八年级数学相似三角形练习题2

合集下载

八年级数学相似三角形的识别练习题2-初中二年级数学试题练习、期中期末试卷-初中数学试卷

八年级数学相似三角形的识别练习题2-初中二年级数学试题练习、期中期末试卷-初中数学试卷

八年级数学相似三角形的识别练习题2-初中二年级数学试题练习、期中期末试卷、测验题、
复习资料-初中数学试卷-试卷下载
第3课时
相似三角形的识别(二)
课前导学:
1、如图,中,点P在AB上,在下列四个条件中:
①;②;③;
④。

能满足和相似的条件是
A、①②④
B、①③④
C、②③④
D、①②③
2、如图,在中,点D在AB上,请再添加一个适当的条件,使∽,那么要添加的条件是。

(只需填写满足要求的一个条件即可)
随堂检测:
3、给出以下条件:
①的两个角分别是和,的两个角分别是、;
②的两边长分别是4cm和cm,夹角为,的两边长分别是、,夹角为;
③的边长分别是5cm、6cm、8cm,的边长分别是cm、3cm、4cm;
④中,,
中,;
其中能判定∽的条件有()
A、1个
B、2个
C、3个
D、4个
4、如图,要使∽,已具备条件,还需补充的条件是或或。

5、已知:如图,AE=AD·AB,且,求证: ∽
提高题:
1)、中,AB=6,CB=8,中,,则∽,这个结论对吗?
2)、如图,线段AC、BD相交于点O,要使∽,
已具备条件
,还需补充的条件是


或。

3)、已知:如图,中,点D、E分别在AB、AC上,FG∽AD,分别交DE、AE于点F 、G,3AE=2AB,AD:AC=2:3。

那么与相似吗?
若相似,请说明理由。

欢迎下载使用,分享让人快乐。

经典相似三角形练习题(附参考答案)

经典相似三角形练习题(附参考答案)

类似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延伸线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试解释:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,衔接BE,CD,M,N分离为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基本上,将△ADE绕点A按顺时针偏向扭转180°,其他前提不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的前提下,请你在图②中延伸ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延伸线上一点,衔接EC,交AD于点F.在不添加帮助线的情形下,请你写出图中所有的类似三角形,并任选一对类似三角形赐与证实.7.如图,在4×3的正方形方格中,△ABC和△DEF的极点都在边长为1的小正方形的极点上.(1)填空:∠ABC=_________°,BC=_________;(2)断定△ABC与△DEC是否类似,并证实你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点动身沿AB偏向以1cm/s的速度向B点匀速活动;同时,动点N从D点动身沿DA偏向以2cm/s的速度向A点匀速活动,问:(1)经由若干时光,△AMN的面积等于矩形ABCD 面积的?(2)是否消失时刻t,使以A,M,N为极点的三角形与△ACD类似?若消失,求t的值;若不消失,请解释来由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD.AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情形,并求出拔取到的两个三角形是类似三角形的概率是若干;(留意:全等算作类似的特例)(2)请你任选一组类似三角形,并给出证实.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,衔接AE.(1)写出图中所有相等的线段,并加以证实;(2)图中有无类似三角形?如有,请写出一对;若没有,请解释来由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的随意率性一点,过点M分离作AB.AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对类似三角形(不需证实);(3)M位于BC的什么地位时,四边形AQMP为菱形并证实你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试解释:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B动身,以1cm/s的速度,沿B⇒A⇒D⇒C偏向,向点C活动;动点Q从点C动身,以1cm/s的速度,沿C⇒D⇒A偏向,向点A活动,过点Q作QE⊥BC于点E.若P.Q 两点同时动身,当个中一点到达目标地时全部活动随之停止,设活动时光为t秒.问:①当点P在B⇒A上活动时,是否消失如许的t,使得直线PQ将梯形ABCD的周长等分?若消失,请求出t的值;若不消失,请解释来由;②在活动进程中,是否消失如许的t,使得以P.A.D为极点的三角形与△CQE类似?若消失,请求出所有相符前提的t的值;若不消失,请解释来由;③在活动进程中,是否消失如许的t,使得以P.D.Q为极点的三角形正好是以DQ为一腰的等腰三角形?若消失,请求出所有相符前提的t的值;若不消失,请解释来由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P.Q分离是AB.BC 上活动的两点.若P自点A动身,以1cm/s的速度沿AB偏向活动,同时,Q自点B动身以2cm/s的速度沿BC偏向活动,问经由几秒,以P.B.Q为极点的三角形与△BDC类似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开端沿AB边向B点以2cm/s的速度移动,点Q从点B开端沿BC边向点C以4cm/s的速度移动,假如P.Q分离从A.B同时动身,问经由几秒钟,△PBQ与△ABC类似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为若干时,这两个直角三角形类似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,可否在边AB上找一点N(不含A.B),使得△CDM与△MAN类似?若能,请给出证实,若不克不及,请解释来由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B动身,沿BC偏向以2cm/s的速度移动,点P从C动身,沿CA偏向以1cm/s的速度移动.若Q.P分离同时从B.C动身,试探讨经由若干秒后,以点C.P.Q为极点的三角形与△CBA类似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上肯定点P 的地位,使得以P,A,D为极点的三角形与以P,B,C为极点的三角形类似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的极点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E扭转,使得DE与BA的延伸线交于点M,EF与AC交于点N,于是,除(1)中的一对类似三角形外,可否再找出一对类似三角形并证实你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开端向B以2cm/s的速度移动;点Q沿DA边从点D开端向点A以1cm/s的速度移动.假如P.Q同时动身,用t (秒)暗示移动的时光,那么当t为何值时,以点Q.A.P为极点的三角形与△ABC类似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA地点的直线行走14米到B点时,身影的长度是变长了照样变短了?变长或变短了若干米?23.阳光亮媚的一天,数学兴致小组的同窗们去测量一棵树的高度(这棵树底部可以到达,顶部不轻易到达),他们带了以下测量对象:皮尺,标杆,一副三角尺,小平面镜.请你在他们供给的测量对象中选出所需对象,设计一种测量计划.(1)所需的测量对象是:_________;(2)请鄙人图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母暗示)求出x.24.问题布景在某次活动课中,甲.乙.丙三个进修小组于统一时刻在阳光下对校园中一些物体进行了测量.下面是他们经由过程测量得到的一些信息:甲组:如图1,测得一根竖立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得黉舍旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其粗细疏忽不计)的高度为200cm,影长为156cm.义务请求:(1)请依据甲.乙两组得到的信息盘算出黉舍旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请依据甲.丙两组得到的信息,求景灯灯罩的半径.(友谊提醒:如图3,景灯的影长等于线段NG的影长;须要时可采取等式1562+2082=2602)25.阳光经由过程窗口照耀到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下漫步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的程度距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请解释来由;(3)若李华在点A朝着影子(如图箭头)的偏向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分离以直角三角形ABC三边为直径向外作三个半圆,其面积分离用S1,S2,S3暗示,则不难证实S1=S2+S3.(1)如图②,分离以直角三角形ABC三边为边向外作三个正方形,其面积分离用S1,S2,S3暗示,那么S1,S2,S3之间有什么关系;(不必证实)(2)如图③,分离以直角三角形ABC三边为边向外作三个正三角形,其面积分离用S1.S2.S3暗示,请你肯定S1,S2,S3之间的关系并加以证实;(3)若分离以直角三角形ABC三边为边向外作三个一般三角形,其面积分离用S1,S2,S3暗示,为使S1,S2,S3之间仍具有与(2)雷同的关系,所作三角形应知足什么前提证实你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD.CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两类似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证实:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考核的是平行线的性质及类似三角形的剖断定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延伸线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.解答:(1)证实:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证实:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试解释:△ABF∽△EAD.解答:证实:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考核类似三角形的剖断定理,症结是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,衔接BE,CD,M,N分离为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基本上,将△ADE绕点A按顺时针偏向扭转180°,其他前提不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的前提下,请你在图②中延伸ED交线段BC于点P.求证:△PBD∽△AMN.解答:(1)证实:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M.N分离是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证实:在图②中准确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN 都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延伸线上一点,衔接EC,交AD于点F.在不添加帮助线的情形下,请你写出图中所有的类似三角形,并任选一对类似三角形赐与证实.剖析:依据平行线的性质和两角对应相等的两个三角形类似这一剖断定理可证实图中类似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:类似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,在4×3的正方形方格中,△ABC和△DEF的极点都在边长为1的小正方形的极点上.(1)填空:∠ABC=135°°,BC=;(2)断定△ABC与△DEC是否类似,并证实你的结论.解答:解:(1)∠ABC=135°,BC=;(2)类似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点动身沿AB偏向以1cm/s的速度向B点匀速活动;同时,动点N从D点动身沿DA偏向以2cm/s的速度向A点匀速活动,问:(1)经由若干时光,△AMN的面积等于矩形ABCD面积的?(2)是否消失时刻t,使以A,M,N为极点的三角形与△ACD类似?若消失,求t的值;若不消失,请解释来由解:(1)设经由x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经磨练,可知x1=1,x2=2相符题意,所以经由1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经由t秒时,以A,M,N为极点的三角形与△ACD类似,由矩形ABCD,可得∠CDA=∠MAN=90°,是以有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经磨练,t=或t=都相符题意,所以动点M,N同时动身后,经由秒或秒时,以A,M,N为极点的三角形与△ACD类似.(8分)9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD.AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情形,并求出拔取到的两个三角形是类似三角形的概率是若干;(留意:全等算作类似的特例)(2)请你任选一组类似三角形,并给出证实.解答:解:(1)任选两个三角形的所有可能情形如下六种情形:①②,①③,①④,②③,②④,③④(2分)个中有两组(①③,②④)是类似的.∴拔取到的二个三角形是类似三角形的概率是P=(4分)证实:(2)选择①.③证实.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②.④证实.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考核概率的求法:假如一个事宜有n种可能,并且这些事宜的可能性雷同,个中事宜A消失m种成果,那么事宜A的概率P(A)=,即类似三角形的证实.还考核了类似三角形的剖断.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,衔接AE.(1)写出图中所有相等的线段,并加以证实;(2)图中有无类似三角形?如有,请写出一对;若没有,请解释来由;(3)求△BEC与△BEA的面积之比.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形类似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延伸线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题重要考核了直角三角形的性质,类似三角形的剖断及三角形面积的求法等,规模较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的随意率性一点,过点M分离作AB.AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对类似三角形(不需证实);(3)M位于BC的什么地位时,四边形AQMP为菱形并证实你的结论.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试解释:△ADM∽△MCP.解答:证实:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B动身,以1cm/s的速度,沿B⇒A⇒D⇒C偏向,向点C活动;动点Q从点C动身,以1cm/s的速度,沿C⇒D⇒A偏向,向点A活动,过点Q作QE⊥BC于点E.若P.Q 两点同时动身,当个中一点到达目标地时全部活动随之停止,设活动时光为t秒.问:①当点P在B⇒A上活动时,是否消失如许的t,使得直线PQ将梯形ABCD的周长等分?若消失,请求出t的值;若不消失,请解释来由;②在活动进程中,是否消失如许的t,使得以P.A.D为极点的三角形与△CQE类似?若消失,请求出所有相符前提的t的值;若不消失,请解释来由;③在活动进程中,是否消失如许的t,使得以P.D.Q为极点的三角形正好是以DQ为一腰的等腰三角形?若消失,请求出所有相符前提的t的值;若不消失,请解释来由.解答:解:(1)过D 作DH ∥AB交BC于H 点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD是直角梯形.∴SABCD=(AD+BC)AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长等分.②第一种情形:0<t≤8若△PAD∽△QEC则∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C∴tan∠APD=tan∠C==,∴=∴t=第二种情形:8<t≤10,P.A.D三点不克不及构成三角形;第三种情形:10<t≤12△ADP为钝角三角形与Rt△CQE不类似;∴t=或t=时,△PAD与△CQE类似.③第一种情形:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E.H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)∴t=第二种情形:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情形:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P.Q分离是AB.BC 上活动的两点.若P自点A动身,以1cm/s的速度沿AB偏向活动,同时,Q自点B动身以2cm/s的速度沿BC偏向活动,问经由几秒,以P.B.Q为极点的三角形与△BDC类似?解答:解:设经x秒后,△PBQ∽△BCD,因为∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经由秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开端沿AB边向B点以2cm/s的速度移动,点Q从点B开端沿BC边向点C以4cm/s的速度移动,假如P.Q分离从A.B同时动身,问经由几秒钟,△PBQ与△ABC类似.解答:设经由秒后t秒后,△PBQ与△ABC类似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经由2.5s或1s时,△PBQ与△ABC类似(10分).解法二:设ts后,△PBQ与△ABC类似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情形:(1)当BP与AB对应时,有=,即=(2)当BP与BC对应时,有=,即=,解得t=1s所以经由1s或2.5s时,以P.B.Q三点为极点的三角形与△ABC类似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为若干时,这两个直角三角形类似.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形类似,有两种情形:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形类似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,可否在边AB上找一点N(不含A.B),使得△CDM与△MAN类似?若能,请给出证实,若不克不及,请解释来由.解答:证实:分两种情形评论辩论:①若△CDM∽△MAN,则=.∵边长为a,M是AD的中点,∴AN=a.②若△CDM∽△NAM,则.∵边长为a,M是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N(不含A.B),使得△CDM与△MAN类似.当AN=a时,N点的地位知足前提.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B动身,沿BC偏向以2cm/s的速度移动,点P从C动身,沿CA偏向以1cm/s的速度移动.若Q.P分离同时从B.C动身,试探讨经由若干秒后,以点C.P.Q为极点的三角形与△CBA类似?解答:解:设经由x秒后,两三角形类似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形类似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经由秒或秒后,两三角形类似.(6分)点评:本题分解考核了旅程问题,类似三角形的性质及一元一次方程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上肯定点P 的地位,使得以P,A,D为极点的三角形与以P,B,C为极点的三角形类似.解答:解:(1)若点A,P,D分离与点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分离与点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.磨练:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.是以,点P的地位有三处,即在线段AB距离点A的1..6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的极点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E扭转,使得DE与BA的延伸线交于点M,EF与AC交于点N,于是,除(1)中的一对类似三角形外,可否再找出一对类似三角形并证实你的结论.解答:证实:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)与(1)同理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN与△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN.(12分)21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开端向B以2cm/s的速度移动;点Q沿DA边从点D开端向点A以1cm/s的速度移动.假如P.Q同时动身,用t(秒)暗示移动的时光,那么当t为何值时,以点Q.A.P为极点的三角形与△ABC类似.解答:解:以点Q.A.P为极点的三角形与△ABC类似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍去).故当t=6或t=时,以点Q.A.P为极点的三角形与△ABC类似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA地点的直线行走14米到B点时,身影的长度是变长了照样变短了?变长或变短了若干米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光亮媚的一天,数学兴致小组的同窗们去测量一棵树的高度(这棵树底部可以到达,顶部不轻易到达),他们带了以下测量对象:皮尺,标杆,一副三角尺,小平面镜.请你在他们供给的测量对象中选出所需对象,设计一种测量计划.(1)所需的测量对象是:;(2)请鄙人图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母暗示)求出x.解答:解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分离为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题布景在某次活动课中,甲.乙.丙三个进修小组于统一时刻在阳光下对校园中一些物体进行了测量.下面是他们经由过程测量得到的一些信息:甲组:如图1,测得一根竖立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得黉舍旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细疏忽不计)的高度为200cm,影长为156cm.义务请求:(1)请依据甲.乙两组得到的信息盘算出黉舍旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请依据甲.丙两组得到的信息,求景灯灯罩的半径.(友谊提醒:如图3,景灯的影长等于线段NG的影长;须要时可采取等式1562+2082=2602)解答:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,黉舍旗杆的高度是12m.(3分)(2)解法一:与①类似得:,即,∴GN=208.(4分)在Rt△NGH中,依据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,衔接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:与①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,衔接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)在Rt△OMN中,依据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(不合题意,舍去),∴景灯灯罩的半径是12cm.(8分)25.(2007•白银)阳光经由过程窗口照耀到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题根本上难度不大,应用类似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下漫步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的程度距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请解释来由;(3)若李华在点A朝着影子(如图箭头)的偏向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.(3)依据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).由(1)可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时刻,他的影子也从C移到C',是以速度与旅程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分离以直角三角形ABC三边为直径向外作三个半圆,其面积分离用S1,S2,S3暗示,则不难证实S1=S2+S3.(1)如图②,分离以直角三角形ABC三边为边向外作三个正方形,其面积分离用S1,S2,S3暗示,那么S1,S2,S3之间有什么关系;(不必证实)(2)如图③,分离以直角三角形ABC三边为边向外作三个正三角形,其面积分离用S1.S2.S3暗示,请你肯定S1,S2,S3之间的关系并加以证实;(3)若分离以直角三角形ABC三边为边向外作三个一般三角形,其面积分离用S1,S2,S3暗示,为使S1,S2,S3之间仍具有与(2)雷同的关系,所作三角形应知足什么前提证实你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC.CA.AB的长分离为a.b.c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证实如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形类似时,S1=S2+S3.证实如下:∵所作三个三角形类似∴∴=1∴S1=S2+S3;(4)分离以直角三角形ABC三边为一边向外作类似图形,其面积分离用S1.S2.S3暗示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD.CD的长;(2)过B作BE⊥DC于E,求BE的长.解答:解:(1)Rt△ABC中,依据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两类似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.解:(1)设=k,那么x=2k,y=3k,z=5k,因为3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分离为240cm,800cm。

几何推理练习题相似三角形

几何推理练习题相似三角形

几何推理练习题相似三角形几何推理练习题:相似三角形几何推理是数学中的一种重要思维方式,通过观察、分析和推理几何图形的属性来解决问题。

相似三角形是几何推理中常见的一种情况,它们具有相等的夹角,并且对应边的比例相等。

本文将介绍一些相似三角形的练习题,帮助读者巩固几何推理的能力。

1. 练习题一已知△ABC中,∠A=45°,∠B=60°,AB=5 cm。

连接点A和点D,使得∠BCD=90°。

如果AD=4 cm,求BC的长度。

解析:根据题目可以得知,△ABC和△BCD为相似三角形,因为∠A=∠BCD。

根据相似三角形的性质,可以列出比例关系式:AB/BC = BC/BD代入已知数值,可得:5/BC = BC/4通过交叉相乘求解,得到:BC^2 = 20因此,BC = √20 = 2√5 cm。

2. 练习题二已知△ABC和△ADE相似,且BC=8 cm,AC=10 cm,DE=12 cm。

如果BD=9 cm,求AE的长度。

解析:根据题目可以得知,△ABC和△ADE为相似三角形,因此可以列出比例关系式:AB/AE = BC/DE代入已知数值,可得:AB/AE = 8/12 = 2/3通过交叉相乘求解,得到:AB * 3 = AE * 2已知BD=9 cm,根据△ABD的相似比例关系,可以得到:AB/BD = AE/DE代入已知数值,可得:AB/9 = AE/12将AB的值代入上述等式,可得:(2/3) * 9 = AE/12通过简单的计算,可以得到:AE = 2 * 9 / 3 = 6 cm因此,AE的长度为6 cm。

3. 练习题三已知两个相似三角形,它们的周长比为7:4,面积比为49:16。

求这两个三角形的边长比和面积比。

解析:设两个相似三角形的边长比为a:b,面积比为c:d。

根据题目可得以下比例关系:(a+b)/(c+d) = 7/4 --(1)(a^2+b^2)/(c^2+d^2) = 49/16 --(2)将(1)式两边同乘4(c+d),可得:4(a+b) = 7(c+d)化简后得:4a + 4b = 7c + 7d --(3)将(2)式两边同乘16(c^2+d^2),可得:16(a^2+b^2) = 49(c^2+d^2)化简后得:16a^2 + 16b^2 = 49c^2 + 49d^2 --(4)由(3)式可得:4(a+b) - 7(c+d) = 0化简后得:4a + 4b - 7c - 7d = 0 --(5)由(4)式可得:16(a^2 + b^2) - 49(c^2 + d^2) = 0化简后得:16a^2 + 16b^2 - 49c^2 - 49d^2 = 0 --(6)通过求解方程组(5)和(6),可以得到a:b的值为7:4,c:d的值为49:16。

初中数学相似三角形题型归类——成比例线段专项练习2(附答案详解)

初中数学相似三角形题型归类——成比例线段专项练习2(附答案详解)
15.已知点 P 是线段 AB 的一个黄金分割点,且 AB 6cm , AP BP ,那么 AP __________ cm . 16.已知点 P 是线段 AB 上的黄金分割点,AP BP ,AB 4 ,那么 AP __________. 17.点 C 是靠近点 B 的线段 AB 的黄金分割点,若 AB 10cm ,则 AC __________ cm .(结果保留根号)
初中数学相似三角形题型归类——成比例线段专项练习 2(附答案详解)
1.已知线段 a 2cm , b 8cm ,它们的比例中项 c 是( )
A. 4cm
B. 4cm
C.16cm
D. 16cm
2.下列各组线段(单位:cm)中,成比例线段的是( )
A.1、2、2、3
B.1、2、3、4
C.1、2、2、4 D.3、5、9、13
金分割点( AP2 P1P2 ),点 P3 是线段 AP2 的黄金分割点( AP3 P2P3 ),..,依此类推,则线段
AP2020 的长度是(

A. (3 5 )2020 2
B. ( 5 1)2020 2
C. ( 1)2020 2
D. ( 5 2)1010
11.爱好骑行的小明想知道从淮北到首都北京的距离大约是多少,因此他从一张比例尺
AB AC AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割点,AC 与 AB 的比叫做黄金比.请
计算黄金比.
22.已知 x y z ,且 2x+3y﹣z=18,求 4x+y﹣3z 的值. 234
23.阅读理解:
如图①,点 C 将线段 AB 分成两部分,若 AC = BC ,则点 C 为线段 AB 的黄金分割点. AB AC

相似三角形经典题(含答案)

相似三角形经典题(含答案)

相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CDF S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长. 解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//,∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =. 又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆.例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2. 说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH . 由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行.例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FCAB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.Welcome !!! 欢迎您的下载,资料仅供参考!。

初二数学相似三角形习题

初二数学相似三角形习题

相似三角形1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.4.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.5.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△B EC与△BEA的面积之比.6.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.7.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.8.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.9.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.10.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?11.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.12.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.。

初中数学相似三角形试卷

初中数学相似三角形试卷

一、选择题(每题5分,共25分)1. 下列图形中,一定存在相似三角形的是()A. 等腰三角形和等边三角形B. 直角三角形和钝角三角形C. 等腰梯形和矩形D. 正方形和等腰三角形2. 下列各对三角形中,一定相似的是()A. 两边对应成比例,夹角相等的三角形B. 三边对应成比例的三角形C. 两角对应相等的三角形D. 两边对应成比例,夹角不相等的三角形3. 已知在相似三角形ABC和DEF中,∠BAC = ∠DEF,∠ABC = ∠DEF,则下列结论正确的是()A. AB = DEB. AC = DFC. BC = EFD. AB/DE = AC/DF4. 在下列三角形中,能构成相似三角形的是()A. ∠A = 40°,∠B = 70°,∠C = 70°的三角形B. ∠A = 45°,∠B = 45°,∠C = 90°的三角形C. ∠A = 30°,∠B = 60°,∠C = 90°的三角形D. ∠A = 50°,∠B = 60°,∠C = 70°的三角形5. 在下列各对三角形中,一定不相似的是()A. 两边对应成比例,夹角相等的三角形B. 三边对应成比例的三角形C. 两角对应相等的三角形D. 两边对应成比例,夹角不相等且对应角不等的三角形二、填空题(每题5分,共25分)6. 在相似三角形ABC和DEF中,∠A = 50°,∠B = 40°,则∠C的度数是________°。

7. 已知在相似三角形ABC和DEF中,AB = 6cm,BC = 8cm,DE = 4cm,则EF的长度是________cm。

8. 在相似三角形ABC和DEF中,∠A = 30°,∠B = 60°,则∠C的度数是________°。

9. 已知在相似三角形ABC和DEF中,∠A = 45°,∠B = 90°,则∠C的度数是________°。

相似三角形与比例计算练习题

相似三角形与比例计算练习题

相似三角形与比例计算练习题相似三角形是初中数学中的一个重要概念,通过相似三角形的性质进行比例计算也是解决实际问题中常用的方法。

本文将提供一些相似三角形与比例计算的练习题,帮助读者巩固相关的知识和技巧。

练习题一:已知两个三角形ABC和DEF,已知∠A=∠D,∠ABC=75°,∠DEF=45°,AB=12 cm,EF=8 cm,求BC和EF的比例。

解析:根据题目中给出的条件可知,三角形ABC与三角形DEF相似,且∠A=∠D。

由于相似三角形的对应角相等,所以∠C=(180°-75°-∠ABC)=105°,∠E=(180°-45°-∠DEF)=90°。

我们可以使用相似三角形的边比例定理来求解题目中的比例。

根据边比例定理可得:BC/EF=AB/DEBC/8=12/DEBC=(12/DE)*8练习题二:在平面直角坐标系中,已知三角形ABC的顶点坐标A(1,2),B(3,5),C(4,4),三角形DEF的顶点坐标D(5,6),E(7,9),F(8,8),判断两个三角形是否相似,并证明你的结论。

解析:首先可以通过计算两个三角形的边长来判断它们是否相似。

计算得到:AB=sqrt((3-1)^2+(5-2)^2)=sqrt(10)BC=sqrt((4-3)^2+(4-5)^2)=sqrt(2)AC=sqrt((4-1)^2+(4-2)^2)=sqrt(13)DE=sqrt((7-5)^2+(9-6)^2)=sqrt(13)EF=sqrt((8-7)^2+(8-9)^2)=sqrt(2)DF=sqrt((8-5)^2+(8-6)^2)=sqrt(13)可以发现,AB/DE=BC/EF=AC/DF,即它们的边长比例相等。

根据边比例定理可知,两个三角形ABC和DEF相似。

要证明两个三角形相似,还需要证明它们的对应角相等。

由于三角形ABC和DEF的顶点坐标已知,我们可以求出它们的角度。

相似三角形经典练习题

相似三角形经典练习题

相似三角形经典练习题一.选择题(共9小题)1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A.B.C.D.2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )A.1:3B.1:4C.1:D.1:23.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为( )A.B.C.D.4.如图,▱ABCD中,Q是CD上的点,AQ交BD于点P,交BC的延长线于点R,若DQ:CQ=4:3,则AP:PR=( )A.4:3 B.4:7 C.3:4 D.3:75.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )A.B.C.D.6.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )A.B.C.D.7.如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC相似,则AE等于( )A.B.10C.或10D.以上答案都不对8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A.B.C.D.9.如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( )A.B.C.D.二.填空题(共11小题)10.a=4,b=9,则a、b的比例中项是 .11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 (填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.12.如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD= .13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= .14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD交于G,若AE=4,EG=3,则EF= .15.如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= .16.如图,若∠B=∠DAC,则△ABC∽ ,对应边的比例式是 .17.如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ,结论是 .(注:填序号)18.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC= .19.如图,将三个全等的正方形拼成一个矩形ADHE,则:∠ABE+∠ACE+∠ADE等于 度.20.一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第 张.三.解答题(共10小题)21.如图,D,E分别是AC,AB上的点,.已知△ABC的面积为60cm2,求四边形BCDE的面积.22.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.23.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.24.平行四边形ABCD中,AB=28,E、F是对角线AC上的两点,且AE=EF=FC,DE交AB于点M,MF交CD于点N.求AM、CN的长.25.如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.(1)求证:;(2)计算CD•CB的值,并指出CB的取值范围.26.已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC 于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.27.如图△ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,(1)求矩形EFGH的周长y与x的函数关系式;(2)求矩形EFGH的面积S与x的函数关系式.28.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O 开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.29.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC 方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?30.如图,已知A、B两点的坐标分别为(40,0),(0,30),动点P从点A 开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)当t为何值时,△EOP与△BOA相似.相似三角形经典练习题20161115参考答案与试题解析一.选择题(共9小题)1.在直角三角形中,两直角边分别为3和4,则这个三角形的斜边与斜边上的高的比为( )A.B.C.D.【考点】勾股定理.【分析】本题主要利用勾股定理和面积法求高即可.【解答】解:∵在直角三角形中,两直角边分别为3和4,∴斜边为5,∴斜边上的高为=.(由直角三角形的面积可求得)∴这个三角形的斜边与斜边上的高的比为5:=.故选A.【点评】此题考查了勾股定理和利用面积法求高,此题考查了学生对直角三角形的掌握程度.2.如图,在Rt△ABC中,AD为斜边BC上的高,若S△CAD=3S△ABD,则AB:AC等于( )A.1:3B.1:4C.1:D.1:2【考点】相似三角形的判定与性质.【分析】根据已知及相似三角形的面积比等于相似比的平方,即可求解.【解答】解:∵∠ADC=∠ADB=90°,∠C=∠BAD∴△ACD∽△BAD∵S △CAD =3S △ABD ,且这两三角形高相等∴AB :AC=1:故选C .【点评】本题考查了三角形的面积公式,及相似三角形的判定及性质. 3.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1,S 2,那么的值为( )A .B .C .D .【考点】三角形中位线定理;相似三角形的判定与性质.【分析】根据已知可得到△ADE ∽△ABC ,从而可求得其面积比,则不难求得的值.【解答】解:根据三角形的中位线定理,△ADE ∽△ABC ,DE :BC=1:2,所以它们的面积比是1:4,所以=,故选C .【点评】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比. 4.(2012秋•桐城市校级月考)如图,▱ABCD 中,Q 是CD 上的点,AQ 交BD 于点P ,交BC 的延长线于点R ,若DQ :CQ=4:3,则AP :PR=( )A .4:3B .4:7C .3:4D .3:7【考点】相似三角形的判定与性质;平行四边形的性质.【分析】利用“平行线法”证得△ADQ∽△RCD,则对应边成比例:=;同理,证得△ADP∽△RBP,则=,即=.【解答】解:如图,∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADQ∽△RCD,∴=,即=,∴RC=AD.同理,△ADP∽△RBP,则=,即=,∴==,即AP:PR=4:7.故选:B.【点评】本题考查了相似三角形的判定与性质,平行四边形的性质.平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.5.如图,△ADE∽△ACB,其中∠AED=∠B,那么能成立的比例式是( )A.B.C.D.【考点】相似三角形的性质.【分析】本题可根据相似三角形的性质求解,已知了∠AED和∠B对应相等,因此AD、AC是对应边,AE、AB是对应边,DE、BC是对应边,根据相似三角形的对应边的比例相等,即可判断哪个选项正确.【解答】解:∵△ADE∽△ACB,且∠AED=∠B∴AD、AE、DE的对应边分别是AC、AB、BC因而有故本题选A.【点评】本题主要考查了相似三角形的性质,找准相似三角形的对应边是解题的关键.6.(2008•安徽)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.7.(2012秋•杞县校级期末)如图,△ABC,AB=12,AC=15,D为AB上一点,且AD=AB,在AC上取一点E,使以A、D、E为顶点的三角形与ABC 相似,则AE等于( )A.B.10C.或10D.以上答案都不对【考点】相似三角形的性质.【分析】△ADE与△ABC相似,则存在两种情况,即△AED∽△ACB,也可能是△AED∽△ABC,应分类讨论,求解.【解答】解:如图(1)当∠AED=∠C时,即DE∥BC则AE=AC=10(2)当∠AED=∠B时,△AED∽△ABC∴,即AE=综合(1),(2),故选C.【点评】会利用相似三角形求解一些简单的计算问题.8.(2009•新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A.B.C.D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.9.(2006•大兴安岭)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C′处,并且C′D∥BC,则CD的长是( )A.B.C.D.【考点】翻折变换(折叠问题).【分析】先判定四边形C′DCE是菱形,再根据菱形的性质计算.【解答】解:设CD=x,根据C′D∥BC,且有C′D=EC,可得四边形C′DCE是菱形;即Rt△ABC中,AC==10,,EB=x;故可得BC=x+x=8;解得x=.故选A.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.二.填空题(共11小题)10.a=4,b=9,则a、b的比例中项是 ±6 .【考点】比例线段.【分析】根据比例中项的概念,设a、b的比例中项是c,则c2=ab,再利用比例的基本性质计算得到c的值.【解答】解;设a、b的比例中项是c,则c2=ab∵a=4,b=9,∴c2=ab=36,解得:c=±6;故填: 6或6.【点评】此题考查了比例中项,关键是理解比例中项的概念,当比例式中的两个内项相同时,即叫比例中项.11.在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法正确的有 ①③④ (填序号).①AC•BC=AB•CD;②AC2=AD•DB;③BC2=BD•BA;④CD2=AD•DB.【考点】相似三角形的判定与性质.【分析】由在△ABC中,∠ACB=90°,CD⊥AB,易证得∠BDC=∠BCA=∠CDA=90°,又由∠A=∠A,∠B=∠B,根据有两角对应相等的三角形相似,即可证得△ACD∽△ABC,△BDC∽△BCA,则可得△ACD∽△CBD,根据相似三角形的对应边成比例,即可求得答案.【解答】解:∵在△ABC中,∠ACB=90°,CD⊥AB,∴AC•BC=AB•CD,即∴AC•BC=AB•CD,故①正确;∵△ABC中,∠ACB=90°,CD⊥AB于点D,∴BC2=BD•BA,故③正确;∴△ACD∽△CBD,∴,∴AC2=AD•AB,CD2=AD•DB,故②错误,④正确.故答案为:①③④.【点评】此题考查了相似三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意对应线段的对应关系与比例变形.12.(2011春•武侯区校级期末)如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD= 6.4 .【考点】相似三角形的判定与性质;勾股定理.【分析】由于AC⊥BC,CD⊥AB,可得一组对应角相等,再加上一对公共角,可证△ACD∽△ABC,利用比例线段可求AD.(可先利用勾股定理求出AB)【解答】解:∵AC⊥BC,CD⊥AB,∴∠ACB=90°,∠ADC=90°,∠A=∠A,∴△ADC∽△ACB,∴=,又∵在Rt△ABC中,AB===10,∴=,AD=6.4.【点评】解答此题不仅用到相似三角形的性质,还要结合勾股定理求出相应的边长,方可进行计算.13.如图,DE∥AC,BE:EC=2:1,AC=12,则DE= 8 .【考点】相似三角形的判定与性质;平行线的性质.【分析】根据DE∥AC,证得△BED∽△BCA,再由相似三角形对应线段成比例可得出答案.【解答】解:由DE∥AC可得△BED∽△BCA,∴==,又AC=12,可得DE=8.故填8.【点评】本题考查平行线的知识,注意相似三角形对应线段成比例的性质.14.如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD交于G,若AE=4,EG=3,则EF= .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由平行四边形的定义得出AB∥CD,再根据平行线的性质得到∠ABE=∠FDE,∠EAB=∠EFD,然后根据两角对应相等的两三角形相似即可证明△ABE∽△FDE;根据相似三角形对应边成比例得出①,再证明△BEG ∽△DEA,得出②,等量代换得到,于是得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠FDE,∠EAB=∠EFD,∴△ABE∽△FDE,∴①,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠GBE=∠ADE,∠G=∠DEA,∴△BEG∽△DEA,∴②,由①②可得,,∵AE=4,EG=3,∴EF=.故答案为:.【点评】此题考查了相似三角形的判定和性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.15.(2012•通州区校级模拟)如图,在平行四边形ABCD中,M、N为AB的三等分点,DM、DN分别交AC于P、Q两点,则AP:PQ:QC= 5:3:12 .【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据题意,可得出△AMP∽△CDP和△ANQ∽△CDQ,可分别得到AP、PQ、QC的关系式,进而求出AP、PQ、QC的比值.【解答】解:由已知得:△AMP∽△CDP,∴AM:CD=AP:PC=AP:(PQ+QC)=,即:3AP=PQ+QC,①△ANQ∽△CDQ,∴AN:CD=AQ:QC=(AP+PQ):QC=,即2QC=3(AP+PQ),②解①、②得:AQ=AC,PQ=AQ AP=AC,QC=AC AQ=AC,∴AP:PQ:QC=5:3:12.【点评】主要考查了三角形相似的性质和平行四边形的性质,要熟练掌握灵活运用.16.(2014秋•肥西县期末)如图,若∠B=∠DAC,则△ABC∽ △DAC ,对应边的比例式是 == .【考点】相似三角形的性质.【分析】根据两角对应相等的两个三角形相似可解,再根据相似三角形的性质写出对应边的比例式.【解答】解:在△ABC和△DAC中,∵∠C=∠C,∠B=∠DAC;∴△ABC∽△DAC;∴==【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.17.(2012•牡丹江模拟)如图,将①∠BAD=∠C;②∠ADB=∠CAB;③AB2=BD•BC;④;⑤;⑥中的一个作为条件,另一个作为结论,组成一个真命题,则条件是 ① ,结论是 ③或④ .(注:填序号)【考点】命题与定理.【分析】根据相似三角形的判定和性质进行分析.【解答】解:因为若∠BAD=∠C,则△ABC∽△DBA,故=,=,条件是①,结论是③或④.【点评】解答此题的关键是要熟知真命题与假命题的概念.真命题:判断正确的命题叫真命题;假命题:判断错误的命题叫假命题.18.(2014春•江都市期末)已知:AM:MD=4:1,BD:DC=2:3,则AE:EC= 8:5 .【考点】平行线分线段成比例.【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF即可得出结论.19.(2012秋•桐城市校级月考)如图,将三个全等的正方形拼成一个矩形ADHE,则:∠ABE+∠ACE+∠ADE等于 90 度.【考点】相似三角形的判定与性质;正方形的性质.【分析】设正方形的边长为1,根据正方形的性质得到∠ABE=45°,BE=,再利用勾股定理计算出CE=,则BE:BD=BC:BE=:2,加上公共角,于是可判断△CBE∽△EBD,则∠BDE=∠BEC,再利用三角形外角性质得∠ABE=∠BEC+∠BCE=45°,然后计算∠ABE+∠ACE+∠ADE.【解答】解:设正方形的边长为1,∵四边形AEFB为正方形,∴∠ABE=45°,BE=,在Rt△AEC中,AC=2∴CE==,∴BE:BD=:2,BC:BE=1:=:2,∴BE:BD=BC:BE,而∠CBE=∠EBD,∴△CBE∽△EBD,∴∠BDE=∠BEC,∵∠ABE=∠BEC+∠BCE=45°,∴∠ABE+∠ACE+∠ADE=45°+45°=90°.故答案为90.【点评】本题考查了相似三角形得判定与性质:如果两个三角形的两条对应边的比相等,且它们所夹的角也相等,那么这两个三角形相似;相似三角形对应角相等,对应边的比相等.也考查了勾股定理以及正方形的性质.20.(2011•连云港一模)一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第 6 张.【考点】相似三角形的判定与性质;等腰三角形的性质;正方形的性质.【分析】设第x张为正方形,如图,△ADE∽△ABC,则=,从而计算出x的值即可.【解答】解:如图,设第x张为正方形,则DE=3,AM=22.5 3x,∵△ADE∽△ABC,∴=,即=,解得x=6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.三.解答题(共10小题)21.如图,D,E分别是AC,AB上的点,.已知△ABC的面积为60cm2,求四边形BCDE的面积.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定证△ADE∽△ABC,根据相似三角形的性质求出△ADE的面积,相减即可求出答案.【解答】解:∵,∠A=∠A,∴△ADE∽△ABC,∴=,∵△ABC的面积为60cm2,∴△ADE的面积是×60cm2=cm2,∴四边形BCDE的面积是60cm2 cm2=cm2,答:四边形BCDE的面积是cm2.【点评】本题主要考查对相似三角形的性质和判定的理解和掌握,能熟练地运用性质进行推理是解此题的关键.22.(2015春•苏州校级期末)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF 离地面的高度AC=1.5m,CD=8m,求树高AB.【考点】相似三角形的应用.【分析】先判定△DEF和△DBC相似,然后根据相似三角形对应边成比例列式求出BC 的长,再加上AC 即可得解.【解答】解:在△DEF 和△DBC 中,,∴△DEF ∽△DBC ,∴=,即=,解得BC=4,∵AC=1.5m ,∴AB=AC+BC=1.5+4=5.5m ,即树高5.5m .【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,比较简单,判定出△DEF 和△DBC 相似是解题的关键.23.(2015秋•北京校级期中)已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F .求证:CF 2=GF•EF .【考点】平行线分线段成比例;平行四边形的性质.【分析】根据平行四边形的性质得AD ∥BC ,AB ∥CD ,再根据平行线分线段成比例定理得=,=,利用等量代换得到=,然后根据比例的性质即可得到结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴=,=,∴=,即CF 2=GF•EF .【点评】本题考查了平行线分线段成比例定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.也考查了平行四边形的性质.24.平行四边形ABCD中,AB=28,E、F是对角线AC上的两点,且AE=EF=FC,DE交AB于点M,MF交CD于点N.求AM、CN的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据已知条件,先证明△AEM∽△CED,然后利用相似三角形的对应边成比例这一性质求得AM=AB;再来证明△AFM∽△CFN,依据相似三角形的性质求的CN的长度.【解答】解:在△AEM和△CED中,∠CAB=∠DCA(内错角相等),∠AEM=∠CED,∴△AEM∽△CED,∴,∵AE=EF=FC,∴=,∴AM=CD;∵AB=CD,∴AM=AB=14,①;在△AFM和△CFN中,∠FAM=∠FCN(内错角相等),∠AFM=∠CFN(对顶角相等),∴△AFM∽△CFN,∴=2,∴CN=AM②;∵AB=28 ③由①②③解得,CN=7.【点评】本题主要考查了相似三角形的判定定理:两个三角形中,两个对应角相等,则这两个三角形相似,以及相似三角形的性质:对应边成比例.25.(2006•长沙)如图,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,直径AE为8,OC=12,∠EDC=∠BAO.(1)求证:;(2)计算CD•CB的值,并指出CB的取值范围.【考点】切割线定理;相似三角形的判定与性质.【分析】(1)证△CDE∽△CAB,再根据相似三角形的性质得到所求的比例式;(2)根据割线定理即可求得CD•CB的值.根据三角形的三边关系求得BC的取值范围.【解答】(1)证明:∵四边形ABDE内接于⊙O,∴∠EDC=∠BAO,∠C=∠C,∴△CDE∽△CAB,∴;(2)解:∵直径AE=8,OC=12,∴AC=12+4=16,CE=12 4=8.又∵=,∴CD•CB=AC•CE=16×8=128.连接OB,在△OBC中,OB=AE=4,OC=12,∴故BC的范围是:8≤BC<16.【点评】本题主要考查圆、相似三角形等初中几何的重点知识,考查学生的几何论证能力,属于中等难度题.26.(2009•潍坊)已知△ABC,延长BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.(1)求的值;(2)若AB=a,FB=EC,求AC的长.【考点】三角形中位线定理;平行线分线段成比例;相似三角形的判定与性质.【分析】(1)过点F作FM∥AC,交BC于点M.根据平行线分线段成比例定理分别找到AE,CE与FM之间的关系,得到它们的比值;(2)结合(1)中的线段之间的关系,进行求解.【解答】解:(1)过点F作FM∥AC,交BC于点M,∵F为AB的中点,∴M为BC的中点,FM=AC.∵FM∥AC,∴∠CED=∠MFD,∠ECD=∠FMD.∴△FMD∽△ECD.∴.∴EC=FM=×AC=AC.∴.(2)∵AB=a,∴FB=AB=a.∵FB=EC,∴EC=a.∵EC=AC,∴AC=3EC=a.【点评】此类题要注意作平行线,能够根据平行线分线段成比例定理和相似三角形对应边成比例即可求得线段的比.27.如图△ABC中,边BC=60,高AD=40,EFGH是内接矩形,HG交AD于P,设HE=x,(1)求矩形EFGH的周长y与x的函数关系式;(2)求矩形EFGH的面积S与x的函数关系式.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)根据矩形的性质得到HG∥BC,PD=x,AP=AD x=40 x,再三角形三角形相似的判定得到△AHG∽△ABC,利用相似比可表示出HG=(40 x),然后根据矩形的周长确定y与x的关系;(2)根据矩形的面积公式求解.【解答】解:(1)∵AD⊥BC,四边形EFGH是矩形,∴HG∥BC,PD=x,AP=AD x=40 x,∴△AHG∽△ABC,∴=,即=∴HG=(40 x),∴y=2HE+2HG=2x+2×(40 x)=2x+120 3x=120 x(0<x<40);(2)S=HE•HG=x•(40 x)= x2+60x(0<x<40).【点评】本题考查了相似三角形的判定与性质:平行于三角形一边的直线与其他两边所截得的三角形与原三角形相似;相似三角形对应角相等,对应边的比相等.也考查了矩形得性质.28.(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么(1)设△POQ的面积为y,求y关于t的函数解析式;(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;(3)当t为何值时,△POQ与△AOB相似.【考点】二次函数综合题.【分析】(1)根据P、Q的速度,用时间t表示出OQ和OP的长,即可通过三角形的面积公式得出y,t的函数关系式;(2)先根据(1)的函数式求出y最大时,x的值,即可得出OQ和OP的长,然后求出C点的坐标和直线AB的解析式,将C点坐标代入直线AB的解析式中即可判断出C是否在AB上;(3)本题要分△OPQ∽△OAB和△OPQ∽△OBA两种情况进行求解,可根据各自得出的对应成比例相等求出t的值.【解答】解:(1)∵OA=12,OB=6,由题意,得BQ=1×t=t,OP=1×t=t.∴OQ=6 t.∴y=×OP×OQ=×t(6 t)= t2+3t(0≤t≤6);(2)∵y= t2+3t,∴当y有最大值时,t=3∴OQ=3,OP=3,即△POQ是等腰直角三角形.把△POQ沿直线PQ翻折后,可得四边形OPCQ是正方形.∴点C的坐标为(3,3).∵A(12,0),B(0,6),∴直线AB的解析式为y= x+6当x=3时,y=≠3,∴点C不落在直线AB上;(3)①若△POQ∽△AOB时,,即,12 2t=t,∴t=4.②若△POQ∽△BOA时,,即,6 t=2t,∴t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ与△AOB相似.【点评】本题主要考查了直角三角形的性质、图形的翻折变换、相似三角形的判定和性质等知识点.要注意(3)题要根据不同的相似三角形分类进行讨论. 29.(2007秋•安岳县期末)如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?【考点】相似三角形的判定.【分析】此题要根据相似三角形的性质设出未知数,即经过x秒后,两三角形相似,然后根据速度公式求出他们移动的长度,再根据相似三角形的性质列出分式方程求解.【解答】解:设经过x秒后,两三角形相似,则CQ=(8 2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分)【点评】本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.30.如图,已知A、B两点的坐标分别为(40,0),(0,30),动点P从点A 开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),并且分别与y 轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)当t为何值时,△EOP与△BOA相似.【考点】相似形综合题.【分析】(1)先根据A、B两点的坐标分别为(40,0),(0,30)得出OA及OB的长,再由EF∥x轴得出EF是△BOA的中位线,再根据三角形的面积公式即可得出结论;(2)用t表示出OE及OP的长,再分△EOP∽△BOA与△EOP∽△AOB两种情况进行讨论.【解答】解:(1)∵A、B两点的坐标分别为(40,0),(0,30),∴OA=40,OB=30.∵动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x 轴),∴t=15时,BE=30 15=15,∵EF∥x轴,∴EF是△BOA的中位线,∴EF=OA=20,∴S△PEF=EF•OE=×20×15=150;(2)∵动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动,动直线EF从x轴开始以每秒1个单位长度的速度向上平行移动(即EF∥x轴),∴OE=t,OP=40 2t,∴当△EOP∽△BOA时,=,即=,解得t=12(秒);当△EOP∽△AOB时,=,即=.解得t=(秒).综上所述,当t=12秒或t=秒时,△EOP与△BOA相似.【点评】本题考查的是相似形综合题,涉及到三角形中位线定理、三角形的面积公式及相似三角形的判定与性质等知识,在解答(2)时要注意进行分类讨论.。

初中数学经典相似三角形练习题附参考答案

初中数学经典相似三角形练习题附参考答案

经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△中,∥,∥,求证:△∽△.2.如图,梯形中,∥,点F在上,连与的延长线交于点G.(1)求证:△∽△;(2)当点F是的中点时,过F作∥交于点E,若6,4,求的长.3.如图,点D,E在上,且∥,∥.求证:△∽△.4.如图,已知E是矩形的边上一点,⊥于F,试说明:△∽△.5.已知:如图①所示,在△和△中,,,∠∠,且点B,A,D在一条直线上,连接,,M,N分别为,的中点.(1)求证:①;②△是等腰三角形;(2)在图①的基础上,将△绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长交线段于点P.求证:△∽△.6.如图,E是▱的边延长线上一点,连接,交于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△和△的顶点都在边长为1的小正方形的顶点上.(1)填空:∠°,;(2)判断△与△是否相似,并证明你的结论.8.如图,已知矩形的边长3,6.某一时刻,动点M从A点出发沿方向以1的速度向B点匀速运动;同时,动点N从D点出发沿方向以2的速度向A点匀速运动,问:(1)经过多少时间,△的面积等于矩形面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形中,若∥,,对角线、把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△中,D为上一点,2,∠45°,∠60°,⊥于E,连接.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△与△的面积之比.11.如图,在△中,,M为底边上的任意一点,过点M分别作、的平行线交于P,交于Q.(1)求四边形的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于的什么位置时,四边形为菱形并证明你的结论.12.已知:P是正方形的边上的点,且3,M是的中点,试说明:△∽△.13.如图,已知梯形中,∥,2,8,10.(1)求梯形的面积S;(2)动点P从点B出发,以1的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1的速度,沿C⇒D⇒A方向,向点A运动,过点Q作⊥于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线将梯形的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形,长12,宽8,P、Q分别是、上运动的两点.若P自点A 出发,以1的速度沿方向运动,同时,Q自点B出发以2的速度沿方向运动,问经过几秒,以P、B、Q为顶点的三角形与△相似?15.如图,在△中,10,20,点P从点A开始沿边向B点以2的速度移动,点Q从点B开始沿边向点C以4的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△与△相似.16.如图,∠∠90°,,2.问当的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形中,M是的中点,能否在边上找一点N(不含A、B),使得△与△相似?若能,请给出证明,若不能,请说明理由.18.如图在△中,∠90°,8,6,点Q从B出发,沿方向以2的速度移动,点P从C出发,沿方向以1的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△相似?19.如图所示,梯形中,∥,∠90°,7,2,3,试在腰上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△和△是两个等腰直角三角形,∠∠90°,△的顶点E位于边的中点上.(1)如图1,设与交于点M,与交于点N,求证:△∽△;(2)如图2,将△绕点E旋转,使得与的延长线交于点M,与交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形中,15,10,点P沿边从点A开始向B以2的速度移动;点Q沿边从点D开始向点A以1的速度移动.如果P、Q同时出发,用t (秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A点,沿所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80的竹竿的影长为60.乙组:如图2,测得学校旗杆的影长为900.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200,影长为156.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离8.7m,窗口高1.8m,求窗口底边离地面的高.26.如图,李华晚上在路灯下散步.已知李华的身高,灯柱的高′P′,两灯柱之间的距离′.(1)若李华距灯柱的水平距离,求他影子的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和()是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S123.(1)如图②,分别以直角三角形三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△∽△,15,9,5.求.29.已知:如图△∽△,若3,4.(1)求、的长;(2)过B作⊥于E,求的长.30.(1)已知,且34z﹣240,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△中,∥,∥,求证:△∽△.考点:相似三角形的判定;平行线的性质。

经典相似三角形练习题(附参考答案)

经典相似三角形练习题(附参考答案)

经典练习题相似三角形(附答案)一.解答题(共30 小题)1 .如图,在△ABC中,DE∥ BC, EF ∥ AB,求证:△ADE∽△EFC .2 .如图,梯形ABCD 中,AB∥ CD,点F 在 BC 上,连 DF 与 AB 的延长线交于点G.( 1 )求证:△CDF∽△BGF;( 2 )当点 F 是 BC 的中点时,过 F 作 EF ∥ CD交 AD 于点 E,若 AB=6cm , EF=4cm ,求 CD 的长.3.如图,点 D , E 在 BC 上,且 FD∥ AB, FE∥ AC.求证:△ABC∽△FDE .4 .如图,已知 E 是矩形 ABCD 的边 CD 上一点,BF ⊥ AE于 F,试说明:△ABF ∽△EAD.5 .已知:如图①所示,在△和△ABCADE中, AB=AC , AD=AE ,∠ BAC= ∠ DAE,且点B ,A ,D 在一条直线上,连接 BE ,CD , M , N 分别为 BE, CD 的中点.( 1)求证:①BE=CD ;②△AMN是等腰三角形;( 2)在图①的基础上,将△绕点ADE 按顺时针方向旋转 180 °,其他条件不变,得到图②所示的图形.请直接写出( 1)中的两个结论是否仍然成立;( 3)在( 2 )的条件下,请你在图②中延长ED 交线段 BC 于点 P.求证:△PBD∽△ AMN.6 .如图, E 是? ABCD 的边 BA 延长线上一点,连接EC,交 AD 于点 F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7 .如图,在 4 ×3的正方形方格中,△和ABC△ DEF的顶点都在边长为 1 的小正方形的顶点上.(1 )填空:∠ABC=_________ °,BC= _________ ;(2 )判断△ ABC与△ DEC是否相似,并证明你的结论.8 .如图,已知矩形 ABCD 的边长 AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB 方向以 1cm/s 的速度向 B 点匀速运动;同时,动点N 从 D 点出发沿 DA 方向以 2cm/s的速度向 A 点匀速运动,问:( 1)经过多少时间,△的AMN面积等于矩形 ABCD 面积的?( 2)是否存在时刻 t ,使以 A ,M , N 为顶点的三角形与△相ACD似?若存在,求t 的值;若不存在,请说明理由.9 .如图,在梯形ABCD 中,若 AB∥ DC,AD=BC ,对角线BD 、 AC 把梯形分成了四个小三角形.( 1 )列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)( 2 )请你任选一组相似三角形,并给出证明.10 .如图△ABC中, D 为 AC 上一点, CD=2DA,∠BAC=45 °,∠BDC=60 °,CE于⊥E,BD连接 AE.( 1 )写出图中所有相等的线段,并加以证明;( 2 )图中有无相似三角形?若有,请写出一对;若没有,请说明理由;( 3 )求△BEC与△BEA的面积之比.11 .如图,在△ABC中, AB=AC=a,M为底边BC上的任意一点,过点M 分别作 AB 、 AC 的平行线交AC于P,交 AB 于 Q.(1 )求四边形 AQMP 的周长;(2 )写出图中的两对相似三角形(不需证明);( 3 ) M 位于 BC 的什么位置时,四边形AQMP为菱形并证明你的结论.12 .已知: P 是正方形ABCD 的边 BC 上的点,且BP=3PC , M 是 CD 的中点,试说明:△ADM∽△MCP.13 .如图,已知梯形ABCD 中,AD∥ BC,AD=2 ,AB=BC=8,CD=10.( 1 )求梯形ABCD 的面积 S;( 2 )动点 P 从点 B 出发,以 1cm/s的速度,沿B? A ?D ? C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C? D? A 方向,向点 A 运动,过点Q 作 QE⊥ BC 于点 E.若 P、Q 两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点 P 在 B?A 上运动时,是否存在这样的t ,使得直线PQ 将梯形 ABCD 的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t ,使得以 P、 A 、D 为顶点的三角形与△相CQE似?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t ,使得以 P、D 、Q 为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.14 .已知矩形ABCD ,长 BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P 自点 A 出发,以 1cm/s的速度沿AB 方向运动,同时,Q 自点 B 出发以 2cm/s的速度沿BC 方向运动,问经过几秒,以 P 、B、 Q 为顶点的三角形与△相BDC似?15 .如图,在△ABC中, AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点 Q 从点 B 开始沿 BC 边向点 C 以 4cm/s的速度移动,如果P、 Q 分别从 A 、B 同时出发,问经过几秒钟,△PBQ与△ ABC相似.16 .如图,∠ACB= ∠ ADC=90 AC=°,,AD=2.问当AB的长为多少时,这两个直角三角形相似.17 .已知,如图,在边长为 a 的正方形ABCD 中,M 是 AD 的中点,能否在边AB 上找一点N(不含 A 、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.C=90°BC=8cm,, AC=6cm,点Q 从 B 出发,沿BC 方向以2cm/s的速度移动,18 .如图在△ABC中,∠点 P 从 C 出发,沿CA方向以1cm/s的速度移动.若Q 、P分别同时从B、C出发,试探究经过多少秒后,以点C、 P、Q为顶点的三角形与△相CBA似?19 .如图所示,梯形ABCD 中,AD∥ BC,∠A=90 °AB=7,, AD=2 , BC=3 ,试在腰AB 上确定点 P 的位置,使得以P ,A ,D 为顶点的三角形与以P, B,C 为顶点的三角形相似.20 .△ABC和△DEF是两个等腰直角三角形,∠A= ∠ D=90 °的,顶△点 DEF位于边 BC 的中点上.( 1)如图 1,设 DE 与 AB 交于点 M , EF 与 AC 交于点 N ,求证:△BEM∽△ CNE;( 2)如图 2,将△ DEF绕点 E 旋转,使得 DE 与 BA 的延长线交于点M ,EF 与 AC 交于点 N ,于是,除( 1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21 .如图,在矩形 ABCD 中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点 Q 沿 DA 边从点 D 开始向点 A 以 1cm/s的速度移动.如果P、Q 同时出发,用t(秒)表示移动的时间,那么当 t 为何值时,以点Q、 A 、P 为顶点的三角形与△相ABC似.22 .如图,路灯(P 点)距地面8 米,身高 1.6 米的小明从距路灯的底部(O 点) 20 米的 A 点,沿 OA 所在的直线行走14 米到 B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?23 .阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1 )所需的测量工具是:_________ ;(2 )请在下图中画出测量示意图;( 3 )设树高AB 的长度为x,请用所测数据(用小写字母表示)求出x.24 .问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为 60cm .乙组:如图2,测得学校旗杆的影长为 900cm .丙组:如图 3 ,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm ,影长为156cm .任务要求:( 1 )请根据甲、乙两组得到的信息计算出学校旗杆的高度;( 2 )如图 3,设太阳光线NH 与⊙O 相切于点M .请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图 3 ,景灯的影长等于线段NG 的影长;需要时可采用等式156 2+2082=2602)25 .阳光通过窗口照射到室内,在地面上留下 2.7m 宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m ,窗口高AB=1.8m,求窗口底边离地面的高BC.26 .如图,李华晚上在路灯下散步.已知李华的身高AB=h ,灯柱的高 OP=O′ P′ =l两灯,柱之间的距离 OO′ =m.( 1)若李华距灯柱 OP 的水平距离 OA=a ,求他影子 AC 的长;( 2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC )是否是定值请说明理由;( 3)若李华在点 A 朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27 .如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S1, S2, S3表示,则不难证明 S1=S 2+S 3.( 1 )如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S1, S2, S3表示,那么S1, S2, S3之间有什么关系;(不必证明)( 2 )如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S1、 S2、 S3表示,请你确定 S1,S2, S3之间的关系并加以证明;( 3 )若分别以直角三角形ABC 三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2, S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;( 4 )类比( 1 ),( 2 ),( 3 )的结论,请你总结出一个更具一般意义的结论.28 .已知:如图,△ABC∽△ AB=15ADE,, AC=9 , BD=5 .求 AE .29 .已知:如图Rt △ ABC∽ Rt △ BDC,AB=3若, AC=4 .(1)求 BD 、CD 的长;(2)过 B 作 BE⊥ DC于 E,求 BE 的长.30 .( 1 )已知,且3x+4z﹣2y=40,求x,y,z的值;( 2 )已知:两相似三角形对应高的比为3:10 ,且这两个三角形的周长差为560cm ,求它们的周长.参考答案与试题解析一.解答题(共30 小题)1 .如图,在△ABC中,DE∥ BC, EF ∥ AB,求证:△ADE∽△EFC .考点:相似三角形的判定;平行线的性质。

经典相似三角形练习题(附参考答案)

经典相似三角形练习题(附参考答案)

经典练习题一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.=,即=,解得对应时,有=,即=,解得16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==时,有=,∴AB=时,有=,∴AB==3317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=.∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或时,两三角形相似.)当时,,∴x=;)当时,,∴x=.所以,经过秒或秒后,两三角形相似.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴.∴,中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.,所以,所以;=,即,;=,即,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴,∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即,与①类似得:,即∴(∴,与①类似得:,∴,,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴.∴,26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵,∴,∴解得:∴,,即.∴.同理可得:,∴=是定值.)可知,即,∴同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)。

相似三角形练习题

相似三角形练习题

相似三角形练习题题目一已知三角形ABC中,∠A = 60°,AC = 6 cm,BC = 8 cm。

将三角形ABC沿着边BC剪开,使得三角形ABD与三角形ACD相似,连接BD。

求BD的长度。

解答一由已知条件可知∠A = ∠ADC = 60°,而∠ABD与∠ACD互为对应角,故∠ABD = ∠ACD = 60°,说明三角形ABD与三角形ACD相似。

根据相似三角形的性质,相似三角形中对应边的比例相等,即有:BD/AD = AC/CD将已知数值代入,得到:BD/AD = 6/8进一步化简,可得:BD/AD = 3/4将上式两侧同乘以AD,可得:BD = (3/4) * AD由直角三角形ADC中,利用三角函数可得AD的值:AD = AC * sin(60°) = 6 * √3 / 2 = 3√3 cm代入上式,可得:BD = (3/4) * 3√3 = 9√3 / 4 cm所以,BD的长度为9√3 / 4 cm。

题目二已知∆ABC与∆DEF相似,∠B = 40°,∠E = 20°,AB = 5 cm,FE = 3 cm。

求BC、DE的长度。

解答二由已知条件可知∠B = ∠F,即∠B = 40°。

而∆ABC与∆DEF相似,根据相似三角形的性质,相似三角形中对应边的比例相等,即有:AB/FE = BC/DE将已知数值代入,得到:5/3 = BC/DE进一步化简,可得:5DE = 3BC根据已知条件,我们还可以得到∠E = ∠C。

联立上述两个条件,可以列出方程组:{5DE = 3BC∠E = ∠C}要求BC和DE的长度,需要求解以上方程组。

我们可以通过求解方程组来得到BC和DE的长度。

题目三AG和EK是∆ABC和∆EFD的高,点G和点K分别位于边BC和边DE上,且∆AGK和∆EKG相似。

已知∠B = 45°,AB = 12 cm,BC = 10 cm,ED = 8 cm。

相似三角形经典例题(练习)

相似三角形经典例题(练习)

一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。

例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD,∠BCE=∠BAD求证:△DBE∽△ABC例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。

二、如何应用相似三角形证明比例式和乘积式例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF AC=BC FE例6:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM⊥BC 于点E ,交BA 的延长线于点D 。

例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。

过D 点作DG∥AB 交FC 于G 则△AEF∽△DEG。

(平行于三角形一边的直线截其它两边或两边的延长线所得三角形与原三角形相似) (1)∵D 为BC 的中点,且DG∥BF∴G 为FC 的中点则DG 为△CBF 的中位线,(2)将(2)代入(1)得:三、如何用相似三角形证明两角相等、两线平行和线段相等。

边AB 和AD 上的点,且。

求证:例8:已知:如图E 、F 分别是正方形ABCD 的∠AEF=∠FBD例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线,••DG AFDE AE =BF DG 21=FBAF BF AF DE AE 221==31==AD AF AB EB A B C D E FG 1234ABC D AB C D E FK A B CD E FCDRAC E ABCDEFO 123ABCDFGE求证:SQ ∥AB ,RP ∥BC例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BF(答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。

(最新整理)初中数学经典相似三角形练习题(附参考答案)

(最新整理)初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学经典相似三角形练习题(附参考答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学经典相似三角形练习题(附参考答案)的全部内容。

经典练习题相似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC 于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A 出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1。

经典相似三角形练习题(附参考答案) 动点 2 打印

经典相似三角形练习题(附参考答案) 动点  2 打印

相似三角形(附答案)经典练习题 2一.解答题11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s 的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?(11、2a ,14、经过秒或2秒)13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B 开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.(13、t=或t=时,△PAD与△CQE相似,15、1s或2.5s时)。

八年级数学上册《相似三角形》测试题及答案

八年级数学上册《相似三角形》测试题及答案

八年级数学上册《相似三角形》测试题及答案一、选择题1. 若两个三角形的两个内角分别相等,则称这两个三角形为()。

A. 钝角三角形B. 等腰三角形C. 直角三角形D. 相似三角形答案:D2. 在两个相似三角形中,对应角的度数相同,对应边的比值相等,称这两个三角形为()。

A. 直角三角形B. 等腰三角形C. 钝角三角形D. 对应三角形答案:D3. 已知两个三角形相似,其边长比为2:3,而其中一个三角形的周长为18cm,则另一个三角形的周长为()。

A. 24cmB. 27cmC. 30cmD. 36cm答案:27cm二、判断题1. 两个等腰三角形一定是相似三角形。

()答案:错误2. 如果两个三角形的对应角相等,则这两个三角形一定相似。

()答案:正确三、解答题1. 已知∠ABC = 60°,∠DEF = 45°,且∠ABC ≌∠DEF,求证△ABC ≌△DEF。

解:根据已知条件可知,∠ABC = ∠DEF = 60°。

再由∠ABC≌∠DEF,可以得出三角形ABC和DEF的对应边分别相等。

因此,根据相似三角形的定义,可以得出△ABC ≌△DEF。

答案:根据已知条件,可证明△ABC ≌△DEF。

2. 如图所示,∠ABC = 90°,AD ⊥ BC,AD = 4cm,AD上的高为3cm,求△ABC与△ACD的边长比。

![图](image.png)解:根据题意可知,三角形ABC是直角三角形,且三角形ACD是直角三角形。

已知AD ⊥ BC,所以△ABC和△ACD共有一边BC相等,并且△ACD中的∠CAD和△ABC中的∠CBA分别为共顶角和直角,因此∠CAD = ∠CBA = 90°。

此外,由题意可知AD = 4cm,AD上的高为3cm,所以BC = 4cm - 3cm = 1cm。

因此,△ABC与△ACD的边长比为1:4。

答案:△ABC与△ACD的边长比为1:4。

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)初中数学经典相似三角形练习题(附参考答案)一、题目描述在初中数学中,相似三角形是一个非常重要的概念。

本文为您提供一些经典的相似三角形练习题,通过解答这些练习题可以提高学生的解题能力和对相似三角形的理解。

本文附有详细的参考答案,供学生进行自我检测和复习。

二、练习题1. 已知△ABC和△DEF相似,AB = 6cm,BC = 8cm,AC = 10cm,DE = 9cm,计算EF的长度。

2. △ABC与△DEF相似,AB = 2cm,BC =3.5cm,AC = 4cm,EF= 7cm,求DE的长度。

3. 在△ABC中,角A的度数为50°,角B的度数为70°,BC = 8cm。

若与△ABC相似的三角形的边长分别为10cm和12cm,求与△ABC相似的三角形的第三边的长度。

4. 在△ABC中,∠B = 90°,AC = 10cm,BC = 12cm。

若与△ABC相似的三角形的第二边为16cm,求与△ABC相似的三角形的第三边的长度。

5. 已知△ABC与△DEF相似,AB = 6cm,AC = 8cm,DE = 12cm,若EF = 18cm,求BC的长度。

6. 高度为5cm的小树和高度为12cm的大树的影子长度之比为2:3。

如果小树的影子长度为10cm,求大树的影子长度。

7. 一个航拍无人机垂直飞行,发现自己离地面的垂直距离与航拍无人机的长度(包括机身和旋翼)的比例为3:2。

如果航拍无人机的长度为120cm,求离地面的垂直距离。

8. 在一个旅游小组中,由5名成年人和7名儿童组成,其平均年龄为30岁。

如果另一个旅游小组由2名成年人和3名儿童组成,其平均年龄为24岁。

求这两个旅游小组的总年龄之比。

三、参考答案1. 根据相似三角形的性质可知,EF与AC的比例应与DE与BC的比例相等。

即 EF/AC = DE/BC。

代入已知值,得 EF/10 = 9/8。

八年级数学相似三角形练习题(含答案哟)

八年级数学相似三角形练习题(含答案哟)

八年级数学相似三角形练习题(含答案哟)1、(____年江苏省南通市)如图,四边形ABCD中,AD=CD,∠ DAB=∠ ACB=90__176;,过点D作DE ⊥ AC,垂足为F,DE与AB相交于点E. (1)求证:AB__183;AF =CB__183;CD(2)已知AB=15cm,BC=9cm,P是射线DE上的动点.设DP=_cm(_>0),四边形BCDP2的面积为ycm.①求y关于_的函数关系式;②当_为何值时,△PBC的周长最小,并求出此时y的值.2、(____ 湖南怀化)如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE 与CG相交于点M,CG与AD相交于点N.求证:(1)AE CG;(2)AN DN CN MN.3、(____ 湖北恩施) 如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90__176;,它们的斜边长为2,若 ABC固定不动, AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D 不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明. (2)求m与n的函数关系式,直接写出自变量n的取值范围.(3)以 ABC的斜边BC所在的直线为_轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2.(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明,若不成立,请说明理由.4、(____ 山东临沂)如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE1CD。

2AFD⑴求证:△ABF∽△CEB;⑵若△DEF的面积为2,求□ABCD的面积。

EB第21题图 C 5、(08中山)将两块大小一样含30__176;角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图9,;四边形ABCD是. (2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB所在直线为_轴,过点A垂直于AB的直线为y轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向_轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.图9.C 图10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形2
A卷
窗体顶端
1、如果△ABC∽△A′B′C′,相似比为k (k≠1),则k的值是()
A.∠A:∠A′B.A′B′:AB C.∠B:∠B′D.BC:B′C′
2、若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()
A.30°B.50°C.40°D.70°
3、三角形三边之比3:5:7,与它相似的三角形最长边是21cm,另两边之和是()
A.15cm B.18cm C.21cm D.24cm
4、如图AB∥CD∥EF,则图中相似三角形的对数为()
A.1对B.2对C.3对D.4对
5、△ABC∽△A1B1C1,相似比为2:3,△A1B1C1∽△A2B2C2,相似比为5:4,则△ABC与△A2B2C2的相似比为()
A.B.C.D.
6、在比例尺1:10000的地图上,相距2cm的两地的实际距离是()
A.200cm B.200dm C.200m D.200km
7、已知线段a=10,线段b是线段a上黄金分割的较长部分,则线段b的长是()
A.B.C.D.
8、若则下列各式中不正确的是()
A.B.C.D.
9、已知△ABC中,D、E分别在AB、AC上,且AE=1.2,EC=0.8,AD=1.5,DB=1,则下列式子正确的是()
A.B.C.D.
10、如图:在△ABC中,DE∥AC,则DE:AC=()
A.8:3B.3:8 C.8:5D.5:8
B卷
1、计算
(1)若求的值.
(2)已知:且2a-b+3c=21,求a,b,c的值.
2、如图:AD∥BC∥EF,则图中有多少对相似的三角形并写出来.
3、在等边△ABC中,P是BC上一点,AP的垂直平分线分别交AB、AC于M、N,求证:△MBP∽△PCN.
4、如图:某出版社一位编辑在设计一本书的封面时,想把封面划分为四个矩形,以给人一种和谐的感觉,这样的四个矩形怎样画出来?
窗体底端。

相关文档
最新文档