五年级数学正方体与长方体体积知识点

合集下载

五年级下册数学讲义-第5讲 长方体、正方体的体积-体积单位和容积单位 人教版(无答案)

五年级下册数学讲义-第5讲 长方体、正方体的体积-体积单位和容积单位 人教版(无答案)

【本节内容】本节知识框架知识点一:体积单位知识点二:长方体和正方体的体积知识点三:容积单位知识点一:体积单位例题11、把一个铁块放入有水的杯中,水面会(),取出铁块,水面会(),这是因为铁块占有一定的空间。

2、常用的体积单位有()、()和(),用字母表示可以分别写成()、()和()。

3、棱长是()的正方体,它的体积是1cm3;棱长是1dm的正方体,它的体积是();棱长是1m的(),它的体积是1m3。

1m3=1000dm3,1dm3=1000cm3, 1cm3=1000mm31立方米=1000立方分米,1立方分米=1000立方厘米,1立方厘米=1000立方毫米规律探究:1、物体所占()的大小叫做物体的体积。

2、相邻的两个体积单位之间的进率是()。

由高级单位转化成低级单位,用高级单位数乘以进率;由低级单位转化成高级单位,用低级单位数除以进率。

【随堂练习】一、在括号里填上适当的单位名称。

1、一块橡皮的体积大约是6()。

2、一个西瓜的体积大约是6()。

3、一个集装箱的体积大约是6()。

二、选择正确答案的字母填在括号里。

2、用棱长1dm的正方体木块,拼成一个比它大的正方体,至少要这样的木块()个。

A、2B、4C、83、我们班的教室大约占有空间()m3.A、2B、20C、200三、填空。

1、常用相邻的两个体积单位的进率是()。

2、6立方米=()立方分米0.8立方米=()立方分米4立方米=()立方厘米3400立方厘米=()立方分米96立方厘米=()立方分米3、在○内填上“>”、“<”或“=”。

0.175m3○175cm3 14m3○1400cm3 75cm3○75dm33500cm3○35m3四、判断题:1、体积单位比面积单位大,面积单位比长度单位大。

()2、体积是1立方米的物体一定是棱长1米的正方体。

()3.将一个形状为正方体的橡皮泥捏成一个长方体(无损耗),体积不变。

()4、用6个棱长是1厘米的小正方体拼成的所有立体图形的体积都相等。

五年级下学期数学 长方体和正方体的体积 考点总结+题型训练 带答案

五年级下学期数学 长方体和正方体的体积 考点总结+题型训练 带答案
② 容积单位及进率:1 升=1000 毫升 1 升=1 立方分米 1 毫升=1 立方厘米
(4)排水法求不规则物体体积:
被浸没物体的体积等于上升那部分水的体积,计算方法: ① 放入物体后的总体积-原来水的体积,即:V物体 = V现在 - V原 来; ② 容器的底面积×上升那部分水的高度,即:V物体 = S底×h升高 。
19、有一块棱长是80厘米的正方体的铁块,现在要把 它熔铸造成一个横截面积是20平方厘米的长方体,这个 长方体的长是多少米?
体积不变 原正方体的体积:80×80×80=512000(立方厘米) 高:512000÷20=25600(厘米)=256米
20、一个长方体的高减少5厘米,就变成了正方体,正方体 的表面积比原长方体的表面积减少了60平方厘米,原长方 体的体积是多少立方厘米?
22、一块长方形铁皮,长26厘米,宽16厘米,在它的 四个角上都剪去边长为3厘米的正方形,然后焊接成一 个无盖的铁盒,求这个铁盒的容积是多少毫升?
铁盒的长:26-3×2=20(厘米) 铁盒的宽:16-3×2=10(厘米) 铁盒的高:3厘米 体积:20×10×3=600(立方厘米)=600毫升
成一个无盖铁盒,这个铁 盒的容积是792立方厘米.原来这块铁皮的面积是多少 平方厘米?
0.84立方分米=840立方厘米 包装盒的高:840÷15÷7=8(厘米) 8<9 装不下
18、一块正方体的方钢,棱长是20厘米,把它锻造成 一个高80厘米的长方体磨具,这个长方体磨具的底面积 是多少平方厘米?
体积不变 原正方体的体积:20×20×20=8000(立方厘米) 底面积:8000÷80=100(平方厘米)
3、填空。 (1)、一个长方体水箱,相交于同一个顶点的三条棱分别是5dm、 4dm、3dm。这个长方体的体积是( 60 )dm³。

五年级长方体和正方体概念和公式归纳

五年级长方体和正方体概念和公式归纳

长方体和正方体概念一、长方体和正方体的各部分名称1.由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3.由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有有6个面,8个顶点,12条棱,它们的长度都相等,所有的面都完全相同。

4.长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5.长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

二、总棱长公式长方体的棱长总和=(长+宽+高)×4棱长总和÷4=长+宽+高正方体的棱长总和=棱长×12正方体的棱长=棱长总和÷12三、表面积1.长方体或正方体6个面和总面积叫做它的表面积。

2.长方体的表面积=(长×宽+长×高+宽×高)×2无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2无底又无盖长方体表面积=(长×高+宽×高)×2正方体的表面积=棱长×棱长×6四、体积1.物体所占空间的大小叫做物体的体积。

2.长方体的体积=长×宽×高=底面积×高V=abh=sh长=体积÷宽÷高a=V÷b÷h宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h= V÷a÷b3.正方体的体积=棱长×棱长×棱长 V=a×a×a注意:正方体的棱长扩大n倍,表面积扩大n的平方倍,体积扩大n的立方倍。

最新人教五年级下册三单元长方体和正方体

最新人教五年级下册三单元长方体和正方体
立方米 立方分米 立方厘米
重点题型
运用转化法解决复合体积单位的换算问题
例1:填空
2m³300dm³=( )dm³ 8.25dm³=( )dm³( )cm³
运用图示法解决立体图形的拼割问题
例2:一个长方体木块,长1.2dm,宽9cm,高7cm。将它锯成棱长为0.3dm的正方体小木块,最多可以锯成多少块?
巩固练习
将棱长是6dm的正方体铁块浸没到一个长方体水槽中,水面上升了3dm.再放入一个不规则石块(石块完全浸没在水中),水面又上升了2dm(水没有溢出),求不规则石块的体积。
知识点三:长方体的长、宽、高
知识点:相交于一个顶点的三条棱的长度分别叫作长方体的长、宽、高。长方体的12条棱中有4条长、4条宽和4条高。长方体的棱长总和=(长+宽+高)×4
(注意:对于同一个长方体,摆放方式不同,长、宽、高也就不同)
知识点四:正方体的特征
知识点:正方体是由6个完全相同的正方形围成的立体图形。一个正方体由6个面、8个顶点、12条棱,所有的棱长度相等。正方体的棱长总和=棱长×12
重点题型
运用转化法解决水面升高问题
例1:有一个长方体容器,从里面量长5dm,宽4dm,高6dm,里面注有水,水深3dm,把一块棱长为2dm的正方体铁块浸入水中,水面上升了多少分米?
求不规则物体体积的实际运用
例2:一个长方体鱼缸,从里面量,长是25cm,宽是12cm,高是36cm.小雨放入10条金鱼后,水面高度从20cm上升到33cm.这10条鱼的总体积是多少立方厘米?
练习巩固
某小学五年级学生用棱长4cm的正方体积木在宣传栏旁边搭起了一面积木墙,这面墙长8m、宽12cm、高2m,这面墙一共用了多少块积木?
3.3.3容积和容积单位

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

长方体和正方体的体积复习

长方体和正方体的体积复习

【知识点3】 体积单位及体积单位的互化 体积单位:立方厘米、立方分米和立米 1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm3 体积单位的互化: 把高级单位化成低级单位,用高级单位数乘 以进率;------大化小,乘了好
把低级单位聚成高级单位,用低级单位数 除以进率。-----------小化大,除了吧
五年级(下册)
【知识点1】 体积的概念和计算公式
体积:物体所占空间的大小叫做物体的体积。 长方体的体积= 长×宽×高 用字母表示:V=abh 正方体的体积= 棱长×棱长×棱长 用字母表示:V=a3
【知识点2】长方体和正方体的体积统一公式:
长方体或正方体的体积=底面积×高 用字母表示:V=Sh
长方体体积公式的推导过程: 你是如何推导出长方体的体积公式的?再说说你 在推导时用了什么数学方法? 答:我是用体积1立方厘米的小正方体摆不同的长 方体,并把摆成的不同形状的长方体的长、宽、 高的数据与各个长方体所含小正方体的个数作比 较,通过比较,观察发现长方体所含小正方体的 个数就是长方体的体积,它与它的长×宽×高的 积正好相等,从而推导出长方体的体积=长×宽× 高如果用V表示长方体的体积,用a、b、h分别表 示长方体的长、宽、高,那么长方体的体积公式 可以写成V=abh,我在推导时采用了实验、观察、 比较、归纳、推理等方法。
4.有一个底面积是正方形的长方体,高是20厘 米,侧面展开正好是一个正方形。求这个长方 体的体积。
5.家具厂订购500根方木,每根方木横截 面的面积是24平方分米,长是3米,这些 木料一共是多少方?
同学们,通过这节课的学 习你有怎样的收获呢?
1.正方体的棱长扩大到原来的6倍,体积也扩大到原 来的6倍。( ) 2.如果将一块长方体的橡皮泥捏成一个正方体,我 们看到它的形状变发,但是它所占的空间的大小没变。 ( ) 3.一个物体的体积是1立方分米,这个物体的形状 一定是正方体。( ) 4.1立方米比1平方米大。( ) 5.长方体和正方体的体积都等于底面积乘以高。 ( ) 6.一个长方体的体积扩大2倍,它的长、宽、高都 扩大2倍。( )

五年级数学长方体与正方体

五年级数学长方体与正方体

五年级数学长方体与正方体大家好,今天咱们来聊聊数学中的两个小伙伴——长方体和正方体。

别看它们名字长得很正式,其实它们在我们的生活中可真是随处可见哦!有点像“街坊邻里”,随时都会碰到。

那咱们就一块儿来看看这两个几何小伙子到底是啥样的吧!1. 什么是长方体?长方体,听起来是不是有点拗口?别担心,其实它就是“长、宽、高”三个方向上都有不同长度的那种立方体。

比方说,你家里的冰箱,就是个典型的长方体。

我们来具体看看它的特点。

1.1 长方体的基本特征长方体有六个面,像个“盒子”,这些面都是长方形。

换句话说,长方体的每一个面都是长方形,但它们的长和宽可以是不一样的。

长方体还得有12条边,这些边分布在它的六个面上。

听起来是不是有点复杂?其实不难理解,只要想象一下你手里的一个普通的纸盒子就行了。

1.2 如何计算长方体的体积?体积这个词,乍一听有点高大上,其实很简单。

长方体的体积,就是它的“长”ד宽”ד高”。

比如,你的冰箱长2米,宽1米,高1.5米,那它的体积就是2×1×1.5 = 3立方米。

是不是觉得挺简单的?2. 什么是正方体?正方体就像个小方块,它的六个面都是正方形,长、宽、高都是一样长的。

所以,正方体就像是小小的积木块。

是不是觉得很可爱呢?咱们再细说说它的特点。

2.1 正方体的基本特征正方体的每一个面都是一个正方形,这就意味着它的每一边都是一样长的。

记住,它有12条边,6个面和8个顶点。

想想你小时候玩过的那种积木块,不就是这样的吗?拿一个正方体的玩具积木,看看它的每一面都是正方形,就能理解了。

2.2 如何计算正方体的体积?正方体的体积也不复杂,它的体积等于它的边长的立方。

也就是说,如果一个正方体的边长是4厘米,那它的体积就是4×4×4= 64立方厘米。

真是简简单单的数学题目,轻轻松松就能算出来。

3. 长方体与正方体的区别虽然长方体和正方体在外形上有点相似,都是“盒子”型的,但它们还是有不少区别的。

五年级下册数学正方体与长方体讲解

五年级下册数学正方体与长方体讲解

五年级下册数学正方体与长方体讲解五年级下册数学正方体与长方体讲解一、正方体的定义和特征正方体是一种特殊的立体图形,它的六个面都是正方形,且相邻的面彼此垂直。

正方体具有以下几个特征:1. 所有的边长相等:正方体的六条边长都相等,记作a。

这是正方体与其他多面体的明显区别之一。

2. 所有的内角都是直角:正方体的六个面都是正方形,它们的内角都是90度,形成六个直角。

3. 所有的面积相等:正方体的六个面积都相等,记作A。

正方体的面积公式为A = 6 × a × a。

4. 体积公式:正方体的体积公式为V = a × a × a。

二、长方体的定义和特征长方体是一种常见的立体图形,它的六个面都是矩形,且相邻的面彼此垂直。

长方体与正方体相比,最主要的区别在于它的边长可以不相等。

长方体具有以下几个特征:1. 三组相等的边长:长方体有三对相等的边长,分别记作a、b、c。

其中,a和b是相邻的矩形的边长,c是与a、b垂直的矩形的边长。

2. 所有的内角都是直角:长方体的六个面都是矩形,它们的内角都是90度,形成六个直角。

3. 所有的面积不一定相等:长方体的六个面积不一定相等,根据具体的边长可以计算出每个面的面积。

4. 体积公式:长方体的体积公式为V = a × b × c。

三、正方体和长方体的应用正方体和长方体在日常生活中有广泛的应用,下面介绍其中两个常见的例子。

1. 体积计算:正方体和长方体的体积计算是非常实用的,例如,在家装过程中,需要计算某个房间的体积,可以采用正方体或长方体的体积公式进行计算。

2. 包装设计:正方体和长方体的特殊形状使其在包装设计中也有很大的用途。

很多商品的包装盒、礼品盒等都采用正方体或长方体的形状设计,这不仅美观大方,也方便运输和储存。

四、学习正方体和长方体的重要性学习正方体和长方体不仅是为了认识不同形状的立体图形,更重要的是培养学生的几何思维能力和空间想象力。

五年级数学下册知识讲义-3 长方体和正方体的体积公式的应用-人教版

五年级数学下册知识讲义-3 长方体和正方体的体积公式的应用-人教版

小学数学长方体和正方体的体积公式的应用我们知道,正方体是特殊的长方体,那么可以用同一个公式计算它们的体积吗?如果可以,那么这个公式是什么?在长方体和正方体中,无论怎么放置,总会有一个面朝下,通常我们把朝下的这个面叫做底面。

这个底面的面积,叫做底面积。

→长方体的底面积=长×宽→正方体的底面积=棱长×棱长1. 长方体和正方体统一体积计算公式:长方体(或正方体)的体积=底面积×高;用字母表示为。

2. 已知长方体的底面积、高、体积三个量中的任意两个量,可以求出第三个量。

①已知底面积和高,求体积。

直接用长方体体积公式“”计算。

②已知体积和高,求底面积。

用长方体体积公式变形公式“”计算。

③已知体积和底面积,求高。

用长方体体积公式变形公式“”计算。

例题1 一个长方体的钢坯,横截面的面积是8,长是0. 7dm,10个这样的钢坯的体积是多少?解答过程:我们先求出一个钢坯的体积,钢坯的横截面的面积可以看作是底面积,长可以看作钢坯的高,根据长方体和正方体的统一体积公式,即可求出一个钢坯的体积。

答案:V=Sh=8×0.7=5. 6() 5. 6×10=56()答:10个这样的钢坯的体积是56立方分米。

例题2 一块正方体的方钢,棱长是20cm,把它锻造成一个高80cm的长方体模具,这个长方体模具的底面积是多少平方厘米?解答过程:锻造前后体积不变。

先求出正方体的体积,也就是长方体模具的体积,再根据V=Sh可以推导出S=V÷h,即用长方体模具的体积除以它的高,就能求出长方体模具的底面积。

答案:20×20×20÷80=100答:这个长方体模具的底面积是100。

技巧点拨:根据公式V=Sh,可推导出S=V÷h,h=V÷S,已知这三个量中的任意两个量,都可以求出第三个量。

例题3 一个长方体,表面积是368cm²,底面积是40cm²,底面周长是36cm,求这个长方体的体积。

人教版五年级数学下册长方体和正方体知识点归纳

人教版五年级数学下册长方体和正方体知识点归纳

人教版五年级数学下册长方体和正方体知识点归纳长方体和正方体是五年级数学下册的重要内容之一。

它们是立体几何中常见的几何体形状,具有特定的性质和特征。

本文将对人教版五年级数学下册关于长方体和正方体的知识点进行归纳。

一、长方体的定义和特征长方体是一种具有六个矩形面的立体几何体,其中相对的面两两平行且面积相等。

它的特征包括:1. 六个面都是矩形,相对的面两两平行且面积相等;2. 每个面的边长两两相等;3. 所有的顶点都是直角。

二、长方体的性质和运算长方体具有以下性质和运算:1. 面的个数:长方体有6个面;2. 顶点的个数:长方体有8个顶点;3. 边的个数:长方体有12条边;4. 表面积:长方体的表面积等于所有面的面积之和,可通过计算每个面的长乘以宽再乘以2,然后将六个面的面积相加得到;5. 体积:长方体的体积等于底面的面积乘以高,可通过计算底面的长乘以宽再乘以高得到。

三、正方体的定义和特征正方体是一种具有六个正方形面的立体几何体,每条边的长度相等。

它的特征包括:1. 六个面都是正方形,每个面的边长相等;2. 相邻面之间的夹角都是直角。

四、正方体的性质和运算正方体具有以下性质和运算:1. 面的个数:正方体有6个面;2. 顶点的个数:正方体有8个顶点;3. 边的个数:正方体有12条边;4. 表面积:正方体的表面积等于所有面的面积之和,可以通过计算一个面的边长的平方再乘以6得到;5. 体积:正方体的体积等于底面的边长的立方,可通过计算边长的立方得到。

五、长方体和正方体的应用长方体和正方体在生活和实际问题中有广泛的应用,例如:1. 房间的体积:我们可以将房间看作一个长方体,通过测量长度、宽度和高度,计算房间的体积,从而确定房间的空间大小;2. 体育器材:篮球、足球、乒乓球等体育器材往往具有正方体或长方体的形状,了解它们的形状特征和性质,有助于更好地认识和使用它们;3. 包装箱的运输:考虑到方便和安全,一些物品在运输过程中会被装在长方体或正方体的包装箱中,了解包装箱的体积和表面积有助于合理选择箱子和运输方式。

五年级数学下长方体正方体表面积和体积

五年级数学下长方体正方体表面积和体积

五年级数学(下)第四讲——---长方体、正方体表面积与体积一、知识点回顾1、长方体表面积=(长×宽+长×高+宽×高)×2 即:S=(ab+ah+bh)×22、长方体体积= 长×宽×高= 底面积×高即:V = abh = Sh3、正方体表面积= 棱长×棱长×6 即:S = 6a2a34、正方体体积= 棱长×棱长×棱长= a×a×a 即:V =5、容积和体积的概念:容积是容器所能容纳物体的体积。

体积是指物体所占空间的大小.6、单位:(1) 体积的单位及进率:1 m³ = 1000 dm³ 1 dm³ = 1000 cm³1cm³= 1000 mm³(2)。

容积的单位及进率:1L=1000ml(3)容积和体积的单位关系:1L=1dm³1ml=1cm³1m³=1000L7一个正方体棱长5厘米,它的棱长和是( ),表面积是(),体积是().8、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是(),占地面积是(),表面积是(),体积是()。

9、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是()立方厘米。

10、一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水()升。

二、典型、易错题型例1、右图是长方体展开图,测量所需数据,并求长方体体积(精确到cm)例2、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米.制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计)练习:一个长方体的水箱,从里面量长、宽、高分别是30cm、20cm、10cm。

这个水箱可以装多少毫升水?例3、将棱长分别是6cm和8cm的两个正方体铁块熔成一个长方体,已知长方体的长是13cm,宽是7cm,求长方体的高是多少?(熔断前后体积不变)练习:有三个正方体的铁块,它们的表面积分别是24c㎡、54c㎡、294c㎡,现将这三块铁块熔铸成一个大正方体,求大正方体的体积是多少?三、巩固与提高一、判断。

五年级数学下册长方体正方体重点题型

五年级数学下册长方体正方体重点题型

正方体长方体复习资料基础知识填空(1)正方体、长方体有个面,个顶点,棱组成;每个顶点所连接的三条棱分别叫做它们的,,。

(2)长方体最多有面是正方形,最多有面相同。

(3)长方体的棱长和:(用文字表示),用字母表示为:正方体的棱长和:(用文字表示),用字母表示为:(4)长方体的表面积:(用文字表示),用字母表示为:正方体的表面积:(用文字表示),用字母表示为:(5)长方体的体积:(用文字表示),用字母表示为:正方体的体积:(用文字表示),用字母表示为:(6)长方体正方体体积公式都可以表示为:(用文字表示),用字母表示为:(7)物体占地面积就是底面积常考题型一:棱长和1、用一根长36cm的铁丝焊接成一个正方体框架,其表面积是,其体积是2、一个正方体的体积是27cm3,他的棱长是,它的表面积是3、用一根铁丝焊接成一个棱长为8cm的正方体,若用这根铁丝焊接成一个长方体,长为10cm,宽为8cm,其高为cm常考题型二:求表面积1、一根长5m的,宽和高都是1m的通风管,如果做10根这样的通风管道需要多少铁皮?2、贝智教育一教室要粉刷,其教室长9米,宽6米,高4米,门窗占地18平方米,要粉刷四周墙壁和顶棚,如果每平方米用0.25千克白灰,则粉刷这教室一共要用多少白灰?常考题型三:长方体,正方体的拼接和切割储备知识:切割一次会增加两个表面,相反拼接一次会减少两个面1、用三个棱长为1cm的正方体,拼成一个长方体,这个长方体的表面积是,体积是2、一个长方体长2米,截面是一个边长为3分米的正方形,将这个长方体木料锯成5段后,其表面积一共增加了平方分米。

3、将一个3米长方体木料平均截成3段,其表面积增加了0.36平方分米,这根木料的体积是。

常考题型四:底面是正方形,高变化引起表面积变化1、一个长方体如果高增加了2厘米成了正方体,而且表面积要增加56平方厘米,求原来这个长方体的体积?2、一个长方体,如果高减少2厘米,变成了一个正方体,并且表面积减少了56平方厘米,求原来这个长方体的体积是多少?常考题型五:棱长、面积、体积它们变化关系1、一个正方体,其棱长扩大两倍,棱长和夸大倍,表面积扩大倍,体积扩大倍。

五年级下册数学长方体与正方体的体积

五年级下册数学长方体与正方体的体积

五年级下册数学长方体与正方体的体积长方体与正方体(二)体积知识框架一、体积的含义及单位体积:物体所占空间的大小;或占据一特定容积的物质的量。

常用的体积单位:立方米、立方分米、立方厘米。

1立方米也简称1方。

体积单位间的进率:1m³=1000dm³1dm³=1000cm³二、长方体和正方体的体积公式长方体:V=abh(长方体体积=长×宽×高)正方体:V=a³(正方体体积=棱长×棱长×棱长)。

a³读a 的立方,或a的三次方。

在一个题目中,应该单位统一。

比如在算长方体的体积中,长宽高的单位必须是相同的,如果题目中给的不相同,应该转换成一样的单位。

三、长方体和正方体的统一公式V=sh(体积=底面积×高)底面积:长方体和正方体底面的面积。

横截面:定义为垂直于梁的轴向的截面形状。

扩展:长方体或正方体的体积,等于随便一个面的面积,乘以和这个面有交点的边的边长。

1四、容积的意义和运算容积的意义:物体所能容纳其他物体的体积,就是物体的容积。

容积单位的单位:升和毫升,字母透露表现为L和ml容积单位间的进率:1L=1000ml容积单位和体积单位间的换算:1L=1dm³1ml=1cm³容积的计较办法:长方体、正方体等规则容积的计较办法和体积办法相同,可是要从里丈量长、宽、高。

五、物体的切割与合成对一个物体举行切割,切割后的所有小物体的外表积和,要大于切割前的物体外表积,但体积稳定;几个物体合成一个物体,表面积减少,但原来几个物体的体积和,要等于合成后的物体体积。

例题精讲【例1】单位换算4.07立方米=(。

)立方米(。

)立方分米9.08立方分米=(。

)升(。

)毫升7.9立方分米=()升980立方分米=()立方米【巩固】3.2立方分米=()立方厘米500立方分米=()立方米9立方米500立方分米=()立方米=()立方分米3.6升=()毫升=()立方厘米1700平方厘米=()平方分米=()平方米3升=()毫升2700毫升=()升2.57升=()毫升640毫升=()升2.8立方分米=()立方厘米0.8升=()毫升720立方分米=()立方米毫升=()升2【例2】下面长方体和正方体的表面积和体积.单位:厘米.【巩固】1)一个正方体,它们棱的总长是24厘米,这个正方体的体积是()A.2立方厘米B.8立方厘米C.12立方厘米2)棱长是5厘米的正方体的外表积比体积大。

《正方体与长方体》(讲义)五年级下册数学人教版

《正方体与长方体》(讲义)五年级下册数学人教版

五年级年级下册数学:《正方体与长方体》知识点+练习时间:___________ 学生:________ 授课老师:_______课堂安排:新课一、长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

二、正方体特点:(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

相同点不同点面棱长方体都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等正方6个面都是正方形。

12条棱都相等。

体针对练习一【对应练习1】长、宽、高都相等的长方体叫________,它是特殊的________。

【对应练习2】用棱长为2cm的小正方体拼成一个大正方体,至少需要( )个这样的小正方体。

【对应练习3】正方体有()个面,每个面都(),都是()形,有()条棱,12条棱长度(),叫做正方体的棱长,有()个顶点,正方体是特殊的()。

【对应练习4】正方体是特殊的( ),是长、宽、高都( )的长方体。

三、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12针对练习二【典型题1】一个长方体的棱长总和是24厘米,从一个顶点出发的三条棱的和是( )厘米。

【新】五年级下册数学 人教版 长方体与正方体的体积复习(知识点+练习题)1

【新】五年级下册数学 人教版 长方体与正方体的体积复习(知识点+练习题)1

长方体与正方体的体积错题回顾:1、有两根钢丝,长度分别是12米、18米,现在要把它们截成长度相同的小段,但每一根都不许剩余,每小段最长是多少米?一共可以截成多少段?2、有两根分别长20和16米的方木.要把它们都锯成同样长的木段做家私用不许有剩余,每根木段最长能有多长?一共可以锯成多少段?一、教学内容:知识点①:体积与容积单位换算1.箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

※举例:一个汽车油箱约能容纳40L油,即它的容积为40L。

2.计量容积,一般就用体积单位。

计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml。

※举例:一个烧杯约能装水500ml。

3.容积单位间及容积单位和体积单位间的进率:1L=1000ml 1L=1dm3 1ml=1cm3※举例:520ml=0.52L 5.67L=5.67 dm3=5670cm34.形状不规则的物体可以用排水法求得它们的体积。

※举例:一个烧杯中原有水200毫升,放入西红柿后水位上升至350毫升处,则西红柿的体积就是水面上升的那部分水的体积:350-200=150(ml)=150(cm3知识点②:长方体体积【讲透错题】:1、有一个长10分米,宽8分米,高5分米的容器,如果装水120升,那么水的高度是多少?2、一个长方体的木块,截成两个完全相等的正方体。

两个正方体棱长之和比原来长方体棱长之和增加40厘米,求原长方体的长是多少3、将一根3米长的长方体木料锯成相同的两段后,表面积增加了96平方分米,这根木料原来的体积是多少立方分米?4、一段长方体木材,长1米,如果锯断2厘米,它的体积就减少20立方厘米,这段木材原来的体积是多少立方厘米?5、一个长方体的底面是边长为4厘米的正方形,它的表面积是128平方厘米,它的体积是多少立方厘米?6、一个长方体容器,长20厘米,宽15厘米,高10厘米。

容器内装满水后,将一块铁块放入容器中,有部分水溢出,再将铁块取出,这时容器中的水面高是6厘米,这块铁块的体积有多大?7、有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。

人教版五年级数学上册正方体和长方体体积 三

人教版五年级数学上册正方体和长方体体积 三

思维题:【例1】如右图,一个长方体木块,从上部截去5厘米后便成为一个正方体,表面积减少了160 平方厘米,原来长方体的体积是多少立方厘米?【例2】一个长方体木块,从下部和上部分别截去高3厘米和2厘米的长方体后,变成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?【例3】如图是用棱长1分米的7个小正方体拼成的图形。

你能计算它的表面积和体积吗?【知识点一】容积的含义及单位【知识点二】容积单位间的进率、容积单位和体积单位的关系【例1】想一想,填一填。

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的()。

(2)计量液体的体积一般用()和()作单位,常用字母()和()表示。

【例2】单位换算【知识点三】长方体或正方体容器容积的计算方法【例3】一个水箱,从里面量长0.4 m,宽0.3m,高0.5m,这个水箱可以装多少升水?【知识点四】形状不规则的物体体积的求法【例4】巧求苹果的体积。

【知识拓展一】综合运用【例5】一个仓库从里面量长是7米,宽是6米,高是4 米。

这个仓库的容积是多少立方米?【练5】有一个棱长为8分米(从里面量)的正方体容器,里面装了3分米高的水,水的体积是多少立方分米?这个正方体容器的容积是多少立方分米?【例6】一个油桶,从里面量底面是周长 12 dm 的正方形,高5 dm。

把这样的一桶油装入容积是500毫升的瓶子里,需要多少个瓶子?【练6】有一块长 40 cm,宽30 cm 的长方形铁皮,在四个角上分别剪去面积相等的正方形后,正好可焊接成一个深6 cm 的无盖铁盒,这个铁盒的容积是多少?【例7】在一个长7分米,宽3分米,高4分米的长方体玻璃容器中,水深1.5分米,把一个铁块放入水中完全淹没后,水深变为2.5分米,求这个铁块的体积。

【练7】小敏在一个长120厘米、宽60厘米、深 80厘米的长方体澡盆中注入 50厘米的热水,她进入澡盆后,水刚好没到她的颈部。

已知水面上升了15厘米,小敏颈部以下身体的体积是多少立方分米?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五单元 知识点
1、物体所占空间的大小,叫做物体的体积。

容器所能容纳物体的体积,叫做容积。

2、常见的体积单位有:立方厘米、立方分米、立方米。

3、棱长是1厘米的正方体,体积是1立方厘米,记作1cm ³。

体积大约1立方厘米的有:一个手指尖、一个骰子、一个电脑键盘的按键等。

棱长是1分米的正方体,体积是1立方分米,记作1dm ³。

体积大约1立方分米的有:一个粉笔盒、一个拳头等。

棱长是1米的正方体,体积是1立方米,记作1m ³。

体积大约1立方米的有:2个家用洗衣机等。

4、生活中,计量沙、土、石子等的体积时,常常把“立方米”简称为“方”。

5、计量液体的体积常用“升”和“毫升”作单位。

6、长方体:
(1)长方体棱长总和=(长+宽+高)×4 ()4L a b h =++⨯
(2)长方体表面积=(长×宽+长×高+宽×高)×2 ()2S a b a h b h =⨯+⨯+⨯⨯
(3)长方体体积=长×宽×高 V a b h =⨯⨯
7、正方体:
(1)正方体棱长总和=棱长×12 12L a =⨯
(2)正方体表面积=棱长×棱长×6 266S a a a =⨯⨯=
(3)正方体体积=棱长×棱长×棱长 3V a a a a =⨯⨯=
8、长方体或正方体体积=底面积×高 高=体积÷底面积
拦河坝的体积=横断面面积×长
9、换算:①长度单位,相邻单位进率10:
1米=10分米1分米=10厘米1米=100厘米1千米=1000米
②面积单位,相邻单位进率100:
1平方米=100平方分米;1平方分米=100平方厘米;1平方米=10000平方厘米
③体积单位,相邻单位进率1000:
1立方米=1000立方分米1立方分米=1000立方厘米
1立方米=1000000立方厘米1升=1000毫升
④其他单位:1立方厘米=1毫升1立方分米=1升
1立方米=1方1立方米=1000升。

相关文档
最新文档