动量中弹簧模型
高三总复习物理课件 动量守恒中的三类典型模型
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A
高考物理弹簧模型知识点
2019高考物理弹簧模型学问点2019高考物理弹簧模型学问点弹簧模型是以轻质弹簧为载体,与详细实际问题相结合,考查运动学、动力学、能量守恒、动量守恒、振动问题、功能关系、物体的平衡等相关问题。
有关弹簧的学问,是高考考查的重点,同时也是高考的难点,几乎每年的高考都会考查该内容,所以备考时要引起足够的重视.轻弹簧是一种志向化的物理模型,分析问题时不须要考虑弹簧本身的质量和重力.处理弹簧模型时,须要驾驭以下学问点:1.弹簧弹力的计算弹簧弹力的大小可以由胡克定律来计算,即弹簧发生形变时,在弹性限度内,弹力的大小与弹簧伸长(或缩短)的长度成正比,数学表达式为,其中是一个比例系数,叫弹簧的劲度系数.弹簧的弹力不是一个恒定的力,而是一个变力,其大小随着弹簧形变量的变更而变更,同时还与弹簧的劲度系数有关。
2.弹簧弹力的特点(1)弹簧弹力的大小与弹簧的形变量有关,当弹簧的劲度系数保持不变时,弹簧的形变量,弹簧的形变量发生变更,弹簧的弹力相应地发生变更;形变量不变,弹力也力也就保持不变,由于弹簧的形变不能发生突变,故弹簧的弹力也不能瞬间发生变更,这与绳子的受力状况不同.(2)当轻弹簧受到外力的作用时,无论弹簧是处于平衡状态还是处于加速运动状态,弹簧各个部分所受的力的大小是相同的.(3)弹簧弹力的方向与弹簧的形变有关,在拉伸和压缩两种状况下,弹力的方向相反.在分析弹簧弹力的方向时,肯定要全面考虑,假如题目没有说明是哪种形变,那么就须要考虑两种状况.(4)依据胡克定律可知,弹力的大小与形变量成正比,方向与形变的方向相反,可以将胡克定律的表达式写成F=kx,即弹簧弹力是一个线性回复力,故在弹力的作用下,物体会做简谐运动.3.弹性势能与弹力的功弹簧能够存储弹性势能,其大小为Ep=kx2/2,在中学阶段不须要驾驭该公式,但要知道形变量越大,弹性势能就越大,在形变量相同的状况下,弹性势能是相等的;一般状况下,通常利用能量守恒定律来求弹簧的弹性势能,由于弹簧弹力是一个变力,弹力的功就是变力的功,可以用平均力来求功,也可以通过功能关系和能量守恒定律来求解.4.常见的弹簧类问题(l)弹簧的平衡与非平衡问题;(2)弹簧的瞬时性问题;(3)弹簧的碰撞问题;(4)弹簧的简谐运动问题;(5)弹簧的功能关系问题;(6)弹簧的临界问题;(7)弹簧的极值问题;(8)弹簧的动量守恒和能量守恒问题;(9)弹簧的综合性问题.5.处理弹簧模型的策略(l)推断弹簧与连接体的位置,分析物体的受力状况;(2)推断弹簧原长的位置,现长的位置,以确定弹簧是哪种形变以及形变量的大小;(3)分析弹簧弹力的变更状况,弹箦弹力不能发生突变,以此来分析计算物体的运动状态;(4)依据相应的物理规律列方程求解,例如,物体处于平衡时,运用平衡条件和胡克定律求解.模型1 考查弹簧的瞬时性问题弹簧弹力的大小与弹簧形变有关,而弹簧的形变在瞬间是不能突变的,即弹簧形变的变更须要肯定的时间,所以弹簧弹力在瞬间不能够突变,这与绳模型是有区分的,不要混淆两者的区分,否则就会出错.模型2 考查弹簧中的碰撞问题弹簧中的碰撞问题是一类综合性很强的题目,一般综合了动量守恒、机械能守恒、功能关系和能量转化等.假如弹簧作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能,能量相互转化.在运动过程中,动能与势能相互转化。
(完整版)动量守恒定律弹簧模型
弹簧模型+子弹打木块模型弹簧模型1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A的速度为多大?(2)系统中弹性势能的最大值是多少?2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时()A.A、B系统总动量仍然为mvB.A的动量变为零C.B的动量达到最大值D.A、B的速度相等3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。
在此过程中( )A.M的速度等于0时,弹簧的弹性势能最大B.M与N具有相同的速度时,两滑块动能之和最小C.M的速度为v0/2时,弹簧的长度最长D.M的速度为v0/2时,弹簧的长度最短4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知()A.t1时刻弹簧最短,t3时刻弹簧最长B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长C.两木块的质量之比为m1:m2=1:2D.在t2时刻两木块动能之比为E K1:E K2=1:45.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()A.甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒B.当两物块相距最近时,物块甲的速率为零C.当物块甲的速率为1 m/s时,物块乙的速率可能为2 m/s,也可能为0D.物块甲的速率可能达到5 m/s6.如图所示,质量M=4 kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5 m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.小木块A以速度v0=10 m/s由滑板B左端开始沿滑板B表面向右运动.已知木块A的质量m=1 kg,g取10 m/s2.求:(1)弹簧被压缩到最短时木块A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.7.如图光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,(3)整个系统损失的机械能;(4)弹簧被压缩到最短时的弹性势能.8.质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地上,平衡时,弹簧的压缩量为x0,如图所示,一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点。
弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练
动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。
A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。
同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。
A 、B 均视为质点,取重力加速度210m/s g =。
求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。
的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。
A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。
现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。
动量中的弹簧模型
动量中的弹簧模型
动量中的弹簧模型是一种物理模型,用于描述物体在碰撞时弹性和非弹性的行为。
该模型假设物体在碰撞中的动量守恒,同时考虑了弹簧的弹性力和阻力。
在该模型中,物体之间的碰撞会引起弹簧的变形,从而产生弹性力。
弹簧的弹性力大小与其伸缩的程度成正比,与其弹性常数有关。
同时,物体在碰撞中还会受到阻力的作用,这种阻力可以模拟摩擦力或空气阻力等因素。
通过使用动量中的弹簧模型,可以研究物体在碰撞中的运动情况,例如速度和位置的变化、能量的转化等。
该模型在物理学中有广泛的应用,可以用于设计汽车安全气囊、优化体育比赛装备等方面。
- 1 -。
动量守恒定律的典型模型
M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2
②
2
解①、②两式得 x
Mv02
③
(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V
①
在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?
动量守恒定律应用2:弹簧模型
VP>VQ 弹簧一直缩短
弹簧最短时 VP=VQ
弹簧原长时 弹性势能为零
变式训练
如图所示,位于光滑水平桌面上的小滑块P和Q都 可视为质点,质量相等,都为m。P、Q与轻质弹簧 相连,弹簧处于原长。设P静止, Q以初速度v0向 右运动,在弹簧拉伸过程中,弹簧具有的最大弹性 势能是多少?
V0
弹簧模型规律
1滑块和木板 2弹簧模型 3光滑1/4圆轨道轨道 (某一方向的动量守恒) 4人船模型 (平均动量守恒)
动量和机械能守恒情况常见模型图
m
v0
A
B
O
h
R
M
b
a
动量守恒定律
一、动量(P)
1、概念: 物体的质量m和速度v的乘积叫做动量。
2、定义式: P = m v
3、单位: 千克米每秒,符号是 kg ·m/s
m1=2kg的物块以v1=2m/s的初速冲向
质量为m2=6kg静止的光滑圆弧面斜
1
劈体,物块不会冲出斜劈。求:
1. 物块m1滑到最高点位置时,二者的速度 2. 物体上升的最大高度 3. 物块m1从圆弧面滑下后,二者速度 4. 若m1= m2物块m1从圆弧面滑下后,二者速度
动量和能量综合典型物理模型
弹簧最短时 VP=VQ
弹簧模型1
如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视为质点,质量相等,都为 m.Q 与轻质弹簧相 连.设 Q 静止, P 以初速度 v0 向 Q 运动并与弹簧发 生碰撞. (1)在整个碰撞过程中,弹簧具有的最大弹性势能是多 少? (2)弹簧再次恢复原长时,P 的动能是多少?
4、方向:与运动方向相同
(1)矢量性 (2)瞬时性
运算遵循平行四边形定则 是状态量。
动量之弹簧类问题
动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
高考物理弹簧类问题的几种模型及其处理方法归纳
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
动量守恒之弹簧物块连接模型 高三物理一轮复习专题
(1)当弹簧的弹性势能最大时,物块A的速度为多大?
(2)系统中弹性势能的最大值是多少?
答案(1)3 m/s(2)12 J
解析(1)弹簧压缩至最短时,弹性势能最大,
由动量守恒定律得:(mA+mB)v=(mA+mB+mC)vA
解得vA=3 m/s
(2)B、C碰撞过程系统动量守恒
mBv=(mB+mC)vC
5(2021湖南卷8,5分).如图(a),质量分别为mA、mB的A、B两物体用轻弹簧连接构成一个系统,外力 作用在A上,系统静止在光滑水平面上(B靠墙面),此时弹簧形变量为 。撤去外力并开始计时,A、B两物体运动的 图像如图(b)所示, 表示0到 时间内 的 图线与坐标轴所围面积大小, 、 分别表示 到 时间内A、B的 图线与坐标轴所围面积大小。A在 时刻的速度为 。下列说法正确的是( )
故vC=2 m/s
碰后弹簧压缩到最短时弹性势能最大,
故Ep= mAv2+ (mB+mC)v - (mA+mB+mC)v =12 J
三.举一反三,巩固练习
1.(2021全国乙卷14,6分)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )
C.小车C先向左运动后向右运动
D.小车C一直向右运动直到静止
答案D
解析A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,因mA∶mB=1∶2,由摩擦力公式Ff=μFN=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B两物体组成的系统合外力不为零,A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因滑动摩擦力做负功,则系统的机械能不守恒,最终整个系统将静止,故A、B、C错误,D正确.
动量守恒定律的应用弹簧问题
A.P的速度恰好为零
B.P与Q具有相同速度
C.Q刚开始运动
D.P、Q弹簧组成的系统动量守恒
理解:弹簧被压缩至最短时的临界条件。动量守恒定律的应 Nhomakorabea(弹簧问题)
5
4.质量分别为3m和m的两个物体, 用一根细线相连,中 间夹着一个被压缩的轻质弹簧,整个系统原来在光滑 水平地面上以速度v0向右匀速运动,如图所示.后来细 线断裂,质量为m的物体离开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度
(1)当弹簧的弹性势能最大时,物体A的速度是多大? (2)弹性势能最大值是多少?
v
AB
C
动量守恒定律的应用(弹簧问题)
7
2
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧
压缩,当撤去外力后,下列说法正确的是(BC)
A.a尚未离开墙壁前,a和b组成的系统动量守恒
B.a尚未离开墙壁前,a和b组成的系统动量不守恒
C.a离开墙壁后,a和b组成的系统动量守恒
B、C组成系统的动量守恒
C.若A、B所受的摩擦力大小相等,A、B、C组成系
统的动量守恒
D.若平板车足够长,
A
B
最终A、B、C将静止。
动量守恒定律的应用(弹簧问题)
4
题型二、两个物体的问题
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
D.a离开墙壁后,a和b组成的系统动量不守恒
a
动量守恒定律的应用(弹簧问题)
动量-含弹簧的碰撞模型
ABCv 水平弹簧1、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?(1)当弹簧恢复原长时,B 与C 分离,0=m A v A -(m B +m c )v C ①,E P =221AA v m +2)(21C C B v m m +②,对C 由动能定理得W =221CC v m -0③,由①②③得W =18J ,v A =v C =6m/s . (2)取A 、B 为研究系统,m A v A -m B v C = m A v A ’ +m B v C ’, 221AA v m +221C B v m =21 m A v A ’2+21 m B v C ’2,当弹簧恢复到原长时A 、B 的速度分别为:,v A =v B =6m/s 或v A =-2m/s , v B =10m/s .2、(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。
开始时A 、B 以共同速度v 0运动,C 静止。
某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同。
求B 与C 碰撞前B 的速度。
解析:(2)设共同速度为v ,球A 和B 分开后,B 的速度为B v ,由动量守恒定律有0()A B A B B m m v m v m v +=+,()B B B C m v m m v =+,联立这两式得B 和C 碰撞前B 的速度为095B v v =。
考点:动量守恒定律 3、两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。
第7单元动量专题十“滑块—斜(曲)面”模型和“滑块—弹簧”模型-2025年物理新高考备考课件
+
1
2
Mv ,联立解得
2
2ℎ
,故A正确;
+
物块在劈B上上升到最大高度时两者具有相同的速度,在水平方向上,由动量守恒
1
2
定律得mvm=(m+2M)v',由机械能守恒定律得 mm
2
8
解得h'= h,故B正确;
15
=
1
2
(m+2M)v' +mgh',若m=0.5M,
2
教师备用习题
2
假设物块在劈B上上升的最大高度为 h,此时劈B与物块的速度相同,在水平方向
=
−
2
= −,可知20 时刻物块的速度大小等于0 时刻物块的速度大小,则
20 时刻物块的动能等于0 时刻物块的动能,故0 ∼ 20 时间内弹簧对物块做
功为零,故D正确.
热点题型探究
变式
[2023·江苏南通模拟] 如图甲所示,
左端接有轻弹簧的物块静止在光滑水平面
上,物块以一初速度向运动, = 0时
=
,滑块与轨道间的动摩擦因数为
2
,重力加速度为.
热点题型探究
(1)若固定小车,求滑块运动过程中对小车的最大压力.
[答案] 3,方向竖直向下
热点题型探究
[解析] 若固定小车,滑块从到的运动中,由动能
定理可得 =
解得0 =
1
2
0
2
−0
2
滑块在点时,由牛顿第二定律可得N − =
机械能守恒.
(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能
通常最小(相当于完全非弹性碰撞,两物体减少的动能转化为弹簧的弹性势能).
微专题一动量守恒之弹簧模型
一、弹簧模型
1.对于光滑水平面上的弹簧类问题,在作用过程中,系统所受合外力为零,
满足动量守恒条件;
2.系统只涉及弹性势能、动能,因此系统机械能守恒;
3.弹簧压缩至最短或拉伸到最长时,弹簧连接的两物体共速,此时弹簧的弹
性势能最大。
4.弹簧从原长到最短或最长相当于完非,从原长再到原长相当于完弹。
1
解得 v3= v1=1 m/s
6
由机械能守恒定律有
1
1
2
Ep=2(mA+mB)v2 -2(mA+mB+mC)v32
解得Ep=3 J
被压缩弹簧再次恢复自然长度时,滑块C脱离
弹簧,设此时滑块A、B的速度为v4,滑块C的
速度为 v5 ,由动量守恒定律和机械能守恒定
律有
(mA+mB)v2=(mA+mB)v4+mCv5
5.具体过程及规律如下:
vB′是滑块B全程最大的速度,若A未与弹簧连接,则3状态是滑块A脱离弹
簧的时刻,脱离时的速度为vA′,其大小方向如何由mA、mB决定。
6.A、B运动过程的v-t图像如图所示。
1.A、B 两小球静止在光滑水平面上,用轻质弹簧相连接,A、B 两球
的质量分别为 mA 和 mB(mA <mB)。若使A球获得初速度 v (图甲),弹
C.两物块的质量之比为m1∶m2=1∶2
D.在t2时刻A与B的动能之比Ek1∶Ek2=1∶8
3.如图所示,质量为2m的小球B与轻质弹簧连接后静止于光滑水平面上,质量为m的小球A
以初速度v0向右运动逐渐压缩弹簧,A,B通过弹簧相互作用一段时间后A球与弹簧分离。若
以水平向右为正方向,且A球与弹簧分离时A,B小球的动量分别为pA和pB,运动过程中弹簧
专题21动量守恒定律(弹簧模型)-2019高考物理一轮复习专题详解(解析版)
1.动量守恒条件.(1)系统不受外力或合外力为零时,动量守恒.(2)若在某一方向合外力为0,则该方动量守恒.2.规律方法应用动量守恒定律解题的基本思路(1)分析题意,明确研究对象,确定所研究的系统是由哪些物体组成的.(2)对各阶段所选系统内的物体进行受力分析,区分系统内力和外力,在受力分析的基础上根据动量守恒定律条件判断能否应用动量守恒定律.(3)明确所研究物体间的相互作用的过程,确定过程的初、末状态,即系统内各个物体的初动量和末动量.(4)规定正方向,确定初、末状态的动量的正、负号,根据动量守恒定律列方程求解.3.在一个多过程、或者比较复杂的运动中,可能存在着同时满足动量守恒和能量守恒以及机械能守恒的问题,那么我们要根据题中的条件判断是否符合动量守恒和机械能守恒的条件,然后利用公式解题。
动量守恒的条件:系统不受外力或者所受合外力为零,则系统机械能是守恒的机械能守恒的条件:只有重力或系统内弹力做功,系统的机械能是守恒的。
动量守恒可以说某个方向上守恒,但机械能守恒不能说某个方向上守恒。
解动力学问题的三个基本观点(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题利用动量和能量的观点解题的技巧(l )若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律).(2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理(3)因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显示出它们的优越性例题分析典例 1 如图所示,轻弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为m 的小物块从槽高h 处开始自由下滑,下列说法正确的是()A .在下滑过程中,物块的机械能守恒B .在下滑过程中,物块和槽的动量守恒C .物块被弹簧反弹后,做匀速直线运动D.物块被弹簧反弹后,能回到槽高h 处【答案】C典例 2. 如图所示,木块 A 和 B 质量均为 2 kg,置于光滑水平面上. B 与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当 A 以 4 m/s的速度向 B 撞击时,A、B 之间由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为( )A. 4 J B.8 J C.16 J D.32 J【答案】B【解析】 A 与 B 碰撞过程动量守恒,有m A v A=(m A+m B)v AB,所以v AB==2 m/s.当弹簧被压缩到最短时,A、B 的动能完全转化成弹簧的弹性势能,所以E p=(m A+m B)v =8 J.典例 3 如图所示,物体 A 静止在光滑的水平面上, A 的左边固定有轻质弹簧,与 A 质量相等的物体 B 以速度v 向 A 运动并与弹簧发生碰撞,A、B 始终沿同一直线运动,则A、B 组成的系统动能损失最大的时刻是( )A . A 开始运动时B. A 的速度等于v 时C. B 的速度等于零时D . A 和 B 的速度相等时答案】D【解析】当 B 触及弹簧后减速, 而物体 A 加速, 当 A 、B 两物体速度相等时, A 、B 间距离最小, 弹簧 压缩量最大, 弹性势能最大, 由能的转化与守恒定律可知系统损失的动能最多, 故只有 D 正确 典例 4 (多选)如图甲所示,一轻弹簧的两端与质量分别为m 1和 m 2的两物块 A 、B 相连接,并静止在光滑的水平面上.现使 B 瞬时获得水平向右的速度 3 m/s ,以此刻为计时起点,两物块的速度随时间变化的规律如 图乙所示,从图象信息可得 ( )A . 在 t 1、t 3时刻两物块达到共同速度 1 m/s ,且弹簧都处于伸长状态B . 从 t 3到 t 4时刻弹簧由压缩状态恢复到原长C . 两物体的质量之比为 m 1∶ m 2=1∶2D . 在 t 2时刻 A 与 B 的动能之比为E k1∶E k2=8∶1【答案】 BD专题练习1 (多选 )如图所示, 两物块质量关系为 m 1=2m 2;两物块与水平面间的动摩擦因数 μ2= 2μ1,两物块原来静止,轻质弹簧被压缩,若烧断细线后,弹簧恢复到原长时,两物块脱离弹簧且速率均不为零,则 ( )A .两物块在脱离弹簧时速率最大C .两物块的速率同时达到最大D .两物体在弹开后同时达到静止【答案】 BCDB .两物块在刚脱离弹簧时速率之比为 v 1 1v 2=2【分析】 烧断细线后,对 m 1、m 2及弹簧组成的系统,在 m 1、m 2 运动过程中,都受到滑动摩擦力的作用, 其中 F 1= μ1m 1g ,F 2=μ2m 2g ,根据题设条件,两摩擦力大小相等,方向相反,系统所受外力的合力为零,动 量守恒.两物块未脱离弹簧时,在水平方向各自受到弹簧弹力和地面对物体的摩擦力作用,其运动过程分 为两个阶段:先是弹簧弹力大于摩擦力,物块做变加速运动,直到弹簧弹力等于摩擦力时,物块速度达到 最大,此后弹簧弹力小于摩擦力,物块做变减速运动,弹簧恢复原长时,两物块与弹簧脱离.脱离弹簧后, 物块在水平方向只受摩擦力作用,做匀减速运动,直到停止.【点评】 对于所研究的系统,只要所受外力的合力为零,无论有多少个过程,无论系统内各物体是否接 触,也无论系统内物体间相互作用力的性质如何,动量守恒定律都适用.解题中既可以。
动量守恒定律子弹打木块弹簧板块三模型
一、 子弹大木块【例2】如图所示,质量为M 的木块固定在光滑的水平面上,有一质量为m 的子弹以初速度v 0水平射向木块,并能射穿,设木块的厚度为d ,木块给子弹的平均阻力恒为f .若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?【解析】若木块在光滑水平面上能自由滑动,此时子弹若能恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即mv 0=(m +M )v 对系统应用动能定理得fd =12mv 20-12(M +m )v 2 由上面两式消去v 可得fd =12mv 20-12(m +M )(mv 0m +M )2 整理得12mv 20=m +M M fd即12mv 20=(1+mM)fd 据上式可知,E 0=12mv 20就是子弹恰好打穿木块所必须具有的初动能,也就是说,子弹恰能打穿木块所必须具有的初动能与子弹受到的平均阻力f 和木块的厚度d (或者说与f ·d )有关,还跟两者质量的比值有关,在上述情况下要使子弹打穿木块,则子弹具有的初动能E 0必须大于(1+mM)f ·d .72、如图所示,静止在光滑水平面上的木块,质量为、长度为。
—颗质量为的子弹从木块的左端打进。
设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题分析:取子弹和木块为研究对象,它们所受到的合外力等于零,故总动量守恒。
由动量守恒定律得:①要使子弹刚好从木块右端打出,则必须满足如下的临界条件:②根据功能关系得:③解以上三式得:二、 板块1、 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
动量守恒定律的应用弹簧问题课件
PART 05
弹簧问题中的能量守恒
能量守恒定律的定 义
能量守恒定律
能量既不会凭空产生,也不会凭空消失,它只能从一种形式 转化为传递过程中能量的总量保持不变。
弹性势能
物体由于发生弹性形变而具有的能,与物体的形变量大小有 关,形变量越大,弹性势能越大。
事、体育等领域,如炮弹发射、弹弓等。
THANKS
感谢观看
性。
弹射装置设计
总结词
弹射装置设计中,利用动量守恒定律和能量守恒定律,通过弹簧等弹性元件的作用,将 储存的能量瞬间释放,将物体快速弹出。
详细描述
在弹射装置设计中,通过设计合理的弹簧结构和参数,根据动量守恒定律和能量守恒定 律,将储存的能量瞬间释放,产生足够的推力将物体快速弹出。这种设计广泛应用于军
非完全弹性碰撞
总结词
非完全弹性碰撞中,弹簧的弹力作用使得部分动能转化为内能,系统动量仍然守恒。
详细描述
在非完全弹性碰撞中,弹簧的弹力作用使得部分动能转化为内能,系统动量仍然守恒。此时,两个物 体在碰撞后速度减缓,动能减小,部分能量转化为内能。这种情况下,需要通过动量守恒定律和能量 守恒定律来求解碰撞后的速度和运动状态。
弹簧问题中的能量守恒应用实例
弹簧振荡器
利用弹簧的振动来产生振荡的装 置,如钟摆、振动筛等。通过调 节弹簧的刚度和质量分布,可以
改变振荡器的频率和振幅。
减震器
利用弹簧的弹性来吸收和分散冲 击能量的装置,广泛应用于车辆、
建筑和各种机械设备中,以减少 振动和噪音。
弹簧碰撞实验
通过控制弹簧的长度和刚度,以 及物体的质量和速度等参数,可 以进行碰撞实验,研究能量守恒 定律在碰撞过程中的表现和应用。
确定相互作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直在弹性限度内)弹簧所具有的最大弹性势能。
例3.如图所示,光滑水平面上有一质量M=4.0kg的平板车,车
的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧连
一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O′
点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩
v1 A
(2)画出碰撞前后的几个过程图
B甲 v2 B乙
由甲乙图 由丙丁图
2mv0=2mv1 +mv2 2mv1- mv2 =3mV
v1
v2
丙
A
B
由甲丁图,机械能守恒定律(碰撞过程不做功)V
1/2×2mv02 =1/2×3mV2 +2.5EP
A
B丁
解得v1=0.75v0
v2=0.5v0 V=v0/3
变式3:在光滑水平导轨上放置着质量均为m
反,欲使此后弹簧被压缩到最短时,弹性势能达到第(1)问中
EP的2.5倍,必须使B球在速度多大时与挡板发生碰撞?
A v0
B甲
解:(1)当弹为v, 由动量守恒定律 2mv0=3mv
v0 A
由机械能守恒定律
EP=1/2×2mv02 -1/2×3mv2 = mv02/3
动量与能量综合:弹簧问题
思考与讨论:
在如图所示的装置中,木块B与水平桌面间 的接触是光滑的,子弹A沿水平方向射入木块后, 留在木块内,将弹簧压缩到最短。若将子弹、木 块和弹簧合在一起作为研究对象(系统),此系 统从子弹开始射入木块到弹簧压缩到最短的整个 过程中,动量是否守恒?机械能是否守恒?说明 理由。
滑块B和C,B和C用轻质弹簧拴接,且都处于
静止状态。在B的右端有一质量也为m的滑块
A以速度V0向左运动,与滑块B碰撞的碰撞时 间极短,碰后粘连在一起,如图所示,求弹簧
可能具有的最大弹性势能和滑块C可能达到的
最大速度。
C
B
A
EP m ax
1 12
mv02
P
2 v 3 v0
例2.如图,轻弹簧的一端固定,另一端与滑块B相连,
速度大小为vM ,研究小物块在圆弧面上下滑过程,由系统动
量守恒和机械能守恒有 0=mvm -MvM ④
(A) 0
(B) v/2
(C) v
(D)
2v 2
变式1.如图示,在光滑的水平面上,质量为m的小球B连接着轻 质弹簧,处于静止状态,质量为2m的小球A以初速度v0向右运动, 接着逐渐压缩弹簧并使B运动,过了一段时间A与弹簧分离.
(1)当弹簧被压缩到最短时,弹簧的弹性势能EP多大?
(2)若开始时在B球的右侧某位置固定一块挡板,在A球与弹簧 未分离前使B球与挡板发生碰撞,并在碰后立即将挡板撤走,设 B球与挡板的碰撞时间极短,碰后B球的速度大小不变但方向相
B
A
例1.如图所示,在光滑的水平面上放有两个小球A和B, 其质量mA<mB,B球上固定一轻质弹簧.若将A球以速 率v去碰撞静止的B球,下列说法中正确的是( ). (A)当弹簧压缩量最大时,两球速率都最小 (B)当弹簧恢复原长时,B球速率最大 (C)当A球速率为零时,B球速率最大 (D)当B球速率最大时,弹性势能不为零
变式2.如图所示,质量相同的木块A和B,其间用一 轻质弹簧相连,置于光滑的水平桌面上,C为竖直 坚硬挡板.今将B压向A,弹簧被压缩,然后突然释放 B,若弹簧刚恢复原长时,B的速度大小为v,那么 当弹簧再次恢复原长时,B的速度大小应为( ).
(A) 0
(B) v/2
(C) v
(D)
2v 2
变式2.如图所示,质量相同的木块A和B,其间用一 轻质弹簧相连,置于光滑的水平桌面上,C为竖直 坚硬挡板.今将B压向A,弹簧被压缩,然后突然释放 B,若弹簧刚恢复原长时,B的速度大小为v,那么 当弹簧再次恢复原长时,B的速度大小应为( A ).
的最大压缩量。
v0
B
A
O
P
l
解:(1)设A、B质量均为m,A刚接触B时的速度为v1, 碰 由功后能瞬关间系共同的m速gl度 为12 mv2v02, 以12 mA为v12研究对象,从P到O,
以A、B为研究对象,碰撞瞬间,由动量守恒定律
mv1 = 2mv2
解得
1 v2 2
v02 2 gl
(2)碰后A、B由O点向左运动,又返回到O点,设
O′
m
时距O′点的距离.
解: ⑴平板车和小物块组成的系统水平方向动量守恒,故小
物块恰能到达圆弧最高点A时,
二者的共同速度 v共 =0
①
设恒弹,簧则解有除E锁P=定m前g的R+弹μ性m势gL能为EP,上述过②程中系统能量守
代入数据解得 EP =7.5 J
③
⑵设小物块第二次经过O′时的速度大小为vm,此时平板车的
平板车向右滑动到最右端而与之保持相对静止。求:
(1)小物体与平板车间的动摩擦因数;
(2)这过程中弹性势能的最大值。
v0
M
m
变式2. 如图所示,质量为2m的木板,静止放在光滑的
水平面上,木板左侧固定着一根劲度系数为k的轻质弹簧,
弹簧的自由端到小车右端的距离为L0,一个质量为m的 小木块从板的右端以初速度v0开始沿木块向左滑行,最 终回到木板右端,刚好不从木板右端滑出,设木板与木
弹簧的最大压缩量为x
由功能关系 (
解得 x
2mg ) 2x
v02 l
1 ( 2m 2
)v
2 2
16 g 8
变式1.如图所示,质量为M=4kg的平板车静止在光滑水
平面上,其左端固定着一根轻弹,质量为m=1kg的小物
体以水平速度v0=5m/s从平板车右端滑上车,相对于平板 车向左滑动了L=1m后把弹簧压缩到最短,然后又相对于
弹簧,一质量m=1.0kg的小物块紧靠弹簧,小物块与水平轨道
间的动摩擦因数μ=0.5。整个装置处于静止状态,现将弹簧解
除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A,g取
10m/s2.求:
(1)解除锁定前弹簧的弹性势能; (2)小物块第二次经过O′点 时的速度大小; (3)最终小物块与车相对静止
A RO M
B静止在水平导轨上的O点,此时弹簧处于原长。另一质
量与B相同的滑块A从导轨上的P点以初速度v0向B滑行, 当A滑过距离l时,与B相碰。碰撞时间极短,碰后A、B
粘在一起运动。设滑块A和B均可视为质点,与导轨的动
摩擦因数均为μ 。重力加速度为g。求:
(1)碰后瞬间,A、B共同的速度大小;
(2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧