函数的性质知识点总结
函数知识点总结(掌握函数的定义、性质和图像)
函数知识点总结(掌握函数的定义、性质和图像)(一)正比例函数和一次函数1、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx(k 不为零)①k 不为零②x 指数为1③b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经它可以看⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 注:y =kx+b 中的k ,b 的作用:1、k 决定着直线的变化趋势①k>0直线从左向右是向上的②k<0直线从左向右是向下的2、b决定着直线与y轴的交点位置①b>0直线与y轴的正半轴相交②b<0直线与y轴的负半轴相交(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位..轴交点坐标为与(方法:联立方程组求x、y例题:已知两直线y=x+6与y=2x-4交于点P,求P点的坐标?7、直线y=k1x+b1与y=k2x+b2的位置关系(1)两条直线平行:k1=k2且b1≠b2(2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2平行于轴(或重合)的直线记作.特别地,轴记作直线8、正比例函数与一次函数图象之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).9、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.. (22b c x +的图(1(2)x 的反比例取值范围: ①k≠0;②在一般的情况下,自变量x 的取值范围可以是不等于0的任意实数;③函数y 的取值范围也是任意非零实数。
大学函数重要知识点总结
大学函数重要知识点总结一、函数的定义和性质1. 函数的定义函数是一个从一个集合到另一个集合的映射关系,通常表示为f: X -> Y,其中X为定义域,Y为值域。
2. 函数的性质(1)定义域和值域:函数的定义域是所有定义在函数上的自变量的集合,值域是所有函数值的集合。
(2)单值性:每个自变量对应唯一的函数值。
(3)奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
(4)周期性:如果存在正数T,使得f(x+T)=f(x),则称函数f(x)为周期函数。
(5)上下界:如果在一定的定义域内,函数f(x)的值都在一个范围内,则称函数有上下界。
(6)单调性:如果在一定的定义域内,函数f(x)的值随着自变量x的增大而增大(或减小),则称函数具有单调性。
二、基本初等函数1. 常数函数常数函数的表达式为f(x)=C,C为常数。
2. 一次函数一次函数的表达式为f(x)=kx+b,k为斜率,b为截距。
3. 幂函数幂函数的表达式为f(x)=x^a,a为实数。
4. 指数函数指数函数的表达式为f(x)=a^x,a为正实数且不等于1。
5. 对数函数对数函数的表达式为f(x)=log_a(x),a为正实数且不等于1。
包括正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
三、函数的运算1. 基本初等函数的四则运算(1)加法和减法:f(x)=g(x)±h(x)(2)乘法:f(x)=g(x)·h(x)(3)除法: f(x)=g(x)/h(x),其中h(x)≠02. 复合函数如果存在函数u(x)和v(x),则复合函数为:f(x)=u(v(x))。
3. 反函数如果两个函数f和g满足f(g(x))=x和g(f(x))=x,那么f和g互为反函数,且g=f^-1。
4. 函数的求导对函数进行求导可以得到函数的导数,导数表示函数在某一点的变化速度。
5. 函数的积分对函数进行积分可以得到函数的不定积分和定积分,不定积分是函数的原函数,定积分表示函数在一定范围内的面积或体积。
函数和极限知识点总结
函数和极限知识点总结一、函数1. 函数的定义函数是一个映射,它将一个或多个输入值映射到一个输出值。
函数通常用f(x)来表示,其中x是输入变量,f(x)是输出变量。
函数可以有不同的定义域和值域,通常用来描述输入和输出之间的关系。
2. 函数的性质函数有以下性质:- 一一对应性:如果一个函数的每一个输入值对应唯一的输出值,则该函数是一一对应的。
- 奇偶性:如果f(-x) = f(x),则该函数是偶函数;如果f(-x) = -f(x),则该函数是奇函数。
- 增减性:如果对于任意的x1 < x2,有f(x1) < f(x2),则该函数是增函数;如果f(x1) >f(x2),则该函数是减函数。
3. 常见的函数类型常见的函数类型包括:- 多项式函数:f(x) = ax^n + bx^(n-1) + ... + c,其中a、b、c为常数,n为自然数。
- 指数函数:f(x) = a^x,其中a为大于0且不等于1的常数。
- 对数函数:f(x) = log_a(x),其中a为大于0且不等于1的常数。
- 三角函数:包括sin(x)、cos(x)、tan(x)等。
4. 函数的图像函数的图像通过将输入值和输出值构成的点在坐标系中连接起来得到。
函数的图像可以用来表示函数的性质和特征,如增减性、奇偶性等。
5. 复合函数复合函数是将一个函数作为另一个函数的输入。
如果f(x)和g(x)都是函数,那么f(g(x))就是一个复合函数。
复合函数可以用来描述多个函数之间的复杂关系。
6. 反函数如果一个函数f(x)满足f(f^(-1)(x)) = x,则f^(-1)(x)称为f(x)的反函数。
反函数可以用来描述函数的逆关系。
二、极限1. 极限的定义设函数f(x)在点x=a的邻域内有定义,若对于任意给定的正数ε,总存在正数δ,使得当0 < |x-a| < δ时,对应的函数值f(x)满足|f(x)-L| < ε,那么称函数f(x)当x趋向于a时的极限为L,记作lim(f(x),x->a) = L。
高一数学函数的基本性质知识点梳理
高一数学函数的基本性质知识点梳理1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{fx| x∈A }叫做函数的值域.注意:如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:1 分式的分母不等于零;2 偶次方根的被开方数不小于零;3 对数式的真数必须大于零;4 指数、对数式的底必须大于零且不等于 1.5 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 .6指数为零底不可以等于零2.构成函数的三要素:定义域、对应关系和值域再注意:1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备值域补充1 、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 .2 . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 . 3 . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .3. 函数图象知识归纳1 定义:在平面直角坐标系中,以函数y=fx , x ∈A中的 x 为横坐标,函数值 y 为纵坐标的点 Px , y 的集合 C ,叫做函数 y=f x,x ∈A的图象.C 上每一点的坐标 x , y 均满足函数关系 y=fx ,反过来,以满足 y=fx 的每一组有序实数对 x 、 y 为坐标的点 x , y ,均在 C 上 . 即记为 C={ Px,y | y= fx , x ∈A }图象 C 一般的是一条光滑的连续曲线或直线 , 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .2 画法A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 x,y 为坐标在坐标系内描出相应的点 Px, y ,最后用平滑的曲线将这些点连接起来 .B、图象变换法请参考必修4三角函数常用变换方法有三种,即平移变换、伸缩变换和对称变换3 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的思路。
初中数学函数知识点归纳
初中数学函数知识点归纳初中数学中的函数知识点主要包括函数的定义、函数的性质、函数的表示方法、函数之间的关系以及函数的应用等内容。
下面我将对这些知识点进行归纳总结。
一、函数的定义:1.自变量和因变量:函数是一种数与数之间的对应关系,其中自变量是输入的数值,因变量是输出的数值。
2.值域:函数的值域是所有可能输出的数值的集合,通常用符号D表示。
3.定义域:函数的定义域是所有可能输入的数值的集合,通常用符号R表示。
二、函数的性质:1.奇偶性:函数f(x)的性质与其自变量的奇偶性有关,如果f(-x)=f(x),则函数是偶函数;如果f(-x)=-f(x),则函数是奇函数。
2.单调性:函数在一些定义域上的增减性,可以分为递增和递减。
3.周期性:函数在一些定义域上的输出数值存在重复规律,称为函数的周期性。
三、函数的表示方法:1.函数表:通过给定自变量的数值,得出相应的因变量的数值。
2.函数图像:将函数的自变量和因变量分别作为x轴和y轴坐标,画出函数的图像。
3.函数公式:通过表示自变量与因变量之间关系的数学式子来表示函数。
四、函数之间的关系:1.复合函数:若函数f(x)的值域是另一个函数g(x)的定义域,则通过将f(x)的输出作为g(x)的输入,得到的新函数称为复合函数。
2.反函数:若函数f(x)的一些值对应唯一的自变量,且该自变量对应的值也能唯一地确定f(x)的值,则称函数f(x)具有反函数,记作f^(-1)(x)。
3.逆函数:若函数f(x)的自变量与因变量对换,得到新的函数g(x),则称g(x)为函数f(x)的逆函数,记作g(x)=f^(-1)(x)。
五、函数的应用:1.函数的模型:可以用函数来表示一些实际问题中的关系,如速度函数、利润函数等。
2.函数的最值:通过求函数的最大值和最小值,可以解决许多优化问题。
3.函数的图像在坐标系中的位置和形状:通过观察函数的图像,可以判断其基本形状、范围、特征点等。
六、常见的函数类型:1. 一次函数:f(x) = kx + b,其中k和b为常数,其图像为一条直线。
函数的性态知识点总结
函数的性态知识点总结一、函数的定义与符号表示1. 函数的定义:函数是一种映射关系,指一个集合到另一个集合的特定对应关系。
2. 函数的符号表示:函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
二、函数的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的输出范围。
2. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
3. 周期函数:周期函数指f(x+T)=f(x),其中T为周期。
4. 单调性:函数在定义域上的增减性质。
5. 有界性:函数是否有界,即是否存在上下界。
三、函数的极限1. 函数极限的定义:函数f(x)当x趋向于a时,f(x)的极限为L,表示为lim(f(x))=L。
2. 函数极限的性质:极限存在性与唯一性、有界性与无界性、单调性的保持。
四、导数与微分1. 导数的定义:函数f(x)在点x处的导数表示为f'(x),即导数是函数在某一点处的变化率。
2. 导数的计算:通过求导法则、高阶导数来求函数的导数。
3. 微分的定义:微分是导数的几何意义,表示函数在某一点的局部线性逼近。
4. 导数与函数的关系:导数可以表示函数的增减性、凹凸性和拐点等性质。
五、函数的极值与拐点1. 极值的定义:函数的最大值和最小值称为极值,包括局部极值和全局极值。
2. 极值的求解:通过导数的零点、非常数项、边界点等方式求解函数的极值。
3. 拐点的定义:函数图像在拐点处的曲线方向发生变化,即曲线由凹变凸或由凸变凹。
4. 拐点的求解:通过计算函数的二阶导数,找出函数的拐点。
六、函数的泰勒展开1. 泰勒展开的定义:泰勒展开是将函数在某点进行多项式逼近,用于计算函数在该点附近的近似值。
2. 麦克劳林展开:泰勒展开在x=0处的情况,称为麦克劳林展开。
3. 泰勒级数:泰勒级数是泰勒展开的无穷级数形式,用于表示函数在某点附近的各阶导数。
七、函数的积分1. 定积分与不定积分:定积分是区间上的积分,不定积分是函数的反导数。
有关函数重要知识点总结
有关函数重要知识点总结一、函数的定义在数学中,函数通常被定义为一个对应关系,即对于集合A和B,如果存在一个规则f,使得对于A中的每个元素x,都有一个唯一的y∈B与之对应,那么称f为A到B的一个函数,记作f: A→B,y = f(x)。
在计算机科学中,函数是一种具有输入和输出的过程或子程序,能够完成特定的任务。
函数通常由关键字def或function来定义,其基本格式为:def function_name(parameters):# function bodyreturn result其中,function_name是函数名,parameters是函数的参数,function body是函数体,result是函数的返回值。
二、函数的性质1. 一一对应性:函数中的每个输入值对应唯一的输出值,即不同的输入对应不同的输出。
2. 定义域和值域:函数的定义域是输入值的集合,值域是输出值的集合。
3. 奇偶性:函数的奇偶性指的是当输入值x的变化导致输出值y的变化时,y的奇偶性与x的奇偶性是否有关系。
如果y和-x的奇偶性相同,则称函数是偶函数;如果它们的奇偶性相反,就称之为奇函数。
4. 单调性:函数的单调性是指当输入值x增加时,输出值y是增加、减少还是保持不变。
5. 周期性:如果存在一个常数T,使得对于函数f的任意x,有f(x+T) = f(x),那么称f具有周期性,T称为函数的周期。
三、函数的分类1. 基本初等函数:包括多项式函数、指数函数、对数函数、三角函数等。
2. 复合函数:由两个或多个基本函数组合而成的函数。
3. 逆函数:如果函数f将集合A中的每个元素x映射到集合B中唯一的y,那么称f具有逆函数g。
g的定义域是B,值域是A,g将B中的每个元素y映射到A中唯一的x,且g(x) = y,即g(f(x)) = x。
4. 反比例函数:反比例函数是指当输入值x增加时,输出值y减少的函数。
其一般形式为y = k/x,k为常数。
初2函数知识点总结
初2函数知识点总结一、函数的概念1.1 函数的定义函数是一个或多个自变量和一个因变量之间的一种对应关系,通常用符号y=f(x)表示。
其中,x是自变量,y是因变量,f()代表函数关系。
1.2 函数的性质(1)定义域与值域:定义域是指自变量的取值范围,值域是指因变量的取值范围。
(2)奇偶性:函数f(x)的性质与f(-x)的性质一致,则称为偶函数;函数f(x)的性质与-f(-x)的性质一致,则称为奇函数。
(3)增减性:函数f(x)在定义域内满足x1 < x2时,若f(x1) < f(x2),则称f(x)在此区间上是增函数;若f(x1) > f(x2),则称f(x)在此区间上是减函数。
1.3 函数图象函数的图象是函数关系在坐标平面上的表现,通常用来表示函数的形状和特征。
函数的图象与函数的性质紧密相关。
二、特殊函数2.1 幂函数幂函数是数学中一种常见的基本函数,是指形如y = x^n的函数。
n为整数时,称为整数幂函数;n为分数时,称为分式幂函数。
2.2 一次函数一次函数是指形如y = kx + b的函数。
其中,k称为斜率,b称为截距。
一次函数是函数中最简单、最基本的一种函数。
2.3 二次函数二次函数是指形如y = ax^2 + bx + c的函数。
其中,a、b、c为常数且a≠0。
二次函数的图象为抛物线。
2.4 指数函数指数函数是指形如y = a^x的函数。
其中,a为底数,x为指数,a>0且a≠1。
2.5 对数函数对数函数是指形如y = loga(x)的函数。
其中,a为底数,x为真数,a>0且a≠1。
2.6 三角函数三角函数包括正弦函数、余弦函数、正切函数等,这些函数是角的同、余弦、正切值与角度的函数关系。
三、函数的应用3.1 函数的运算函数的运算包括函数的加减、乘法、除法等。
函数之间的运算符合一般的代数运算法则。
3.2 函数的图象与坐标通过函数的图象可以了解函数的性质和特点,包括增减性、奇偶性、周期性等。
函数的基本性质知识点总结
函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论:若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)。
八年级(人教版)函数知识点总结
八年级(人教版)函数知识点总结1. 函数的概念1.1 函数的定义- 函数是一种具有特定输入和输出的关系。
1.2 函数的表示方法- 显式函数表达式- 隐式函数表达式- 函数图像2. 函数的性质2.1 奇偶性- 如果对于任何$x$,都满足$f(-x) = f(x)$,则称函数为偶函数。
- 如果对于任何$x$,都满足$f(-x) = -f(x)$,则称函数为奇函数。
2.2 周期性- 如果对于任何$x$,都满足$f(x+T) = f(x)$,则称函数为周期函数。
2.3 单调性- 如果对于$x_1 < x_2$,都满足$f(x_1) < f(x_2)$,则称函数为单调递增。
- 如果对于$x_1 < x_2$,都满足$f(x_1) > f(x_2)$,则称函数为单调递减。
3. 函数的基本图像与简单变形3.1 常函数$f(x) = C$3.2 一次函数$f(x) = kx + b$3.3 二次函数$f(x) = ax^2 + bx + c$,其中$a\neq 0$ 3.4 绝对值函数$f(x) = |x|$3.5 倒数函数$f(x) = \frac{1}{x}$3.6 反比例函数$f(x) = \frac{k}{x}$,其中$k\neq 0$ 4. 函数的运算4.1 函数的和、差、积、商- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- 和函数:$(f+g)(x) = f(x)+g(x)$,$D_{f+g} = D_f \cap D_g$ - 差函数:$(f-g)(x) = f(x)-g(x)$,$D_{f-g} = D_f \cap D_g$- 积函数:$(f\times g)(x) = f(x)\times g(x)$,$D_{f\times g} = D_f \cap D_g$- 商函数:$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$,$D_{\frac{f}{g}} = \{x\in D_f \cap D_g|g(x)\neq 0\}$4.2 复合函数- 设$f(x)$和$g(x)$是定义域为$D$的函数,则:- $(f\circ g)(x) = f(g(x))$,$D_{f\circ g} = \{x\in D_g|g(x)\in D_f\}$5. 函数的应用5.1 解方程- 通过函数图像的交点来求解方程。
高中所有函数图像及其性质知识点
高中函数的全部总结一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
函数的概念与性质知识点
函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合}|)({A x x f ∈叫做函数的值域,值域是集合B 的子集.2函数的三要素:定义域、对应关系、值域.求函数定义域的原则:(1)若()f x 为整式,则其定义域是R ;(2)若()f x 为分式,则其定义域是使分母不为0的实数集合;(3)若()f x 是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合;(4)若()0f x x =,则其定义域是}{0x x ≠;(5)若()()0,1x f x a a a =>≠,则其定义域是R ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是}{0x x >;(7)若x x f tan )(=,则其定义域是},2|{Z k k x x ∈+≠ππ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.5函数的单调性:(1)单调递增:设任意D x x ∈21,(I D ⊆,I 是()f x 的定义域),当12x x <时,有12()()f x f x <.特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意D x x ∈21,(I D ⊆,I 是()f x 的定义域),当12x x <时,有12()()f x f x >.特别的,当函数在它的定义域上单调递增时,该函数称为减函数.6单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 7复合函数的单调性:同增异减.8函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:I x ∈∀,都有))(()(M x f M x f ≥≤;I x ∈∃0使得M x f =)(0,那么称M 是函数的最大(小)值.9函数的奇偶性:偶函数:一般地,设函数)(x)ff=-,(xf-,且)y=的定义域为I,如果I(xx∈∀,都有Ix∈那么函数叫做偶函数;偶函数的图象关于y轴对称;偶函数)y=满足(xf xff==x-;|))(|()(xf奇函数:一般地,设函数)f(x)x=f--,∀,都有If(xy=的定义域为I,如果Ix∈-,且)x∈(那么函数叫做奇函数;奇函数的图象关于原点对称;若奇函数)fy=的定义域中有零,则其函数图象必(x过原点,即(0)0f=.10幂函数:一般地,函数αxy=叫做幂函数,其中x是自变量,α是常数.11幂函数()f x xα=的性质:①所有的幂函数在()1,1;0,+∞都有定义,并且图象都通过点()②如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是增函数;③如果0α<,则幂函数的图象在区间()0,+∞上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地逼近y轴,当x趋向于+∞时,图象在x轴上方无限地逼近x轴;④在直线1x的右侧,幂函数图象“指大图高”;=⑤幂函数图象不出现于第四象限.。
函数知识点与公式总结
函数知识点与公式总结一、函数的定义和性质函数的定义:函数是一个对应关系,它把一个集合的元素对应到另一个集合的元素。
一个简单的函数可以用如下的记号来表示:f:X→Y,表示一个函数f从集合X到集合Y的映射关系。
其中,X称为定义域,Y称为值域。
函数的性质:1. 定义域和值域:定义域是指函数的输入可以取的值的集合,值域是函数的输出可以取的值的集合。
2. 单调性:函数的单调性是指在定义域内,函数的增减趋势。
可以分为递增和递减两种情况。
3. 奇偶性:函数的奇偶性是指函数的图像是否关于原点对称。
如果对于任意x∈定义域,都有f(-x)=f(x),那么函数是偶函数;如果对于任意x∈定义域,都有f(-x)=-f(x),那么函数是奇函数。
4. 周期性:函数的周期性是指函数在一定范围内具有重复的性质。
5. 函数的图像:函数的图像是函数在直角坐标系中的点的集合,描述了函数的性质和特点。
二、常见的函数公式1. 线性函数线性函数是指函数的图像是一条直线的函数。
线性函数的一般形式为y=ax+b,其中a和b 是常数,a称为斜率,b称为截距。
2. 二次函数二次函数是指函数的图像是一个抛物线的函数。
二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是常数,a≠0。
3. 指数函数指数函数是以常数e为底数的幂函数,一般形式为y=a^x,其中a为底数,x为指数。
4. 对数函数对数函数是指以常数a为底数的对数函数,一般形式为y=log_a(x),其中a为底数,x为真数。
5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们描述了角度和弧度之间的关系。
6. 反比例函数反比例函数是指函数的图像是一条反比例曲线的函数,一般形式为y=k/x,其中k是常数。
7. 绝对值函数绝对值函数的一般形式为y=|x|,它表示x的绝对值,即x的正数部分。
8. 分段函数分段函数是指在定义域的不同区间上有不同函数式的函数,一般形式为f(x)=```{g(x),a≤x≤bh(x),b<x<c}```9. 复合函数复合函数是指一个函数的自变量(或生成元素)是另一个函数的值域,即f[g(x)],表示函数f和g的复合。
初二函数知识点总结
初二函数知识点总结一、函数的概念及性质1. 函数是一种特殊的关系,它将每个自变量对应到唯一的因变量。
2. 函数的定义域是自变量的取值范围,值域是因变量的取值范围。
3. 函数可以用表格、图像或公式来表示。
4. 函数可以是线性的或非线性的。
二、函数的表示方法1. 表格法:将函数的自变量和因变量的对应关系以表格的形式呈现。
2. 图像法:通过绘制函数的图像来表示函数。
3. 公式法:用公式来表示函数,如y = 2x + 1。
三、函数的性质1. 定义域:函数有效的自变量的取值范围。
2. 值域:函数所有可能的因变量的取值范围。
3. 奇偶性:若函数满足f(x) = f(-x),则函数为偶函数;若函数满足f(x) = -f(-x),则函数为奇函数。
4. 单调性:函数整体是否呈现上升或下降的趋势。
5. 极值:函数在某个区间内的最大值或最小值。
6. 零点:函数取零值的自变量。
四、线性函数1. 线性函数的图像是一条直线,表达式为y = kx + b。
2. 斜率k表示线性函数的变化速率,截距b表示函数在x轴上的截距。
3. 线性函数的图像可以通过截距和斜率来确定。
五、二次函数1. 二次函数的图像是一个U形曲线,表达式为y = ax^2 + bx + c。
2. a决定了曲线开口的方向,正数则开口向上,负数则开口向下。
3. 顶点是二次函数的最值点。
六、指数函数1. 指数函数的图像是一条递增或递减的曲线,表达式为y = a^x。
2. a决定了曲线的增长速度,a大于1时曲线递增,0<a<1时曲线递减。
3. 指数函数的图像必过点(0,1)。
七、对数函数1. 对数函数是指数函数的反函数,表达式为y = loga(x)。
2. a决定了函数的增长速度,a大于1时曲线递增,0<a<1时曲线递减。
3. 对数函数的定义域为正实数。
八、常量函数1. 常量函数的图像是一条水平线,表达式为y = c。
2. 无论自变量的取值如何,常量函数的因变量始终为常数。
数学函数知识点总结
数学函数知识点总结一、函数的定义与性质1. 函数的定义:函数是一个对应关系,即每一个自变量对应唯一的因变量。
数学上通常用f(x)来表示函数,其中x为自变量,f(x)为因变量。
2. 定义域和值域:函数的定义域是所有可能的自变量的取值范围,值域是因变量的所有可能取值的范围。
3. 函数的性质:函数可以是一元函数或多元函数。
一元函数是只有一个自变量的函数,多元函数则有多个自变量。
4. 常见的函数类型:多项式函数、反比例函数、指数函数、对数函数、三角函数等。
二、函数的运算1. 函数的加减乘除:根据函数的定义,函数之间可以进行加减乘除运算,即将对应位置的函数值进行运算。
2. 复合函数:复合函数是指将一个函数的输出作为另一个函数的输入进行运算的过程。
3. 反函数:如果一个函数f(x)的定义域为X,值域为Y,且对于任意y∈Y,都存在唯一的x∈X,使得f(x)=y,那么称函数f(x)的反函数为f^(-1)(y)=x。
反函数是原函数的逆运算。
三、函数的图像和性质1. 函数的图像:函数的图像是由自变量和因变量的对应关系所确定的曲线。
函数的图像可以通过数学软件或手绘得到。
2. 奇函数和偶函数:如果函数f(x)满足f(-x)=-f(x),则称函数f(x)为奇函数;如果函数f(x)满足f(-x)=f(x),则称函数f(x)为偶函数。
3. 周期函数:如果函数f(x)满足f(x+T)=f(x),其中T为常数,则称函数f(x)为周期函数,T为函数的周期。
4. 单调性:如果对于函数f(x)的定义域内的任意x1和x2,当x1<x2时都有f(x1)<f(x2),则称函数f(x)在该定义域内是单调递增的;反之,若对于任意x1和x2,当x1<x2时都有f(x1)>f(x2),则称函数f(x)在该定义域内是单调递减的。
四、函数的极限和连续性1. 函数的极限:当自变量x在某一点a附近取值,对应的因变量f(x)的取值接近一个常数L,那么称L为函数f(x)在点a处的极限,记为lim(x→a)f(x)=L。
函数的基本性质知识点总结
函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定f (-x )与f (x )的关系;的关系; ③作出相应结论:作出相应结论:若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则,则f (x )是偶函数;是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则,则f (x )是奇函数。
是奇函数。
(3)简单性质:)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称;轴成轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:,那么在它们的公共定义域上:奇+奇=奇,奇´奇=偶,偶+偶=偶,偶´偶=偶,奇´偶=奇 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)。
高一函数的性质知识点
高一函数的性质知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一函数的性质知识点函数的性质是高一数学的重要内容,有哪些知识点要学生了解?下面给大家分享一些关于高一函数的性质知识点,希望对大家有所帮助。
八年级(人教版)函数知识点总结
八年级(人教版)函数知识点总结
1. 函数的定义和特点
- 函数是指两个变量之间的一种特殊关系。
通常用符号“y=f(x)”表示。
- 函数的特点包括单值性、对应性和确定性。
2. 函数的表示方法
- 表达法:y=f(x)
- 函数图像法:用图像表示函数的变化规律
- 函数表格法:通过表格列出函数的输入和输出值
3. 函数的分类
- 一次函数:y=ax+b,其中a和b为常数,a不等于0
- 二次函数:y=ax^2+bx+c,其中a、b和c为常数,a不等于0 - 反比例函数:y=k/x,其中k不等于0
- 正比例函数:y=kx,其中k不等于0
4. 函数的图像和性质
- 一次函数的图像为一条直线,斜率决定了函数的增减性。
- 二次函数的图像为一条抛物线,开口方向和开口大小由二次项的系数决定。
- 反比例函数的图像为一条曲线,通过原点,并且随着x的增大,y的值逐渐减小。
- 正比例函数的图像为一条经过原点且与x轴平行的直线。
5. 函数的应用
- 函数广泛应用于数学和实际生活中的问题求解。
- 函数可以描述物体的运动规律、变化趋势、关系等。
以上是八年级(人教版)函数知识点的简要总结,希望对您有所帮助。
函数的零点知识点总结
函数的零点知识点总结一、函数的定义与性质1.1 函数的定义在数学中,函数是一种将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则或方法。
形式上,函数可以表示为f: X → Y,其中 X 是自变量的集合,Y 是因变量的集合,f 是一个特定的规则或方法。
1.2 函数的性质(1)定义域和值域:对于函数f: X → Y,定义域是指所有可能的自变量的取值集合,而值域是指所有可能的因变量的取值集合。
(2)单调性:函数在其定义域上的单调性描述了函数的增减规律。
一个函数可能是增函数、减函数或者不变函数。
(3)奇偶性:对于函数 f(x),如果 f(-x) = f(x),则称该函数为偶函数;如果 f(-x) = -f(x),则称该函数为奇函数。
(4)周期性:如果存在一个正数 T,使得对于任意的 x,有 f(x+T)=f(x),则称函数具有周期性,T 称为该函数的周期。
(5)连续性:如果一个函数在某个区间上具有连续性,即在该区间内任意两点 x 和 y 之间都存在一点 z,使得 f(z) 介于 f(x) 和 f(y) 之间,那么该函数在这个区间上是连续的。
(6)可导性:如果一个函数在某一点处具有导数,那么称该函数在该点可导。
二、零点的概念与方法2.1 零点的定义函数的零点是指使得函数取值为零的自变量。
形式上,如果 f(a) = 0,那么 a 就是函数 f 的一个零点。
2.2 求解零点的方法对于一般的函数,其零点通常需要通过特定的方法来求解,以下是一些常用的方法:(1)代数法:对于一些简单的函数,可以通过代数运算将函数转化成方程,然后直接求解方程来得到零点。
(2)图像法:通过绘制函数的图像,可以直观地看出函数的零点。
(3)数值法:对于复杂的函数,可以通过数值计算的方法来逼近函数的零点,如二分法、牛顿迭代法等。
(4)分析法:对于一些特殊函数,可以通过数学分析的方法来得到函数的解析解。
三、常见函数的零点3.1 一次函数的零点一次函数的一般形式为 f(x) = ax + b,其中 a 和 b 是实数且a ≠ 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x) ;
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;
5.方程
(1)方程k=f(x)有解k∈D(D为f(x)的值域);
(2)a≥f(x) 恒成立a≥[f(x)]max,;
a≤f(x) 恒成立a≤[f(x)]min;
(3)(a>0,a≠1,b>0,n∈R+);
log a N= ( a>0,a≠1,b>0,b≠1);
(4)log a b的符号由口诀“同正异负”记忆;
a log a N= N ( a>0,a≠1,N>0 );
6.映射
判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
7.函数单调性
(1)能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性;
(2)依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
8.反函数
对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;
(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
9.数形结合
处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系.
10.恒成立问题
恒成立问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解;。