外接球与内切球
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单几何体的外接球与内切球问题
复习回顾:
定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
学习重点:
常用性质:
1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不重合。
4、基本方法:构造三角形利用相似比和勾股定理。
5、体积分割是求内切球半径的通用做法。
自我训练:
一、 直棱柱的外接球
1、长方体的外接球:
长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几
何体的外接球直径R 2为体对角线长l 即2
2
22c b a R ++= 2、正方体的外接球:
正方体的棱长为a ,则正方体的体对角线为a 3,其外接球的直径R 2为a 3。
3、直棱柱的外接球:
方法:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球。
例1、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98
,底面周长为3,则这个球的体积为 . 例2、已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A.16π
B.20π
C.24π
D.32π
二、棱锥的外接球
1、正棱锥的外接球
方法:球心在正棱锥的高线上,根据球心到各个顶点的距离是球半径,列出关于半径的方程。
例3、正四棱锥S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积为 .
例4、若正四面体的棱长为4,则正四面体的外接球的表面积为___________。
例5、一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是:( )
(A )433 (B)33 (C) 43 (D) 12
3 2、补体方法的应用
(1)正四面体(2)三条侧棱两两垂直的三棱锥
(3)四个面均为直角三角形的三棱锥(4)对棱相等的三棱锥
例6、如果三棱锥的三个侧面两两垂直,它们的面积分别为62cm 、42cm 和32cm ,那么它的外接球的体积是 。
例7、如图为一个几何体的三视图,则该几何体的外接球的表面积为( )
A. 4π
B. 8π
C. 12π
D. 16π
三、圆柱、圆锥的外接球
旋转体的外接球,可以通过研究轴截面求球的半径。
例8、圆台的底面半径分别是3和6,母线长为5,求该圆台的外接球的半径。 例9、圆柱的底面半径为4,母线为8,求该圆柱的外接球的半径。
例10、圆锥的底面半径为2,母线长为4,求该圆锥的外接球的半径。
四、正方体的内切球
设正方体的棱长为a ,求(1)内切球半径;(2)与棱相切的球半径。
(1)截面图为正方形EFGH 的内切圆,得2
a R =;(2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,作截面图,圆O 为正方形EFGH 的外接圆,易得a R 2
2=。
五、棱锥的内切球(分割法)
将内切球的球心与棱锥的各个顶点连线,将棱锥分割成以原棱锥的面为底面,内切球的半径为高的小棱锥,根据分割前后的体积相等,列出关于半径R 的方程。若棱锥的体积
为V ,表面积为S ,则内切球的半径为S V R 3=. 例11、正四棱锥S ABCD -,底面边长为2,侧棱长为3,则内切球的半径是多少? 例12、三棱锥P ABC -中,底面ABC ∆是边长为2的正三角形, PA ⊥底面ABC ,且2PA =,则此三棱锥内切球的半径为( )
六、圆柱(轴截面为正方形)、圆锥的内切球(截面法)
例13、圆锥的高为4,底面半径为2,求该圆锥内切球与外接球的半径比。
例14、圆柱的底面直径和高都是6,求该圆柱内切球的半径。
讨论总结:
巩固训练:
1、一个正三棱柱恰好有一个内切球(球与三棱柱的两个底面和三个侧面都相切)和一个外接球(球经过三棱柱的6个顶点),则此内切球与外接球表面积之比为 。
2、如图,半径为2的半球内有一内接正六棱锥P ABCDEF -,则此正六棱锥的侧面积是________.
3、棱长为2的正四面体的四个顶点都在同一个 球面上,若过该球球心的一个截面如图,则图中 三角形(正四面体的截面)的面积是 .
4、已知三棱锥S ABC -的所有顶点都在球O 的球面上,
ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为
A B C P
D
E
F
图1
图2
( )
A B C D
5、已知点P,A,B,C,D 是球O 表面上的点,PA ⊥平面ABCD,四边形ABCD 是边长为
形.若,则△OAB 的面积为______________.
读题背题:
作业:
1、已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,求球O 的体积。
2、在三棱锥BCD A -中,BC CD BCD AB ⊥⊥,平面,543===CD BC AB ,, 则三棱锥BCD A -外接球的表面积__________。