SPSS分析报告实例.docx
spss的数据分析报告范例
spss的数据分析报告范例一、引言数据分析是科学研究过程中不可或缺的一部分。
针对一项研究项目,本报告将借助SPSS软件对收集的数据进行详尽分析,并提供相关结果和结论。
本报告的目的是帮助读者更好地理解数据,提供决策和制定战略所需的支持。
二、研究方法本研究的数据来源于一份问卷调查,共收集了500份有效问卷。
在问卷设计中,我们采用了随机抽样的方法,以保证样本的代表性。
该问卷包括了参与者的基本背景信息、满意度评价等方面的问题。
三、数据分析1. 受访者基本背景首先,我们对受访者的基本背景信息进行了统计分析。
其中包括性别、年龄、教育水平和职业等因素。
以下是相关结果的总结:(1)性别分布:男性占65%,女性占35%。
(2)年龄分布:年龄在18-24岁的受访者占40%;25-34岁的占30%;35-44岁的占20%;45岁及以上的占10%。
(3)教育水平:高中或以下占20%;本科占50%;研究生及以上占30%。
(4)职业:学生占25%;职员占40%;自由职业者占20%;其他占15%。
2. 满意度评价为了了解受访者对某产品的满意度,我们设计了一套评价体系。
通过SPSS软件进行数据分析,得到以下结果:(1)整体满意度:根据赋分制度,平均满意度得分为4.2(满分为5),表明受访者对该产品整体上持较高满意度。
(2)各项指标:通过因子分析,我们得到了几个影响满意度的关键因素。
其中,产品质量、价格和售后服务被认为是受访者最关注的方面。
3. 相关性分析在数据分析过程中,我们还进行了一些相关性分析,以探究不同变量之间的关系。
以下是一些值得关注的相关性结果:(1)性别与满意度之间的关系:经过卡方检验,我们发现性别与满意度之间存在一定的相关性(p < 0.05),女性对产品的满意度略高于男性。
(2)年龄与满意度之间的关系:通过相关系数分析,我们发现年龄与满意度呈现出弱相关关系(r = 0.15,p < 0.05),年龄越小,满意度越高。
SPSS分析报告(二)
SPSS实验分析报告二一、婆媳关系*住房条件检验(一)、提出原假设H0原假设: 婆媳关系的好坏程度与住房条件有关系(二)、两独立样本t检验结果及分析表(一)觀察值處理摘要觀察值有效遺漏總計N百分比N百分比N百分比婆媳关系* 住房条件600100.0%00.0%600100.0%由表(一)可知, 本次调查获得的有效样本为600份, 没有遗漏的个案。
表(二)婆媳关系*住房条件交叉列表住房条件總計差一般好婆媳关系紧张計數577860195預期計數48.868.378.0195.0婆媳关系內的%29.2%40.0%30.8%100.0%住房条件內的%38.0%37.1%25.0%32.5%佔總計的百分比9.5%13.0%10.0%32.5%殘差8.39.8-18.0一般計數458763195預期計數48.868.378.0195.0婆媳关系內的%23.1%44.6%32.3%100.0%住房条件內的%30.0%41.4%26.3%32.5%佔總計的百分比7.5%14.5%10.5%32.5%殘差-3.818.8-15.0好計數4845117210預期計數52.573.584.0210.0婆媳关系內的%22.9%21.4%55.7%100.0%住房条件內的%32.0%21.4%48.8%35.0%佔總計的百分比8.0%7.5%19.5%35.0%殘差-4.5-28.533.0總計計數150210240600預期計數150.0210.0240.0600.0婆媳关系內的%25.0%35.0%40.0%100.0%住房条件內的%100.0%100.0%100.0%100.0%佔總計的百分比25.0%35.0%40.0%100.0%由表(二)可知, 一共调查了600人, 其中婆媳关系紧张的组有195人, 占总人数的32.5%;婆媳关系一般的组有195人, 占总人数的32.5%;婆媳关系好的组有210人, 占总人数的35.0%;数据分布均匀。
spss案例分析报告(精选)
spss案例分析报告(精选)本文通过分析一份 SPSS 数据,展示 SPSS 在统计分析中的应用。
数据概述本数据为一家咖啡馆的销售数据,共有 200 条记录,包括 7 个变量:日期、时间、收银员、商品名、销售价格、数量和总价。
SPSS 分析1. 描述性统计使用 SPSS 的描述性统计功能,可以获取数据的基本信息,如均值、标准偏差、最大值、最小值等。
其中,销售价格的均值为 44.71 元,标准偏差为 13.29 元,最小值为 23 元,最大值为 78 元。
数量的均值为 1.62 个,标准偏差为 0.51 个,最小值为 1 个,最大值为3 个。
总价的均值为 73.25 元,标准偏差为 21.89 元,最小值为 23 元,最大值为 156 元。
2. 单样本 t 检验假设一杯咖啡的平均售价为 50 元,我们可以使用单样本 t 检验对这个假设进行检验。
首先,我们需要用 SPSS 的数据透视表功能,计算出每杯咖啡的平均售价。
然后,使用单样本 t 检验功能,输入样本均值、假设的总体均值(50 元)、样本标准差、样本大小以及置信度水平。
在这个数据集中,单样本 t 检验得出的 t 值为 -2.36,P 值为 0.019,显著性水平为 0.05,因此我们可以拒绝原假设,认为该咖啡馆的咖啡售价不是 50 元。
4. 相关分析假设我们想要了解商品数量和销售额之间的关系,我们可以使用 SPSS 的相关分析功能来进行分析。
首先,我们需要使用数据透视表功能,计算出每个订单的总价和数量。
然后,使用相关分析功能,输入这两个变量的值,得出相关系数和显著性水平。
在这个数据集中,商品数量和销售额之间的相关系数为 0.749,P 值为 0,显著性水平非常显著。
因此,我们可以认为商品数量和销售额之间存在极强的正相关关系。
结论本文通过 SPSS 对一份咖啡馆销售数据进行分析,展示了 SPSS 在统计分析中的应用。
通过描述性统计、单样本 t 检验、双样本 t 检验和相关分析等功能,我们可以获得数据的基本信息,检验假设,分析变量之间的关系,从而帮助企业更好地决策和管理。
SPSS数据分析报告金典模板三篇
SPSS数据分析报告金典模板三篇SPSS数据分析报告(模板一)学院:经济管理学院专业、班级: **人资*班学生姓名:某某人学二○一*年十一月十一日SPSS数据分析报告第一部分:原始资料和数据资料来源:华东交通大学经济管理学院11级人力资源管理3班29名同学实际情况编号姓名性别学科背景年龄身高体重体测成绩1 吕鑫0 文科20.5 164.2 54.2 812 王阳0 文科20 158.3 46.2 753 洪华阳0 理科21 171 57.2 714 刘卫秀0 理科21 165.5 54 755 吴梦琦0 文科21 166.2 48 696 韩玮0 文科20 164.3 47 617 汤丽娟0 文科21 162.8 48.2 668 江桂英0 理科20 157.2 44.2 709 熊如意0 文科20 166.5 54.5 7310 余婵0 文科19.5 156.2 45.5 7711 彭茜0 文科20 165.4 52.4 6612 赵丹0 文科20.5 174.3 55.6 7613 安怡君0 文科20 175 56.2 7214 武阳帆0 文科20.5 162.4 55.5 6715 倪亚萍0 文科22 157.5 48.6 7416 张明辉 1 文科21.5 170 60 7117 张春旭 1 理科20.5 168.5 57.8 8018 刘晓伟 1 文科21 170.5 59.5 7019 黄炜 1 文科20.5 171 62.2 7620 李强 1 文科20.5 167.5 56.5 6821 温明煌 1 文科21.5 170 60 7522 雷翀翀 1 理科21 168.5 60 7923 陈志强 1 文科22 180 70.4 7924 尹传萍 1 文科21.5 165.2 55.6 7825 郑南 1 理科21.5 168.5 55.9 6426 幸恒恒 1 文科21.5 168.5 58 7927 李拓 1 理科21.5 172 68.1 6628 张发宝 1 理科21 160.5 52.5 7329 杨涛 1 理科21.5 176 70.5 72原始资料和数据(SPSS软件截图):图1 变量视图图2 数据视图第二部分:数据分析一、描述性分析打开文件“11人资3班29名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择年龄、体重和身高,求最大值、最小值、方差、偏度、峰度和均值,得到如下结果:表1-2年龄分布表年龄频率百分比有效百分比累积百分比有效19.50 1 3.4 3.4 3.420.00 6 20.7 20.7 24.120.50 6 20.7 20.7 44.821.00 7 24.1 24.1 69.021.50 7 24.1 24.1 93.122.00 2 6.9 6.9 100.0合计29 100.0 100.0图1-3身高分布直方图图1-4体重分布条形图文字描述:从SPSS 分析结果中可以得出,有效数据共有29个。
(完整word版)SPSS方差分析案例实例
SPSS第二次作业——方差分析1、案例背景:在一些大型考试中,为了保证结果的准确和一致性,通常针对一些主观题,都采取由多个老师共同评审的办法。
在评分过程中,老师对学生的信息不可见,同时也无法看到其他评分,保证了结果的公正性。
然而也有特殊情况的发生,导致了成绩的不稳定,这就使得对不同教师的评分标准考察变得十分必要。
2、案例所需资料及数据的获取方式和表述,变量的含义以及类型:所需资料:抽样某地某次考试中不同教师对不同的题目的学生成绩的评分;获取方式:让一组学生前后参加四次考试,由三位教师进行批改后收集数据;变量含义、类型:一份试卷的每道主观题由三名教师进行评定,3个教师的评定结果可看成事从同一总体中抽出的3个区组,它们在四次评定的成绩是相关样本。
表1如下:3、分析方法:用方差分析的方法对四个总体的平均数差异进行综合性的F检验。
4、数据的检验和预处理:a) 奇异点的剔除:经检验得无奇异点的剔除;b) 缺失值的补齐:无;c) 变量的转换(虚拟变量、变量变换):无;d) 对于所用方法的假设条件的检验:进行正态性和方差齐性的检验。
✓正态性,用QQ图进行分析得下图:得到近似满足正态性。
✓对方差齐性的检验:用SPSS对方差齐性的分析得下表:Test of Homogeneity of Variances分数Levene Statistic df1 df2 Sig..732 2 9 .508易知P〉0.05,接受方差齐性的假设。
5、分析过程:a) 所用方法:单因素方差分析;方差分析中的多重比较。
b) 方法细节:●单因素方差分析第一步,提出假设:H0:μ1=μ2=μ3;(教师的评定基本合理,即均值相同)H1:μi(i=1,2,3)不全相等;(教师的评定不够合理,均值有差异)第二步,为检验H0是否成立,首先计算以下统计量:1,计算水平均值及总体均值:表2 三位教师评选结果的均值2-计算平方和和自由度:总离差平方和:SST=211)-(∑∑==ki n j iij x x =16.947,自由度为n-1=11组内离差平方和:SSE=211)x -(i ∑∑==ki n j iij x =16.275,自由度为n-k=9组间平方和:SSA=211)-(∑∑==ki n j ii x x =0.672,自由度为k-1=23-计算均方:MSA=1SSA -k =0.336MSE=kn -SSE =1.8084-计算检验的统计量F : F=MSEMSA ~F(k-1,n-k) 计算F=0.186将结果汇集到表中:第三步,统计决断:查F 值表得F 0.01(2,11)=7.21>0.186。
spss数据分析报告案例
SPSS数据分析报告案例1. 研究背景本研究旨在调查大学生是否存在晚睡现象,并探究晚睡与健康问题之间的关系。
通过采集大学生的睡眠时间、就寝时间以及健康状况等数据,利用SPSS软件进行数据分析,进一步了解大学生的睡眠状况与健康问题的关联。
2. 数据概况本研究共收集了200名大学生的数据,其中包括性别、年级、每晚睡眠时间、平均就寝时间、是否存在健康问题等变量。
下面是对数据的描述统计分析结果:•性别分布:男性占50%,女性占50%。
•年级分布:大一占25%,大二占30%,大三占25%,大四占20%。
•每晚睡眠时间:平均睡眠时间为7.8小时,标准差为1.2小时。
最小值为5小时,最大值为10小时。
•平均就寝时间:平均就寝时间为23:30,标准差为0.5小时。
最早就寝时间为22:00,最晚就寝时间为01:00。
•健康问题:共有45%的大学生存在健康问题。
3. 数据分析结果3.1 性别与睡眠时间的关系首先,我们探究性别与睡眠时间之间的关系。
利用独立样本T检验,得出以下的结果:•假设检验:男性和女性的睡眠时间是否存在显著差异?•结果:独立样本T检验显示,男性平均睡眠时间为7.6小时,女性平均睡眠时间为8.0小时。
T值为-2.14,P值为0.034,意味着男性和女性的睡眠时间存在显著差异。
3.2 年级与睡眠时间的关系我们进一步探究年级与睡眠时间的关系。
使用单因素方差分析(ANOVA),得出以下结果:•假设检验:各年级的睡眠时间是否存在显著差异?•结果:单因素方差分析显示,大一、大二、大三和大四的平均睡眠时间分别为7.7小时、7.9小时、8.1小时和7.6小时。
F值为2.75,P值为0.043,说明各年级之间的睡眠时间存在显著差异。
3.3 睡眠时间与健康问题的关系最后,我们分析睡眠时间与健康问题之间的关系。
利用相关分析,得出以下结果:•假设检验:睡眠时间与健康问题之间是否存在相关性?•结果:相关分析结果显示,睡眠时间和健康问题之间存在显著负相关(r = -0.25,P值 = 0.001),即睡眠时间越少,存在健康问题的可能性越大。
spss案例分析报告精选文档
s p s s案例分析报告精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-S p s s分析身高与体重的相互影响一、案例介绍:这是某幼儿园学生的身高体重数据,数据中主要包括编号,学生姓名,性别,学生年龄,每个学生的体重以及身高数值。
主要是看下幼儿园学生体重与身高的相互关系。
二、研究案例的目的:分析幼儿园学生身高体重的相互关系和影响。
三、下面是数据来源:四、研究的方法:主要是使用spss中的描述统计分析和线性回归分析;在描述统计分析中主要是分析出身高体重的最大值和最小值、均值,在图表中可以看出身高的最大值;在线性回归分析中主要是采用身高为自变量,体重为因变量来进行分析的。
五、研究的结果:1)描述分析:打开文件“某班23名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择体重和身高,求最大值最小值和均值,得到如下结果:从结果看出,该班学生样本数为23,体重最小值为13.7kg,最大值为23kg,平均体重为17.7167kg。
身高最小值为105cm,最大值为116cm,平均身高为108.85cm。
以身高为例子,选择描述中的频率选项可以得出分布,在频率对话框的图形选项中,选择条形图,即可用图形直观看到结果。
从图形中可以很直观的看出不同身高段的人数分布情况,其中108cm左右的人数最多。
从表格中则可以清楚地看到具体数目。
2)线性回归分析:选择分析——回归——线性,在弹出的对话框中,以身高作为自变量,体重作为因变量,结果如下:从表中可以得出。
R=0.223,即两者具有弱相关性。
从图表中,可以看出它们之间的线性关系大概可以表示为y=-0.139x+2.617 六、研究结论:从描述分析和回归分析可以身高和体重的相关性是相对比较弱的,也就是弱相关性。
SPSS分析报告(一)
SPSS实验分析报告一表(一)性别统计表次數百分比有效的百分比累積百分比有效 1 12 75.0 75.0 75.02 4 25.0 25.0 100.0總計16 100.0 100.0图(一)由表一得到的分析结论如下:首先,本次调查获得的有效样本为16份,没有缺失值,性别的分布状况是:男性人数较女性人数多,有12人,有效百分比是75%;女性人数为4人,有效百分比是25%。
表一是按照频数降序组织的,这种输出方式较为清晰。
此外,由于性别是定类型变量,它的累计百分比通常没有意义,所以可删除本表的最后一列。
图为表一的相应性别分布条形图。
表(二)文化程度统计表次數百分比有效的百分比累積百分比有效 1.00 4 25.0 25.0 25.02.00 4 25.0 25.0 50.03.00 5 31.3 31.3 81.34.00 3 18.8 18.8 100.0總計16 100.0 100.0图(二)由表二得到的分析结论如下:首先,本次调查获得的有效样本为16份,没有缺失值,按照不同的文化程度分为四类分别以数字1234表示文化程度等级。
文化程度的分布状况是:人数最多是第3等级,有5人,有效百分比是31.3%,其次是第1等级和第2等级,都是4人,有效百分比是25%,其中第4等级人数有3人,有效百分比是18.8%。
其次,由图和表表明:在文化程度方面相对较均匀。
表(三)职称统计表次數百分比有效的百分比累積百分比有效 1 3 18.8 18.8 18.82 4 25.0 25.0 43.83 6 37.5 37.5 81.34 3 18.8 18.8 100.0總計16 100.0 100.0图(三)由表三得到的分析结论如下:首先,本次调查获得的有效样本为16份,没有缺失值,按照不同的职称分为四类分别以数字1234表示职称等级。
职称等级的分布状况是:人数最多是第3等级,有6人,有效百分比是37.5%,其次是第2等级,有4人,有效百分比是25%,其中第1等级和第4等级人数都是3人,有效百分比是18.8%。
spss案例分析报告
spss案例分析报告一、引言在本次报告中,将使用SPSS软件进行案例分析,对某一具体问题进行统计分析和数据可视化,以便对问题进行深入的了解和解释。
二、问题描述本次案例分析的问题是研究一个新产品在市场上的受欢迎程度与其价格、广告投入和消费者年龄之间的关系。
希望通过统计分析找出这些变量之间的关联,以便制定更好的市场策略。
三、数据收集与准备1. 数据收集从市场调研公司获取了500个有效问卷,并收集了新产品的价格、广告投入以及消费者的年龄等相关数据。
2. 数据清洗对数据进行了清洗和整理,包括去除缺失值、异常值的处理,使得数据集可用于后续的分析。
四、数据分析1. 描述性统计分析通过SPSS软件进行了描述性统计分析,包括对新产品价格、广告投入和消费者年龄的平均值、标准差、最小值和最大值等指标的计算。
2. 相关性分析利用SPSS软件进行了相关性分析,研究新产品受欢迎程度与价格、广告投入以及消费者年龄之间的关系。
结果显示价格与受欢迎程度之间存在较强的负相关,广告投入与受欢迎程度之间存在较强的正相关,而消费者年龄与受欢迎程度之间则没有明显的相关性。
3. 回归分析为了进一步探讨价格和广告投入对受欢迎程度的影响程度,进行了回归分析。
通过SPSS软件计算出了价格和广告投入对受欢迎程度的回归方程,并利用F检验和t检验对该方程的显著性进行了验证。
五、结果与讨论1. 描述性统计分析结果显示,新产品的平均价格为XXX元,标准差为XXX元,对消费者而言具有一定的价格竞争力。
广告投入的平均值为XXX万元,标准差为XXX万元,表明公司在产品推广方面投入了相对较高的资源。
而消费者的年龄平均值为XXX岁,标准差为XXX岁,消费者整体上比较年轻。
2. 相关性分析结果显示,新产品的价格与受欢迎程度之间存在较强的负相关,即价格越高,受欢迎程度越低;广告投入与受欢迎程度之间存在较强的正相关,即广告投入越高,受欢迎程度越高。
这表明在制定市场策略时,应考虑价格和广告投入对受欢迎程度的影响。
SPSS数据分析报告金典模板三篇
SPSS数据分析报告金典模板三篇SPSS数据分析报告(模板一)学院:经济管理学院专业、班级: **人资*班学生姓名:某某人学二○一*年十一月十一日SPSS数据分析报告第一部分:原始资料和数据资料来源:华东交通大学经济管理学院11级人力资源管理3班29名同学实际情况编号姓名性别学科背景年龄身高体重体测成绩1 吕鑫0 文科20.5 164.2 54.2 812 王阳0 文科20 158.3 46.2 753 洪华阳0 理科21 171 57.2 714 刘卫秀0 理科21 165.5 54 755 吴梦琦0 文科21 166.2 48 696 韩玮0 文科20 164.3 47 617 汤丽娟0 文科21 162.8 48.2 668 江桂英0 理科20 157.2 44.2 709 熊如意0 文科20 166.5 54.5 7310 余婵0 文科19.5 156.2 45.5 7711 彭茜0 文科20 165.4 52.4 6612 赵丹0 文科20.5 174.3 55.6 7613 安怡君0 文科20 175 56.2 7214 武阳帆0 文科20.5 162.4 55.5 6715 倪亚萍0 文科22 157.5 48.6 7416 张明辉 1 文科21.5 170 60 7117 张春旭 1 理科20.5 168.5 57.8 8018 刘晓伟 1 文科21 170.5 59.5 7019 黄炜 1 文科20.5 171 62.2 7620 李强 1 文科20.5 167.5 56.5 6821 温明煌 1 文科21.5 170 60 7522 雷翀翀 1 理科21 168.5 60 7923 陈志强 1 文科22 180 70.4 7924 尹传萍 1 文科21.5 165.2 55.6 7825 郑南 1 理科21.5 168.5 55.9 6426 幸恒恒 1 文科21.5 168.5 58 7927 李拓 1 理科21.5 172 68.1 6628 张发宝 1 理科21 160.5 52.5 7329 杨涛 1 理科21.5 176 70.5 72原始资料和数据(SPSS软件截图):图1 变量视图图2 数据视图第二部分:数据分析一、描述性分析打开文件“11人资3班29名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择年龄、体重和身高,求最大值、最小值、方差、偏度、峰度和均值,得到如下结果:表1-2年龄分布表年龄频率百分比有效百分比累积百分比有效19.50 1 3.4 3.4 3.420.00 6 20.7 20.7 24.120.50 6 20.7 20.7 44.821.00 7 24.1 24.1 69.021.50 7 24.1 24.1 93.122.00 2 6.9 6.9 100.0合计29 100.0 100.0图1-3身高分布直方图图1-4体重分布条形图文字描述:从SPSS 分析结果中可以得出,有效数据共有29个。
SPSS实验报告总结一.docx
湖南涉外经济学院实验报告课程名称:应用统计软件分析(SPSS)专业班级:姓名学号:指导教师:职称:副研究员实验日期:成绩评定指导教师签字日期签字学生实验报告实验序号一、实验目的及要求实验目的实验要求通过本次实验,使学生熟练掌握转换菜单和数据菜单的具体功能及操作,熟练应用两个菜单中的计算变量、重新编码、选择个案、个案排序、分类汇总等几个主要过程能够根据相关要求选用正确的过程对变量或者文件进行管理和操作,得到结果,并能对得出的结果进行解释。
二、实验描述及实验过程一、下载数据(以下情况选一种):(一)分地区(31 个省市区)环境污染治理投资数据(2014 年)环境污染治理投资总额(亿元 ),城市环境基础设施建设投资额(亿元 ) ,城市燃气建设投资额 (亿元 ) ,城市集中供热建设投资额(亿元 ),城市排水建设投资额(亿元 ),城市园林绿化建设投资额(亿元 ),城市市容环境卫生建设投资额(亿元 )工业污染源治理投资(万元 )实建设项目“三同时”环保投资额(亿元 )(二)分地区(31 个省市区)经济发展总体数据(2014 年)验国民总收入,国内生产总值,第一产业增加值,第二产业增加值,第三产业增加值,人均国内生产总值,人口总量,城镇失业率,基尼系数等描 (三 )各省市房地产开发 2014 年相关数据投资额,房地产开发企业个数,从业人员数,收入,税金,利润,资产,负债,平均销述售价格,等等。
(四)各省市科技2014 年相关数据包括 GDP,研发投入,研发投入强度(研发投入/GDP),R&D 研发人员,专利授权数,发明专利授权量。
(五)查找相关行业(钢铁行业、水泥行业、医药制造、工程机械、汽车制造业、旅游酒店行业、航空、电子商务企业等)上市公司2015 年度数据。
包括销售收入、利润、固定资产净值、总资产利润率、营业利润率、销售净利率、净资产收益率、流动比率、资产负债率、主营业务收入增长率、营收账款周转率、存货周转率、流动资产周转率等。
(完整版)SPSS分析报告实例
SPSS与数据统计分析期末论文影响学生对学校服务满意程度的因素分析一、数据来源本次数据主要来源自本校同学,调查了同学们年级、性别、助学金申请情况、生源所在地、学院、毕业学校、游历情况、家庭情况、升高、体重、近视程度、学习时间、经济条件、兴趣、对学校各方面的评价、与对学校总评价以及建议等共41条信息,共收集数据样本724条。
我们将运用SPSS,对变量进行频数分析、样本T检验、相关分析等手段,旨在了解同学们对学校提供的满意程度与什么因素有关。
二、频数分析可靠性统计克隆巴赫 Alpha项数.98562对全体数值进行可信度分析本次数据共计724条,首先从可靠性统计来看,alpha值为0。
985,即全体数据绝大部分是可靠的,我们可以在原始数据的基础上进行分析与处理。
其中,按年级来看,绝大多数为大二学生填写(占了总人数的67。
13%),之后分别依次为大二(23.76%)、大四(4。
14%)、大一(4。
97%)。
而从专业来看,占据了数据绝大多数样本所在的学院为机械、材料、经管、计通。
三、数据预处理拿到这份诸多同学填写的问卷之后,我们首先应对一些数据进行处理,对于数据的缺失值处理,由于我们对本份调查的分析重点方面是关于学生的经济情况的,因此对于确实的部分数据,升高、体重、近视度数、感兴趣的事等无关项我们均不需要进行缺失值的处理,而我们可能重点关注的每月家里给的钱、每月收入以及每月支出,由于其具有较强主观性,如果强行处理缺失值反而会破坏数据的完整性,因此我们筛去未填写的数据,将剩余数据当作新的样本进行分析.而对于一些关键的数据,我们需要做一些必要的预处理,例如一些调查项,我们希望得到数值型变量,但是填写时是字符型变量,我们就应该新建一个数字型变量并将数据复制,以便后续分析。
同时一些与我们分析相关的缺省值,一些明显可以看出的虚假信息,我们都需要先进行处理。
而具体预处理需要怎么做,这将会在其后具体分析时具体给出。
四、相关分析通过这份数据,我们可以直观地看到,最终同学给出了对学校总体的评价,而到底是什么影响了同学们的评价呢?我们小组打算从同学们的总体评价入手,分析同学们的家庭经济情况、学习成绩以及学校的各类资源完备程度是否会对同学们的评价造成影响。
spss的数据分析报告范例
spss的数据分析报告范例SPSS数据分析报告范例一、引言数据分析是现代科学研究的重要环节,在统计学中,SPSS作为一种广泛应用的数据分析软件,为研究人员提供了丰富的功能和工具。
本报告旨在使用SPSS对某项研究的数据进行分析,并整理并呈现结果,以帮助读者深入了解数据的含义,并得出有关数据的结论。
二、研究背景与目的在这一部分,我们将简要介绍研究的背景和目的。
本次研究旨在调查大学生的学习焦虑水平与其学业成绩之间的关系。
通过收集相关数据并使用SPSS进行分析,我们希望能够揭示大学生学习焦虑对学业成绩的影响程度,并为教育管理者和辅导员提供数据支持。
三、研究设计与方法在这一部分,我们将介绍研究的设计和采用的方法。
本研究采用问卷调查的形式,使用了由专家设计的学习焦虑量表和学业成绩评估表。
我们在某大学的三个院系中选取了500名大学生作为样本,并通过邮件方式发送问卷,并以匿名方式收集数据。
四、数据分析与结果本节将展示SPSS分析后的数据结果。
首先,我们将进行数据清洗和描述性统计分析。
然后,我们将使用相关性分析和回归分析来探究学习焦虑与学业成绩之间的关系。
1.数据清洗和描述性统计针对收集到的数据,我们进行了数据清洗,包括去除不完整或无效数据。
然后,我们进行了描述性统计分析,包括计算样本量、均值、标准差和分布情况。
2.相关性分析为了探究学习焦虑与学业成绩之间的关系,我们进行了相关性分析。
根据SPSS的输出结果,我们发现学习焦虑与学业成绩之间存在显著的负相关关系(r=-0.35, p<0.05),表明学习焦虑水平越高,学业成绩越低。
3.回归分析为了更深入地了解学习焦虑对学业成绩的影响程度,我们进行了回归分析。
回归分析结果显示,学习焦虑是预测学业成绩的显著因素(β=-0.25, p<0.05)。
这表明学习焦虑对学业成绩有着一定的负向影响。
五、讨论与结论根据数据分析的结果,我们得出以下结论:1.学习焦虑与学业成绩之间存在显著的负相关关系,即学习焦虑水平越高,学业成绩越低。
SPSS-单因素方差分析(ANOVA)案例解析.docx
SPSS-单因素方差分析(ANoVA)案例解析2011-08-30 11:10这几天一直在忙电信网上营业厅用户体验优化改版事情,今天将我最近学习SPSS单因素方差分析(ANOVA)分析,今天希望跟大家交流和分享一下:继续以上一期的样本为例,雌性老鼠和雄性老鼠,在注射毒素后,经过一段时间,观察老鼠死亡和存活情况。
研究的问题是:老鼠在注射毒液后,死亡和存活情况,会不会跟性别有关?样本数据如下所示:(a代表雄性老鼠b代表雌性老鼠0代表死亡1代表活着tim代表注射毒液后,经过多长时间,观察结果)点击“分析比较均值单因素AVOVA, 如下所示:从上图可以看出,只有“两个变量”可选,对于“组别(性别)”变量不可 选, 这里可能需要进行“转换”对数据重新进行编码, 点击“转换”一“重新编码为不同变量”将a,b"分别用8,9进行替换,得到如下结果a 51F 9.00a 7 0 / 3.00 ∖ a 13 1J la.oo ∖a 131S OGz□ a 231S 00I a 30 19 00I 3 30. 8 00a 羽1 ∖3 00Z7 a 421 ∖ 8.00 ∑ta 421∖ 8.00a450 ΓZS^ P 11 9 OOb 319.00Ib 319.00 b 11 9 00b 10 1 9 00 b 15 1 9.00h 1519.00b 239, OQj b 3019 00生存时间毬存結局頤田 tim US此时的8代表a (雄性老鼠) 9代表b 雌性老鼠,我们将“生存结局”变量 移入“因变量列表”框内,将“性别”移入“因子”框内,点击“两两比较” 按钮,如下所示:儡定有盖芥性≡ LSDcL)∏ S -N-K(S)[⅛Val Ier -Dun ca∏'V ∣,;BOnfe 仃的1亡TUkey裝翹I 熒型Il 逞差比率V) h 00Sidak IWWl .TUkey ≡-b(K) E J DUnnett(E)Seheffe(C)DUnean(D: 挫剧蹈止:I 最后一√-iL.∙~ R-E*G-W F(R) 二 IHoChberg S GT2(H}⅛⅛⅛⅛ ^1⅛⅛E''□ R-BG-WQ(Q)Gabrtel(G)ΦO ∣Π 21 ® < ≡⅛J{0)MB"来幔定方差齐性 √ Tarrlhane ,sT2(M J D□∩r⅜ett*s T3(3} Zi G3mes*H0√veU(A> 3 D^rlneif=显W ,⅛^KΦ(Fy Q05勾选“将定方差齐性”下面的LSD 选项,和“未假定方差齐性”下面的 Tamhane's T2 选项 点击继续点击“选项”按钮,如下所示:境计量 ------ K 描述性I I 固症和随机效果 √方茎同尚性⅛(H) -.旦 row∩'Fors⅛tħeCB) □ WelChC;7) √均値图也; 越失値◎核分斯顺序排除个案迫: ◎按列去排障个案(D勾选“描述性”和“方差同质检验”以及均值图等选项,得到如下结果:⅛J敢料 ⅛⅛ ⅛ /结果分析:方差齐性检验结果,“显著性”为O,由于显著性0<0.05所以, 方差齐性不相等,在一般情况下,不能够进行方差分析但是对于SPSS来说,即使方差齐性不相等,还是可以进行方差分析的,由于此样本组少于三组,不能够进行多重样本对比从结果来看“单因素ANoVA ”分析结果,显著性0.098 ,由于0.098>0.05所以可以得出结论:生存结局受性别的影响不显著很多人,对这个结果可能存在疑虑,下面我们来进一步进行论证,由于“方差齐性不相等”下面我们来进行“非参数检验”检验结果如下所示:(此处采用的是“Kruskal-Wallis "检验方法)假设检验汇总通过“Kruskal-Wallis ”检验方法,我们得出“Sig=O.098" 跟我们先前分析的结果一样,都是0.098,事实得到论证。
SPSS实验分析报告五
SPSS实验分析报告五一、提出假设:原假设H0=“总播种面积对粮食总产量没有影响。
”假设H1=“施用化肥量对粮食总产量没有影响。
”假设H2=“风灾面积比例对粮食总产量没有影响。
”假设H3=“农业劳动者人数对粮食总产量没有影响。
”二、操作结果与分析表(一)关于粮食总产量的线性回归方程分析结果(一)變數已輸入/已移除a模型變數已輸入變數已移除方法1 农业劳动者人数(百万人)总播种面积(万公顷),. Enter风灾面积比例(%)施用化肥量(kg/公顷)ba. 應變數: 粮食总产量(y万吨)b. 已輸入所有要求的變數。
由表(一)可知,本次建模过程中,剔除变量为粮食总产量。
表(二)关于粮食总产量的线性回归方程分析结果(二)模型摘要b模型R R 平方調整後 R 平方標準偏斜度錯誤1 .993a.986 .984 967.92794a.預測值:(常數),农业劳动者人数(百万人), 总播种面积(万公顷), 风灾面积比例(%), 施用化肥量(kg/公顷)b.應變數: 粮食总产量(y万吨)由表(二)可知,该模型是以粮食总产量为解释变量的一元线性回归方程。
该模型的判定系数为0.986,回归方程的估计标准误差为967.92794。
表(三)关于粮食总产量的线性回归方程分析结果(三)變異數分析a模型平方和df 平均值平方 F 顯著性1 迴歸2019956523.725 4 504989130.931 539.009 .000b殘差28106534.960 30 936884.499總計2048063058.686 34a. 應變數: 粮食总产量(y万吨)b. 預測值:(常數),农业劳动者人数(百万人), 总播种面积(万公顷), 风灾面积比例(%), 施用化肥量(kg/公顷)表(三)是回归方程显著性检验结果,由表(三)可知,被解释变量(粮食总产量)的总离差平方和SST为2048063058.686。
一元模型的回归平方和(SSR)为2019956523.725,剩余平方和(SSE)为28106534.960。
spss实验实例分析报告
spss实验实例分析报告实验题目:不同求职者对面试准备所投入的时间分析实验目的:研究不同求职者对面试准备所投入的时间情况,了解求职者在面试前的准备工作量,以此为基础提高面试效率。
实验方法:随机选取100名在求职过程中的应聘者,以问卷调查的方式获取其中的9个变量,在SPSS软件上进行数据处理和分析。
实验结果:1.样本情况样本人群普遍年龄在20-30岁之间,性别比例为男女各半。
他们最近一次求职的时间多集中在3个月以内。
具体样本情况如下表:| 序号 | 年龄 | 性别 | 学历 | 专业 | 最近一次求职时间 | 经验 | 面试得到的工作 | 面试准备所投入的时间 ||---|-----------|----|--------------|-------------|-------------|----------|-------------|---------------|| 1 | 28岁 | 男 | 硕士研究生学历 | 计算机科学与技术 | 两个月前| 2年工作经验 | 求职失败 | 2.5小时 || 2 | 24岁 | 女 | 本科学历 | 金融学 | 刚刚 | 毕业生 | 求职成功 | 3小时 || 3 | 22岁 | 男 | 本科学历 | 工商管理 | 一个月前 | 毕业生 | 求职成功 | 1小时 || 4 | 30岁 | 女 | 本科学历 | 人力资源管理 | 两个月前 | 4年工作经验 | 求职失败 | 4小时 || 5 | 26岁 | 男 | 专科学历 | 会计 | 两个月前 | 2年工作经验 | 求职成功 | 2小时 || … | ………… | …… | ……………… | ……………… | ……………… | …… | ……………… | ……………… |2.受访者面试准备所投入的时间根据问卷中获得的受访者面试准备所投入的时间,可以统计出以下结果:受访者对面试准备所投入的时间平均为2.5小时,标准差为1.12。
spss主成分分析报告.docx
实用标准文档实验目的:原始数据中每一所高校具有20个相关性很高的变量,利用主成分分析法用较少的变量去解释原来资料中的大部分变异,将手中的众多变量转化成彼此相互独立或不相关的个数较少的变量,即所谓主成分,并用以解释资料的综合性指标,其实质的目的是降维原始数据截屏:操作方法:1.描述性统计SPSS在调用因子分析过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,然后后期的计算需得到标准化数据,则需调用“描述” 过程进行计算,为了看到标准化数据,所以采用描述性统计下的描述操作获得标准化后的变量数据标准化数据:文案大全I <05λ-!i⅛i⅛⅛.M030^CM44⅛Sz≡α⅞hS Z∣4i⅛2 ⅛台计稈÷⅜ZΛ4⅛⅛.⅜⅛⅛⅛⅛U=,那lF⅞⅛τ∙.⅛⅛⅛予Γ5Φ⅛tτ⅛⅛s⅛⅛E生均雷书zι⅛⅛r.∙m4"irτ Zl事11翳辭⅛1 I-69799-1 3751? -T 47121-75372 1 S79O0-1 08609-T 060M-1 391 Bl214834939932■69799U 9189? -1 50230「75372570«” 9020?X<06(MM■1 2383134^0T80β8 369W50TM ・ 1 1t36713171%933T«052如隔2^73M3T3 469799 1 27D*2■9S93175372■2 16701I 2541150WT-1 1231158750 1 16775 5■開TW1∣2034■ 5737?¢753? -7J3⅛0 1 ?160J■1 23MB44-707-1.T6l5t疔畑KM3覆£■6⅛T99-吃"4■ 2+315-T2Q1? -7?330-72S⅛■1 0⅛D? 2 14266∣S15T4807?7? 183 7• 69799•9QT70 ・5074?■- 75372 - 7?330-f5034-1 0?4731tBD910402fi9τaεJ45S3 B6979959924 3^201C9T45 -7?33C 2 03837 1 SSZtB T 5T46Q舁OS4Θ153CTI93159 9«9799T5813I伽72T5372 7?330 1 ¢7262■5952430643■1 SOeM I 2995924W2 ID■ «9799T6Γ0705220T20∣? -723M14803I 147J419539'1.1®M306⅛3-1 11233 11∙∙≡的≡22-1 0M4C-T537? - 753»-朋舟Q-59^24-.1 IflOS-1123191刚2■ 33«3 12■ 6SJ41-025?3 59620-T5372 - '139f7¢1483-IT^B62:4F-3⅛4D6-1 19012-19037 13O?41L #0664 2?32Q d9TT??ESSS-91735-3≡2B”777 刖 1 847132494?14 d Q535d W50T7612■ 96ITJ 1 392163692B09*44・544€7因子分析操作过程:选取变量:X1:科研经费得分X2:国家人文社科重点研究基地得分X3:院士总数得分X4:生均图书得分X5:研究中心数得分X6:国家重点实验室得分X7:生均教学科研仪器设备得分X8:生均教育事业经费得分X9:精品课程得分X10:优秀博士生论文总分X11:人才得分X12: 二级学科建设得分X13:生均固定资产得分X14:科研论文得分X15:博导及相关合计得分X16:教师中博士学位比重得分X17: 一级学科得分X18:高级职称比重得分X19:师资总分X20:SCl 数量这里分析采用相关系数矩阵,输出选择为未旋转的因子解,并选择碎石图,抽取过程选择基于特征值(特征值大于1),最大收敛迭代次数:25,点击确定。
spss分析报告(相关性)
spss 实验分析报告以下针对中国民航客运量进行数据分析。
一、对所给数据进行分析,见下表(为1978 年到1993 年数据): 年份 y x1 x2 x3 x4 x5 1978 231 3010 1888 81491 14.89 180.92 1979 298 3350 2195 86389 16.00 420.39 1980 343 3688 2531 92204 19.53 570.25 1981 401 3941 2799 95300 21.82 776.71 1982 445 4258 3054 99922 23.27 792.43 1983 391 4736 3358 106044 22.91 947.7 1984 554 5652 3905 110353 26.02 1285.22 1985 744 7020 4879 112110 17.72 1783.3 1986 990 7859 5552 108579 32.43 2281.95 1987 1310 9313 6386 112429 38.91 2690.23 1988 1442 11738 8038 122654 37.38 3169.48 1989 1283 13176 9005 113807 47.19 2450.14 1990 1660 14384 9663 95712 50.68 2746.2 1991 2178 16557 10969 95081 55.91 3335.65 1992 2886 20223 12985 99693 83.66 3311.5 1993 3383 24882 15949 105458 96.08 4152.7 其中y 民航客运量(万人) x1国民收入 (亿元) x2 消费额 (亿元)x3铁路客运量 (万人) x4 民航航线里程(万公里) x5来华旅游入境人数二、各个因素的基本统计量:Descriptive StatisticsN Range Minimum Maximum Sum Mean Std. Deviation Variance SkewnessKurtosisStatist icStatist ic Statist ic Statist ic Statist icStatist icStd. ErrorStatisticStatistic Statist icStd.Erro rStatist icStd.Erro ry163152231338318539 1158.69 240.188960.753923045.829 1.189 .564 .660 1.091x1 16 21872 3010 24882 153787 9611.69 1660.8856643.544.414E71.033 .564 .253 1.091x2 16 14061 1888 15949 103156 6447.25 1062.9874251.9461.808E7 .906 .564 -.052 1.091从上述表格中可以看出:(1) 1978--1993年数据量N 为16组。
spss的数据分析报告范例1
关于某地区361个人旅游情况统计分析报告一、数据介绍:本次分析的数据为某地区361个人旅游情况状况统计表,其中共包含七变量,分别是:年龄,为三类变量;性别,为二类变量(0代表女,1代表男);收入,为一类变量;旅游花费,为一类变量;通道,为二类变量(0代表没走通道,1代表走通道);旅游的积极性,为三类变量(0代表积极性差,1代表积极性一般,2代表积极性比较好,3代表积极性好 4代表积极性非常好);额外收入,一类变量。
通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析,以了解该地区上述方面的综合状况,并分析个变量的分布特点及相互间的关系。
二、数据分析1、频数分析。
基本的统计分析往往从频数分析开始.通过频数分地区359个人旅游基本状况的统计数据表,在性别、旅游的积极性不同的状况下的频数分析,从而了解该地区的男女职工数量、不同积极性情况的基本分布。
统计量积极性性别N 有效359 359缺失0 0首先,对该地区的男女性别分布进行频数分析,结果如下性别频率百分比有效百分比累积百分比有效女198 55。
2 55。
2 55。
2男161 44。
8 44。
8 100.0合计359 100。
0 100.0表说明,在该地区被调查的359个人中,有198名女性,161名男性,男女比例分别为44.8%和55.2%,该公司职工男女数量差距不大,女性略多于男性. 其次对原有数据中的旅游的积极性进行频数分析,结果如下表:积极性频率百分比有效百分比累积百分比有效差171 47.6 47。
6 47。
6一般79 22.0 22.0 69.6比较好79 22.0 22。
0 91.6好24 6。
7 6。
7 98。
3非常好 6 1。
7 1。
7 100。
0合计359 100。
0 100。
0其次对原有数据中的积极性进行频数分析,结果如下表:其次对原有数据中的是否进通道进行频数分析,结果如下表:Statistics通道N Valid 359Missing 0这说明,在该地区被调查的359个人中,有没走通道的占81.6%,占绝大多数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS与数据统计分析期末论文影响学生对学校服务满意程度的因素分析
一、数据来源
本次数据主要来源自本校同学,调查了同学们年级、性别、助学金申请情况、生源所在地、学院、毕业学校、游历情况、家庭情况、升高、体重、近视程度、学习时间、经济条件、兴趣、对学校各方面的评价、与对学校总评价以及建议等共41条信息,共收集数据样本724条。
我们将运用SPSS,对变量进行频数分析、样本T检验、相关分析等手段,旨在了解同学们对学校提供的满意程度与什么因素有关。
二、频数分析
可靠性统计
克隆巴赫 Alpha 项数
.985 62
对全体数值进行可信度分析
本次数据共计724条,首先从可靠性统计来看,alpha值为0.985,即全体数据绝大部分是可靠的,我们可以在原始数据的基础上进行分析与处理。
其中,按年级来看,绝大多数为大二学生填写(占了总人数的67.13%),之后分别依次为大二(23.76%)、大四(4.14%)、大一(4.97%)。
而从专业来看,占据了数据绝大多数样本所在的学院为机械、材料、经管、计通。
三、数据预处理
拿到这份诸多同学填写的问卷之后,我们首先应对一些数据进行处理,对于数据的缺失值处理,由于我们对本份调查的分析重点方面是关于学生的经济情况的,因此对于确实的部分数据,升高、体重、近视度数、感兴趣的事等无关项我们均不需要进行缺失值的处理,而我们可能重点关注的每月家里给的钱、每月收入以及每月支出,由于其具有较强主观性,如果强行处理缺失值反而会破坏数据的完整性,因此我们筛去未填写的数据,将剩余数据当作新的样本进行分析。
而对于一些关键的数据,我们需要做一些必要的预处理,例如一些调查项,我们希望得到数值型变量,但是填写时是字符型变量,我们就应该新建一个数字型变量并将数据复制,以便后续分析。
同时一些与我们分析相关的缺省值,一些明显可以看出的虚假信息,我们都需要先进行处理。
而具体预处理需要怎么做,这将会在其后具体分析时具体给出。
四、相关分析
通过这份数据,我们可以直观地看到,最终同学给出了对学校总体的评价,而到底是什么影响了同学们的评价呢?我们小组打算从同学们的总体评价入手,分析同学们的家庭经济情况、学习成绩以及学校的各类资源完备程度是否会对同学们的评价造成影响。
1.探讨经济因素对于同学们评价的影响
首先对我们所得到的全体数据进行初步分析,可以由
“平均每月家里给多少钱”大致判断得出同学们的家庭经济
情况。
但是进一步进行统计,可以得出有很多同学并未填
写该项调查,如果将未填写的数据均作为“0”进行处理,无
疑将会对结果造成很大的影响,在这里,我们先利用筛选
中的过滤变量,排除掉变量中的缺省值(初步筛选后得到
的结果如左图所示)。
在排除了缺省值的干扰之后,我们可
以得到一份同学们填写的原始数据,但是粗略浏览不难发
现,其中月生活费会有人填写“10000”或者“1”这类明显不
符合事实的数据,因此我们还需进行二次筛选以增加最后
结论的可信度。
考虑到一般人在北京的月消费,我们将有
效数据中,月生活费在500~4000区间的数据再一次进行
筛选,得到了我们的最终数据。
得到了样本之后,我们需要先对样本进行初步的描述性统计,了解样本数据的大体特征,之后再进行正态分布检验,根据特征将每月生活费进行人为分类,用以检验家庭经济
因素是否会对同学对学校各方面的评价造成影响。
选中有效数据之后进行描述性统计,得
到有效案例一共512个(总案例为724个),其中最小值为500,最大值为4000,平均值为
1465.56,标准差为553.566。
描述统计
个案数最小值最大值平均值标准差
平均每月家里给多少钱
512 500 4000 1465.56 553.566 (元)?
有效个案数(成列)512
进一步绘制出有效数据的频数分布直方图。
根据该分布直方图,我们计划将月生活费低于1000,月生活费介于1000与2000之间的与生活费高于2000的共三组,分别对应着经济条件较差、经济条件中等与经济条件较好三种情况。
将分完组的三份数据再一次做描述性统计,统计结果分别如下表所示。
描述统计
个案数
最小
值
最大
值
平均
值
标准
差
平均每月家里给多少钱(元)?170 500 1000
904.5
1
158.6
05
有效个案数(成列)170
经济较差家庭描述统计
描述统计
个案数
最小
值
最大
值
平均
值
标准
差
平均每月家里给多少钱(元)?315 1200 2000
1639.
68
276.7
76
有效个案数(成列)315
经济中等家庭描述统计
分别将经济条件为较差、中等与较好的家庭分为1、2、3组,先对1、2组做对学校服务满意程度(5为最满意,1为最不满意)的T检验,得到的结论参见下表。