC =,∵90BDC MDN ∠=∠=,∴BDN CDM ∠=∠,(3分) ∵CD AB ⊥,BM AC ⊥, ∴90ABM A ACD ∠=-∠=∠,在DBN ∆和DCM ∆中,BDN CDM BD DCDBN DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DBN ∆≌DCM ∆;(6分) (2)结论:NEME CM ,证明:由(1)DBN ∆≌DCM ∆可得DM DN =. 作DF MN ⊥于点F , 又ND MD ⊥,∴DF FN =,在DEF ∆和CEM ∆中,DEF CEM DFE CMEDE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DEF ∆≌CEM ∆,∴EF EM =,DF CM =,∴CM DF FN NE FE NE ME ===-=-.(12分)。
2021-2022学年八年级上学期期末数学试题(含解析)
A 5,12,13B.8,12,15C.8,15,17D.9,40,41
7.根据如图所示的程序计算函数值,若输入x的值为 ,则输出结果为()
A. B. C. D. 3个不同的值
8.如图,直线 与x轴、y轴交于A、B两点,在y轴上有一点C(0,4),动点M从A点发以每秒1个单位的速度沿x轴向左移动.当动到△COM与△AOB全等时,移的时间t是()
18.如图,直线y=kx+k(k≠0)与x轴、y轴分别交于点B、A两点,将点B绕点A逆时针旋转90°得到点P(x,y),则y与x的函数关系式为_________________________________.
三、解答题(本大题共8小题,共64分请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)
【答案】
【解析】
【分析】由点A(a,-3)与点B(3,b)关于y轴对称,可得 从而可得答案.
【详解】解: 点A(a,-3)与点B(3,b)关于y轴对称,
故答案为:
【点睛】本题考查的是关于 轴对称的两个点的坐标特点,掌握“关于 轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.
11.等腰三角形的一个内角为100°,则它的一个底角的度数为______.
只有非负数才有平方根,说法正确,故C不符合题意;
-27的立方根是 原说法错误,故D符合题意;
故选D
【点睛】本题考查的是平方根,立方根的含义,求解一个数的平方根,立方根,掌握“平方根,立方根的含义”是解本题的关键.
4.下列条件,不能使两个三角形全等的是()
A. 两边一角对应相等B. 两角一边对应相等
C. 直角边和一个锐角对应相等D. 三边对应相等
2021-2022学年八上期末数学试题(含解析)
【答案】B
【解析】
【分析】先把66799精确到千分位,再根据科学记数法的表示形式表示即可.
【详解】∵ ,
∴66799精确到千分位为 ,
∴ .
故选:B.
【点睛】本题考查近似数与科学记数法,掌握科学记数法的表示形式是解题的关键.
3.如图,点A、B、C、D在一条直线上,点E、F在AD两侧, , ,添加下列条件不能判定 的是( )
(1)求证:
①DC平分 ;
② .
(2)如图②,若 , , .
①求 度数;
②直接写出四边形ABCF的面积.
答案与解析
一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)
1.10的算术平方根是()
A.10B. C. D.
三、解答题(本大题共10小题,共68分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.计算: .
18.求下列各式中的x:
(1) ;
(2) .
19.如图, 和 是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证 .
20.如图,在 中, , , , ,垂足为D.求AD,BD的长.
2021-2022学年八年级上学期
期末数学试题
一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)
1.10的算术平方根是()
A.10B. C. D.
2.为落实“双减”政策,鼓楼区教师发展中心开设“鼓老师讲作业”线上直播课.开播首月该栏目在线点击次数已达66799次,用四舍五入法将66799精确到千位所得到的近似数是( )
2020-2021年秋季八年级上学期期末考试数学试题(含答案) (12)
2020-2021年秋季八年级上学期期末考试数学试题数学试题一、选择题(本大题共10小题,共30分)1.下列运算正确的是()A. a2+a2=a4B. (-b2)3=-b6C. 2x•2x2=2x3D. (m-n)2=m2-n22.一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A. 1B. -1C. 2D. -23.如图,在△ABC中,∠C = 90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA = 2 :1,则∠A为()A. 20°B. 25°C. 22.5°D. 30°4.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.∠EBC=∠BACB. AE=BEC.AE=ECD. ∠EBC=∠ABE5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A. 4B. 16C.D. 4或6.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高A. 8AD为()B. 9C. D. 107.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A. 三角形中有一个内角小于或等于60°B. 三角形中有两个内角小于或等于60°C. 三角形中有三个内角小于或等于60°D. 三角形中没有一个内角小于或等于60°8.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A. 200元B. 250元C. 300元D. 3509.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A. 0.1B. 0.2C. 0.3D. 0.410.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为()A. 12B. 10C. 8D. 6二、填空题(本大题共5小题,共15分)11.计算:|-2|-=______.12.如图,以数轴的单位长度线段为边长作一个正方形,以表示数2 的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是_____________.13.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.14.实数,-2,π,,中,其中无理数出现的频数是______.15.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.三、解答题(本大题共9小题,共75分)16.(8分)已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是的整数部分,求a+2b-c的平方根.17.(8分)计算(1)(3x-2)(2x+3)-(x-1)2(2).18.(9分)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若CD=1,求AF的长.19.(9分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积20.(9分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=______;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为______;(4)已知该校共有1200名学生,请你估计该校约有______名学生最喜爱足球活动.21.(10分)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.(10分)为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A60m的C处,过了4s后,小汽车到达离车速检测仪A100m的B处,已知该段城市街道的限速为60km/h,请问这辆小汽车是否超速?23.(12分)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.参考答案1.B2.B3.C4.A5.D6.C7.D8.C9.A 10.B11.0 12.2-13.5 14.2 15.1016.解:由题意得:,………………………………………….2分∴a=5,b=2.……………………………………………………………………….4分∵9<13<16,∴3<<4.∴c=3.………………………………………………………………………………5分∴a+2b-c=6.…………………………………………………………………………7分∴a+2b-c的平方根是±.………………………………………………………….8分17.解:(1)(3x-2)(2x+3)-(x-1)2=6x2+9x-4x-6-x2+2x-1………………………………………………………………..2分=5x2+7x-7;…………………………………………………………………………4分(2)原式=x2-4y2-2xy+4y2+2xy……………………………………………………………6分=x2.………………………………………………………………………8分18.解:(1)AD⊥BD,∠BAD=45°,∴AD=BD,…………………………………………………1分∵∠BFD=∠AFE,∠AFE+∠CAD=90°,∠CAD+∠ACD=90°,∴∠BFD=∠ACD,…………………………………………..2分在△BDF和△ACD中,,∴△BDF≌△ACD(AAS),………………………………..4分∴BF=AC;……………………………………………….5分(2)连接CF,…………………………………………………………6分∵△BDF≌△ADC,∴DF=DC,∴△DFC是等腰直角三角形.……………………………………………..7分∵CD=1,CF=∵AB=BC,BE⊥AC,∴AE=EC,BE是AC的垂直平分线.∴AF=CF,………………………………………………………………8分∴AF=.………………………………………………………………9分19解:(1)连接AC,…………………………………………………1分∵∠B=90°,∴AC2=BA2+BC2=400+225=625,………………………2分∵DA2+CD2=242+72=625,…………………………………3分∴AC2=DA2+DC2,…………………………………………4分∴△ADC是直角三角形,即∠D是直角;…………………5分(2)∵S四边形ABCD=S△ABC+S△ADC,………………………………6分∴…………………….7分…………………………………………….8分=234.……………………………………………………………………9分20.(1)150 ;…………………………………………………………2分(2)“足球“的人数=150×20%=30人,……………………………..4分补全上面的条形统计图如图所示;…………5分(3)36°;…………………………………………………………………………7分(4)240…………………………………………………………………………….9分21.解:(1)根据题意得△ABE是直角三角形……………………1分AB2=BE2+AE2…………………………………………………………………………………2分∵AB=25米,BE=7米,梯子距离地面的高度AE==24米.……………….4分答:此时梯子顶端离地面24米;……………………………5分(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24-4)=20米,……………….7分∴BD+BE=DE===15,………………………………………………8分∴DE=15-7=8(米),即下端滑行了8米.……………………………………………….9分答:梯子底端将向左滑动了8米.………………………………………………………..10分22.解:超速.…………………………………………………………………………….1分理由如下:在Rt△ABC中,AC=60m,AB=100m,……………………………………………………3分由勾股定理可得BC===80m,……………………………………6分∴汽车速度为80÷4=20m/s=72km/h,……………………………………………………….8分∵72>60,……………………………………………………………………………………..9分∴这辆小汽车超速了.………………………………………………………………………10分23.(1)解:(1)BQ=2×2=4cm,……………………………………………………….1分BP=AB-AP=8-2×1=6cm,…………………………………………………………………..2分∵∠B=90°,=2(cm);………………………………………………4分(2)解:根据题意得:BQ=BP,…………………………………………………………5分即2t=8-t,……………………………………………………………………………………6分解得:;…………………………………………………………………………………7分即出发时间为秒时,△PQB是等腰三角形;………………………………………………8分(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5∴BC+CQ=11,∴t=11÷2=5.5秒.…………………………………………9分②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.………………………………………10分③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则(cm)∴(cm),∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.……………………………………………..11分由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.…………….12分。
~新课标第十三章内能闯关题2020-2021学年八年级数学第二学期期末监测模拟试题含解析
~新课标第十三章内能闯关题2020-2021学年八年级数学第二学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.当x=-3 时,二次根式的值为()A.3 B.-3 C.±3 D.=的图像经过第一、三象限,则k的值可以是()2.若正比例函数y kxA.3 B.0或1 C.5±D.2-3.下列命题正确的是()A.有一个角是直角的四边形是矩形B.对角线互相垂直的平行四边形是菱形C.对角线相等且互相垂直的四边形是正方形D.平行四边形的对角线相等4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2s,方差如下表:选手甲乙丙丁方差(s2) 0.020 0.019 0.021 0.022则这四人中发挥最稳定的是( )A.甲B.乙C.丙D.丁a+,则a的取值范围是()5.若32a3a+=﹣a3A.﹣3≤a≤0B.a≤0C.a<0 D.a≥﹣36.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A .∠ABD=∠CB .∠ADB=∠ABC C .AB CBBD CD= D .AD ABAB AC= 7.a 的取值范围如数轴所示,化简()211a --的结果是( )A .2a -B .2a -C .aD .a -8.方程(1)(2)1x x x -+=-的解是( ) A .2x =- B .11x =,22x =- C .11x =-,21x = D .11x =-,23x =9.若分式23xx -无意义,则x 等于( ) A .﹣32 B .0 C .23D .3210.如图,在中,,,、、分别为、、的中点,连接、,则四边形的周长是( )A .5B .7C .9D .1111.如果2(23)3a b +=+,,a b 为有理数,那么a b -=( ) A .3B .43-C .2D .﹣212.下列各式错误的是( ) A .()0ππ+-=B .00=C .n n r π+=+D .()n n ππ-=+-二、填空题(每题4分,共24分)13.已知二次函数y=-x -2x +3的图象上有两点A(-7,),B(-8,),则 ▲ .(用>、<、=填空).14.已知x +y =0.2,2x +3y =2.2,则x 2+4xy +4y 2=_____.15.在三角形纸片ABC 中,∠A =90°,∠C =30°,AC =10cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为_____cm .16.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y (g/m 3)与大气压强x (kPa )成正比例函数关系.当x=36(kPa )时,y=108(g/m 3),请写出y 与x 的函数关系式 . 17.已知关于x 的方程2230x x k ++=的一个根是x=-1,则k =_______. 18.在□ABCD 中,已知∠A=110°,则∠D=__________. 三、解答题(共78分)19.(8分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.20.(8分)先化简:22144111x x x x -+⎛⎫-÷ ⎪--⎝⎭,再从12x -≤≤的范围内选取一个合适的整数作为x 的值代入求值. 21.(8分)问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.操作发现:小颖在图 1 中画出△ABC ,其顶点 A ,B ,C 都是格点,同时构造正方形 BDEF , 使它的顶点都在格点上,且它的边 DE ,EF 分别经过点 C ,A ,她借助此图求出了△ABC 的面积. (1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB = ,BC = ,AC = ;△ABC 的面积为 . 解决问题: (2)已知△ABC 中,AB =10,BC =2 5,AC =5 2,请你根据小颖的思路,在图 2的正方形网格中画出△ABC ,并直接写出△ABC 的面积.22.(10分)某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40 (1)这组数据的平均数为 ,中位数为 ,众数为 . (2)用哪个值作为他们年龄的代表值较好?23.(10分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,AE ∥BD ,OE 与AB 交于点F. (1)试判断四边形AEBO 的形状,并说明理由; (2)若OE=10,AC=16,求菱形ABCD 的面积.24.(10分)如图①,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图②为列车离乙地路程y(千米)与行驶时间x(小时)的函数关系图象.(1)填空:甲、丙两地距离_______千米;(2)求高速列车离乙地的路程y 与行驶时间x 之间的函数关系式,并写出x 的取值范围.25.(12分)如图,在ABCD □中,BD AD ⊥,45A ∠=︒,点E ,F 分别是AB ,CD 上的点,且BE DF =,连接EF 交BD 于点O .(1)求证:BO DO =.(2)若EF AB ⊥,延长EF 交AD 的延长线于点G ,当1FG =时,求AD 的长.26.A城有肥料400t,B城有肥料600t,现要把这些肥料全部运往C、D两乡,所需运费如下表所示:城市A城B城运往C乡运费(元/t)20 15运往D乡运费(元/t)25 24现C乡需要肥料480t,D乡需要肥料520t.(1)设从A城运往C乡肥料x吨,总运费为y元;①求B城运往C、D两乡的肥料分别为多少吨?(用含x的式子表示).②写出y关于x的函数解析式,并求出最少总运费.(2)由于更换车型,使A城运往C乡的运费每吨减少m元(0<m<6),这时怎样调运才能使总运费最少?参考答案一、选择题(每题4分,共48分)1、A【解析】【分析】把x=-3代入二次根式进行化简即可求解.【详解】解:当x=-3时,.故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.2、A【解析】【分析】根据正比例函数的性质可得k>0,再根据k的取值范围可以确定答案.【详解】解:∵正比例函数y=kx的图象在第一、三象限,∴k>0,故选:A.【点睛】此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.3、B【解析】【分析】利用矩形的判定、菱形的判定及正方形的判定方法分别判断后即可确定正确的选项.【详解】解:A、有一个角是直角的平行四边形是矩形,故错误;B、对角线互相垂直的平行四边形是菱形,故正确;C、对角线互相垂直平分且相等的平行四边形是正方形,故错误;D、平行四边形的对角线互相平分但不一定相等,故错误.故选:B.【点睛】本题考查命题与定理的知识,解题的关键是能够了解矩形的判定、菱形的判定及正方形的判定方法,难度不大.4、B【解析】分析:根据方差的意义解答.详解:从方差看,乙的方差最小,发挥最稳定.故选B.点睛:考查方差的意义,方差越小,成绩越稳定.5、A【解析】【分析】根据二次根式的性质列出不等式,解不等式即可解答.【详解】=﹣,∴a≤0,a+3≥0,∴﹣3≤a≤0.故选A.【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键.6、C【解析】【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.7、D【解析】【分析】a-<,再根据绝对值的性质、二次根式的性质化简即可.先由数轴判断出10【详解】a<,解:由数轴可知,1∴-<,a10∴原式()=--=---=-,a a a|1|111故选:D.【点睛】本题考查的是二次根式的化简,掌握二次根式的性质、数轴的概念是解题的关键.8、C【解析】【分析】把方程两边的()1x -看作一个整体,进行移项、合并同类项的化简,即可通过因式分解法求得一元二次方程的解. 【详解】方程(1)(2)1x x x -+=- 经移项、合并同类项后,化简可得:()(1)(2)-10x x -+=,即()()110x x -+=,则解为11x x ==-,,故选C.【点睛】本题考查一元二次方程的化简求解,要掌握因式分解法. 9、D 【解析】 【分析】直接利用分式无意义则分母为零进而得出答案. 【详解】 解:∵分式23xx -无意义, ∴2x−3=0, 解得:x =32. 故选D . 【点睛】此题主要考查了分式无意义的条件,正确把握定义是解题关键. 10、A 【解析】 【分析】先根据三角形中位线性质得DF=BC=1,DF ∥BC ,EF=AB=,EF ∥AB ,则可判断四边形DBEF 为平行四边形,然后计算平行四边形的周长即可. 【详解】解:∵D 、E 、F 分别为AB 、BC 、AC 中点, ∴DF=BC=1,DF ∥BC ,EF=AB=,EF ∥AB ,∴四边形DBEF 为平行四边形,∴四边形DBEF 的周长=2(DF+EF )=2×(1+)=1.故选A . 【点睛】本题考查三角形中位线定理和四边形的周长,解题的关键是掌握三角形中位线定理. 11、A 【解析】 【分析】直接利用完全平方公式化简进而得出a ,b 的值求出答案即可. 【详解】解:∵2(27+=+ ∵a ,b 为有理数, ∴a=7,b=4, ∴a-b=7-4=1. 故选:A . 【点睛】此题主要考查了实数运算,正确应用完全平方公式是解题关键. 12、A 【解析】 【分析】A 、根据相反向量的和等于0,可以判断A ;B 、根据0的模等于0,可以判断B ;C 、根据交换律可以判断C ;D 、根据运算律可以判断D . 【详解】解:A 、()0n n +-=,故A 错误; B 、|0|=0,故B 正确; C 、n n n +=+π,故C 正确; D 、()n +-π-n=π,故D 正确. 故选:A . 【点睛】此题考查平面向量,解题关键在于运算法则二、填空题(每题4分,共24分)13、>。
2020-2021深圳市民治中学初二数学上期末模拟试卷(带答案)
2020-2021深圳市民治中学初二数学上期末模拟试卷(带答案)一、选择题1.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2- B .1- C .2 D .32.在平面直角坐标系中,点A 坐标为(2,2),点P 在x 轴上运动,当以点A ,P 、O 为顶点的三角形为等腰三角形时,点P 的个数为( )A .2个B .3个C .4个D .5个 3.计算:(4x 3﹣2x )÷(﹣2x )的结果是( )A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 2 4.如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B=80°,则∠C 的度数为( )A .30°B .40°C .45°D .60° 5.下列计算正确的是( ) A .235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn = 6.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形7.如果30x y -=,那么代数式()2222x y x y x xy y +⋅--+的值为( ) A .27- B .27 C .72- D .728.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .329.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°10.下列条件中,不能作出唯一三角形的是( )A .已知三角形两边的长度和夹角的度数B .已知三角形两个角的度数以及两角夹边的长度C .已知三角形两边的长度和其中一边的对角的度数D .已知三角形的三边的长度11.如图,在△ABC 中,∠ABC =90°,∠C =20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( )A .20°B .40°C .50°D .70°12.已知a 是任何实数,若M =(2a ﹣3)(3a ﹣1),N =2a (a ﹣32)﹣1,则M 、N 的大小关系是( )A .M ≥NB .M >NC .M <ND .M ,N 的大小由a 的取值范围 二、填空题13.已知23a b =,则a b a b -+=__________. 14.计算:24a 3b 2÷3ab =____.15.分解因式:2x 2-8x+8=__________. 16.若分式242x x -+的值为0,则x =_____. 17.分解因式:2288a a -+=_______18.因式分解:3a 2﹣27b 2=_____.19.正六边形的每个内角等于______________°.20.一个正多边形的内角和为540︒,则这个正多边形的每个外角的度数为______.三、解答题21.先化简,再求值:2321222x x x x x -+⎛⎫+-÷ ⎪++⎝⎭,其中2x =. 22.A 、B 两种机器人都被用来搬运化工原料,A 型机器人比 B 型机器人每小时多搬运 60kg.A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?23.先化简,再求值:224(2)24x x x x --÷+-,其中x =5. 24.先化简,再求值:222221422x x x x xx x x ⎛⎫-+-+÷ ⎪-+⎝⎭,且x 为满足22x -≤<的整数.25.(1)计算:()108613333π-⎛⎫--÷+ ⎪⎝⎭ (2)因式分解:22312x y -【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.2.C解析:C【解析】【分析】先分别以点O 、点A 为圆心画圆,圆与x 轴的交点就是满足条件的点P ,再作OA 的垂直平分线,与x 轴的交点也是满足条件的点P ,由此即可求得答案.【详解】如图,当OA=OP 时,可得P 1、P 2满足条件,当OA=AP 时,可得P 3满足条件,当AP=OP 时,可得P 4满足条件,故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键. 3.C解析:C【解析】【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:(4x3﹣2x)÷(﹣2x)=﹣2x2+1.故选C.【点睛】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.B解析:B【解析】【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【详解】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C=18018010040.22ADC-︒︒-=︒=︒∠故选B.考点:等腰三角形的性质.5.C解析:C【解析】解:A 、不是同类二次根式,不能合并,故A 错误;B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .6.D解析:D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .7.D解析:D【解析】【分析】先把分母因式分解,再约分得到原式=2x y x y +-,然后把x=3y 代入计算即可. 【详解】原式=()22x y x y +-•(x-y )=2x y x y+-, ∵x-3y=0,∴x=3y ,∴原式=63y y y y +-=72. 故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.8.C解析:C【解析】【分析】把x+1x =6两边平方,利用完全平方公式化简,即可求出所求. 【详解】把x+1x =6两边平方得:(x+1x )2=x 2+21x +2=36, 则x 2+21x =34, 故选:C .【点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.9.C解析:C【解析】【分析】根据等边对等角可得∠B =∠ACB =50°,再根据三角形内角和计算出∠A 的度数,然后根据三角形内角与外角的关系可得∠BPC >∠A , 再因为∠B =50°,所以∠BPC <180°-50°=130°进而可得答案.【详解】∵AB =AC ,∠B =50°,∴∠B =∠ACB =50°,∴∠A =180°-50°×2=80°,∵∠BPC =∠A +∠ACP ,∴∠BPC >∠A ,∴∠BPC >80°. ∵∠B =50°,∴∠BPC <180°-50°=130°,则∠BPC 的值可能是100°. 故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.10.C解析:C【解析】【分析】看是否符合所学的全等的公理或定理即可.【详解】A 、符合全等三角形的判定SAS ,能作出唯一三角形;B 、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA 判定全等,因而所作三角形是唯一的;C 、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.11.C解析:C【解析】【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.【详解】∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°−∠B−∠C=70°,∵DE是边AC的垂直平分线,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=70°−20°=50°,故选:C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握其性质.12.A解析:A【解析】【分析】将M,N代入到M-N中,去括号合并得到结果为(a﹣1)2≥0,即可解答【详解】∵M=(2a﹣3)(3a﹣1),N=2a(a﹣32)﹣1,∴M﹣N=(2a﹣3)(3a﹣1)﹣2a(a﹣32)+1,=6a2﹣11a+3﹣2a2+3a+1=4a2﹣8a+4=4(a﹣1)2∵(a﹣1)2≥0,∴M﹣N≥0,则M≥N.故选A.【点睛】此题考查整式的混合运算,解题关键是在于把M,N代入到M-N中计算化简得到完全平方式为非负数,从而得到结论.二、填空题13.【解析】【分析】由已知设a=2t则b=3t代入所求代数式化简即可得答案【详解】设a=2t∵∴b=3t∴==故答案为:【点睛】本题考查了代数式的求值把a=b代入后计算比较麻烦采用参数的方法使运算简便灵解析:1 5 -【解析】【分析】由已知设a=2t,则b=3t,代入所求代数式化简即可得答案.【详解】设a=2t,∵23ab=,∴b=3t,∴a ba b-+=2323t tt t-+=15-.故答案为:1 5 -【点睛】本题考查了代数式的求值,把a=23b代入后,计算比较麻烦,采用参数的方法,使运算简便,灵活运用参数方法是解题关键.14.8a2b【解析】【分析】根据单项式的除法法则计算把系数和同底数幂分别相除作为商的因式对于只在被除式里含有的字母则连同它的指数作为商的一个因式计算后选取答案【详解】24a3b2÷3ab=(24÷3)a解析:8a2b【解析】【分析】根据单项式的除法法则计算,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算后选取答案.【详解】24a3b2÷3ab,=(24÷3)a2b,=8a2b.故答案为8a2b.【点睛】本题考查的知识点是同底数幂的除法,解题的关键是熟练的掌握同底数幂的除法. 15.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:2(x-2)2【解析】【分析】先运用提公因式法,再运用完全平方公式.【详解】:2x 2-8x+8=()()2224422x x x -+=-. 故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.16.x=2【解析】分析:根据分式值为0的条件:分子为0分母不等于0可得即可解得详解:因为分式的值为0所以解得:所以故答案为:点睛:本题主要考查分式值为0的条件解决本题的关键是要熟练运用分式值为0的条件列解析:x=2【解析】分析:根据分式值为0的条件:分子为0,分母不等于0,可得24020x x ⎧-=⎨+≠⎩,即可解得 2x =.详解:因为分式242x x -+的值为0, 所以24020x x ⎧-=⎨+≠⎩, 解得:2,2x x =±≠-,所以2x =.故答案为: 2x =.点睛:本题主要考查分式值为0的条件,解决本题的关键是要熟练运用分式值为0的条件列出方程和不等式进行求解.17.【解析】=2()=故答案为解析:22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-.18.3(a+3b)(a﹣3b)【解析】【分析】先提取公因式3然后再利用平方差公式进一步分解因式【详解】3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b)【点睛】本题考查了提公因式法和公式法解析:3(a+3b)(a﹣3b).【解析】【分析】先提取公因式3,然后再利用平方差公式进一步分解因式.【详解】3a2-27b2,=3(a2-9b2),=3(a+3b)(a-3b).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.19.120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°∴正六边形的每个内角为:=120°考点:多边形的内角与外角解析:120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.20.72°【解析】设此多边形为n边形根据题意得:180(n﹣2)=540解得:n=5∴这个正多边形的每一个外角等于:360°÷5=72°故答案为:72°【点睛】本题考查了多边形的内角和与外角和的知识掌握解析:72°【解析】设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:360°÷5 =72°,故答案为:72°.【点睛】本题考查了多边形的内角和与外角和的知识,掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°是解题的关键.三、解答题21.11xx+-,3.【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式=2234(1)222x x x x x ⎛⎫--+÷ ⎪+++⎝⎭=221(1)22x x x x --÷++=2(1)(1)22(1)x x x x x +-+⋅+-=11x x +-, ∵|x|=2时,∴x=±2, 由分式有意义的条件可知:x=2,∴原式=3.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.A 型机器人每小时搬运240kg ,则B 型机器人每小时搬运180kg .【解析】【分析】设B 型机器人每小时搬运xkg ,则A 型机器人每小时搬运()60x + kg ,根据A 型机器人搬运 1200kg 所用时间与 B 型机器入搬运 900kg 所用时间相等,列方程求解.【详解】设B 型机器人每小时搬运xkg ,则A 型机器人每小时搬运()60x + kg120090060x x=+, 方程两边乘()60x x +,得120090054000x x =+,解得:180x =校验:当600x =时,()600x x +≠所以,原分式方程的解为180x =60240x +=,答:A 型机器人每小时搬运240kg ,则B 型机器人每小时搬运180kg .【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.-x+2,3.【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】原式=22x 4x •x 2--+ ()()x 2x 2x 2x 24+-=--=-+(), 当x 5=时,原式=523-+=.24.232x -,52- 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【详解】 解:原式2(1)(2)(2)2(1)(2)x x x x x x x x ⎡⎤-+-=+÷⎢⎥-+⎣⎦ 122x x xx x --⎛⎫=+÷ ⎪⎝⎭ 232x x x -=⋅ 232x -=, 0x ≠Q 且1x ≠,2x ≠-∴在22x -<…范围内符合分式的整数有1x =-, 则原式23522--==-. 【点睛】 本题考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.25.(1)5-;(2)3(2)(2)x y x y +-.【解析】【分析】(1)先算幂的运算,再算乘除,加减;(2)先提公因式,再运用平方差公式.【详解】(1)解:原式2133=-+193=-+5=-(2)解:原式223(4)x y =-3(2)(2)x y x y =+-【点睛】考核知识点:整式运算,因式分解.掌握基本方法是关键.。
2022-2023学年海南省海口市八年级上册数学期末专项提升模拟卷(AB卷含解析)
2022-2023学年海南省海口市八年级上册数学期末专项提升模拟卷(A卷)一、选一选(每小题2分,共28分)1. (-3)2的算术平方根是()A. 3B. ±3 D. 92. 若m·23=26,则m等于A. 2B. 4C. 6D. 83. 计算(2ab)2÷ab2,正确的结果是()A. 2aB. 4aC. 2D. 44. 计算a2-(a-3)2,正确的结果是()A. 6a-9B. 6a+9C. 6aD. a2-6a+95. 在下列图形中,既是轴对称图形又是对称图形的是()A. AB. BC. CD. D6. 若x2-x+M=(x-4)·N,则M、N分别为()A. -12,x+3B. 20,x-5C. 12,x-3D. -20,x+57. 下列因式分解正确的是()A. -a2+a3 =-a2(1+a)B. 2x-4y+2=2(x-2y)C. 5x2+5y2=5(x+y)2D. a2-8a+16=(a-4)28. 以下列线段a、b、c的长为边,能构成直角三角形的是()A. a=4, b=5, c=6B. a=6, b=8, c=129. 如图,可以看作是一个等腰直角三角形绕某点旋转若干次而生成的,则每次旋转的最小度数可以是()A. 30°B. 45°C. 60°D. 90°10. 如图,△ABD≌△EBC,AB=5,BC=12,则DE长为()A. 5B. 6C. 7D. 811. 如图,在□ABCD中,AB=4,AD=7,∠ABC平分线交AD于点E,交CD的延长线于点F,则DF的长是()A. 2B. 3C. 4D. 512. 如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于( )A. 18B. 16C. 15D. 1413. 如图,E为正方形ABCD对角线AC上一点,若AE=BC,则∠BED等于()A. 115°B. 125°C. 135°D. 150°14. 如图,在梯形ABCD中,AB∥DC,若AD=BC=DC=4,∠D=120°,则AB长为()A. 6B. 7C. 8D. 10二、填空题(每小题3分,共12分)15. 计算:-2xy2·(-3xy) 2 =__________.16. 如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.17. 如图,在矩形ABCD中,E为AD的中点,∠BED的角平分线交BC于F. 若AB=6,BC=16,则FC的长度为_______.18. 如图,两个完全相同的直角梯形重叠在一起,将其中一个直角梯形沿AB的方向平移,平移的距离为线段AA′的长,则阴影部分的面积为__________.三、解答题(共60分)19. 计算(1)(-4a2)·(ab-3b-1);(2)(2x-5y)(-5y-2x)-(5y)2.20. 把下列多项式分解因式(1)18x3-2xy2;(2)a(4b2+1)-4ab.21. 先化简,再求值.[2(a+b)]2-(2a-b)(2a+b)-(-b)2,其中a=-,b=3.1322. 在如图的正方形网格中,每个小正方形的边长都是单位1,△ABC 的顶点均在格点上.(1)画出△ABC 向左平移2个单位,然后再向上平移4个单位后的△A 1B 1C 1;(2)画出△A 2B 2C 2,使△A 2B 2C 2和△A 1B 1C 1关于点O 成对称;(3)指出如何平移△ABC ,使得△A 2B 2C 2和△ABC 能拼成一个平行四边形.23. 如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,且AC=2AB.(1)你能说明△AOB 是等边三角形吗?请写出理由;(2)若AB=1,求点D到AC 的距离.24. 如图,已知正方形ABCD 的边长是2,E 是DC 上一点,△ADE 经顺时针旋转后与△ABF 重合.(1)指出旋转的和旋转的角度;(2)如果连结EF ,那么△AEF 是怎样的三角形?请说明理由.(3)已知点G 在BC 上,且∠GAE=45°.① 试说明GE=DE+BG.② 若E 是DC 的中点,求BG 的长.2022-2023学年海南省海口市八年级上册数学期末专项提升模拟卷(A 卷)一、选一选(每小题2分,共28分)1. (-3)2的算术平方根是( )A. 3B. ±3 D. 9【正确答案】A 【详解】(-3)2=9,9的算术平方根是3,即(-3)2的算术平方根是3,故选A.2. 若m ·23=26,则m 等于A. 2B. 4C. 6D. 8【正确答案】D 【详解】分析:根据乘除法的关系,把等式变形,根据同底数幂的除法,底数没有变指数相减.解答:解;m=26÷23="2" 6-3=23=8,故选D ,3. 计算(2ab )2÷ab 2,正确的结果是( )A. 2aB. 4aC. 2D. 4【正确答案】B 【详解】解:原式=4÷=4a .22a b 2ab 故选B .4. 计算a 2-(a-3)2,正确的结果是( )A. 6a-9B. 6a+9C. 6aD. a 2-6a+9【正确答案】A 【详解】a 2-(a-3)2=[a+(a-3)][a-(a-3)]=3(2a-3)=6a-9,故选A.5. 在下列图形中,既是轴对称图形又是对称图形的是()A. AB. BC. CD. D【正确答案】D【详解】A是对称图形,没有是轴对称图形,没有符合题意;B是对称图形,没有是轴对称图形,没有符合题意;C是对称图形,没有是轴对称图形,没有符合题意;D是对称图形,也是轴对称图形,符合题意,故选D.6. 若x2-x+M=(x-4)·N,则M、N分别为()A. -12,x+3B. 20,x-5C. 12,x-3D. -20,x+5【正确答案】A【详解】∵(x-4)(x+3)=x2+3x-4x-12=x2-x-12,∴M=-12,N=x+3,故选A本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7. 下列因式分解正确的是()A. -a2+a3 =-a2(1+a)B. 2x-4y+2=2(x-2y)C. 5x2+5y2=5(x+y)2D. a2-8a+16=(a-4)2【正确答案】D【详解】A. -a2+a3=-a2(1-a) ,故A选项错误;B. 2x-4y+2=2(x-2y+1),故B选项错误;C. 5x2+5y2=5(x2+y2 ),故C选项错误;D. a2-8a+16=(a-4)2,正确,故选D.8. 以下列线段a、b、c的长为边,能构成直角三角形的是()A. a=4, b=5, c=6B. a=6, b=8, c=12b=2,【正确答案】C【详解】A、∵4 2 +5 2=41≠62,∴没有能构成直角三角形,故本选项错误;B、∵6 2 +82=100≠122,∴没有能构成直角三角形,故本选项错误;2C、∵12 +=22,∴能构成直角三角形,故本选项正确;22D、∵22 +≠,∴没有能构成直角三角形,故本选项错误,故选C.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9. 如图,可以看作是一个等腰直角三角形绕某点旋转若干次而生成的,则每次旋转的最小度数可以是()A. 30°B. 45°C. 60°D. 90°【正确答案】B【详解】∵角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°,故选B.10. 如图,△ABD≌△EBC,AB=5,BC=12,则DE长为()A. 5B. 6C. 7D. 8【正确答案】C【详解】∵△ABD≌△EBC,∴BE=AB=5,BD=BC=12,∴DE=BD-DE=12-5=7,故选C.11. 如图,在□ABCD中,AB=4,AD=7,∠ABC平分线交AD于点E,交CD的延长线于点F,则DF的长是()A. 2B. 3C. 4D. 5【正确答案】B【详解】∵平行四边形ABCD∴AB∥CD∴∠ABE=∠CFE∵∠ABC的平分线交AD于点E∴∠ABE=∠CBF∴∠CBF=∠CFB∴CF=CB=7∴DF=CF-CD=7-4=3故选B12. 如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于( )A. 18B. 16C. 15D. 14【正确答案】B【分析】【详解】已知四边形ABCD是菱形,AC=8, BD=6,根据菱形的性质可得OA=4,OD=3,AB=AD,在Rt△AOD中,由勾股定理可得AD=5,所以△ABD的周长等于AD+AB+BD=5+5+6=16,故选B点睛:本题考查了菱形的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理计算AD的长是解题的关键.13. 如图,E为正方形ABCD对角线AC上一点,若AE=BC,则∠BED等于()A. 115°B. 125°C. 135°D. 150°【正确答案】C【详解】∵四边形ABCD是正方形,AC是对角线,∴AB=BC,∠BAE=45°,∵AE=BC,∴AB=AE,∴∠ABE=∠AED=(180°-45°)÷2 =67.5°,同理可求得:∠AED=67.5°,∴∠BED=2×67.5°=135°,故选C.14. 如图,在梯形ABCD中,AB∥DC,若AD=BC=DC=4,∠D=120°,则AB长为()A. 6B. 7C. 8D. 10【正确答案】C【详解】过C作CE ∥ AD交AB于E,∵AB ∥ DC,∴四边形ADCE是平行四边形,∴AE=DC=4,∵∠D=120°,∴∠A=60°,∴∠B=60°,∠CEB=60°,∴△CEB是等边三角形,∴BE=BC=4,∴AB=8,故选C.本题考查等腰梯形的性质、平行四边形的判定和性质以及等边三角形的判定及性质,正确地添加辅助线是解题的关键.二、填空题(每小题3分,共12分)15. 计算:-2xy2·(-3xy) 2 =__________.【正确答案】-18x3y4【详解】试题分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数没有变,作为积的因式,计算即可.试题解析:2xy2•(-3xy)2=2xy2•(9x2y2)=18x3y4.考点:单项式乘单项式.16. 如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.【正确答案】60°【详解】试题分析:根据旋转图形的性质可得:∠PAP′=∠BAC=60°.考点:旋转图形的性质17. 如图,在矩形ABCD中,E为AD的中点,∠BED的角平分线交BC于F. 若AB=6,BC=16,则FC的长度为_______.【正确答案】6【详解】∵四边形ABCD 是矩形,∴AD=BC=16,AD//BC ,∠A=90°,∴∠DEF=∠EFB ,∵E 为AD 中点,∴AE=AD=8,12∴BE==10,∵∠BEF=∠DEF ,∴∠BEF=∠EFB ,∴BF=BE=10,∴FC=BC-BF=16-10=6,故答案为6.18. 如图,两个完全相同的直角梯形重叠在一起,将其中一个直角梯形沿AB 的方向平移,平移的距离为线段AA′的长,则阴影部分的面积为__________.【正确答案】105【详解】(20-5+20)×6÷2=(15+20)×6÷2=35×6÷2=210÷2=105(平方厘米).所以阴影部分的面积是105平方厘米,故答案为105.本题考查了直角梯形的面积和平移的性质,解答此题的关键是明白:阴影部分的面积就等于空白的较大一点的梯形的面积.三、解 答 题(共60分)19. 计算(1)(-4a 2)·(ab-3b-1); (2)(2x-5y)(-5y-2x)-(5y)2.【正确答案】(1)-4a 3b +12a 2b +4a 2(2)-4x 2【详解】试题分析:(1)利用单项式乘多项式法则进行计算即可;(2)先利用平方差公式进行展开,然后再合并同类项即可.试题解析:(1)原式=-4a 3b +12a 2b +4a 2 ;(2)原式=25y 2-4x 2-25y 2=-4x 2.20. 把下列多项式分解因式(1)18x 3-2xy 2; (2)a(4b 2+1)-4ab.【正确答案】(1)2x (3x +y )(3x-y )(2)a (2b -1)2【详解】试题分析:(1)先提公因式,然后再利用平方差公式进行分解即可;(2)先提公因式,再利用完全平方公式进行分解即可.试题解析:(1)原式=2x (9x 2-y 2) =2x (3x +y )(3x-y );(2)原式=4ab 2+a -4ab =a (4b 2-4b +1) = a (2b -1)2.21. 先化简,再求值.[2(a+b)]2-(2a-b)(2a+b)-(-b)2,其中a=-,b=3.13【正确答案】28【详解】试题分析:先利用完全平方公式、平方差公式进行展开,然后合并同类项,代入数值进行计算即可.试题解析:原式=4a 2+8ab +4b 2-4a 2+b 2-b 2=8ab +4b 2 ,当a =-3,b =时,原式=8×(-)×3+4×(-3)2 =-8+36=28.131322. 在如图的正方形网格中,每个小正方形的边长都是单位1,△ABC 的顶点均在格点上.(1)画出△ABC 向左平移2个单位,然后再向上平移4个单位后的△A 1B 1C 1;(2)画出△A 2B 2C 2,使△A 2B 2C 2和△A 1B 1C 1关于点O 成对称;(3)指出如何平移△ABC,使得△A2B2C2和△ABC能拼成一个平行四边形.【正确答案】(1)画图见解析;(2)画图见解析;(3)答案没有,具体见解析.【详解】试题分析:(1)将A、B、C分别向左平移2个单位,然后再向上平移4个单位,顺次连接即可得出△A1B1C1;(2)根据对称的性质,找到各点的对应点,顺次连接可得出△A2B2C2;(3)平移△ABC,使得△A2B2C2和△ABC的三边中的一边重合即可.试题解析:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)答案没有.如:①先将△ABC向左平移1个单位,然后再向上平移2个单位.②先将△ABC向左平移4个单位,然后再向上平移4个单位.③先将△ABC向左平移5个单位,然后再向上平移2个单位.本题考查了旋转作图及平移作图的知识,解答此类题目的关键是就是寻找对应点,要求掌握旋转三要素、平移的特点及对称的性质.23. 如图,在矩形ABCD中,对角线AC、BD相交于O,且AC=2AB.(1)你能说明△AOB是等边三角形吗?请写出理由;(2)若AB=1,求点D 到AC 的距离.【正确答案】(1)△OAB 是等边三角形(2)DE【详解】试题分析:(1)根据矩形的对角线互相平分且相等可得OA=OB ,再求出AB=AC ,然后根据三条边都相等的三角形是等边三角形解答;12(2)在Rt△ABC 中,根据勾股定理求出BC 的长, 作DE ⊥AC 于E ,利用三角形的面积法即可求得DE 长.试题解析:(1)△OAB 是等边三角形, 理由如下:在矩形ABCD 中,OA =OC ,OB =OD , AC =BD ,∴ OA =AC ,OB =BD . 1212又∵ AB =AC ,12∴ OA =OB =AB ,即△OAB 是等边三角形;(2)在Rt△ABC 中,AB =1,AC =2,根据勾股定理,得BC,==作DE ⊥AC 于E ,∴ DE ·AC =AD ·DC ,∴ DE=AD DC AC⋅==24. 如图,已知正方形ABCD 的边长是2,E 是DC 上一点,△ADE 经顺时针旋转后与△ABF 重合.(1)指出旋转的和旋转的角度;(2)如果连结EF ,那么△AEF 是怎样的三角形?请说明理由.(3)已知点G 在BC 上,且∠GAE=45°. ① 试说明GE=DE+BG.② 若E 是DC 的中点,求BG 的长.【正确答案】(1)旋转的是点A ,旋转的角度是90°(2)△AEF 是等腰直角三角形(3)①证明见解析② BG =23【详解】试题分析:(1)根据正方形的性质得到AB=AD ,∠BAD=90°,然后利用旋转的定义得到当△ADE 经顺时针旋转后与△ABF 重合时,可确定旋转的和旋转的角度;(2)由(1)得到△ADE 绕着点A 逆时针旋转90°后与△ABF 重合,根据旋转的性质得∠FAE=90°,AF=AE ,由此可判断△AEF 是等腰直角三角形;(3)①首先得出AG 是线段EF 的垂直平分线,进而得出DE+GB=BF+BG=GF ,即可得出答案;②首先设GB=x ,则GC=2-x ,GE=1+x .在Rt△ECG 中,∠C=90°,由勾股定理,得1+(2-x )2=(1+x )2,求出x 即可.试题解析:(1)∵四边形ABCD 为正方形,∴AB=AD,∠BAD=90°,∴当△ADE 经顺时针旋转后与△ABF 重合时,旋转的是点A ,旋转的角度是90°;(2)△AEF 是等腰三角形,理由:∵四边形ABCD 是正方形,∴∠BAD=90°,∴△ADE 绕点A 顺时针旋转90°后与△ABF 重合,∴△ADE≌△ABF ,∴AE=AF ,又∵∠EAF=90°,∴△AEF 是等腰三角形;(3)①∵ ∠GAE =45°,∠EAF =90°,∴ AG 是∠EAF 的平分线,又∵ AF =AE ,∴ AG 是线段EF 的垂直平分线,∴ GE =GF . ∵ DE =BF ,∴ DE +GB =BF +BG =GF ,∴ GE =DE +BG ;② ∵ E 是DC 的中点,∴ DE =EC =FB =1,设GB =x ,则GC =2-x ,GE=1+x ,在Rt △ECG 中,∠C =90°,由勾股定理,得1+(2-x )2=(1+x )2,解这个方程,得x =,23即:BG=.23本题主要考查了旋转的性质以及勾股定理和线段垂直平分线的性质等知识,熟练利用旋转的性质得出△ADE ≌△ABF 是解题关键.2022-2023学年海南省海口市八年级上册数学期末专项提升模拟卷(B 卷)一、选一选(每小题2分,共28分)1. 9的平方根是( )A .B. C. D. 3±3812. 下列说法中,正确的是( )A. -4的算术平方根是2B. 是2的一个平方根C. (-1)2的立方根是-15=±3. 下列实数中,无理数是( )A. B. 0D. -3.14234. 和数轴上的点一一对应的是( )A. 整数B. 有理数C. 无理数D. 实数5. 的值在( )A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间6. 下列计算正确的是( )A. a 3+a 3=a 6B. a 3·a 3=a 9C. a 6÷a 2=a 4D. (a 3)2=a 57. 计算(2×104)3 等于( )A. 6×107B. 8×107C. 2×1012D. 8×10128. 式子22×(22)3的计算结果用幂的形式表示正确的是( )A. 27B. 28C. 210D. 2129. 计算2x•(-3x 2y )的结果是( )A. 6x 3yB. -6x 2yC. -6x 3yD. -x 3y10. 计算(m +2)(m -3)的结果是( )A. m 2-m -6B. m 2+5m -6C. m 2-m +6D. m 2+m -611. 下列各式中,与(a -1)2一定相等的是( )A. a 2+1B. a 2-1C. a 2-2a -1D. a 2-2a +112. 下列两个多项式相乘,没有能运用公式(a +b )(a -b )=a 2-b 2计算的是( )A .(-m -n )(m +n )B. (-m +n )(m +n )C. (-m+n)(-m-n)D. (m-n)(n+m)13. 下列因式分解正确的是()A. x2-y2=(x-y)2B. -a+a2=-a(1-a)C. 4x2-4x+1=4x(x-1)+1D. a2-4b2=(a+4b)(a -4b)14. 计算a2-(a -3)2的结果是()A. 6aB. 6a+9C. 6a-9D. a2-6a+9二、填空题(每小题3分,共12分)15. .16. 比较大小______3.17. 计算: (2a)3÷a=___________.18. 填上适当的数,使等式成立:x2+6x+________=(x+_______)2.三、解答题(共60分)19. 要剪出一块面积为2500cm2的正方形纸片,纸片的边长应是多少?20. 根据下表回答下列问题:的平方根是,;(2)最接近的数是.21. 计算(1)2x2(3x-y);(2)(3a+1)(a-2);(3)(3x-y)2;(4)102×98(用简便方法计算).22. 把下列多项式分解因式(1)6a2-3ab;(2)9x2-1;(3)2m2+4m+2.23. (1)先化简,再求值: (a+1)2-(3a2+a)÷a,其中a=-3.(2)已知x+y=3,xy=-2. 求(x-1)(y-1)的值.24. 如图,在一块边长为a 米的正方形空地的四角均留出一块边长为b (b <)米的正方形修建2a花坛,其余的地方种植草坪.利用因式分解计算当a =13.2,b =3.4时,草坪的面积.2022-2023学年海南省海口市八年级上册数学期末专项提升模拟卷(B 卷)一、选一选(每小题2分,共28分)1. 9的平方根是( )A. B. C.D. 3±381【正确答案】B【分析】根据平方与开平方互为逆运算,可得一个正数的平方根.【详解】解:,3=±故选B .本题考查了平方根,根据平方求出平方根,注意一个正数的平方跟有两个.2. 下列说法中,正确的是( )A. -4的算术平方根是2B. 是2的一个平方根C. (-1)2的立方根是-15=±【正确答案】B【详解】解:A. -4没有算术平方根,故A 选项错误;是2的一个平方根,正确;C. (-1)2的立方根是1,故C 选项错误;=5,故D 选项错误,故选B.3. 下列实数中,无理数是( )A. B. 0D. -3.1423【正确答案】C【详解】A. 是有理数,故没有符合题意;B. 0 是有理数,故没有符合题意;C.是无23理数,故符合题意; D. -3.14是有理数,故没有符合题意,故选C.4. 和数轴上的点一一对应的是( )A. 整数B. 有理数C. 无理数D. 实数【正确答案】D【分析】根据实数与数轴的关系,可得答案.【详解】实数与数轴上的点一一对应,故D正确.故选D.本题考查了实数与数轴,实数与数轴上的点一一对应.5. 的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【正确答案】B【详解】∵32=9,42=16,9<12<16,∴<4,故选B.6. 下列计算正确的是()A. a3+a3=a6B. a3·a3=a9C. a6÷a2=a4D. (a3)2=a5【正确答案】C【详解】解:A. a3+a3=2a3,故A选项计算错误;B. a3·a3=a6,故B选项计算错误;C. a6÷a2=a4,故C选项计算正确;D. (a3)2=a6,故D选项计算错误,故选:C.7. 计算(2×104)3等于()A. 6×107B. 8×107C. 2×1012D. 8×1012【正确答案】D【详解】(2×104)3=23×104×3=8×1012,故选D.8. 式子22×(22)3的计算结果用幂的形式表示正确的是()A. 27B. 28C. 210D. 212【正确答案】B【详解】22×(22)3=22×22×3=22×26=22+6=28,故选B.9. 计算2x•(-3x2y)的结果是( )A. 6x3yB. -6x2yC. -6x3yD. -x3y【正确答案】A【详解】观察方程组的特点,可以让三个方程相加,得到x+y+z=6.然后记该方程与方程组中的各方程分别相减,即可求出未知数的值.10. 计算(m+2)(m-3)的结果是()A. m2-m-6B. m2+5m-6C. m2-m+6D. m2+m-6【正确答案】A【详解】(m+2)(m-3)=m2-3m+2m-6=m2-m-6,故选A.11. 下列各式中,与(a-1)2一定相等的是()A.a2+1B. a2-1C. a2-2a -1D. a2-2a+1【正确答案】D【详解】试题分析:完全平方公式.,故选D.考点:完全平方公式点评:完全平方公式是初中数学的,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度没有大,需熟练掌握.12. 下列两个多项式相乘,没有能运用公式(a+b)(a-b)=a2-b2计算的是()A. (-m-n)(m+n)B. (-m+n)(m+n)C. (-m+n)(-m-n)D. (m-n)(n+m)【详解】A、(-m-n)(m+n)= -(m+n)2= -m2-2mn-n2,本选项符合题意;B、(-m+n)(m+n)=n2-m2,本选项没有合题意;C、(-m+n)(-m-n)=m2-n2,本选项没有合题意;D、(m-n)(n+m)=m2-n2,本选项没有合题意,故选A.本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.13. 下列因式分解正确的是()A. x2-y2=(x-y)2B. -a+a2=-a(1-a)C. 4x2-4x+1=4x(x-1)+1D. a2-4b2=(a+4b)(a -4b)【正确答案】B【详解】A. x2-y2=(x-y)(x+y),故A选项错误;B. -a+a2=-a(1-a),正确;C. 4x2-4x+1=(2x-1)2,故C选项错误;D. a2-4b2=(a+2b)(a -2b),故D选项错误,故选B.14. 计算a2-(a -3)2的结果是()A. 6aB. 6a+9C. 6a-9D. a2-6a+9【正确答案】C【详解】a2-(a-3)2=a2-(a2-6a+9)=6a-9,故选C.本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题(每小题3分,共12分)15. .【正确答案】2【分析】根据立方根的定义进行计算.【详解】解:∵23=8,,故2.16. 比较大小______3.【详解】∵7<9,<3,故答案为<.17. 计算: (2a)3÷a=___________.【正确答案】8a2【详解】(2a)3÷a=8a 3 ÷a=8a 2,故答案为8a 2.本题考查了积的乘方与单项式的除法,熟练掌握运算法则是解题的关键.18. 填上适当的数,使等式成立:x2+6x+________=(x+_______)2.【正确答案】①. 9②. 3【详解】试题分析:完全平方公式..考点:完全平方公式点评:完全平方公式是初中数学的,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度没有大,需熟练掌握.三、解答题(共60分)19. 要剪出一块面积为2500cm2的正方形纸片,纸片的边长应是多少?【正确答案】50cm【详解】试题分析:设纸片的边长应是xcm,得出方程x2=2500,求出方程的解即可.试题解析:设纸片的边长应是xcm,则有x2=2500,∵x表示边长,没有能为负,∴x=50,答:纸片的边长应是50cm.本题考查了算术平方根的应用,关键是能得出关于x的方程.20. 根据下表回答下列问题:的平方根是,;(2)最接近的数是.【正确答案】(1)±16.3 ,16.3(2)16.4【详解】试题分析:(1)根据表中的数据可直接得出265.69的平方根,265.7的算术平方根;(2)先找出269位于哪两个数之间,然后找出最接近的数,即可得出表中与269最接近的数.试题解析:(1)∵16.32=265.69,∴265.69的平方根是:±16.3,≈≈16.3,故答案为±16.3 ,16.3;(2)∵268.96<269<272.25,且269最接近268.96,最接近16.4,故答案为16.4.21. 计算(1)2x2(3x-y);(2)(3a+1)(a-2);(3)(3x-y)2;(4)102×98(用简便方法计算).【正确答案】(1)6x3-2x2y(2)3a2-5a-2(3)9x2-6xy+y2(4)9996【详解】试题分析:(1)原式利用单项式乘以多项式法则计算即可;(2)原式利用多项式乘以多项式展开,合并后即可得到结果;(3)原式利用完全平方公式展开即可得到结果;(4)原式变形后,利用平方差公式化简即可得到结果.试题解析:(1)原式=6x 3 -2x 2 y;(2)原式=3a 2 -6a+a-2=3a 2 -5a-2;(3)原式=9x 2 -6xy+y 2 ;(4)原式=(100+2)×(100-2)=100 2 -2 2 =9996.22. 把下列多项式分解因式(1)6a 2-3ab ; (2)9x 2-1; (3)2m 2+4m +2.【正确答案】(1)3a (2a -b )(2)(3x +1)(3x -1)(3)2(m +1)2【详解】试题分析:(1)利用提公因式法进行分解即可;(2)利用平方差公式进行分解即可;(3)先提公因式2,然后利用完全平方公式进行分解即可.试题解析:(1)原式=3a (2a -b );(2)原式=(3x +1)(3x -1);(3)原式=2(m 2+2m+1)=2(m +1)2.23. (1)先化简,再求值: (a+1)2-(3a 2+a )÷a ,其中a=-3.(2)已知x+y=3,xy=-2. 求(x -1)(y -1)的值.【正确答案】(1)12(2)-4【详解】试题分析:(1)先利用完全平方公式进行展开和利用多项式除以单项式进行计算,然后再合并同类项,代入求出即可;(2)先进行多项式的乘法计算,再整体代入,即可求出答案.试题解析:(1)(a+1) 2 -(3a 2 +a )÷a=a 2 +2a+1-3a-1=a 2 -a ,当a=-3时,原式=(-3) 2 -(-3)=12;(2)当x+y=3,xy=-2时,(x -1)(y -1)=xy -x -y +1=xy-(x+y)+1=-2-3+1=-4.本题考查了整式的混合运算和求值的应用,主要考查化简和计算,用了整体代入思想.24. 如图,在一块边长为a 米的正方形空地的四角均留出一块边长为b (b <)米的正方形修建2a花坛,其余的地方种植草坪.利用因式分解计算当a =13.2,b =3.4时,草坪的面积.【正确答案】(a2-4b2)平方米,128平方米【详解】试题分析:由正方形面积减去四个小正方形面积求出剩余的面积,将a与b的值代入计算即可求出值.试题解析:根据题意得:剩余部分的面积为(a2-4b2)平方米,当a=13.2,b=3.4时,(a2-4b2)=( a+2b)( a-2b)=(13.2+6.8)×( 13.2-6.8)=128平方米.本题主要考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.。
2021-2022学年八年级数学上学期期末考试试卷【含解析】
一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下面四个艺术字中,是轴对称图形的个数是()A.1个B.2个C.3个D.4个2.在平面直角坐标系中,点M(﹣2,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.如图,数轴上点A对应的数是0,点B对应的数是1,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数为()A.1.4 B. C.1.5 D.25.如果函数y=x﹣b(b为常数)与函数y=﹣2x+4的图象的交点坐标是(2,0),那么关于x、y的二元一次方程组的解是()A.B.C.D.6.如图,在△ABC中,∠ACB=90°,D是AB中点,连接CD.若AB=10,则CD的长为()A.5 B.6 C.7 D.87.如图,直线y=﹣x+c与直线y=ax+b的交点坐标为(3,﹣1),关于x 的不等式﹣x+c≥ax+b的解集为()A.x≥﹣1 B.x≤﹣1 C.x≥3 D.x≤38.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.在实数π、、﹣、0.303003…(相邻两个3之间依次多一个0)中,无理数有个.10.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B的坐标是(,).11.用四舍五入法对9.2345取近似数为.(精确到0.01)12.在平面直角坐标系中,点P(2,3)关于y轴对称的点的坐标是.13.如图,已知∠ACD=∠BCE,AC=DC,如果要得到△ACB≌△DCE,那么还需要添加的条件是.(填写一个即可,不得添加辅助线和字母)14.如图,在△ABC中,AB=AC,D为AB上一点,AD=CD,若∠ACD=40°,则∠B=°.15.如图,在△ABC中,AB=AC=13,BC=10,D为BC上一点,若BD=5,则AD的长为.16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.17.已知y是x的一次函数,函数y与自变量x 的部分对应值如表,x …﹣2 ﹣1 0 1 2 …y …10 8 6 4 2 …点(x1,y1),(x2,y2)在该函数的图象上.若x1>x2,则y1y2.18.老师让同学们举一个y是x的函数的例子,同学们分别用表格、图象、函数表达式列举了如下4个x、y之间的关系:①气温x 1 2 0 1日期y 1 2 3 4②③y=kx+b ④y=|x|其中y一定是x的函数的是.(填写所有正确的序号)三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:|π﹣3|+()2+(﹣1)0.20.求下面各式中的x:(1)x2=4;(2)(x﹣1)3=8.21.如图,在△ABC与△FDE中,点D在AB上,点B在DF上,∠C=∠E,AC∥FE,AD=FB.求证:△ABC≌△FDE.22.如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(3,4)、C(4,2),则点B 的坐标为;(2)图中格点△ABC的面积为;(3)判断格点△ABC的形状,并说明理由.23.已知一次函数y=﹣2x+4,完成下列问题:(1)求此函数图象与x轴、y轴的交点坐标;(2)画出此函数的图象;观察图象,当0≤y≤4时,x的取值范围是;(3)平移一次函数﹣2x+4的图象后经过点(﹣3,1),求平移后的函数表达式.24.小红驾车从甲地到乙地,她出发第xh时距离乙地ykm,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)B点的坐标为(,);(2)求线段AB所表示的y与x之间的函数表达式;(3)小红休息结束后,以60km/h的速度行驶,则点D表示的实际意义是.25.如图,已知△ABC与△ADE为等边三角形,D为BC延长线上的一点.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACD.26.建立一次函数关系解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元.两校共购买了35棵树苗.若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.27.如图①,四边形OACB为长方形,A(﹣6,0),B(0,4),直线l 为函数y=﹣2x﹣5的图象.(1)点C的坐标为;(2)若点P在直线l上,△APB为等腰直角三角形,∠APB=90°,求点P 的坐标;小明的思考过程如下:第一步:添加辅助线,如图②,过点P作MN∥x轴,与y轴交于点N,与AC的延长线交于点M;第二步:证明△MPA≌△NBP;第三步:设NB=m,列出关于m的方程,进而求得点P的坐标.请你根据小明的思考过程,写出第二步和第三步的完整解答过程;(3)若点P在直线l上,点Q在线段AC上(不与点A重合),△QPB为等腰直角三角形,直接写出点P的坐标.参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下面四个艺术字中,是轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可得,“十”是轴对称图形,共1个.故选A.【点评】本题考查了轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.在平面直角坐标系中,点M(﹣2,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点M(﹣2,1)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【考点】全等图形.【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.【点评】本题考查全等三角形的知识.解题时要认准对应关系,如果把对应角搞错了,就会导致错选A或C.4.如图,数轴上点A对应的数是0,点B对应的数是1,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数为()A.1.4 B. C.1.5 D.2【考点】实数与数轴;勾股定理.【分析】首先根据勾股定理求出AC的长,再根据同圆的半径相等可知AD=AC,再根据条件:点A对应的数是0,可求出D点坐标.【解答】解:∵BC⊥AB,∴∠ABC=90°,∴AC===,∵以A为圆心,AC为半径画弧,交数轴于点D,∴AD=AC=,∴点D表示的数是:,故选:B.【点评】此题主要考查了实数与数轴,勾股定理,关键是求出AC的长.5.如果函数y=x﹣b(b为常数)与函数y=﹣2x+4的图象的交点坐标是(2,0),那么关于x、y的二元一次方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解进行回答.【解答】解:∵函数y=x﹣b(b为常数)与函数y=﹣2x+4的图象的交点坐标是(2,0),∴方程组的解是.故选A.【点评】本题考查了一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6.如图,在△ABC中,∠ACB=90°,D是AB中点,连接CD.若AB=10,则CD的长为()A.5 B.6 C.7 D.8【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:∵∠ACB=90°,D是AB中点,∴CD=AB=5,故选:A.【点评】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.7.如图,直线y=﹣x+c与直线y=ax+b的交点坐标为(3,﹣1),关于x 的不等式﹣x+c≥ax+b的解集为()A.x≥﹣1 B.x≤﹣1 C.x≥3 D.x≤3【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】观察函数图象,写出直线y=﹣x+c在直线y=ax+b上方所对应的自变量的取值范围即可.【解答】解:当x≤3时,﹣x+c≥ax+b,即x的不等式﹣x+c≥ax+b的解集为x≤3.故选D.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.在实数π、、﹣、0.303003…(相邻两个3之间依次多一个0)中,无理数有 3 个.【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:无理数有:π、、0.303003…,共3个.故答案为:3.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.10.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B的坐标是( 1 ,﹣1 ).【考点】坐标与图形变化-平移.【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.用四舍五入法对9.2345取近似数为9.23 .(精确到0.01)【考点】近似数和有效数字.【分析】把千分位上的数字4进行四舍五入即可.【解答】解:9.2345≈9.23(精确到0.01).故答案为9.23.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.在平面直角坐标系中,点P(2,3)关于y轴对称的点的坐标是(﹣2.3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点P(2,3)关于y轴对称的点的坐标是(﹣2,3),故答案为:(﹣2,3).【点评】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.13.如图,已知∠ACD=∠BCE,AC=DC,如果要得到△ACB≌△DCE,那么还需要添加的条件是∠A=∠D .(填写一个即可,不得添加辅助线和字母)【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,还可以是∠B=∠E或BC=EC,根据全等三角形的判定定理推出即可.【解答】解:∠A=∠D,理由是:∵∠ACD=∠BCE,∴∠ACD+∠DCB=∠BCE+∠DCB,∴∠ACB=∠DCE,在△ACB和△DCE中∴△ACB≌△DCE(ASA),故答案为:∠A=∠D.【点评】本题考查了全等三角形的判定的应用,能求出全等的三个条件是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.14.如图,在△ABC中,AB=AC,D为AB上一点,AD=CD,若∠ACD=40°,则∠B= 70 °.【考点】等腰三角形的性质.【分析】先在△ADC中由AD=CD,根据等边对等角得出∠A=∠ACD=40°,然后在△ABC中由AB=AC,根据等边对等角的性质以及三角形内角和定理得出∠B=∠C=(180°﹣∠A)=70°.【解答】解:∵AD=CD,∠ACD=40°,∴∠A=∠ACD=40°,∵AB=AC,∴∠B=∠C=(180°﹣∠A)=70°.故答案为70.【点评】本题考查了等腰三角形等边对等角的性质以及三角形内角和定理,求出∠A的度数是解题的关键.15.如图,在△ABC中,AB=AC=13,BC=10,D为BC上一点,若BD=5,则AD的长为12 .【考点】勾股定理;等腰三角形的性质.【分析】由题意得出D为BC的中点,由等腰三角形的性质得出AD⊥BC,由勾股定理求出AD即可.【解答】解:∵BC=10,BD=5,∴D为BC的中点,∵AB=AC=13,∴ADE⊥BC,∴AD===12;故答案为:12.【点评】本题考查了等腰三角形的性质、勾股定理;熟练掌握等腰三角形的性质,由勾股定理求出AD是解决问题的关键.16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.已知y是x的一次函数,函数y与自变量x的部分对应值如表,x …﹣2 ﹣1 0 1 2 …y …10 8 6 4 2 …点(x1,y1),(x2,y2)在该函数的图象上.若x1>x2,则y1 <y2.【考点】一次函数图象上点的坐标特征.【分析】先利用待定系数法求出一次函数的解析式,判断出函数的增减性,再由若x1>x2即可得出结论.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵当x=0时,y=6;当x=1时,y=4,∴,解得,∴一次函数的解析式为y=﹣2x+6.∵k=2<0,∴y随x的增大而减小.∵x1>x2,∴y1<y2.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.老师让同学们举一个y是x的函数的例子,同学们分别用表格、图象、函数表达式列举了如下4个x、y之间的关系:①气温x 1 2 0 1日期y 1 2 3 4②③y=kx+b ④y=|x|其中y一定是x的函数的是④.(填写所有正确的序号)【考点】函数的概念.【分析】根据函数的定义判断即可.【解答】解:一般的,在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一的值和它对应,x是自变量,y是x的函数,①②③不符合定义,④符合定义,故答案为④.【点评】本题考查了函数的概念,熟练掌握什么是函数是解题的关键.三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:|π﹣3|+()2+(﹣1)0.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式第一项利用绝对值的代数意义化简,第二项利用平方根定义计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=π﹣3+2+1=π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下面各式中的x:(1)x2=4;(2)(x﹣1)3=8.【考点】立方根;平方根.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值.【解答】解:(1)开方得:x=2或x=﹣2;(2)开立方得:x﹣1=2,解得:x=3.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.21.如图,在△ABC与△FDE中,点D在AB上,点B在DF上,∠C=∠E,AC∥FE,AD=FB.求证:△ABC≌△FDE.【考点】全等三角形的判定.【专题】证明题.【分析】根据平行线性质求出∠A=∠F,求出AB=FD,根据AAS推出全等即可.【解答】证明:∵AC∥FE,∴∠A=∠F,∵AD=FB,∴AD+DB=FB+DB,即AB=FD,在△ABC和△FDE中,∴△ABC≌△FDE(AAS).【点评】本题考查了平行线的性质,全等三角形的判定的应用,能求出全等的三个条件是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.22.如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(3,4)、C(4,2),则点B 的坐标为(0,0);(2)图中格点△ABC的面积为 5 ;(3)判断格点△ABC的形状,并说明理由.【考点】勾股定理;勾股定理的逆定理.【专题】网格型.【分析】(1)由已知点的坐标即可得出点B为坐标原点,即可得出结果;(2)图中格点△ABC的面积=矩形的面积减去3个直角三角形的面积,即可得出结果;(3)由勾股定理可得:AB2=25,BC2=20,AC2=5,得出BC2+AC2=AB2,由勾股定理的逆定理即可得出结论.【解答】(1)解:∵点A(3,4)、C(4,2),∴点B的坐标为(0,0);故答案为:(0,0);(2)解:图中格点△ABC的面积=4×4﹣×4×2﹣×4×3﹣×2×1=5;故答案为:5;(3)解:格点△ABC是直角三角形.理由如下:由勾股定理可得:AB2=32+42=25,BC2=42+22=20,AC2=22+12=5,∴BC2+AC2=20+5=25,AB2=25,∴BC2+AC2=AB2,∴△ABC是直角三角形.【点评】本题考查了勾股定理、勾股定理的逆定理、坐标与图形性质;熟练掌握勾股定理和勾股定理的逆定理是解决问题的关键.23.已知一次函数y=﹣2x+4,完成下列问题:(1)求此函数图象与x轴、y轴的交点坐标;(2)画出此函数的图象;观察图象,当0≤y≤4时,x的取值范围是0≤x≤2 ;(3)平移一次函数﹣2x+4的图象后经过点(﹣3,1),求平移后的函数表达式.【考点】一次函数图象上点的坐标特征;一次函数的图象;一次函数图象与几何变换.【分析】(1)分别求出直线与x轴、y轴的交点,画出函数图象即可;(2)根据函数图象与坐标轴的交点可直接得出结论;(3)设平移后的函数表达式为y=﹣2x+b,把(﹣3,1)代入求出b的值即可得出结论.【解答】解:(1)∵当x=0时y=4,∴函数y=﹣2x+4的图象与y轴的交点坐标为(0,4);∵当y=0时,﹣2x+4=0,解得:x=2,∴函数y=﹣2x+4的图象与x轴的交点坐标(2,0).(2)函数图象如图所示.观察图象,当0≤y≤4时,x的取值范围是0≤x≤2.故答案为:0≤x≤2;(3)设平移后的函数表达式为y=﹣2x+b,将(﹣3,1)代入得:6+b=1,∴b=﹣5,∴y=﹣2x﹣5.答:平移后的直线函数表达式为:y=﹣2x﹣5.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.24.小红驾车从甲地到乙地,她出发第xh时距离乙地ykm,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)B点的坐标为( 3 ,120 );(2)求线段AB所表示的y与x之间的函数表达式;(3)小红休息结束后,以60km/h的速度行驶,则点D表示的实际意义是小红到达乙地.【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】图表型;数形结合;函数思想;一次函数及其应用.【分析】(1)由图象可知C点坐标,根据小红驾车中途休息了1小时可得B点坐标;(2)利用待定系数法,由A、B两点坐标可求出函数关系式;(3)D点表示小红距离乙地0km,即小红到达乙地.【解答】解:(1)由图象可知,C(4,120),∵小红驾车中途休息了1小时,∴点B的坐标为(3,120);(2)设y与x之间的函数表达式为y=kx+b.根据题意,当x=0时,y=420;当x=3时,y=120.∴,解得:,∴y与x之间的函数表达式:y=﹣100x+420.(3)D点表示此时小红距离乙地0km,即小红到达乙地.故答案为:(1)(3,120),(2)小红到达乙地.【点评】本题主要考查学生结合题意读懂图象的基本能力和待定系数法求函数表达式的技能,属基础题.25.如图,已知△ABC与△ADE为等边三角形,D为BC延长线上的一点.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACD.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】证明题.【分析】(1)由等边三角形可知AB=AC,AD=AE,∠BAC=∠DAE=60,从而∠BAD=∠CAE,结论显然.(2)在(1)的结论下,可得∠ACE=60°,而∠ACB=60°,结论显然.【解答】解:(1)∵△ABC为等边三角形,△ADE为等边三角形,∴AB=AC,AD=AE,∠DAE=∠BAC=∠ACB=∠B=60°,∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).(2)∵△ABD≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=∠ACE=60°,∴∠ECD=180°﹣∠ACE﹣∠ACB=180°﹣60°﹣60°=60°,∴∠ACE=∠DCE=60°,∴CE平分∠ACD.【点评】本题主要考查了等边三角形的性质、全等三角形的判定与性质、角平分线的判定等知识点,是基础题,正确识别出证明全等所需的条件是解答关键.26.建立一次函数关系解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元.两校共购买了35棵树苗.若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.【考点】一次函数的应用;一次函数的性质.【专题】应用题;函数思想;一次函数及其应用.【分析】甲校购进x棵A种树苗,两校所需要的总费用为w元,根据总费用=购买A树苗所需费用+购买B树苗所需费用,列出函数关系式,根据函数性质确定最值.【解答】解:设甲校购进x棵A种树苗,两校所需要的总费用为w元.根据题意得:w=24x+18(35﹣x)=6x+630∵35﹣x<x,∴x>17.5,且x为整数,在一次函数w=6x+630中,∵k=6>0,∴w随x的增大而增大,∴当x=18时,w有最小值,最小值w=6×18+630=738,此时35﹣x=17.答:甲校购买A种树苗18棵,乙校购买B种树苗17棵,所需的总费用最少,最少为738元.【点评】本题主要考查利用函数性质解决实际问题的能力,建立函数模型是解题关键,利用函数性质确定最值是手段.27.如图①,四边形OACB为长方形,A(﹣6,0),B(0,4),直线l 为函数y=﹣2x﹣5的图象.(1)点C的坐标为(﹣6,4);(2)若点P在直线l上,△APB为等腰直角三角形,∠APB=90°,求点P 的坐标;小明的思考过程如下:第一步:添加辅助线,如图②,过点P作MN∥x轴,与y轴交于点N,与AC的延长线交于点M;第二步:证明△MPA≌△NBP;第三步:设NB=m,列出关于m的方程,进而求得点P的坐标.请你根据小明的思考过程,写出第二步和第三步的完整解答过程;(3)若点P在直线l上,点Q在线段AC上(不与点A重合),△QPB为等腰直角三角形,直接写出点P的坐标.【考点】一次函数综合题.【专题】综合题;一次函数及其应用.【分析】(1)根据矩形的性质可以求得.(2)由△MPA≌△NBP列出方程即可求解.(3)分三种情形讨论①∠PBQ=90°,利用图1中△PMB≌△BNQ即可求出.②∠BPQ=90°,利用图2中△PMB≌△CNP即可求出.③∠PQB=90°,利用图3中△PNQ≌△BMQ即可求出.【解答】解:(1)∵四边形AOBC是矩形,∴AO=CO=6,AC=BO=4,∴点C的坐标为(﹣6,4).故答案为C(﹣6,4).(2)根据题意得:∠AMP=∠PNB=90°,∵△APB为等腰直角三角形,∴AP=BP,∠APB=90°,∵∠APB=∠AMP=90°,∴∠NPB+∠MPA=∠MPA+∠MAP=90°,∴∠NPB=∠MPA,在△MPA和△NBP中,,∴△MPA≌△NBP(AAS),∴AM=PN,MP=NB,设NB=m,则MP=m,PN=MN﹣MP=6﹣m,AM=4+m,∵AM=PN,∴4+m=6﹣m,解得:m=1,∴点P的坐标为(﹣5,5);(3)设点Q的坐标为(﹣6,q),分3种情况讨论:①当∠PBQ=90°时,如右图,过点P作PM⊥y轴于点M,点Q作QN⊥y 轴于点N,∵∠QBN+∠PBM=90°,∠MPB+∠PBM=90°∴∠QBN=∠MPB,∠PMB=∠QNB=90°在△AQN和△PBM中,,∴△PMB≌△BNQ,∴MB=NQ=6,PM=BN=4﹣q,∴P(q﹣4,10),代入y=﹣2x﹣5,解得:q=﹣3.5,∴p(﹣7.5,10).②当∠BPQ=90°时,若点P在BQ上方,即为(2)的情况,此时点Q与点A重合,由于题设中规定点Q不与点A重合,故此种情况舍去;若点P在BQ下方,如右图,过点P作PN⊥AC于点N,作PM⊥y轴于点M,设BM=m,∵∠APM+∠NPC=90°,∠NQB+∠NPQ=90°,∴∠BPM=∠NQP,在△APM和△QPN中,∴△PMB≌△CNP,∴PN=BM=m,∴PM=6﹣m,∴P(m﹣6,4﹣m),把P坐标代入y=﹣2x﹣5,得4﹣m=﹣2m+12﹣5,解得:m=3此时点P的坐标为(﹣3,1);③当∠PQB=90°时如右图,过点Q作QM⊥y轴于点M,过点P作PN⊥AC垂足为N,设BM=m,∵∠PQB=∠MQN=90°,∴∠PQN=∠MQB,在△PQN和△BQM中,,∴△PNQ≌△BMQ,∴QN=QM=6,MB=NP=m,∴P(﹣6﹣m,10﹣m),把P坐标代入y=﹣2x﹣5,得:10﹣m=12+2m﹣5,解得:m=1,此时点P的坐标为(﹣7,9),综上所述,点P的坐标为(﹣7.5,10)或(﹣3,1)或(﹣7,9).【点评】本题考查矩形、一次函数、等腰直角三角形、全等三角形的判定和性质等有关知识,作辅助线构造全等三角形是解题的关键,学会用方程的思想解决问题.。
(人教版)2020-2021学年初二数学第十一章 三角形(能力提升卷)【含答案】
第十一章 三角形能力提升卷班级___________ 姓名___________ 学号____________ 分数____________(考试时间:60分钟 试卷满分:120分)一.选择题(每题3分,共计30分)1.至少有两边相等的三角形是( )A .等边三角形B .等腰三角形C .等腰直角三角形D .锐角三角形【答案】B 【解析】本题中三角形的分类是:等腰三角形{两边相等:等腰三角形{直角三角形锐角三角形钝角三角形三边相等:等边三角形. 故选:B .2.(2020 •宜兴市期中)在如图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .【答案】C 【解析】根据三角形高线的定义,AC 边上的高是过点B 向AC 作垂线垂足为D ,纵观各图形,A 、B 、D 都不符合高线的定义,C 符合高线的定义.故选:C .3.(2019•浉河区月考)如图已知BE =CE ,ED 为△EBC 的中线,BD =8,△AEC 的周长为24,则△ABC 的周长为( )A .40B .46C .50D .56【答案】A【解析】∵△ABC的周长为24,∴AE+EC+AC=24,∵EB=EC,∴AE+EB+AC=AB+AC=24,∵BD=CD=8,∴BC=16,∴△ABC的周长=AB+AC+BC=24+16=40,故选:A.4.(2020•洛龙区月考)已知△ABC的三边长为a,b,c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A.2b﹣2c B.﹣2b C.2a+2b D.2a【答案】A【解析】∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b ﹣c);故选:A.5.(2020•郑州二模)将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED∥BC,则∠AEF的度数为()A.145°B.155°C.165°D.170°【答案】C【解析】∵∠A=60°,∠F=45°,∴∠1=90°﹣60°=30°,∠DEF=90°﹣45°=45°,∵ED∥BC,∴∠2=∠1=30°,∴∠CEF=∠DEF﹣∠2=45°﹣30°=15°.∴∠AEF=180°﹣∠CEF=165°,故选:C.6.(2019 •内乡县期末)如图,顺次连结同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC=120°,若∠ABC的平分线BE经过点D,则∠ABE的度数()A.20°B.30°C.40°D.60°【答案】B【解析】∵∠ADE=∠ABD+∠A,∠EDC=∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120°=40°+20°+∠ABC,∴∠ABC=60°,∵BE平分∠ABC,∴∠ABE=1∠ABC=30°,故选:B.27.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【答案】B【解析】∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选:B.8.(2020•广饶县一模)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°【答案】C【解析】∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A +∠B )=360°﹣90°=270°.故选:C .9.(2019 •淅川县期末)△ABC 的两边是方程组{x +2y =104x +3y =20的解,第三边长为奇数.符合条件的三角形有( )A .1个B .2个C .3个D .4个【答案】B【解析】方程组{x +2y =104x +3y =20的解为:{x =2y =4,∵△ABC 的两边是方程组{x +2y =104x +3y =20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B .10.(2020•新密市期末)已知,如图,在△ABC 中,∠C =150°,点E 是边AB 上点,∠DEF =65°,则∠ADE +∠BFE =( )A .180°B .215°C .205°D .185°【答案】B【解析】在四边形CDEF 中,∵∠C +∠CDE +∠CFE +∠DEF =360°,又∵∠C =150°,∠DEF =65°,∴∠CDE +∠CFE =360°°﹣65°﹣150°=145°,∴∠ADE +∠EFB =360°﹣(∠CDE +∠CFE )=215°,故选:B .二.填空题(每题3分,共计15分)11.(2019•双柏县一模)已知三角形两边的长分别为5、2,第三边长为奇数,则第三边的长为 .【答案】5【解析】第三边x 的范围是:3<x <7.∵第三边长是奇数,∴第三边是5cm .故答案为:5.12.(2020•广东二模)如果将一副三角板按如图方式叠放,那么∠1= .【答案】105°【解析】给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.13.(2020•老城区月考)如图中,若BD 、CD 为角平分线,且∠A =50°,∠E =130°,∠则∠D = 度.【答案】90【解析】连接BC ,∵∠E =130°,∠A =50°,∴∠EBC +∠ECB =180°﹣130°=50°,∠ABC +∠ACB =180°﹣50°=130°,∴∠ABE +∠ACE =130°﹣50°=80°,∵BD 、CD 为角平分线,∴∠DBE =12∠DCE =12∠ACE ,∴∠DBE +∠DCE =12(∠ABE +∠ACE )=40°, ∴∠D =180°﹣(∠DBC +∠DCB )=180°﹣(∠DBE +∠DCE )﹣(∠EBC +∠ECB )=180°﹣(40°+50°)=90°,故答案为:90.14.(2019 •宛城区期末)如图所示,∠1=130°,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为 .【答案】260°【解析】如图:∠1=∠B+∠C,∠DME=∠A+∠E,∠ANF=∠F+∠D,∵∠1=∠DME+∠ANF=130°,∴∠A+∠B+∠C+∠D+∠E+∠F=2×130°=260°.故答案为:260°.15.(2019 •宛城区期末)如图,△ABC中,∠A=70°,∠B=50°,点M,N分别是BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B'落在AC上.若△MB'C为直角三角形,则∠MNB'的度数为.【答案】55°或85°【解析】∵∠C=180°﹣∠A﹣∠B,∠A=70°,∠B=50°,∴∠C=180°﹣70°﹣50°=60°,当∠CB′M∠BMB′=75°,∴∠MNB′=180°=90°,∴∠CMB′=90°﹣60°=30°,由折叠的性质可知:∠NMB′=12﹣75°﹣50°=55°,当∠CMB′=90°时,∠NMB=∠NMB′=45°,∠MNB′=180°﹣50°﹣45°=85°,故答案为55°或85°.三.解答题(共75分)16.(8分)(2020•殷都区期中)如果一个多边形的每个外角都相等,且比内角小36°,求这个多边形的边数和内角和.【解析】设多边形的一个外角为x度,则一个内角为(x+36)度,依题意得x+x+36=180,解得x=72.360°÷72°=5.(5﹣2)×180°=540°故这个多边形的边数为5,内角和是540°.17. (9分)(2019 •内乡县期末)如图,在△BCD中,BC=1.5,BD=2.5,(1)若设CD的长为偶数,则CD的取值是.(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【解析】(1)∵在△BCD中,BC=1.5,BD=2.5,∴1<CD<4,∵CD的长为偶数,∴CD的取值是2.故答案为2;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.18.(9分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【解析】(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.19.(9分)(2019 •内乡县期末)如图,在四边形ABCD 中,∠A =∠C =90°,BE 平分∠ABC ,DF 平分∠CDA .(1)求证:BE ∥DF ;(2)若∠ABC =56°,求∠ADF 的大小.【解析】(1)证明:∵∠A =∠C =90°,∴∠ABC +∠ADC =180°,∵BE 平分∠ABC ,DF 平分∠ADC ,∴∠1=∠2=12∠ABC ,∠3=∠4=12∠ADC , ∴∠1+∠3=12(∠ABC +∠ADC )=12×180°=90°,又∠1+∠AEB =90°,∴∠3=∠AEB ,∴BE ∥DF ;(2)解:∵∠ABC =56°,∴∠ADC =360°﹣∠A ﹣∠C ﹣∠ABC =124°,∵DF 平分∠CDA ,∴∠ADF =12∠ADC =62°.20.(9分)(2019 •东阿县期末)如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F ,且交AC 于E ,∠A =30°,∠D =55°(1)求∠ACD 的度数;(2)求∠FEC 的度数.【解析】(1)∵DF ⊥AB ,∴∠BFD =90°,∴∠B =90°﹣∠D =35°,∵∠ACD =∠B +∠A ,∠A =30°,∴∠ACD =65°.(2)∵∠FEC =∠ECD +∠D ,∠ECD =65°,∠D =55°,∴∠FEC =55°+65°=120°.21.(10分)(2019 •上蔡县期末)如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠CAB =50°,∠C =60°,求∠DAE 和∠BOA 的度数.【解析】∵∠CAB =50°,∠C =60°∴∠ABC =180°﹣50°﹣60°=70°,又∵AD 是高,∴∠ADC =90°,∴∠DAC =180°﹣90°﹣∠C =30°,∵AE 、BF 是角平分线,∴∠CBF =∠ABF =35°,∠EAF =25°,∴∠DAE =∠DAC ﹣∠EAF =5°,∠AFB =∠C +∠CBF =60°+35°=95°,∴∠BOA =∠EAF +∠AFB =25°+95°=120°,∴∠DAC =30°,∠BOA =120°.故∠DAE =5°,∠BOA =120°.22.(10分)(2019 •卫辉市期末)如图,已知∠MON =90°,点A 、B 分别在射线OM 、ON 上移动,∠OAB 的平分线与∠OBA 的外角平分线交于点C .(1)当OA =OB 时,∠ACB = 45° .(2)请你猜想:随着A 、B 两点的移动,∠ACB 的度数大小是否变化?请说明理由.【解析】(1)∵OA =OB ,∠AOB =90°,∴∠ABO =∠OAB =45°,∴∠OBD =135°,∵∠OAB 的平分线与∠OBA 的外角平分线交于点C ,∴∠OBC =67.5°,∠CAB =22.5°∴∠ACB =180°﹣67.5°﹣45°﹣22.5°=45°故答案为45°.(2)随着A 、B 两点的移动,∠ACB 的度数大小不会变化.理由如下:∵AC 平分∠OAB∴∠BAC =∠OAC =12∠OAB ,∵BC 平分∠OBA 的外角∠OBD ∴∠CBD =∠OBC =12∠OBD , ∵∠OBD 是△AOB 的一个外角∴∠OBD =∠MON +∠OAB =90°+∠OAB ∴∠CBD =12∠OBD =12(90°+∠OAB )=45°+12∠OAB ∵∠CBD 是△ABC 的一个外角∴∠CBD =∠ACB +∠BAC ∴∠ACB =∠CBD ﹣∠BAC =45°+12∠OAB −12∠OAB=45°.23.(11分)问题情景:如图1,在同一平面内,点B 和点C 分别位于一块直角三角板PMN 的两条直角边PM ,PN 上,点A 与点P 在直线BC 的同侧,若点P 在△ABC 内部,试问∠ABP ,∠ACP 与∠A 的大小是否满足某种确定的数量关系?(1)特殊探究:若∠A =55°,则∠ABC +∠ACB = 125 度,∠PBC +∠PCB = 90 度,∠ABP +∠ACP = 35 度;(2)类比探索:请猜想∠ABP +∠ACP 与∠A 的关系,并说明理由;(3)类比延伸:改变点A 的位置,使点P 在△ABC 外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出∠ABP ,∠ACP 与∠A 满足的数量关系式.【解析】(1)由题意:∠ABC +∠ACB =125度,∠PBC +∠PCB =90度,∠ABP +∠ACP =35度. 故答案为125,90,35.(2)猜想:∠ABP +∠ACP =90°﹣∠A .理由:在△ABC 中,∠ABC +∠ACB =180°﹣∠A ,∵∠ABC =∠ABP +∠PBC ,∠ACB =∠ACP +∠PCB ,∴(∠ABP +∠PBC )+(∠ACP +∠PCB )=180°﹣∠A ,∴(∠ABP +∠ACP )+(∠PBC +∠PCB )=180°﹣∠A ,又∵在Rt △PBC 中,∠P =90°,∴∠PBC +∠PCB =90°,∴(∠ABP +∠ACP )+90°=180°﹣∠A ,∴∠ABP +∠ACP =90°﹣∠A .(3)判断:(2)中的结论不成立.①如图3﹣1中,结论:∠A +∠ACP ﹣∠ABP =90°.理由:设AB 交PN 于O .∵∠AOC=∠BOP,∴∠A+∠ACP=90°+∠ABP,∴∠A+∠ACP﹣∠ABP=90°.②如图3﹣2中,结论:∠A+∠ABP﹣∠ACP=90°.证明方法类似①③如图3﹣3中,结论:∠A﹣∠ABP﹣∠ACP=90°.理由:∵∠A+∠ABC+∠ACB=180°,∠P+∠ABP+∠ACP+∠ABC+∠ACB=180°,∴∠A=∠P+∠ABP+∠ACP,∴∠A﹣∠ABP﹣∠ACP=90°.。
2020-2021长沙市初二数学上期末试卷附答案
2020-2021长沙市初二数学上期末试卷附答案一、选择题1.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+-D .()2212x x x x -+=-+2.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42oB .40oC .36oD .32o3.下列运算正确的是( ) A .a 2+2a =3a 3B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 24.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅⎪+⎝⎭的值是()n n A .2- B .1-C .2D .35.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( )A .B .C .D .6.下列运算中,结果是a 6的是( ) A .a 2•a 3 B .a 12÷a 2 C .(a 3)3 D .(﹣a)6 7.若(x ﹣1)0=1成立,则x 的取值范围是( ) A .x =﹣1B .x =1C .x≠0D .x≠18.如图,已知△ABC 中,∠A=75°,则∠BDE+∠DEC =( )A .335°B .135°C .255°D .150°9.已知关于x 的分式方程12111m x x--=--的解是正数,则m 的取值范围是( )A .m <4且m ≠3B .m <4C .m ≤4且m ≠3D .m >5且m ≠610.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ11.已知x+1x=6,则x 2+21x =( )A .38B .36C .34D .3212.下列计算正确的是( )A .2a a a +=B .33(2)6a a =C .22(1)1a a -=-D .32a a a ÷=二、填空题13.等边三角形有_____条对称轴. 14.分解因式:2x 2-8x+8=__________. 15.求值:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-----= ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L ______. 16.分解因式:x 3y ﹣2x 2y+xy=______.17.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____. 18.已知16x x +=,则221x x+=______ 19.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .20.一个正多边形的内角和为540︒,则这个正多边形的每个外角的度数为______.三、解答题21.如图,在ABC ∆中(1)画出BC 边上的高AD 和角平分线AE .(2)若30B ∠=°,130ACB ∠=°,求BAD ∠和CAD ∠的度数.22.如图,在△ABC 中,∠BAC=90°,AB=AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE=AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD=3,CF=4,求AD 的长.23.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等. (1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书? 24.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12. 25.先化简,再求值:(442a a --﹣a ﹣2)÷2444a a a --+.其中a 与2,3构成△ABC 的三边,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论. 【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解; 选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确. 故选C . 【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.2.A解析:A 【解析】 【分析】根据正多边形的内角,角的和差,可得答案. 【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,∠1=360°-90°-108°-120°=42°, 故选:A . 【点睛】本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算.3.C解析:C 【解析】 【分析】根据整式的混合运算法则与完全平方公式进行判断即可. 【详解】解:A.a 2与2a 不是同类项,不能合并,故本选项错误; B.326 (2a )4a -=,故本选项错误; C.()()2a 2a 1a a 2+-=+-,正确;D.222 (a b)a 2ab b +=++,故本选项错误. 故选C. 【点睛】本题主要考查了整式的混合运算与完全平方公式,属于基础题,熟练掌握其知识点是解此题的关键.4.C解析:C 【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算.详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++,∵2220m m +-=, ∴222m m ,+= ∴原式=2. 故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.5.C解析:C 【解析】 【分析】根据轴对称图形的概念对各选项分析判断即可得解. 【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意. 故选C . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.D解析:D 【解析】 【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案. 【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、122a a ÷= a 10,故此选项错误; C 、(a 3)3=a 9,故此选项错误; D 、(-a )6=a 6,故此选项正确. 故选D . 【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.7.D解析:D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.8.C解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.9.A解析:A【解析】【详解】方程两边同时乘以x-1得,1-m-(x-1)+2=0,解得x=4-m.∵x为正数,∴4-m>0,解得m<4.∵x≠1,∴4-m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选A.10.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合; Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ, 故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.11.C解析:C 【解析】 【分析】把x+1x=6两边平方,利用完全平方公式化简,即可求出所求. 【详解】把x+1x =6两边平方得:(x+1x)2=x 2+21x +2=36,则x 2+21x =34, 故选:C .【点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.12.D解析:D 【解析】 【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可. 【详解】解:A ,a+a=2a≠a 2,故该选项错误; B ,(2a )3=8a 3≠6a 3,故该选项错误C ,(a ﹣1)2=a 2﹣2a+1≠a 2﹣1,故该选项错误;D ,a3÷a=a 2,故该选项正确, 故选D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.二、填空题13.3【解析】试题解析:等边三角形有3条对称轴考点:轴对称图形解析:3 【解析】试题解析:等边三角形有3条对称轴. 考点:轴对称图形.14.2(x-2)2【解析】【分析】先运用提公因式法再运用完全平方公式【详解】:2x2-8x+8=故答案为2(x-2)2【点睛】本题考核知识点:因式分解解题关键点:熟练掌握分解因式的基本方法解析:2(x-2)2 【解析】 【分析】先运用提公因式法,再运用完全平方公式. 【详解】:2x 2-8x+8=()()2224422x x x -+=-.故答案为2(x-2)2. 【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.15.【解析】【分析】由题意平方差公式把每一项展开然后直接约分运算即可得出答案【详解】解:===故填【点睛】本题考查有理数幂的化简与求值熟练掌握平方差公式把每一项展开是解题的关键 解析:1120【解析】 【分析】由题意平方差公式把每一项展开,然后直接约分运算即可得出答案. 【详解】 解:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L =1111111111111111...1111223344991010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+-+ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=132435810911...223344991010⨯⨯⨯⨯⨯⨯⨯⨯⨯ =1120 故填1120. 【点睛】本题考查有理数幂的化简与求值,熟练掌握平方差公式把每一项展开是解题的关键.16.xy (x ﹣1)2【解析】【分析】原式提取公因式再利用完全平方公式分解即可【详解】解:原式=xy (x2-2x+1)=xy (x-1)2故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合解析:xy (x ﹣1)2 【解析】 【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.130°或90°【解析】分析:根据题意可以求得∠B和∠C的度数然后根据分类讨论的数学思想即可求得∠ADC的度数详解:∵在△ABC中AB=AC∠BAC=100°∴∠B=∠C=40°∵点D在BC边上△A解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.18.34【解析】∵∴=故答案为34解析:34【解析】∵16xx+=,∴221xx+=22126236234xx⎛⎫+-=-=-=⎪⎝⎭,故答案为34.19.85°【解析】试题分析:令A→南的方向为线段AEB→北的方向为线段BD 根据题意可知AEDB是正南正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°考点:1方向角2三角解析:85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB 是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.20.72°【解析】设此多边形为n 边形根据题意得:180(n ﹣2)=540解得:n=5∴这个正多边形的每一个外角等于:360°÷5=72°故答案为:72°【点睛】本题考查了多边形的内角和与外角和的知识掌握解析:72° 【解析】设此多边形为n 边形, 根据题意得:180(n ﹣2)=540, 解得:n=5,∴这个正多边形的每一个外角等于:360°÷5 =72°, 故答案为:72°.【点睛】本题考查了多边形的内角和与外角和的知识,掌握多边形内角和定理:(n ﹣2)•180°,外角和等于360°是解题的关键.三、解答题21.(1)见解析; (2)60BAD ∠=° ,40CAD ∠=° 【解析】 【分析】(1)延长BC ,作AD ⊥BC 于D ;根据角平分线的做法作出角平分线AE 即可;(2)可根据三角形的内角和定理解答即可. 【详解】解:(1)如图所示:AD,AE 即为所求;(2)在△ABD 中,AD ⊥BD ,即∠ADB=90°, ∵∠B=30°,∴∠BAD=180°-90°-30°=60°;在△ABC 中,∠B+∠ACB+∠BAC=180° ∴∠BAC=180°-30°-130°=20° ∴∠CAD=60°-20°=40°. 【点睛】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.22.(1)证明见解析;(2)结论:BD 2+FC 2=DF 2.证明见解析;(3)35.【解析】【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF=90°,EF=DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题.【详解】(1)证明:如图,∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD 和△ACE 中12AB AC AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE .(2)结论:BD 2+FC 2=DF 2.理由如下:连接FE ,∵∠BAC=90°,AB=AC ,∴∠B=∠3=45°由(1)知△ABD ≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE 2+CF 2=EF 2,∴BD 2+FC 2=EF 2,∵AF 平分∠DAE ,∴∠DAF=∠EAF ,在△DAF 和△EAF 中AF AF DAF EAF AD AE ⎧⎪∠∠⎨⎪⎩===,∴△DAF ≌△EAF∴DF=EF∴BD 2+FC 2=DF 2.(3)过点A 作AG ⊥BC 于G ,由(2)知DF 2=BD 2+FC 2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC ,AG ⊥BC ,∴BG=AG=12BC=6, ∴DG=BG-BD=6-3=3,∴在Rt △ADG 中, 【点睛】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数,∴y 的最大值为466∴至多还能购进466本科普书.24.4ab ,﹣4.【解析】【分析】原式利用平方差公式,以及完全平方公式进行展开,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2=a 2﹣4b 2﹣a 2+4ab ﹣4b 2+8b 2=4ab ,当a=﹣2,b=12时,原式=﹣4. 【点睛】本题考查了整式的混合运算﹣化简求值,熟练掌握乘法公式以及整式混合运算的运算顺序及运算法则是解本题的关键.25.﹣a 2+2a ,-3【解析】分析:先算减法,再把除法变成乘法,算乘法,求出a ,最后代入请求出即可. 详解:原式22(44)(4)(2)24a a a a a ----=⋅--, 22(4)(2)2.24a a a a a a a ---=⋅=-+-- ∵a 与2,3构成△ABC 的三边,且a 为整数,∴a 为2、3、4,当a =2时,a −2=0,不行舍去;当a =4时,a −4=0,不行,舍去;当a =3时,原式=−3.点睛:考查分式混合运算以及三角形的三边关系,掌握分式混合运算的法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020—2021学年海口市初二上数学期末模拟试题含答
案
时刻:100分钟 满分:100分 得分:
一、选择题(每小题2分,共24分) 1.2的平方根是( )
A .4 B. 2 C . ±2 D
.±2 2. 下列运算正确的是( )
A .a +2a 2=3a 3
B .a 3·a 2=a 6
C .(a 3)2=a 6
D .a 8-a 5=a 3 3. 下面四个数中与11最接近的数是( )
A .2
B .3
C .4
D .5 4.若m +n =2,mn =1,则(1-m )(1-n )的值为( )
A. 0
B. 1
C. 2
D. 3 5.在下列图形中,既是轴对称图形又是中心对称图形的是( )
6.以下列线段a 、b 、c 的长为边,能构成直角三角形的是( )
A. a =3, b =4, c =6
B. a =1, b =2, c =3
C. a =5, b =6, c =8
D. a =3,b =2,c =5
7. 如图1,O 是正六边形ABCDEF 的中心,下列四个三角形中,可由△OBC 平移得到的是
A. △OCD
B. △OAB
C. △OAF
D. △OEF 8.如图2,点A 、D 、B 、E 在同一直线上,△ABC ≌△DEF ,AB =6,AE =10,则DB 等于( ) A .2 B .2.5 C .3 D .4
9.如图3,□ABCD 的对角线AC 、BD 相交于点O ,则图中的全等三角形共有( )
A. B. D.
C.
B
E
F
D
A
C
图1
O
A
B
C
D
O
图3
图2
B C
A
F
D
E
A. 1对
B. 2对
C. 3对
D. 4对 10.如图4,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离AB =BC =16cm ,
则∠1等于 ( )
A .100°
B .110°
C .120°
D .130°
11.如图5,在梯形ABCD 中,AB ∥DC ,DE ∥CB ,△ADE 周长为18,DC =4,则该梯形
的周长为( ) A. 22 B. 26 C. 28 D. 30 12.一块边长为a 米的正方形广场,扩建后的正方形边长比原先长2米,则扩建后广场面
积增大了( )
A. (4a +4)米2
B. (a 2+4)米2
C. (2a +4)米2
D. 4米2 二、填空题(每小题3分,共18分) 13. 运算:6x 2y 3÷(-2x 2y ) = .
14. 若a -b =2,a 2-b 2=3,则a +b = .
15.若一个正方体的体积为64cm 3,则该正方体的棱长为 cm . 16.如图6,在矩形ABCD 中,若∠AOD =120°,AC =1,则AB = .
17. 如图7,在菱形ABCD 中,AC =6, BD =8,则那个菱形的周长为 . 18. 如图8,正方形卡片A 类、B 类和长方形卡片C 类各若干张,假如要拼一个长为
(2a +b ) ,宽为(a +b )的长方形,则需要C 类卡片 张.
O
D
C
A B
图6 O
D C
A B
图7 1
A
B
C
图4
D
A
B
C
E 图5
A
a a
C
a
b B
b b 图8
三、解答题(共58分)
19. 运算(每小题4分,共8分)
(1)(-ab )2·(2a 2- ab -1); (2)4x (x -y )+(2x -y )(y -2x ).
20.(8分)先化简,再求值.
[(3ab )2-(1-2ab )(-1-2ab )-1]÷(-ab ),其中a =32,b =6
5
21.把下列多项式分解因式(每小题5分,共10分)
(1)3x 2-24x +48; (2) 3a +(a +1)(a -4).
22.(8分)如图9,在正方形网格中每个小正方形的边长差不多上单位1,已知△ABC 和
△A 1B 1C 1关于点O 成中心对称,点O 直线x 上. (1)在图中标出对称中心O 的位置;
(2)画出△A 1B 1C 1关于直线x 对称的△A 2B 2C 2; (3)△ABC 与△A 2B 2C 2满足什么几何变换?
A
B
B 1
A 1
C
图9
C 1
x
23.(12分)如图10,在梯形ABCD 中,AD ∥BC ,AB = DC =1,BD 平分∠ABC ,BD ⊥CD . (1)求:① ∠BAD 的度数;② BD 的长; (2)延长BC 至点E ,使CE =CD ,说明△DBE 是等腰三角形.
24.(12分)如图11,正方形ABCD 的边长为5,点F 为正方形ABCD 内的点,△BFC 经
逆时针旋转后能与△BEA 重合.
(1)旋转中心是哪一点?旋转了多少度?
(2)判定△BEF 是如何样的三角形?并说明理由; (3)若BE =3,FC =4,说明AE ∥BF .
A
B
D
C
图10
E
E
A
B
D
C
图11
F
2020—2021学年度第一学期海南省海口市八年级数学科期末检测题模拟试题
参考答案及评分标准
一、DCBAD BCADC BA
二、13.-3y 2 14.
23
15.4 16. 2
1 17. 20 18.3 三、19.(1)原式=a 2b 2·(2a 2-ab -1)(2分)(2)原式=4x 2-4xy -4x 2+4xy -y 2(3分)
=2 a 4b 2- a 3b 3- a 2b 2.(4分) =-y 2 ……(4分)
20. 原式=[9a 2b 2+1-4a 2b 2-1]÷(-ab ) ………………………………(3分) =5a 2b 2÷(-ab ) ………………………………(5分) =-5ab ………………………………(6分)
当a =32,b =5
6
-时,
原式=)5
6
(325-⨯⨯- ………………………………(7分)
=4. ………………………………(8分)
21.(1)原式=3(x 2-8x +16) …(2分) (2)原式=3a +a 2+a -4a -4 …(1分)
=3(x -4)2. …(5分) =a 2-4 …(2分)
=(a +2)(a -2). …(5分)
22.(1)、(2)如图1所示. ………………………………(5分)
(3)轴对称. ………………………………(8分)
23.(1)①∵ 梯形ABCD 中,AD ∥BC ,AB = DC ,
∴ ∠ABC =∠DCB ,∠1=∠3,∠A+∠ABC =180°. ∵ BD 平分∠ABC , ∴ ∠1=∠2,
∴ ∠1=∠2=∠3=2
1
∠DCB . ∵ BD ⊥CD ,
O
A
B B 1
A 1
C 图1
C 1
• B 2 A 2
C 2
x
A
B
D C
图2
E
3
1
2 F 4
∴ ∠1+∠DCB =90°,即
2
1
∠DCB +∠DCB =90°. ∴ ∠ABC =∠DCB =60°,
∴ ∠A =120°. ………………………………(4分) ② ∵ ∠2=∠3,
∴ AB = AD =DC =1
过D 作DF ∥AB ,则四边形ABFD 是平行四边形,
∴ AD =BF =1,DF =DC =AB . ∵ ∠DCB =60°,
∴ △DFC 是等边三角形, ∴ BC =2DC =2.
在Rt △DBC 中,依照勾股定理,得
BD =3122222=-=-DC BC . ………………………………(8分) (2) ∵ CE =CD , ∴ ∠4=∠E =
2
1
∠DCB =30°, ∵ ∠1=30° ∴ ∠1=∠E ,
∴ DB =DE . 即△DBE 是等腰三角形. ………………………………(12分)
24.(1)旋转中心是点B ,旋转了90°. ………………………………(4分) (2)△BEF 是等腰直角三角形. 理由如下:
∵ △BFC 经逆时针旋转后能与△BEA 重合, ∴ ∠1=∠2,BF =BE .
∵ 四边形ABCD 是正方形,
∴ ∠1+∠3=∠ABC =90°, ∴ ∠2+∠3=∠EBF =90°,
∴ △BEF 是等腰直角三角形. ………………………………(8分)
(3)在△BFC 中,BF 2+FC 2=32+42=25=BC 2, ∴ △BFC 是直角三角形,∠BFC =90°. ∵ △BFC ≌△BEA ,
∴ ∠BEA =∠BFC =90°,
∴ BE ⊥AE .
∵ BE ⊥BF ,
∴ AE ∥BF . ………………………………(12分) (注:用其它方法求解参照以上标准给分.)
E
A
B D
C
F 1
2 3。