岩体力学特性及其参数确定
岩体力学-第8章岩体的力学性质--贺虎
2
σ3=0
1m
3
2(C j 3tg j ) (1 tg jctg )sin 2
当β=45°+φj/2时,岩体强度取得最低值
1 3 min
2(C j 3tg j ) 1 tg 2 j tg j
耶格(Jaeger)单结构面理论
含多组结构面,且假定各组结构面具有相同的性质时,可分步运用单结构面 理论确定岩体强度包线及岩体强度。
二、岩体变形参数估算
一是在现场地质调查的基础上,建立适当的岩体地质力学模型 ,利用室内小试件试验资料来估算。
二是在岩体质量评价和大量试验资料的基础上,建立岩体分类 指标与变形参数之间的经验关系,并用于变形参数估算。
1、层状岩体变形参数估算
层状岩体的地质力学模型 假设各岩层厚度相等为S,且性质
D—圆(方)板直径(边长)。
定,裂隙越不均匀则要求面积 越大,一般0.25~1.00m2。
ω是与承压板形状与刚度有关的系数。
对于圆形板ω=0.785;对于方形板ω=0.886
2、钻孔变形法
优点:①对岩体扰动小;②可以在 地下水位以下和相当深的部位进行;
Hale Waihona Puke Emdp(1 Um )
③试验方向基本上不受限制,而且
第六章 岩体的力学性质
§6.1 岩体的变形性质 §6.2 岩体的强度性质 §6.3 岩体的动力学性质 §6.4 岩体的水力学性质
§6.1 岩体的变形性质
•在受力条件改变时岩体的变形是岩块变形和结构变形的总和, 而结构变形通常包括结构面闭合、充填物的压密及结构体转动和 滑动等变形。从岩体的定义:岩块+结构面=>岩体 •岩体变形=岩块变形+结构面闭合+充填物压缩+其他变形 •在一般情况下,岩体的结构变形起着控制作用。
《岩体力学》第六章岩体的力学性质
图6.1 岩体的压力--变形曲线第六章 岩体的力学性质岩体的力学性质包括岩体的变形性质、强度性质、动力学性质和水力学性质等方面。
岩体在外力作用下的力学属性表现出非均质性、非连续、各向异性和非弹性。
岩体的力学性质取决于两个方面: 1)受力条件;2)岩体的地质特征及其赋存环境条件。
其中地质特征包括岩石材料性质、结构面的发育情况及性质(影响岩体的力学性质不同于岩块的本质原因);赋存环境条件包括天然应力和地下水。
第一节 岩体的变形性质一、 岩体变形试验及其变形参数确定变形参数包括变形模量和弹性模量。
按静力法得到静E ,动力法得到动E 。
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧法波地震声波法动力法轴压缩试验法双单水压洞室法钻孔变形法扁千斤顶法狭缝法承压板法静力法按原理和方法分原位岩体变形试验)()()( )(1.承压板法刚性承压板法和柔性承压板法 各级压力P -W (岩体变形值)曲线 按布西涅斯克公式计算岩体的变形模量E m (Mpa )和弹性模量E me (Mpa )。
⎪⎪⎩⎪⎪⎨⎧-=-=e m mem m W W PD E W W PD E )1()1(22μμ式中:P —承压板单位面积上的压力(Mpa ); D —承压板的直径或边长(cm );W,W e—为相应P下的总变形和弹性变形;ω—与承压板形状、刚度有关系数,圆形板ω=0.785,方形板ω=0.886。
μm—岩体的泊松比。
★定义:岩体变形模量(E m):岩体在无侧限受压条件下的应力与总应变之比值。
岩体弹性模量(E me):岩体在无侧限受压条件下的应力与弹性应变之比值。
图6.2 钻孔变形试验装置示意图②可以在地下水位以下笔图6.3 狭缝法试验装置如图6.3所示。
二、岩体变形参数估算现场原位试验费用昂贵,周期长,一般只在重要的或大型工程中进行,因此,岩体变形参数的很多情况下必须进行估算。
两种方法:① 现场地质调查→建立适当的岩体地质力学模型→室内小试件试验资料→进行估算; ② 岩体质量评价和大量试验资料→建立岩体分类指标与变形参数间的经验关系→进行估算。
岩石力学数值模拟力学参数的确定与验证
R r - 鲁=
( 3 )
1 岩体 强度 随岩 石 、 节理特 性的变化
基 于 强度 存 在 的差 异 ,可 以将 岩 体 划 分 为 均质 岩体 与非均质岩体 , 其 中后者为包 含节理 的岩体 , 可 假设 为 实 际工 程 中 的岩 层 。岩体 泊 松 比 、 弹性 模 量受 到 岩石 性 质 、 节 理 间距 、 刚 度 的影 响 。在 岩 体力 学参 数确定前 , 首先对岩体泊松 比 、 弹性 模 量 与岩 石 、 节 理 的关 系 进行 研究 。
从x100处开始每步开挖10m运算至最大不平衡力小于初煤矿现代化2013年第5期总第116期岩石密度kgm3体积模量gpa剪切模量gpa抗拉强度mpa粘聚力mpa内摩擦角3号煤138082538104330148泥岩220098373703250263砂质泥岩24009959091126331细粒砂岩2520214113471351085276中粒砂岩25402107145112312632岩石rqd节理间距节理状态围岩含水性lmin总分状态评分涌水量评分3号煤62573591010稍粗糙180071054泥岩667102881010稍粗糙200071058砂质泥岩954102981010稍粗糙200071058细粒砂岩8991037101010粗糙250021570中粒砂岩7831037101215粗糙250021575岩石eskn值节理间距m15节理法向刚度gpa796节理切向刚度gpa306泥岩177060181631680砂质泥岩20906021733754细粒砂岩334028429711198中粒砂岩35401963140128760始最大不平衡力的103时运算停止进行下一步开挖计算
影响 , 随着 E / ( s k ) 的增 大 , 弹 性模 量 系数 逐 渐 减 小 , 即岩体 强度 与岩 石强 度 差别 增大 。
岩体结构面几何参数的确定
岩体结构面几何参数的确定摘要:岩体是地质体的一部分,是非均质的、各向异性的不连续体。
岩体中力学强度较低的部位或岩性相对软弱的夹层,构成岩体的不连续面,称为结构面。
结构面实际上是地质发展历史中岩体内形成的具有一定方向、一定规模、一定形态和一定特征的地质界面。
关键词:岩体结构面几何参数确定岩体是地质体的一部分,是非均质的、各向异性的不连续体。
岩体中力学强度较低的部位或岩性相对软弱的夹层,构成岩体的不连续面,称为结构面。
结构面实际上是地质发展历史中岩体内形成的具有一定方向、一定规模、一定形态和一定特征的地质界面。
结构面的几何特征直接控制岩体中岩块的大小,同时控制岩质边坡稳定性分析和地下洞室围岩稳定性分析中的边界条件,即控制滑体的形状、规模及其趋势。
具有工程意义的岩体结构面主要包括地层层面和节理等。
在某抽水蓄能电站坝址区进行了大量的岩体结构面调查之后,利用所取得的资料,应用EXCEL软件,对有关几何参数进行统计分析,并利用数学模型和检验原理,确定了具有一定置信程度的置信区间。
1 结构面几何参数岩体结构面几何参数主要包括产状、间距、连通性等,结构面的产状由其走向、倾向和倾角组成,而结构面的走向和倾向可以相互换算,即只要确定其一即可(本文中以倾向为例)。
岩体结构面几何参数主要从天然露头、剖面(例如采矿剖面,道路剖面等)、平硐、钻孔中实测而得。
2 结构面倾向以结构面的倾向(方位角)为例,在工程区现场调查了二组结构面的305个数据,输入到EXCEL电子表后,得到的统计结果为:一组节理面(节理1)倾向的范围为80° ~147° ,其均值为111.4° ;另一组节理面(节理2)倾向的范围为154° ~270° ,其均值为200.9° 其分布见图1。
图1 结构面倾向统计图先对节理1进行分析,在模型的对比中可知,节理1服从伽马分布。
因此根据相对频率,计算数学期望S Ex 和方差S Dx ,然后可根据模型的特征计算其参数,a 和b 值可联立方程求得,G (a )可通过斯特林公式得到,计算结果为:a = 60.7627 和 b = 0.5279。
岩土工程中的岩土力学分析
岩土工程中的岩土力学分析岩土力学是研究土体和岩体的物理性质、力学性质及其变形和破坏规律的学科,它是岩土工程的基础和核心。
岩土工程的岩土力学分析是岩土工程设计和施工的重要工作内容之一,对于保证岩土工程的安全和可靠性具有非常重要的意义。
一、岩土力学分析的意义在岩土工程中,岩土力学分析主要包括岩土物理力学分析和岩土力学参数确定两个方面。
物理力学分析是指分析固体物质以及固体物质与流体之间的相互作用规律,这是岩土力学分析的理论基础。
力学参数的确定是指在改变的土体和岩体性状及其受力情况下,确定土体和岩体力学性质和结构特征的方法。
岩土力学分析的意义主要有以下几个方面:1、为岩土工程设计和施工提供基础性理论和技术支持。
岩土力学分析是岩土工程设计和施工的必要依据,其准确性和可靠性直接决定着岩土工程的安全和可靠性。
2、为岩土工程的灾害预防和治理提供技术支持。
岩土灾害是严重影响人类生产和生活的大自然灾害之一,岩土力学分析为研究岩土灾害的成因和预测提供了理论和技术基础。
3、为国家和地方政府制定和实施岩土工程安全管理政策提供技术支持。
岩土力学分析提供岩土工程稳定性和安全性评价的理论和技术方法,为制定和实施岩土工程安全管理政策提供支持和依据。
二、岩土力学分析的方法岩土力学分析方法非常丰富多样,常见的方法有试验方法、统计方法、解析方法和数值方法等。
1、试验方法。
试验方法是通过岩土实验来获取岩土力学性质和特性参数的方法,常见的试验包括岩石力学试验、土力学试验、岩土蠕变试验、抗剪试验等。
试验方法的优点是直接、直观、真实,能够准确地反映岩土材料的力学性质和特性参数,但试验方法的缺点是费时、费力、成本高。
2、统计方法。
统计方法是通过大量的实验数据来得到岩土力学参数的方法,常见的统计方法包括回归分析、主成分分析、聚类分析等。
统计方法的优点是简单、快捷,能够有效地处理大量数据,但需要注意数据的可靠性和典型性,避免统计误差。
3、解析方法。
岩土体物理力学参数
岩土体物理力学参数在边坡稳定性定量分析中,岩土体的物理力学参数往往直接控制着稳定系数和支护工程量。
常规的获取参数的方法主要有试验法、经验法、工程地质类比法、反演分析法等。
此外,当边坡稳定受成组结构面和岩桥共同控制时,仍常采用结构面连通率,即采用结构面和岩桥强度进行加权平均来求取潜在滑移面的综合抗剪强度。
以下对两种参数获取方法进行简单介绍。
1.试验法试验法一般可分为室内试验和现场试验两类。
现场试验试件尺寸一般较大,多为(50~70)cm×(50~70)cm,它能保持岩土体的原始状态,并能反映结构面二、三级起伏差对强度的影响,但加工困难,周期长,试验费用相对较高。
室内试验试件一般较小,多为扰动样,存在尺寸效应问题,但取样简单,可以开展各种不同工况下的试验,如三轴直剪试验、饱和固结快剪试验、饱和固结排水剪试验、慢剪试验等。
室内试验由于试验周期短,费用相对较低,可以大量开展。
目前,随着取样技术的发展,已具备取原状样的条件,且可在刚性伺服机上开展试验,能有效地确定有效正应力,控制剪切速度,试验成果较为真实可靠。
2.经验估算法可根据一些经验公式,如利用Hoek-Brown强度准则确定岩体的综合抗剪强度。
一般是在工程前期和缺乏试验的地区应用,该方法存在的问题是岩石强度权重偏大,应用在坚硬和极坚硬岩石中时,确定的抗剪强度常常偏高。
8.5.2 选择原则对于一些不重要或者工程前期缺乏试验资料的边坡,可通过经验法和工程地质类比法,初步确定岩土体的物理力学参数,以此估算边坡的稳定性和支护工程量。
对于一些已经失稳或正在变形的边坡,采用反演分析法来获取岩土体的物理力学参数是一种最有效的办法,但由于此时的抗剪强度已不是常规物理意义上的抗剪强度,而是岩土体抗剪强度参数、边界条件、地下水条件等因素的综合反映,因此,在应用时应严格注意条件的相似性。
同时,应考虑在工程有效期内工作条件的可能变化趋势对强度参数的影响,并适当进行调整。
《岩石力学》复习资料
《岩石力学》复习资料1.1 简述岩石与岩体的区别与联系。
答:岩石是由矿物或岩屑在地质作用下按一定的规律聚集而形成的自然物体,力学性质可在实验室测得;岩体是指由背诸如节理、裂隙、层理和断层等地质结构面切割的岩块组成的集合体,力学性质一般在野外现场进行测定,因此更接近岩体的实际情况,反映岩体的实际强度。
1.2 岩体的力学特征是什么?答:(1)不连续性:岩体受结构面的隔断,多为不连续介质,但岩块本身可作为连续介质看待;(2)各向异性:结构面有优先排列位向的趋势,随着受力岩体的结构趋向不同力学性质也各异;(3)不均匀性:结构面的方向、分布、密度及岩块的大小、形状和镶嵌状况等在各部位都很不一致,造成岩体的不均匀性;(4)岩块单元的可移动性:岩体的变形破坏往往取决于组成岩体的岩石块单元体的移动,这与岩石块本身的变形破坏共同组成岩体的变形破坏;(5)力学性质受赋存条件的影响:在一定的地质环境中,岩体赋存有不同于自重应力场的地应力场、水、气、温度以及地质历史遗留的形迹等。
1.3 岩石可分为哪三大类?它们各自的基本特点是什么?答:(1)岩浆岩:由岩浆冷凝形成的岩石,强度高、均匀性好;(2)沉积岩:由母岩在地表经风化剥蚀后产生,后经搬运、沉积和结硬成岩作用而形成的岩石,具有层理构造,强度不稳定,且具有各向异性;(3)变质岩:由岩浆岩、沉积岩或变质岩在地壳中受高温、高压及化学活动性流体的影响发生变质而形成的岩石.力学性质与变质作用的程度、性质以及原岩性质有关。
1.4 简述岩体力学的研究任务与研究内容。
研究任务:①建模与参数辨别;②确定试验方法、仪器与信息处理;③现场测试;④实际应用;研究内容:①岩石与岩体的物理力学性质(岩石的物质组成和结构特征,岩石的物理、水理性质,岩块在不同应力状态作用下的变形和强度特征,结构面的变性特征和强度参数的确定等);②岩石和岩体的本构关系(岩块的本构关系,岩体结构面分类和典型结构面本构关系,岩体的本构关系);③工程岩体的应力、变形和强度理论(岩体初始应力测量及分布规律,岩体中应力、应变和位移计算,岩体破坏机理、强度理论和工程稳定性维护与评价):④岩石(岩块)室内实验(室内实验是岩石力学研究的基本手段);⑤岩体测试和工程稳定监测(岩体原位力学实验原理和方法,岩体结构面分布规律的统计测试,岩体的应力、应变、位移检测方法及测试数据的分析利用,工程稳定准则和安全预测理论与方法)。
考虑地应力损伤的岩体质量分级和岩体力学参数的确定
考虑地应力损伤的岩体质量分级和岩体力学参数的确定刘焕新;郭奇峰;郭乔盛【摘要】Traditional RMR rock mass quality classfication do not consider the effect of in‐situ stress . The IRMR rock mass quality classfication which have considered the effect of in‐situ stress and made the correction had been applied in the three middle's roadways and stopes of - 510m 、 - 555m 、 - 600m in Sanshan island gold mine .Compared with the results of RMR rock mass quality classfication ,we can find that most results of IRMR rock mass quality classfication are worse than former ,but the rock mass quality of - 510 travelling roadway ,553 # stope and 601 # stope are at the same level in two evaluation system .So , it is more safe in tackling high in‐situ stress rock mass engineering using IRMR rock mass quality classfication ,and it more resonable and effective .We had used the IRMR grade to determine the rock mechnical parameters in all the three middle ,it can provide a basic evidence for numerical simulation study on optimization of the structural parameters of the deep stope and engineering disaster prevention and control ,and so on .% 传统的 RMR 岩体质量分类法未考虑地应力的影响。
岩体力学参数确定的方法
岩体力学参数确定的方法岩体力学参数的确定方法在岩石工程实践中,首先需要了解作为研究对象的工程岩体的力学性质,并确定其特征参数。
岩石力学参数的合理确定一直是岩石力学研究和发展的难点之一。
在应用工程力学领域,如果完整地使用经典理论力学的连续性假设和定义,就会存在理解上的问题。
必须考虑假设的合理使用范围和每个物理量的适用定义。
本文讨论了地下岩体工程中根据不同的重点确定岩体参数的方法。
1、确定岩体参数的传统方法地下巷道、硐室开挖后,围岩产生应力重分异作用,径向应力减少,切向应力增加,并且随着工程不断推进,岩体应力状态不断改变。
巷道、硐室围岩处于“三高一扰动”条件下,岩体表现的力学特性是破坏条件下的稳定失稳再平衡过程。
围岩体处于一种拉压相间出现的复杂应力状态。
该类工程岩体的力学参数的确定要进行岩体的卸荷试验研究,且要依据现场工程实际条件进行卸荷条件下的应力、渗流与温度三场耦合试验研究。
需要进行循环加卸载条件下的岩体力学特性研究,进而获得岩体的力学参数特征。
地下巷道和硐室工程岩体力学参数的确定方法如下:(1)三轴应力状态下的卸荷三场耦合力学试验,获得有关参数;(2)进行岩体流变特性试验研究,获得有关岩体的流变参数。
目前在该领域要进行大量的工作,包括设备仪器的研制等,同时还要利用新的计算机技术才会实现。
二.建立力学模型确定岩体力学参数建立工程岩体力学参数模型主要是解决复杂岩体力学参数的确定问题。
为了确定复杂岩体的力学参数,需要将工程岩体视为一个连续模型。
采用确定岩体力学参数的新方法,建立了层状斜节理岩体的力学模型,并进行了力学试验,确定了岩体的基本力学参数。
1.工程岩体力学参数模型目前,关于岩石的力学性质和划分基本上有两种观点:一种观点认为岩石本身是一种连续的非各向异性材料,另一种观点认为岩石是由多晶系统组成的,存在空洞和裂缝等缺陷,这使得岩石本身的结构表现出各向异性和不连续性。
岩体一般被视为不连续介质,但在一定条件下仍满足连续介质力学的基本假设。
第四章岩体的基本力学性质
结构面的状态对岩体的工程性质的影响是指结构面的产状、形 态、延展尺度、发育程度、密集程度。 结构面的产状:结构面的产状对岩体是否沿某一结构面滑动起控 制作用。 结构面的形态:结构面的形态决定结构面抗滑力的大小,当结构 面的起伏程度较大,粗糙度高时,其抗滑力就大。 结构面的延展尺度:在工程岩体范围内,延展尺度大的结构面, 完全控制岩体的强度。 结构面的密集程度:以岩体的裂隙度和切割度表征岩体结构面的 密集程度。
又A=h2,节理面的法向弹性变形量δ0=2δ,代入Boussnisq解,得 接触面为方形时,m=0.95,μ≅0.25,则上式变为
(二)节理的闭合变形 含啮合变形(配称实验)和压碎变形(非配称实验)。 下面介绍Goodman方法:
(1)结构面闭合试验(VmC的确定) 步骤: 1)备制试件; 2)作ζ-ε曲线(a); 3)将试件切开,并配 称接触再作曲线(b); 4)非配称接触,作曲线(c); 5)两种节理的可压缩性法向 Nhomakorabea切向
(1)有n个点接触,每个接触 面边长为h
(2)每个接触面受力相同
(3)每个接触面力学特性 相同
2、计算公式 半无限体上作用一个集中力的布辛涅斯克(Boussnisq)解
δ-变形量;Q-荷载;A-荷载作用面积;E、μ-弹性模量、泊 松比;m-与荷载面积形状因素有关的系数,方形面积m=0.95 设节理面的边长为d,作用于节理面上的应力为ζ,则作用 在每一个接触面上的荷载
统计结构面 实测结构面
V 级结构面--细小的结构面
• Ⅰ级 指大断层或区域性断层。控制工程建设地区的地壳稳 定性,直接影响工程岩体稳定性;
• Ⅱ级 指延伸长而宽度不大的区域性地质界面。 • Ⅲ级 指长度数十米至数百米的断层、区域性节理、延伸较 好的层面及层间错动等。 Ⅱ、Ⅲ级结构面控制着工程岩体力学作用的边界条件 和破坏方式,它们的组合往往构成可能滑移岩体的边界面 ,直接威胁工程安全稳定性
北京交通大学高等岩石力学1 岩石与岩体的力学特性
第Ⅰ类岩石
第Ⅱ类岩石
大理岩
花岗岩
(c)
凝灰岩
(d)
绿色凝灰岩
日本河津凝灰岩
日本秋芳大理岩
日本稻田花岗岩
秋芳大理岩
稻田花岗岩 河津凝灰岩
葛修润等人(1994)对此峰后曲线提出了不同的看 法,认为所谓的Ⅱ型曲线只不过是人为控制造成的, 实际上并不存在。
圆锥形破坏
柱状劈裂破坏
圆锥形破坏试件内应 力状态
【思考】:如果一个试件上
面软下面硬,在单轴压缩下
会出现什么样破坏。
软
硬
6 岩石的变形参数的确定 岩石的变形参数主要是弹性模量和泊松比。 若岩石为线弹性材料(满足虎克定律) 弹性模量
泊松比
岩石弹性模量的三种计算方法 (1)切线模量
0
(2)割线模量
2 测试内容
1. 轴向荷载;
2. 轴向变形; 符号规定: 3. 径向变形; 压 、缩—— + 4. 轴向应变 ; 拉 、胀—— - 5. 径向应变 。
3 试验数据整理
——试件的轴向应力; P——试件的轴向荷载; D, H——试件的直径和高度。
P
x z
y
体积应变:
P
根据以上的试验测量结果,可以绘制岩石的轴 向应力——轴向应变关系曲线、轴向应力——径向 应变关系曲线、轴向应变——横向应变关系曲线以 及轴向应力——体积应变的关系曲线等 。
通常把岩石由脆性转化为延性的临界围压称为 转化压力。
7) 三轴压缩下的破坏特点
8) 三轴压缩实验资料整理
三轴压缩试验的最主要目的就是确定岩石的强度准 则,通常将同一批试件(5~7块)在不同围压下达到破 坏时的极限莫尔圆绘制在同一坐标系下,然后再绘出这 些莫尔圆的外包络线,即岩石的强度曲线。
岩体强度和力学参数.ppt
mb , S, a
--岩体力学参数
GSI根据岩体所处的地质环境、岩体结构特性和表面特性来确 定。但以往在岩体结构的描述或岩体结构的形态描述中缺乏 定量化, 难以准确确定岩体的 GSI 值。为使其描述定量化 , 引入岩体质量 RMR 分级法定量确定岩体质量等级。根据 Z. T. Bieniawski研究认为 , 修正后的 RMR 指标值与 GSI 值 具有等效关系, 确定修正后的 RMR 指标值, 即得出 GSI值。 RMR 分级方法是采用多因素得分, 然后求其代数和 (RMR 值 ) 来评价岩体质量。参与评分的 6 因素 : 岩石单轴抗压强度 ; 岩石质量指标 RQD; 节理间距; 节理性状; 地下水状态; 节 理产状与巷道轴线的关系。在 1989年的修正版中, 不但对评 分标准进行了修正 , 而且对第 4项因素进行了详细分解 , 即 节理性状包括 : 节理长度 ; 间隙 ; 粗糙度 ; 充填物性质和 厚度; 风化程度。 实际应用中应在现场工程地质调查的基 础上, 进行岩体质量指标 RMR 的分析与评价 , 需结合矿区 实际, 在确定优势结构面组后 , 再根据结构面产状与巷道轴 线的关系来确定岩体 RMR 分级节理方向的修正值, 得出岩体 RMR 评分值 , 确定岩体质量等级。( 参 考 盛 佳 和 李 向 东 基 于 Hoek- Brown强度准则的岩体力学参数确定方法)
岩体强度估算的经验办法
基于岩体弹性波传播速度的经验公式 1)1970 年,日本 Ikeda 提出岩体单轴抗压强度与岩体纵波波速 2 及岩石纵波波速的关系 m
m i , V , , V cm p ci P -- 分别为岩体和岩石的单轴抗压强度与纵波波
cm V p Vi ci p
GSI指标定量化第二种确定方法
基于Hoek-Brown_准则的岩体力学参数确定
型, 利用样本信息对力学参数进行空间插值。
相比较而言, 室内试验法在岩体力学参数的
确定过程中最为直接且应用是较为广泛的。 由于
室内试验采用的岩样一般是完整岩体, 而实际上
岩体受到节理构造、 风化、 裂隙、 软弱结构面等
根据各试验需求, 共制备岩样 30 个, 其中顶
Copyright©博看网. All Rights Reserved.
高 颖等: 基于 Hoek -Brown 准则的岩体力学参数确定
5期
9
岩土力学
ρ=
M
AH
(1)
式中: M 表示为自然状态下岩样的重量, g; A 表示
为各岩样横截面的平均面积, cm2 ; H 表示岩样的
平均高度, cm。
2 3 单轴压缩试验
应变值; ε d ( 50 ) 为 50%单轴抗压强度对应的径向应
变值。
根据试验 过 程 中 采 集 到 的 应 力 和 应 变 数 据,
对矿区顶底板以及磷矿层分别绘制应力 - 应变关
系曲线, 如图 2。 根据相应的关系曲线得到单轴
抗压强度的 样压缩应力-应变关系曲线
则对参数计算结果进行折减, 并进一步对经验准则中引入的扰动系数 D、 地质强度指标 GSI 以及完整岩石材料
常数 m i 的取值进行分析。 经过折减后, 其结果表明, 经折减后的力学参数综合考虑了更多的现场因素, 使试验
结果更准确, 提高了后续现场相关工作的准确性。
关键词: 岩体力学参数; Hoek-Brown 经验公式; 强度折减法; 地质强度指标; 室内实验
体特点大致可看作北高南低, 山岭由西南向东北
延伸, 其形状似长蛇状。 除此之外, 从矿区构造
岩体力学
1.岩体力学的定义:岩体力学主要是研究岩石和岩体力学性能的一门学科。
是探讨岩石和岩体在其周围物理环境(力场、温度场、地下水等)发生变化后,作出响应的一门力学分支。
2.岩石的定义:岩石是矿物或岩屑地质作用下按一定的规律聚集而形成的自然物体。
3.岩体的定义:在岩体力学中,通常将在一定工程范围内的自然地质体称为岩体。
4.结构面的定义:所谓结构面,是指具有极低的或没有抗体强度的不连续面5.岩石的力学特征:1.不连续性.2.各向异性.3.不均匀性.4.赋存地质因子的特性.6.学派:1.地质力学的岩石力学派。
2.工程岩石力学派。
第二章1.岩石的基本物理性质:1.岩石的密度指标。
2.岩石的孔隙性。
3.岩石的水理性质。
4.岩石的抗风化指标。
5.岩石的其他特性。
2.岩石的强度特性:所谓强度,是指材料在荷载作用下,所能承受的最大的单位面积上的力。
通常研究岩石的单轴抗压强度(无侧限压缩强度)、抗拉强度、剪切强度、三轴压缩强度等。
在单向压缩荷载作用下试件的破坏形态:1.圆锥形破坏。
2.柱状劈裂破坏。
3.四种强度特性:1.岩石的单轴抗压强度。
2.岩石的抗拉强度。
3.岩石的抗剪强度。
4.岩石在三向压缩应力作用下的强度。
4.岩石三向压缩强度的影响因素:1.侧向压力的影响。
2.试件尺寸与加载速率的影响。
3.加载路径对岩石三向压缩强度的影响。
4.孔隙压力对岩石三向压缩强度的影响。
5.岩石应力应变全过程曲线(略)6.岩石的流变性包含着三部分的内容:岩石的蠕变、岩石的应力松弛、岩石的长期强度。
7.所谓的蠕变是指岩石在恒定的外力作用下,应变随时间的增长而增长的特性,也称作徐变。
8.典型蠕变曲线(略)。
9.影响岩石蠕变的主要因素:1.应力水平对蠕变的影响。
(不能太大也不能太小,中等应力水平(60%-90%)峰值)2.温度、湿度对蠕变的影响。
10.岩石介质力学模型:1.基本力学介质模型:弹性介质模型、塑性介质模型、粘性介质模型。
2.常用的岩石介质模型:弹塑性介质模型、粘弹性介质模型:马克斯韦尔模型、凯尔文模型。
浅议边坡岩体力学参数的确定方法
而葺
科技 论坛 ห้องสมุดไป่ตู้
浅议边 坡岩 体力学 参数 的确 定方
谭 力 良
( 深圳市岩 土综合勘察设计有限公 司, 广东 深圳 5 87 ) 1 12
摘 要 : 力学参数 的合理确定 已成为边坡工程 理论分析和设计计算的瓶 颈问题 , 岩体 总结 了 定岩体力学参数计算值 的常用方法和影 响参数 确 选取的主要因素 , 指出边坡岩体 力学参数的确定应用 多种方法 , 已获得合理可行的结果 。 关键词: 边坡岩体 ; 力学参数 ; 计算值
预测 。
就是真值。 3标准值: ) 取一定数量 同性质岩体的实验值 , 用一定的统计分析方法
( 如果解法 、 算数平均法、 小值平均法、 最小二乘法 、 中心法和优定斜 点群
率法等)舍去不合理的离散值, , 并进行经验修正后 , 的实验成果综合 所求 值称为标准值, 显然, 只要试验合理 , 试件状态与实际地址条件相似。 其标 准值可近似理解为真值。 4 计算值: ) 计算值是供设计和稳定验算时使用的量值 。 就边坡岩体而 言, 地址建议值或建成“ 建议值” 即为计算值。当边坡岩土质量十分单一和 均匀时 , t准值可近似作为 “ J, C ̄ 计算值 ” 但有时也应做适度的调整。此外 , 应以其各自力学组合来表现, 例如以其 “ 标准值 ” 的加权平均值为基础 , 根 据诸多工程地质因素做出适 当调整后所求的参数值 , 可作为 : “ 计算值” 。
l 岩体中相关术语的概念 1真值 : ) 真值是某一岩体或试件客观存在的力学参数真实值。 2 实验值 : ) 实验值是指在进行 岩体力学试验时 , 按规定的取值方法所 得到的试验成果值, 容易理解 , 对试件本身而言 , 只要试验合理 , 其实验值 值, 工程类 比方法的关键是类 比对象的相似性, 通过对岩体结构面的分布 情况 , 结构面的性质 以及地下室作用等岩体工程地址性质的研究, 充分利 用有限试验资料 , 对工程性质相似 的结构面或工程岩体 , 根据现场试验资 料采用定量类比方法进行参数取值 , 确定 ̄i ¥ - 值。 1 9 6数值计算法 : ) 近年来 , 随着计算机技术的飞速发展 , 采用计算机模 拟试验 , 研究岩体力学参数取值也逐步得到 了发展 , 数值计算方法是在地 址条差和岩体力学试验成果 的基础上利用数值模拟软件建立尺寸度工程 岩体概化模型, 进行不 同尺寸数值模拟试验 , 研究裂缝岩体的“ 代表单元” 确定工程岩体宏观力学参数。 3 影响力学参数计算值 的主要 因素 1边坡岩体地质质量及其分布。边坡岩体地质质量及其分布规律影 ) 响其力学参数计算值的首要因素 ,例如 ,岩石粘聚力为 c 岩石的内摩擦 角, 岩石单周抗压强度 8、 不连续 面密度 、 风化高度 、 底基岩性 、 岩体结构 ( 块状 、 层状、 碎裂 、 散体)主要结构面的状态( , 包括构面的物质组成 , 结构 面的延展性与贯通性 ,结构 面的平整光滑程度 , 平直完整程度 以 及起伏 差, 结构面的平整光滑程度 , 平直完整吃你高度 以及起伏差 , 结构面的密 集程度等 ) , 及岩石的蚀变特征等直接影响着边坡岩体力学参 ̄i算值的 - I -
岩体力学知识点
岩石由矿物或岩屑在地质作用下按一定规律聚集而成的自然物体。
岩体 由岩块和结构面共同组成的具有一定结构并赋存于一定地质环境中的地质体。
结构面 岩体内具有一定方向、延展较大、厚度较小的面状地质界面。
结构体 由不同产状的结构面组合切割而形成的单元体。
岩体结构1.结构面的发育程度及其组合关系。
2.结构体的规模、形态及其排列形式所表现的空间形态。
岩石的物理力学参数1.密度指标:岩石的颗粒密度s ρ、天然密度ρ、干密度d ρ、饱和密度sa ρ。
2.孔隙性:孔隙比e 、孔隙率n 。
3.水理性质:含水率ω、自由吸水率a W 、饱和吸水率sa W 、渗透系数K 。
4.抗风化特性:软化系数η、耐崩解性指数d I 、自由膨胀率H V 、侧向约束膨胀率HP V 、膨胀压力。
5.抗冻性:抗冻性系数f K 。
刚性试验机工作原理当试验机刚度Km 大于岩石刚度Ks 时,在相同的条件下,试验机附加给岩石的能量比岩石所能承受的能量小,要岩石继续产生应变必须依靠外荷载的加载做功才能实现。
因此,当试验机刚度大于岩石刚度时,才能记录下岩石峰值强度后的应力-应变曲线。
曲线形态 岩石特性 代表岩石直线型(弹脆性) 具有很明显的弹性特性的岩石 石英岩 玄武岩下凹型(弹塑性) 具有明显的塑形变形的岩石 石灰岩 粉砂岩上凹型(塑弹性) 具有较大的孔隙但较为坚硬的岩石 片麻岩S 型(塑弹塑型) 多孔且具有明显塑性的岩石大理石岩石应力—应变全过程曲线:指在刚性试验机上进行试验所获得的包括岩石达到峰值应力之后的应力—应变曲线。
压密阶段:岩石内的微裂隙在外力作用下发生闭合,岩石压密。
曲线上凹,应变率随应力增加而减小,为不可恢复的塑性变形。
弹性阶段:初期裂隙压密后,岩石强度暂趋稳定。
曲线近似呈直线,弹性模量为常熟,很大程度上为可恢复的弹性变形。
(弹性模量泊松比)塑性阶段:曲线呈下凹状,有应变软化现象;塑性变形,变形不可恢复。
应变软化阶段:曲线斜率为负,软化现象显著,试件承载力随变形的增大而迅速下降。
岩石力学参数手册
岩石力学参数手册第一章绪论本手册旨在为岩石力学领域的研究人员和工程师提供岩石力学参数的参考。
本手册主要包括岩石力学常用参数的定义和计算公式,以及它们在不同力学实验和工程应用中的应用范围和限制。
第二章岩石力学常用参数1. 弹性模量弹性模量是描述岩石本身抵抗变形能力的参数,也是岩石变形受力学响应的基础。
其定义为应力和应变之比,通常用“E”来表示,单位为千帕。
2. 泊松比泊松比是描述岩石沿某一方向的压缩(或伸长)应变与其在与该方向垂直的方向上相应的膨胀(或收缩)应变之比。
其定义为侧向应变和轴向应变之比,通常用“ν”来表示,无单位。
3. 抗拉强度抗拉强度是指岩石在拉伸状态下最大额外应力强度。
其计算公式为:σt = F/Aσt为抗拉强度,F为最小应变强度,A为岩石断面积。
5. 黏聚力黏聚力是指岩石在未承受分开应力的情况下的最小阻抗力。
其计算公式为:C = 2F/πDC为黏聚力,F为最小阻抗力,D为岩石的直径。
弹性模量试验是通过施加单轴应力或三轴应力来测定岩石的弹性模量。
单轴应力试验主要是通过塑性直线版或岩石试件测定岩石的应力-应变关系,然后确定弹性模量;而三轴应力试验则是通过在三个轴向上施加正、负应力,测定岩石的应力-应变关系,并计算弹性模量。
拉压强度试验是通过塑性直线版或岩石试件施加拉伸或压缩应力来测定岩石的抗拉强度和抗压强度。
拉伸试验通常使用高精度万能试验机,测定点状试件的应变和应力,然后计算抗拉强度;而压缩试验则是将岩石试件置于弹塑料中,测量其最小阻抗力,并计算抗压强度。
4. 断裂韧性试验断裂韧性试验是通过岩石试件施加脆性、韧性和折断初始应力来测定其断裂韧性。
该试验通常通过在岩石试件上使用弯曲粘着板,以爆破等方式施加应力,获得岩石试件的断裂韧性。
岩石力学参数的应用主要分为两个方向:一是在岩石力学基础研究方面,如岩石变形特性、岩石破裂机制研究等;二是在岩石工程实践中的应用,如隧道开挖稳定性评估、堆石坝安全分析等。
基于hoek-brown准则的岩体力学参数取值
一、概述岩体力学参数是描述岩石力学性质的重要参数,对于岩体工程稳定性分析和设计具有重要意义。
在确定岩体力学参数时,常常会采用hoek-brown 准则来进行分析和计算。
hoek-brown 准则是一种经验性准则,广泛应用于岩石力学领域,其理论基础稳固可靠,因此在实际工程中得到了广泛的应用。
二、hoek-brown准则hoek-brown 准则是由英国学者hoek 和 brown 提出的一种用于确定岩体力学参数的理论模型。
该准则主要包括两个方面的内容,即岩石的强度和岩石的变形性质。
hoek-brown 准则在岩石力学参数的确定中起着至关重要的作用,它不仅具有一定的理论基础,而且在实际应用中取得了较好的效果。
三、岩体力学参数确定岩体力学参数是进行岩体工程稳定性分析和设计的基础工作。
常见的岩体力学参数包括岩石的弹性模量、泊松比、抗压强度和抗拉强度等。
这些参数是描述岩石力学性质的重要指标,对于岩体工程的稳定性和安全性具有重要的影响。
四、hoek-brown准则在岩体力学参数取值中的应用hoek-brown 准则在岩体力学参数的确定中广泛应用,其具体应用步骤如下:1. 收集岩体样本数据。
首先需要收集岩体样本数据,包括岩石的物理性质、力学性质和变形性质等。
2. 进行实验测试。
在收集岩体样本数据的基础上,需要进行实验测试,对岩石的力学性质进行全面的测试和分析。
3. 应用hoek-brown 准则进行拟合分析。
在进行实验测试后,可以将得到的数据应用到hoek-brown 准则中进行拟合分析,进而确定岩体的力学参数。
五、影响岩体力学参数取值的因素在确定岩体力学参数时,会受到多种因素的影响。
主要的影响因素包括岩石的岩性、地质构造、应力状态、温度和湿度等。
这些因素对岩体力学参数的取值都会产生一定的影响,因此在确定岩体力学参数时需要进行全面的考虑和分析。
六、确定岩体力学参数的意义确定岩体力学参数的意义主要体现在以下几个方面:1. 对于岩体工程稳定性分析和设计具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了合理地进行岩土工程及地下工程设计和施工,必须确切了解岩土特性 及其由于自重、外部荷载或边界条件的变化而引起的岩体应力、变形及破坏的 发展规律,对岩体的稳定性做出正确的评价。 研究岩土力学问题,应以固体力学原理为基础,充分考虑其多相构造、加 载途径、时间效应、温度效应、胶结性质、节理裂隙、各向异性等特殊性质。 但由于岩体是含有大量裂隙、多相介质的复合体,含有地层形成过程中产生的 层理、节理、破碎带等异常地质结构,此外还有在采动过程中产生的裂隙以及 岩体的破碎等。要准确地把握这种材料的力学性能是异常艰难的。这就严重制 约着人们准确地获得问题的条件及岩体应力应变本构关系并建立相应的力学模 型,因此常常无法获得问题的精确解。 目前的处理方法大多只能是从宏观上来把握这种材料的力学特性,即把握 岩体的宏观力学特性,并在某种假定下对问题进行简化,如简化为平面应变问 题,或开展大量的现场试验研究。
第三节 岩石(体)力学参数的合理确定
由于岩体的力学参数受到岩块的力学性质、结构面的分布情况、结构面的性 质及地下水作用等因素的影响。 因此,采用岩体工程质量分级法对岩体力学参数进行选择,无疑是一种比较 实用的方法。 其中,RMR岩体分级法提供了计算岩体力学参数的公式,而《工程岩体分级
标准》所提供的分级法则提供了不同工程质量岩体力学参数的参考值,两者都
第一节 岩体的力学特性
岩石与岩体力学参数的关系,岩体力学参数与围压的关系,是岩石力学中 尚未很好解决的难题。 如何评价受采动影响岩体的力学特性是数值模拟结果可靠与否的关键。 一般都从岩体受力后表现的宏观表征来描述,即利用试验得出的岩体应力 一应变关系,应用曲线拟合或弹塑性理论及其他理论建立本构模型。这样可以 忽略岩块之间接触的所有细节,而采用状态参数来描述岩体力学特性,根据状 态参数建立起岩体应力一应变之间的联系。
第二节 岩石与岩体力学参数的关系
图5-3 岩体与岩石力学参数关系的统计分析 (a)杨氏模量;(b)单轴抗拉强度;(c)单轴抗压强度;(d)泊松比
第二节 岩石与岩体力学参数的关系
(1)现场测试的杨氏模量(y)和实验室测试的杨氏模量(x)之间符合方
程Y=0.469x;
(2)现场测试的单轴抗拉强度(y)和实验室测试的单轴抗拉强度(x)之 间符合方程y=0.5x; (3)现场测试的单轴抗压强度(y)和实验室测试的单轴抗压强度(x)之 间符合方程y=0.284x; (4)现场测试的泊松比(y)和实验室测试的泊松比(x)之间几乎符合方 程y=x,即泊松比几乎没有什么变化。
第一节 岩体的力学特性
一、岩石单轴压缩试验
图5-1 不同岩性岩石单轴压缩试验的全应力-应变曲线 (a)泥岩;(b)砂质页岩;(c)细砂岩;(d)中砂岩
第一节 岩体的力学特性
二、岩石三轴压缩试验
图5-2 岩石全应力-应变曲线及体积应变曲线 (a)应力-应变曲线;(b)体积应变曲线
大量的岩石三轴试验表明:岩石的塑性软化特性和剪胀性是岩石材料的特 有性质,研究煤矿巷道围岩稳定性时,尤其要充分考虑这两大特性。
法。现场原位试验得到的参数固然准确可靠,但试验代价却很昂贵,只能在一
些相当重要的大型工程中进行。因此,对一般岩体工程来说,往往在室内岩块 试验基础上,通过折减的办法来估计岩体的力学参数,但这种方式主观性比较 强,选择的随意性大。由于岩体的力学参数表现出明显的随机性,且获得这些 参数十分困难,通常都采用数理统计方法来研究岩体的力学特性。
第三节 岩石(体)力学参数的合理确定
一、描述岩体力学特性的参数 假定岩石峰后软化阶段任一点的应力状态均满足强度准则,处于强度破坏的临 界状态,取岩石在峰后阶段任一点的应力状态(σ1、σ2、σ3),认为岩石在该点 应力状态下由弹性状态达到塑性屈服的岩石具有相同的强度。岩石在峰后任一 点的广义粘聚力和广义内摩擦角与在该点应力状态下由弹性状态达到塑性屈服 岩石的粘聚力和内摩擦角具有相同的量值。岩石刚进入峰后应变软化状态和已 经处于残余应力状态时的屈服面不同。在相同围压作用下,由于岩体破碎程度 不同,使屈服面不相同,过屈服面的切线的斜率(内摩擦角)和纵坐标上的截距 (粘聚力)也不相同。这反应了岩体峰后应变软化的力学特性。广义剪胀角是用来
第二节 岩石与岩体力学参数的关系
由于数值模拟结果的可靠性很大程度上依赖于岩体力学参数的选取,选取不同 的力学参数将会产生不同的计算结果。若岩体力学参数选取不当,有时会产生错误
的结果,对工程实践会起误导作用。
如何选取节理岩体的力学参数,一个值得研究的问题。
然而由于岩体材料的复杂性,目前在力学参数选取方面还没有一套成熟的方
第一节 岩体的力学特性
岩体破坏可以分为脆性破坏和塑性破坏两种形式。
由于岩体赋存环境的变异性,不能期望得到岩体参数的精确值,只能通
过实验室试验或通过对岩体宏观特性的统计分析来预测或估算岩体强度和变 形的可能范围。 经过试验对比,一般都认为诸如弹性模量、粘聚力和抗拉强度等煤岩体 力学性质的参数取值往往只有煤岩块相应参数值的1/5~1/3,有的差别可能 更大,比值达到1/20~1/10,而煤岩体的泊松比一般为煤岩块泊松比的 1.2~1.4倍。
可以用于指导工程实践。
பைடு நூலகம்
第三节 岩石(体)力学参数的合理确定
一、描述岩体力学特性的参数
岩石的力学参数是通过实验室三轴压缩试验获得的,主要包括杨氏模量E、 材料的泊松比μ、抗拉强度σt、体积力γ、粘聚力C、内摩擦角、剪胀角ψ等。
在岩土工程中,一般常用粘聚力和内摩擦角描述岩石的力学特性。本文从 工程实用的角度出发,根据粘聚力和内摩擦角的概念,引入广义粘聚力、广 义内摩擦角和广义剪胀角,以此描述岩体的力学特性。
第一节 岩体的力学特性
岩石的力学特性是通过实验室的三轴压缩试验获得的,实验室三轴压缩 试验可分为常规试验和真三轴试验,其中常规三轴试验是在径向压力(围 压)σr(σr=σ2=σ3)不变的情况下,增加轴向压力σ1直到岩石试件破坏,得 到某一围压作用下的应力-应变曲线,通过改变围压大小,得到一组不同围 压作用下的全应力-应变曲线。而真三轴压缩试验是在不同的侧压作用下, 即σ2≠σ3时,获得的全应力一应变曲线。