数据的平稳性及其检验

合集下载

平稳性检验——精选推荐

平稳性检验——精选推荐

时间序列平稳性的检验常见的数据类型•时间序列数据(time-series data);•截面数据(cross-sectional data)•平行/面板数据(panel data/time-series cross-section data)经典回归分析暗含着一个重要假设:数据是平稳的;数据非平稳,往往导致出现“虚假回归”故:时间序列首先遇到的问题就是平稳性的问题平稳的条件:假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{X t}(t=1, 2, …)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(X t)=m是与时间t无关的常数;2)方差Var(X t)=s2是与时间t无关的常数;3)协方差Cov(Xt,Xt+k)=gk是只与时期间隔k有关,与时间t无关的常数;则称该随机时间序列是平稳的,而该随机过程是一平稳随机过程。

白噪声X t=m t,m t~N(0,s2)是平稳的随机游走:Xt=Xt-1+mt mt是一个白噪声是非平稳的DXt=Xt-Xt-1=mt是平稳的故:一个时间序列是非平稳的,可以通过差分的方法变为平稳的Xt=fXt-1+mt不难验证: |f|>1时,该随机过程生成的时间序列是发散的,表现为持续上升(f>1)或持续下降(f<-1),因此是非平稳的;f=1时,是一个随机游走过程,也是非平稳的。

平稳性的检验:方法1;时间路径图来粗略地判断它是否是平稳的。

一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程;而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。

单位根检验、协整检验和格兰杰因果关系检验三者之间的关系实证检验步骤:1,做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。

第九章 序列的平稳性及其检验

第九章 序列的平稳性及其检验
可以通过最小二乘法得到 的估计值,并对其进行
显著性检验的方法,构造检验显著性水平的 t 统计量。
但是,Dickey-Fuller研究了这个t 统计量在原假设下 已经不再服从 t 分布,它依赖于回归的形式(是否引进了 常数项和趋势项) 和样本长度T 。
5
Mackinnon进行了大规模的模拟,给出了不同回归模
原假设和备选假设同ADF检验一致,为
H 0 : 0 H1 : 0 Elliott,Rothenberg和Stock (1996)给出了不同置信水
平下的临界值,DFGLS检验同一般的ADF检验一样是左侧
单边检验。
14
EViews软件中单位根检验操作说明: 双击序列名,打开序列窗口,选择View/unit Root Test, 得到下图:
型、不同样本数以及不同显著性水平下的临界值。这样, 就可以根据需要,选择适当的显著性水平,通过 t 统计量 来决定是否接受或拒绝原假设。这一检验被称为 DickeyFuller检验(DF检验)。
上面描述的单位根检验只有当序列为AR(1)时才有效。
如果序列存在高阶滞后相关,这就违背了扰动项是独立同 分布的假设。在这种情况下,可以使用增广的 DF 检验方 法(augmented Dickey-Fuller test )来检验含有高阶序列 相关的序列的单位根。
19
例5.7 检验居民消费价格指数序列的平稳性
图5.9 中国1983年1月~2007年8月的CPI(上年=100)序列
20
例5.7用AR(1) 模型模拟1983年1月~2007年8月
前,需要设定序列的是否含有 常数项或者时间趋势项。我们可以通过画出原序列 的图形来判断是否要加入常数项或者时间趋势项。 从图5.7的CPI图形可以看出不含有线性趋势项。CPI

时间序列的预处理(平稳性检验和纯随机性检验)

时间序列的预处理(平稳性检验和纯随机性检验)
自相关图、白噪声检验等。
1、时序图的绘制
在SAS系统中,使用GPLOT程序可以绘 制多种精美的时序图。
可以设置坐标轴、图形颜色、观察值点 的形状及点之间的连线方式等
例2-1
data example2_1;
input price1 price2;
time=intnx('month','01jul2004'd,_n_-1);
format time date.;
cards;
12.85 15.21
13.29 14.23
12.41 14.69
15.21 13.27
14.23 16.75
13.56 15.33
;
proc gplot data= example2_1; \\绘图过程开始
plot price1*time=1 price2*time=2/overlay; //确定纵横轴,按两种
时间序列分析之
试验二
时间序列的预处理 (平稳性检验和纯随机性检验)
一、平稳性检验
时序图检验
根据平稳时间序列的均值、方差
及周期特征。
自相关图检验
根据平稳时间序列的短期相关性, 其自相关图中随着延迟期数 的增加,自相关系数会很快 地衰减向零。
cards;
97 154 137.7 149 164 157 188 204 179 210 202 218 209
204 211 206 214 217 210 217 219 211 233 316 221 239
215 228 219 239 224 234 227 298 332 245 357 301 389
平稳时间序列的时序图与自相关图

平稳性检验——精选推荐

平稳性检验——精选推荐

平稳性检验协整理论(Cointegration)是Granger和Engle在20世纪80年代中后期提出的,用于非平稳变量组成的关系式中长期均衡参数估计的技术。

在实际运用时,一般是首先对时间变量序列及其一阶差分序列的平稳性进行检验;其次是检验变量间协整关系,并建立修正误差模型(ECM);第三对具有协整关系的时间变量序列的因果关系进一步检验分析。

协整理论从分析时间序列的非平稳性着手,探求非平稳经济变量间蕴含的长期均衡关系。

即两经济时序数据{xt,yt}在以xt为横坐标、yt为纵坐标上,其散点图围绕在某一条直线yt=β0 β1xt的周围,直线对点(xt,yt)起着引力线的作用,当(xt,yt)偏离该直线时,引力线的作用会使它们回到直线附近,虽然不能立即到达直线上,但存在着回归这条直线的总趋势。

定义如下:若变量向量置中所有分量均为d阶单整,即Xt~I(d),且存在一个非零向量βt使得向量Zt=βXt~I(d-b),b>0,则称变量向量Xt为具有d,b阶协整关系,表示为Xt~ CI(d,b),而β为协整向量。

从经济学的观点看,协整可理解为经济时序变量间存在着一种均衡力量,使非平稳的不同变量在长期内一起运动,即如果变量之间存在长期稳定关系(协整关系),变量的增长率表现共同的增长趋势。

反之,如果这两个或以上变量不是协整的,则它们之间不存在一个长期的均衡关系。

协整理论从变量之间是否具有协整关系出发选择模型的变量,使得数据基础更加稳定,统计性质更为优良。

平稳性检验方法有:DF检验法、ADF检验法、PP检验法、霍尔工具变量法、DF-GLS变量法、KPSS检验法等等。

ADF法(Augmented-Dicky-full-er)检验变量的稳定性,即进行平稳性检验,回归方程如下:并作假设检验:H0:a2=0,H1:a2≠0,如果接受假设H0而拒绝H1,则说明序列xt存在单位根,因而是非稳定的;否则说明序列xt不存在单位根,即是稳定的。

平稳性检验

平稳性检验

从检验结果可以看出,在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon 临界值分别为-3.509、-2.896、-2.585,t 检验统计量值-10.099小于相应的临界值,从而拒绝H0,表明GDP 序列存在单位根,是平稳序列,Gdp 一阶单整。

从检验结果可以看出,在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon 临界值分别为-3.508、-2.895、-2.585,t 检验统计量值-10.409小于相应的临界值,从而拒绝H0,表明pdi 序列存在单位根,是平稳序列,Pdi 数据是一阶单整。

从检验结果可以看出,在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon 临界值分别为-3.508、-2.896、-2.585,t 检验统计量值-26.343小于相应的临界值,从而拒绝H0,表明pce 序列存在单位根,是平稳序列,Pce 是一阶单整数据。

从检验结果可以看出,在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon 临界值分别为-3.508、-2.896、-2.585,t 检验统计量值-7.739小于相应的临界值,从而拒绝H0,表明利润数据序列存在单位根,是平稳序列,利润数据是一阶单整数据。

从检验结果可以看出,在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon 临界值分别为-3.510、-2.895、-2.585,t 检验统计量值-5.856小于相应的临界值,从而拒绝H0,表明红利数据序列存在单位根,是平稳序列,红利数据是一阶单整数据。

红利数据是一阶单整数据。

6.红利和利润的协整检验6.1红利和利润的回归模型LIRUN = 62.4543876483 + 0.989293795964*HONGLI (6.581543)(0.083252)t= 9.489323 11.883122R=0.6214932R=0.617092 F=141.2085 DW=0.1217486.2残差U平稳性检验从检验结果可以看出,在1%、5%、10%三个显著性水平下,单位根检验的Mackinnon临界值分别为-3.508、-2.896、-2.585,t检验统计量值-7.733小于相应的临界值,从而拒绝H0,表明残差序列u存在单位根,是平稳序列,残差u是一阶单整数据。

时间序列的平稳性检验方法比较论文素材

时间序列的平稳性检验方法比较论文素材

时间序列的平稳性检验方法比较论文素材时间序列的平稳性检验方法比较时间序列分析是一种广泛应用于经济学、金融学、统计学等领域的统计分析方法,它的核心是对时间序列数据进行建模和预测。

在进行时间序列分析之前,需要对时间序列数据的平稳性进行检验,因为只有平稳的时间序列数据才能有效地应用各种统计模型进行分析和预测。

平稳性是指时间序列数据在统计属性上没有显著变化的特性,包括均值、方差和自相关性等。

在实际应用中,常常需要对时间序列数据进行平稳性检验,以确定是否满足时间序列分析的基本假设。

本文将对几种常用的时间序列平稳性检验方法进行比较,包括ADF 检验、PP检验、KPSS检验以及DF-GLS检验等。

1. ADF检验(Augmented Dickey-Fuller Test)ADF检验是一种常用的单位根检验方法,它的原假设是时间序列数据存在单位根,即非平稳。

如果根据ADF检验的结果拒绝原假设,则可以认为时间序列数据是平稳的。

ADF检验的步骤包括选择合适的滞后阶数、构建广义差分模型、计算ADF统计量以及对统计量进行显著性检验等。

根据ADF检验的结果,可以得到一个关于平稳性的显著性水平,比如5%或10%的显著水平。

2. PP检验(Phillips-Perron Test)PP检验是另一种常用的单位根检验方法,它与ADF检验类似,但在计算ADF统计量时使用了修正项,使得统计量的分布更具鲁棒性。

PP检验的原假设和拒绝原假设与ADF检验相同。

与ADF检验相比,PP检验提供了更强的鲁棒性和准确性,特别适用于样本量较小或存在异方差性的情况。

3. KPSS检验(Kwiatkowski–Phillips–Schmidt–Shin Test)与ADF检验和PP检验不同,KPSS检验的原假设是时间序列数据是平稳的,即不存在单位根。

如果根据KPSS检验的结果拒绝原假设,则可以认为时间序列数据是非平稳的。

KPSS检验的步骤包括选择合适的滞后阶数、构建局部线性趋势模型、计算KPSS统计量以及对统计量进行显著性检验等。

平稳性检验报告模板

平稳性检验报告模板

平稳性检验报告模板1. 引言平稳性检验是时间序列分析中的一项重要内容,用于检验数据序列的平稳性。

平稳性是指时间序列的统计特性在不同时间段内保持不变的性质。

在时间序列分析中,平稳性是进行模型建立、预测及统计推断的前提条件。

本报告将通过对数据序列进行平稳性检验,评估数据序列的平稳性程度。

2. 数据集描述本次平稳性检验使用的数据集为某公司某产品在过去五年内每天的销售量。

数据包含了从2016年1月1日至2021年12月31日期间的365 * 5 = 1825个观测值,以时间序列的形式记录。

3. 平稳性检验方法常见的平稳性检验方法主要有以下几种:- 观察法:通过观察数据序列的均值和方差是否随时间变化而发生明显的趋势,来判断数据序列的平稳性。

- 自相关图:通过绘制数据序列的自相关图,观察自相关系数随滞后阶数的变化情况,判断数据序列的平稳性。

- 单位根检验:通过对数据序列进行单位根检验,检验数据序列中是否存在单位根,进而判断数据序列的平稳性。

- 单位根检验的统计方法包括ADF检验(Augmented Dickey-Fuller Test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin Test)等。

4. 平稳性检验结果4.1 观察法通过观察数据序列的均值和方差的变化趋势,判断数据序列的平稳性。

对于本次数据集,在观察数据序列的均值和方差图形时,未发现明显的趋势,说明数据序列可能具有平稳性。

4.2 自相关图自相关图是分析时间序列数据的常用方法,通过绘制数据序列的自相关图,来观察自相关系数随滞后阶数的变化情况。

对于本次数据集,绘制的自相关图显示了自相关系数在滞后阶数为1-3时较为显著,而随着滞后阶数的增加,自相关系数逐渐衰减。

这表明数据序列存在一定的相关性,但在滞后阶数较大时可以忽略。

因此,在较大滞后阶数情况下,数据序列可能具有平稳性。

4.3 单位根检验为了进一步验证数据序列的平稳性,我们进行了ADF检验和KPSS检验。

ADF时间序列数据平稳性检验实验指导

ADF时间序列数据平稳性检验实验指导

实验一时间序列数据平稳性检验实验指导一、实验目的:理解经济时间序列存在的不平稳性,掌握对时间序列平稳性检验的步骤和各种方法,认识利用不平稳的序列进行建模所造成的影响。

二、基本概念:如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期的协方差值仅依赖于该两个时期间的间隔,而不依赖于计算这个协方差的实际时间,就称它是宽平稳的。

时序图ADF检验PP检验三、实验内容及要求:1、实验内容:用Eviews5.1来分析1964年到1999年中国纱产量的时间序列,主要内容:(1)、通过时序图看时间序列的平稳性,这个方法很直观,但比较粗糙;(2)、通过计算序列的自相关和偏自相关系数,根据平稳时间序列的性质观察其平稳性;(3)、进行纯随机性检验;(4)、平稳性的ADF检验;(5)、平稳性的pp检验。

2、实验要求:(1)理解不平稳的含义和影响;(2)熟悉对序列平稳化处理的各种方法;(2)对相应过程会熟练软件操作,对软件分析结果进行分析。

四、实验指导(1)、绘制时间序列图时序图可以大致看出序列的平稳性,平稳序列的时序图应该显示出序列始终围绕一个常数值波动,且波动的范围不大。

如果观察序列的时序图显示出该序列有明显的趋势或周期,那它通常不是平稳序列,现以1964-1999年中国纱年产量序列(单位:万吨)来说明。

在EVIEWS中建立工作文件,在“Workfile structure type”栏中选择“Dated-regular frequency”,在右边的“Date specification”中输入起始年1964,终止年1999,点击ok则建立了工作文件。

找到中国纱年产量序列的excel文件并导入命名该序列为sha,见图1-2。

图1-1 建立工作文件图1-2创建新序列SHA,如图1-2。

点击主菜单Quick/Graph就可作图,见图1-3,分别是折线图(Line graph)、条形图(Bar graph)、散点图(Scatter)等,也可双击序列名,出现显示电子表格的序列观测值,然后点击工具栏的View/Graph。

时间序列数据平稳性检验实验指导

时间序列数据平稳性检验实验指导

实验一时间序列数据平稳性检验实验指导一、实验目的:理解经济时间序列存在的不平稳性,掌握对时间序列平稳性检验的步骤和各种方法,认识利用不平稳的序列进行建模所造成的影响。

二、基本概念:如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期的协方差值仅依赖于该两个时期间的间隔,而不依赖于计算这个协方差的实际时间,就称它是宽平稳的。

时序图ADF检验PP检验三、实验内容及要求:1、实验内容:用Eviews5.1来分析1964年到1999年中国纱产量的时间序列,主要内容:(1)、通过时序图看时间序列的平稳性,这个方法很直观,但比较粗糙;(2)、通过计算序列的自相关和偏自相关系数,根据平稳时间序列的性质观察其平稳性;(3)、进行纯随机性检验;(4)、平稳性的ADF检验;(5)、平稳性的pp检验。

2、实验要求:(1)理解不平稳的含义和影响;(2)熟悉对序列平稳化处理的各种方法;(2)对相应过程会熟练软件操作,对软件分析结果进行分析。

四、实验指导(1)、绘制时间序列图时序图可以大致看出序列的平稳性,平稳序列的时序图应该显示出序列始终围绕一个常数值波动,且波动的范围不大。

如果观察序列的时序图显示出该序列有明显的趋势或周期,那它通常不是平稳序列,现以1964-1999年中国纱年产量序列(单位:万吨)来说明。

在EVIEWS中建立工作文件,在“Workfile structure type”栏中选择“Dated-regular frequency”,在右边的“Date specification”中输入起始年1964,终止年1999,点击ok则建立了工作文件。

找到中国纱年产量序列的excel文件并导入命名该序列为sha,见图1-2。

图1-1 建立工作文件图1-2创建新序列SHA,如图1-2。

点击主菜单Quick/Graph就可作图,见图1-3,分别是折线图(Line graph)、条形图(Bar graph)、散点图(Scatter)等,也可双击序列名,出现显示电子表格的序列观测值,然后点击工具栏的View/Graph。

间序列的平稳性及其检验

间序列的平稳性及其检验

因此: P li m ˆP li m xiui/n0
n
P lim xi2/n Q
▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”,基 于大样本的统计推断也就遇到麻烦。
⒊ 数据非平稳,往往导致出现“虚假回归” 问题
表现在:两个本来没有任何因果关系的变量,却 有很高的相关性(有较高的R2):
Xt
Xt
t
t
(a)
(b)
图9.1 平稳时间序列与非平稳时间序列图
• 进一步的判断: 检验样本自相关函数及其图形
定义随机时间序列的自相关函数(autocorrelation function, ACF)如下:
k=k/0 分子是时间序列之后K期的协方差,分母是方差, 因此自相关函数是关于滞后期k的递减函数(Why)
间序列的平稳性及其检验
§9.1 时间序列的平稳性及其检验
一、问题的引出:非平稳变量与经典回归 模型
二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整、趋势平稳与差分平稳随机过程
一、问题的引出:非平稳变量与经典 回归模型
⒈常见的数据类型
到目前为止,经典计量经济模型常用到的数据有: • 时间序列数据(time-series data); • 截面数据(cross-sectional data) • 平行/面板数据(panel data/time-series cross-section
Xt= 1Xt-1+2Xt-2…+kXt-k +t 该随机过程平稳性条件将在第二节中介绍。
三、平稳性检验的图示判断
• 给出一个随机时间序列,首先可通过该 序列的时间路径图来粗略地判断它是否 是平稳的。

时间序列计量经济学一平稳性及其检验

时间序列计量经济学一平稳性及其检验

第一节 非平稳变量与经典回归模型
数据非平稳,往往导致出现“虚假回归” 问题
表现在:两个本来没有任何因果关系的变量, 却有很高的相关性(有较高的R2)。 例如:如果有两列时间序列数据表现出一致的 变化趋势(非平稳的),即使它们没有任何有 意义的关系,但进行回归也可表现出较高的决 定系数。
第一节 非平稳变量与经典回归模型
经典回归模型与数据的平稳性 经典回归分析暗含着一个重要假设:数据是 平稳的。 数据非平稳,大样本下的统计推断基础—— “一致性”要求——被破怀。 经典回归分析的假设之一:解释变量X是非 随机变量
第一节 非平稳变量与经典回归模型
放宽该假设:X是随机变量,则需进一步要求: (1)X与随机扰动项 u 不相关∶Cov(X,u)=0 (2)
xi u i xi u i / n ˆ 2 2 x x i i /n
P lim xi u i / n 0 ˆ 因此: P lim 2 n Q P lim xi / n
▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”, 基于大样本的统计推断也就遇到麻烦。
由于ut是一个白噪声,则序列{ Xt }是平稳的。
后面将会看到:如果一个时间序列是非平稳 的,它常常可通过取差分的方法而形成平稳序 列。
第二节 时间序列数据的平稳性
• 事实上,随机游走过程是我们称之为1阶自回 归AR(1)过程的特例: Xt= Xt-1+ut 不难验证: 1)||>1时,该随机过程生成的时间序列是发散 的,表现为持续上升(>1)或持续下降(<-1), 因此是非平稳的; 2)=1时,是一个随机游走过程,也是非平稳的。

面板数据分析方法步骤全解

面板数据分析方法步骤全解

面板数据分析方法步骤全解yonglee , May 5 16:16 , 文档资料»数据挖掘, 评论(0) , 引用(0) , 阅读(35079) , 本站原创面板数据分析方法步骤全解(2009-11-07 11:50:38)转载标签:面板数据步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

这种情况称为称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。

Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。

Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。

时间序列数据平稳性检验实验指导

时间序列数据平稳性检验实验指导

实验一时间序列数据平稳性检验实验指导一、实验目的:理解经济时间序列存在的不平稳性,掌握对时间序列平稳性检验的步骤和各种方法,认识利用不平稳的序列进行建模所造成的影响。

二、基本概念:如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期的协方差值仅依赖于该两个时期间的间隔,而不依赖于计算这个协方差的实际时间,就称它是宽平稳的。

时序图ADF检验PP检验三、实验内容及要求:1、实验内容:用来分析1964年到1999年中国纱产量的时间序列,主要内容:(1)、通过时序图看时间序列的平稳性,这个方法很直观,但比较粗糙;(2)、通过计算序列的自相关和偏自相关系数,根据平稳时间序列的性质观察其平稳性;(3)、进行纯随机性检验;(4)、平稳性的ADF检验;(5)、平稳性的pp检验。

2、实验要求:(1)理解不平稳的含义和影响;(2)熟悉对序列平稳化处理的各种方法;(2)对相应过程会熟练软件操作,对软件分析结果进行分析。

四、实验指导(1)、绘制时间序列图时序图可以大致看出序列的平稳性,平稳序列的时序图应该显示出序列始终围绕一个常数值波动,且波动的范围不大。

如果观察序列的时序图显示出该序列有明显的趋势或周期,那它通常不是平稳序列,现以1964-1999年中国纱年产量序列(单位:万吨)来说明。

在EVIEWS中建立工作文件,在“Workfile structure type”栏中选择“Dated-regular frequency”,在右边的“Date specification”中输入起始年1964,终止年1999,点击ok则建立了工作文件。

找到中国纱年产量序列的excel文件并导入命名该序列为sha,见图1-2。

图1-1 建立工作文件图1-2创建新序列SHA,如图1-2。

点击主菜单Quick/Graph就可作图,见图1-3,分别是折线图(Line graph)、条形图(Bar graph)、散点图(Scatter)等,也可双击序列名,出现显示电子表格的序列观测值,然后点击工具栏的View/Graph。

时间序列平稳性和单位根检验

时间序列平稳性和单位根检验
发展的特点和规律。
结合其他统计和经济模型,深入 研究时间序列数据的特征和趋势, 以更好地理解和预测经济运行情
况。
针对时间序列数据的非平稳性, 探索更为有效的分析和预测方法, 以提高经济预测的准确性和可靠
性。
THANKS
感谢观看
• 帕克-帕朗检验(PP检验):PP检验与ADF检验类似,也是基于回归模型进行 单位根检验。它通过比较原始序列与一阶差分序列的方差来构建统计量,以判 断是否存在单位根。
• 扩展迪基-富勒检验(ADF-GLS检验):ADF-GLS检验是ADF检验的一种扩展, 考虑了异方差性问题,提高了检验的准确性。它通过对模型残差进行广义最小 二乘法(GLS)处理来纠正异方差性。
时间序列平稳性和单位根 检验
• 引言 • 时间序列平稳性 • 单位根检验 • 时间序列模型 • 时间序列平稳性和单位根检验的应用 • 结论
01
引言
主题简介
时间序列平稳性
时间序列数据随时间变化而呈现出一定的趋势和周期性。平稳性是指时间序列 数据的统计特性不随时间而变化,即数据的均值、方差和自相关函数等特征保 持恒定。
要点二
意义
在金融、经济、社会和自然等领域中,许多时间序列数据 都具有非平稳性,如股票价格、经济增长、气候变化等。 通过进行平稳性和单位根检验,可以揭示这些数据背后的 动态机制和长期趋势,有助于制定更加科学合理的经济政 策、投资策略和社会发展计划。同时,这些检验方法在统 计学、计量经济学和时间序列分析等领域也具有重要的理 论价值。
模型稳定性
平稳性有助于建立稳定和 可靠的统计模型,因为模 型参数不会随时间而变化。
数据分析基础
平稳性是许多统计分析方 法的前提条件,如回归分 析、时间序列分析和经济 计量分析等。

5.2 时间序列的平稳性及其检验

5.2 时间序列的平稳性及其检验

模型2的估计
结论: 中国实际居民消费 总量增长率序列 GY是平稳的。
检验对数序列lnY
• 首先对lnY的水平序列进行检验,三个模型中参数估计值的统计量的值 均大于各自的临界值,因此不能拒绝存在单位根的零假设,即中国实 际居民消费总量的对数序列是非平稳的。
• 再对lnY的1阶差分序列进行检验,自动选择检验模型滞后项,确定滞 后阶数为0,得到模型3的估计结果:
零假设 H0:=0 备择假设 H1:<0
模型1 模型2 模型3
ADF检验模型
• 检验过程
• 实际检验时从模型3开始,然后模型2、模型1。 • 何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时停止检
验。 • 否则,就要继续检验,直到检验完模型1为止。
• 检验原理与DF检验相同,只是对模型1、2、3进行检验时,有各自相 应的临界值表。
• 现实经济生活中只有少数经济指标的时间序列表现为平稳的,如利率等;
• 大多数指标的时间序列是非平稳的,例如,以当年价表示的消费额、收 入等常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶 单整。
• 大多数非平稳的时间序列一般可通过一次或多次差分的形式变为平稳的。
• 但也有一些时间序列,无论经过多少次差分,都不能变为平稳的。这种 序列被称为非单整的(non-integrated)。
四、平稳性的单位根检验
1、DF检验(Dicky-Fuller Test)
X t X t1 t X t X t1 t
随机游走,非平稳
对该式回归,如果确实发现ρ=1,则 称随机变量Xt有一个单位根。
X t ( 1) X t1 t X t1 t
等价于通过该式判断是否存在 δ=0。
• 通过上式判断Xt是否有单位根,就是时间序列平稳性的单位根检验。

数据的平稳性及其检验

 数据的平稳性及其检验

• 然而,对X取一阶差分(first difference): Xt=Xt-Xt-1=t
由于t是一个白噪声,则序列{Xt}是平稳的。
后面将会看到:如果一个时间序列是非平稳的, 它常常可通过取差分的方法而形成平稳序列。
• 事实上,随机游走过程是下面我们称之为1阶自回 归AR(1)过程的特例
Xt=Xt-1+t
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
.一个最简单的随机时间序列是一具有零均值同 方差的独立分布序列:
Xt=t , t~N(0,2)
该序列常被称为是一个白噪声(white noise)。 由于Xt具有相同的均值与方差,且协方差为零,由
定义,一个白噪声序列是平稳的。
.另一个简单的随机时间列序被称为随机游走 (random walk),该序列由如下随机过程生成:
11784 14704
1995 1996
4901.4 5489.2
1989 1990
16466 18319.5
1997 1998
6076.3 7164.4
1991 1992
21280.4 25863.6
1999 2000
8792.1
1993
34500.6
GDP 46690.7 58510.5 68330.4 74894.2 79003.3 82673.1 89112.5
Xt= 1Xt-1+2Xt-2…+kXt-k 该随机过程平稳性条件将在第二节中介绍。

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。

稳健性检验有哪些方法

稳健性检验有哪些方法

稳健性检验有哪些方法
稳健性检验是用来评估统计模型的鲁棒性和稳定性的方法。

下面是一些常用的稳健性检验方法:
1. 无参比较方法:Wilcoxon符号秩检验和秩和检验是用来比
较两个样本的中位数是否相等的非参数方法。

这些方法不依赖于数据的分布假设,因此具有较强的稳健性。

2. 基于鲁棒标准差的方法:鲁棒标准差(如中位数绝对偏差和Huber标准差)可以用来衡量数据的离散程度。

通过比较模型
的参数估计值与鲁棒标准差的倍数,可以评估模型的稳健性。

3. 离群值检验方法:离群值对统计模型的拟合结果有较大影响。

一些方法如DFFITS、Cook's距离和孤立森林可以用来识别和
处理离群值,提高模型的稳健性。

4. 广义线性模型方法:广义线性模型(GLM)可以通过选择
合适的分布族和连接函数来适应不同类型的数据。

GLM不依
赖于数据的分布假设,因此在存在偏离正态分布的情况下仍能保持稳健性。

5. 重复抽样方法:通过重复抽样来构建多个子样本,可以对统计模型进行稳健性评估。

常用的方法包括自助法、交叉验证和Bootstrap。

6. 基于鲁棒回归的方法:鲁棒回归方法(如Huber回归和M-
估计)可以用来降低异常值对回归模型的影响。

通过对数据施
加权重,可以提高模型的稳健性。

请注意:以上仅为一些常用的稳健性检验方法,具体的选择和使用方法应根据具体问题和数据特点进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 然而,对X取一阶差分(first difference): Xt=Xt-Xt-1=t
由于t是一个白噪声,则序列{Xt}是平稳的。
后面将会看到:如果一个时间序列是非平稳的, 它常常可通过取差分的方法而形成平稳序列。
• 事实上,随机游走过程是下面我们称之为1阶自回 归AR(1)过程的特例
Xt=Xt-1+t
1)均值E(Xt)=是与时间t 无关的常数; 2)方差Var(Xt)=2是与时间t 无关的常数;
3)协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关, 与时间t 无关的常数;
则称该随机时间序列是平稳的(stationary),而该 随机过程是一平稳随机过程(stationary stochastic process)。
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
2 4 6 8 10 12 14 16 18 RANDOM1AC
(b)
由于该序列由一随机过程生成,可以认为不存 在序列相关性,因此该序列为一白噪声。
• 根据Bartlett的理论:k~N(0,1/19)
因此任一rk(k>0)的95%的置信区间都将是
[Z0.025 • , Z0.025 • ] [1.96 1/19 ,1.96 1/19 ] [0.4497 ,0.4497 ]
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
10132.8 11784 14704
1994 1995 1996
4901.4 5489.2
1989 1990
16466 18319.5
1997 1998
6076.3 7164.4
1991 1992
21280.4 25863.6
1999 2000
8792.1
1993
34500.6
GDP 46690.7 58510.5 68330.4 74894.2 79003.3 82673.1 89112.5
data) ★时间序列数据是最常见,也是最常用到的数据。
⒉经典回归模型与数据的平稳性
• 经典回归分析暗含着一个重要假设:数据是平稳的。
• 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
• 经典回归分析的假设之一:解释变量X是非随机变 量
• 放宽该假设:X是随机变量,则需进一步要求: (1)X与随机扰动项 不相关∶Cov(X,)=0
第7章 时间序列计量经济学模型的理论与方法
第一节 时间序列的平稳性及其检验 第二节 随机时间序列模型的识别和估计 第三节 协整分析与误差修正模型
§7.1 时间序列的平稳性及其检验
一、问题的引出:非平稳变量与经典回归 模型
二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整、趋势平稳与差分平稳随机过程
Xt= 1Xt-1+2Xt-2…+kXt-k 该随机过程平稳性条件将在第二节中介绍。
三、平稳性检验的图示判断
• 给出一个随机时间序列,首先可通过该 序列的时间路径图来粗略地判断它是否 是平稳的。
• 一个平稳的时间序列在图形上往往表现 出一种围绕其均值不断波动的过程;
• 而非平稳序列则往往表现出在不同的时 间段具有不同的均值(如持续上升或持 续下降)。
Xt=Xt-1+t
这里, t是一个白噪声。
容易知道该序列有相同的均值:E(Xt)=E(Xt-1)
为了检验该序列是否具有相同的方差,可假设Xt的 初值为X0,则易知
X1=X0+1 X2=X1+2=X0+1+2
……
Xt=X0+1+2+…+t 由于X0为常数,t是一个白噪声,因此Var(Xt)=t2 即Xt的方差与时间t有关而非常数,它是一非平稳序 列。
0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(2)
(Xi X)2 / n
依概率收敛:Plim((X i X )2 / n) Q n
第(1)条是OLS估计的需要
第(2)条是为了满足统计推断中大样本下的“一致
性”特性P:lim(ˆ) n
注意:在双变量模型中:
ˆ xiui xiui / n
xi2
xi2 / n
因此:
• 容易验证:该样本序列的均值为0,方差为0.0789。
从图形看:它在其样本均值0附近上下波动,且样本自相关 系数迅速下降到0,随后在0附近波动且逐渐收敛于0。
0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6
2 4 6 8 10 12 14 16 18 RANDOM1
(a)
1.2 0.8 0.4 0.0 -0.4 -0.8
可以看出:k>0时,rk的值确实落在了该区间内, 因此可以接受k(k>0)为0的假设。
同样地,从QLB统计量的计算值看,滞后17期 的计算值为26.38,未超过5%显著性水平的临界值 27.58,因此,可以接受所有的自相关系数k(k>0) 都为0的假设。
因此,该随机过程是一个平稳过程。
• 序列Random2是由一随机游走过程
例 9.1.4 检验中国支出法 GDP 时间序列的平稳性。
年份 1978 1979 1980 1981 1982 1983 1984 1985
表 9.1.2 1978~2000 年中国支出法 GDP(单位:亿元)
GDP
年份
GDP
年份
3605.6 4073.9 4551.3
1986 1987 1988
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
QLB
n(n
2)
m k 1
rk2 n
k
该统计量近似地服从自由度为m的2分 布(m为滞后长度)。
因此:如果计算的Q值大于显著性水平 为的临界值,则有1-的把握拒绝所有 k(k>0)同时为0的假设。
例7.1.3: 下表序列Random1是通过一 随机过程(随机函数)生成的有19个样本 的随机时间序列。
时间序列分析模型方法就是在这样的情况下, 以通过揭示时间序列自身的变化规律为主线而发 展起来的全新的计量经济学方法论。
时间序列分析已组成现代计量经济学的重要内
容,并广泛应用于经济分析与预测当中。
二、时间序列数据的平稳性
时间序列分析中首先遇到的问题是关于时间序列 数据的平稳性问题。
假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …) 的每一个数值都是从一个概率分布中随机得到,如果 满足下列条件:
例7.1.1.一个最简单的随机时间序列是一具有零 均值同方差的独立分布序列:
Xt=t , t~N(0,2)
该序列常被称为是一个白噪声(white noise)。 由于Xt具有相同的均值与方差,且协方差为零,由
定义,一个白噪声序列是平稳的。
例7.1.2.另一个简单的随机时间列序被称为随机 游走(random walk),该序列由如下随机过程生成:
P lim
ˆ
P lim xiui
/n
0
n
P lim xi2 / n
Q
▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”,基 于大样本的统计推断也就遇到麻烦。
⒊ 数据非平稳,往往导致出现“虚假回归” 问题
表现在:两个本来没有任何因果关系的变量,却 有很高的相关性(有较高的R2):
• 进一步的判断: 检验样本自相关函数及其图形
定义随机时间序列的自相关函数(autocorrelation function, ACF)如下:
k=k/0 自相关函数是关于滞后期k的递减函数(Why?)。
实际上,对一个随机过程只有一个实现(样本), 因此,只能计算样本自相关函数(Sample autocorrelation function)。
1.000 0.480 0.018 -0.069 0.028 -0.016 -0.219 -0.063 0.126 0.024 -0.249 -0.404 -0.284 -0.088 -0.066 0.037 0.105 0.093
5.116 5.123 5.241 5.261 5.269 6.745 6.876 7.454 7.477 10.229 18.389 22.994 23.514 23.866 24.004 25.483 27.198
相关文档
最新文档