抽象函数的周期性和对称性的解析及配套例题(兼详细答案)

合集下载

抽象函数的对称性、奇偶性与周期性总结及习题

抽象函数的对称性、奇偶性与周期性总结及习题

抽象函数的对称性、奇偶性与周期性总结及习题一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。

把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。

分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。

抽象函数的对称性、奇偶性与周期性总结及习题资料

抽象函数的对称性、奇偶性与周期性总结及习题资料

抽象函数的对称性、奇偶性与周期性总结及习题一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。

把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。

分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。

抽象函数的周期性与对称性(精)

抽象函数的周期性与对称性(精)

抽象函数的周期性与对称性(精)抽象函数的周期性和对称性问题可以通过恒等式简单判断。

如果函数满足f(x+a)=f(-x+a),那么它是偶函数,对称轴为x=a,周期为T=2a。

如果函数满足f(x+a)=-f(-x+a),那么它是奇函数,对称中心为(a,0)。

如果函数满足f(a-x)=f(b+x),那么它的对称轴为x=(a+b)/2,周期为T=|b-a|。

如果函数满足f(x+a)=-f(x-a),那么它的对称中心为(a,0),周期为T=2a。

需要注意区分一个函数的对称性和两个函数的对称性的区别,对称轴或对称中心的位置可以通过对应法则求得。

例如,对于已知定义在实数集上的奇函数f(x),满足f(x+2)=-f(x),则f(6)的值为-1.又如,如果函数f(x)对于任意实数x都有f(1+2x)=f(1-2x),则f(2x)的图像关于x=1对称。

练1:如果函数y=f(x+1)是偶函数,则y=f(x)的图像关于x=1对称。

练2:如果函数y=f(x)满足11f(x+3)=-f(x),且f(3)=1,则f(2010)=-1/2.23、已知函数f(x)是定义在实数集上的奇函数,且当x>2时,f(x)=2x-3,则f(1)+f(2)+f(3)+f(4)+f(5)= 2f(3)+f(1)+f(5)=2(2×3-3)+2×1-3+2×5-3= 8.4、已知函数f(x)是定义在实数集上的奇函数,且f(x+2)=-f(x),当-1≤x≤1时,f(x)=x。

要求求出f(7.5)的值。

由奇函数的定义可知,f(5.5)=f(-5.5),即f(7.5)=f(-7.5)。

又因为f(x+4)=-f(x+2)=-(-f(x))=f(x),所以f(x+4k)=f(x),其中k为整数。

故f(-7.5)=f(-7.5+4×2)=f(0)=-f(0),即f(0)=0.又f(1)+f(-1)=0,所以f(1)=-f(-1)。

最全最详细抽象函数的对称性、奇偶性与周期性常用结论

最全最详细抽象函数的对称性、奇偶性与周期性常用结论

最全最详细抽象函数的对称性、奇偶性与周期性常用结论直线Ax By ^0成轴对称;2Ax By C =0成轴对称。

9, y_2B(A X + B 罗C))= o 关于直线③ F (x, y) = 0与F (x _经A 二二2 A 2 B 2Ax ? By ? C =0成轴对称。

、函数对称性的几个重要结论(一)函数y = f(x)图象本身的对称性(自身对称)若f(x a^_f(x b),则f(x)具有周期性;若f (a ?x)=:「f(b -x),则f (x)具有对称性:“内同表示周期性,内反表示对称性”。

1、f(a+x) = f(b —x) u y = f(x)图象关于直线 x =l a Z x LL (b _x) =a £b 对称2 2推论1: f (a ? x) = f (a - x) = y = f (x)的图象关于直线 x = a 对称推论2、f (x) = f (2a - x) = y = f (x)的图象关于直线 x = a 对称推论3、f(-x)二f (2a ? x) := y = f (x)的图象关于直线 x = a 对称2、 f(a+x) + f (b —x) =2c 二y=f(x)的图象关于点(兰匕c)对称2推论 1、f (a ? x) ? f (a -x) = 2b := y = f (x)的图象关于点(a,b)对称推论2、f (x) ? f (2a - x) = 2b := y = f (x)的图象关于点(a,b)对称推论3、f (-x) ? f(2a ? x) =2b = y = f(x)的图象关于点(a,b)对称(二)两个函数的图象对称性(相互对称) (利用解析几何中的对称曲线轨迹方程理解)1、偶函数y =f(x)与y = f(-x)图象关于Y 轴对称2、奇函数y =f(x)与y 二-f(-x)图象关于原点对称函数3、函数y = f (x)与y - - f (x)图象关于X 轴对称4、互为反函数y 二f (x)与函数y 二f'(x)图象关于直线y =x 对称② 函数…(x)与一2驚¥。

函数的对称性与周期性例题、习题(供参考)

函数的对称性与周期性例题、习题(供参考)

函数的对称性与周期性【知识梳理】1. 周期的概念:设函数(),y f x x D =∈,如果存在非零常数T ,使得对任意x D ∈都有 ,则函数()y f x =为周期函数,T 为()y f x =的一个周期;2. 周期函数的其它形式()()f x a f x b +=+⇒ ;()()f x a f x +=-⇒ ;()()1f x a f x +=⇒ ; ()()1f x a f x +=-⇒ ;)(1)(1)(x f x f a x f +-=+⇔ ,)(1)(1)(x f x f a x f -+=+⇔)()()2(x f a x f a x f -+=+⇔ 1)(1)(+-=+x f a x f ⇔ ,3. 函数图像的对称性1).若()()f x f x =-,则()y f x =的图像关于直线 对称; 2).若()()0f x f x +-=,则()y f x =的图像关于点 对称; 3)若()()f a x f a x +=-,则()y f x =的图像关于直线 对称; 4)若()()2f x f a x =-,则()y f x =的图像关于直线 对称; 5)若()()2f a x f a x b ++-=,则()y f x =的图像关于点 对称; 6)若()()22f x f a x b +-=,则()y f x =的图像关于点 对称; 4. 常见函数的对称性1)函数()()0ax bf x c cx d+=≠+的图像关于点 对称;2)函数()()0f x ax b a =-≠的图像关于直线 对称; 3)函数()()20f x ax bx c a =++≠的图像关于直线 对称; 【例题选讲】题型一 根据解析式判断函数图像的对称性 1. 函数()2331x f x x +=-的图像关于 对称; 2. 函数()f x 的定义域为R ,且()()1f x f x -=,则()f x 的图像关于 对称; 3. 函数()23f x x =-的图像关于 对称;4. 函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图像关于直线 对称;关于点 对称;题型二 平移变换后,函数图像的对称性1.已知函数()y f x =是偶函数,()2f x -在[]0,2递减,则( )2.已知()2y f x =-是偶函数,则()y f x =的图像关于 对称;3.已知()y f x =是奇函数,则()12y f x =+-的图像关于 对称; 题型三 函数图像的对称性求函数解析式1.已知()f x 的图像关于直线2x =对称,且(]0,1x ∈时,()212f x x x=+,求[)3,4x ∈时,()f x 的解析式; 2.已知()f x 的图像关于点()2,0-对称,且(]0,1x ∈时,()212f x x x=+,求[)5,4x ∈--时,()f x 的解析式; 3.已知()f x 的图像关于点()1,2-对称,且(]0,1x ∈时,()212f x x x=+,求[)1,2x ∈时,()f x 的解析式; 题型四 函数周期性和图像对称的应用1.若函数()()2,22x x a bf x a b R ⋅+=∈+的图像关于点()1,0对称,求,a b 满足的关系;2.已知函数()f x 的定义域为R ,且对任意x R ∈,都有()()22f x f x +=-(1)若()0f x =有50个根,求所有这些根的和;(2)若()0f x =有51个根,求所有这些根的和;3.若()f x 有两条对称轴x a =和()x b a b =≠,求证:()f x 是以2T a b =-为周期的周期函数;4.设()f x 是定义在R 上的偶函数,它的图像关于直线2x =对称,当[]2,2x ∈-时,()21f x x =-+,求[]6,2x ∈--时,()f x 的解析式;5.已知定义域为R 的函数()f x 满足()()()121f x f x f x ++=-,求证函数()f x 是周期函数;题型五 综合应用1.设()f x 是定义在区间(),-∞+∞上以2为周期的函数,对于k Z ∈,用k I 表示区间(]21,21k k -+,已知当0x I ∈时,2()f x x =(1)求()f x 在k I 上的解析式;(2)对自然数k ,求集合{|k M a =使方程f x ax =()在k I 上有两个不等实根}。

专题05 函数周期性,对称性,奇偶性问题(解析版)

专题05 函数周期性,对称性,奇偶性问题(解析版)

【详解】因为 f (x 1) 为偶函数,所以 f (x 1) f (x 1) ,所以 f (x 2) f (x) , 因为 f (x 2) 为奇函数,所以 f (x 2) f (x 2) ,
所以 f (x 2) f (x) ,所以 f (x 4) f (x 2) f (x) ,
专题 05 函数周期性,对称性,奇偶性问题
一、结论(同号周期,异号对称.)
1、周期性:
已知定义在 R 上的函数 f (x) ,若对任意 x R ,总存在非零常数T ,使得 f (x T ) f (x) ,则称 f (x)
是周期函数, T 为其一个周期.除周期函数的定义外,还有一些常见的与周期函数有关的结论如下: (1)如果 f (x a) f (x) ( a 0 ),那么 f (x) 是周期函数,其中的一个周期 T 2a
所以 f x 关于 3,0 对称,所以 f x f 6 x 0 ,
因为 f x f 2 x , f x f 6 x 0 ,
所以 f 6 x f 2 x ,故 f x f x 4 f x 8 ,故 f x 的周期为 8,
因为 f x 关于 x 1 对称,关于 3,0 对称,所以 f x 关于 x 5 对称,
所以 f (x 2) f (x) ,从而 f (x 4) f (x 2) f (x) , f (x) 是周期函数,且周期为 4,所以 f (2k 1) 0, k Z , 因为 f (x) 的图象关于直线 x 2 对称,也关于点 (1, 0) 对称, 所以 f (x) 的图象关于点 (3, 0) 对称,所以 f (2) f (4) 0 , 所以 f (2) f (3) f (4) f (5) 0 ,
所以 f (x) 是以 4 为周期的周期函数, 由 f (x 2) f (x 2) ,令 x 0 ,得 f (2) f (2) ,则 f (2) 0 , 又 f (1) f (2) 2 ,得 f (1) 2 , 由 f (x 2) f (x 2) ,令 x 1 ,得 f (1) f (3) ,则 f (3) 2 , 由 f (x 2) f (x) ,令 x 2 ,得 f (4) f (2) 0 , 则 f (1) f (2) f (3) f (4) 0 ,

函数的周期性、对称性(解析版)

函数的周期性、对称性(解析版)

函数的周期性、对称性一、单选题1.(2023·全国·高三专题练习)已知函数f x =x -e 2+ln ex e -x ,若f e 2020 +f 2e2020+⋅⋅⋅+f 2018e 2020 +f 2019e 2020 =20192a +b ,其中b >0,则12a+a b 的最小值为()A.34B.54C.2D.22【答案】A【解析】因为f x =x -e 2+ln exe -x,所以f x +f e -x =x -e 2+ln ex e -x +(e -x )-e2+ln e (e -x )e -(e -x )=lnex e -x +ln e (e -x )x =ln exe -x ⋅e (e -x )x=ln e 2=2,令S =f e 2020 +f 2e 2020 +⋅⋅⋅+f 2018e 2020 +f 2019e2020 则2S =f e 2020 +f 2019e 2020 +f 2e 2020 +f 2018e 2020 +⋅⋅⋅+f 2019e 2020 +f e2020 =2×2019所以S =2019所以20192a +b =2019,所以a +b =2,其中b >0,则a =2-b .当a >0时12|a |+|a |b =12a +2-b b =12a +2b -1=12a +2b ⋅(a +b )2-1=1252+b 2a +2a b-1≥1252+2b 2a ⋅2a b -1=54当且仅当b 2a =2a b, 即 a =23,b =43 时等号成立;当a <0时 12|a |+|a |b =1-2a +-a b =1-2a +b -2b =1-2a +-2b +1=121-2a +-2b ⋅(a +b )+1=12-52+b -2a +-2ab +1≥12-52+2b -2a ⋅-2a b +1=34,当且仅当 b -2a =-2a b, 即 a =-2,b =4 时等号成立;因为34<54,所以12|a |+|a |b 的最小值为34.故选:A .2.(2023春·重庆·高三统考阶段练习)已知函数f (x )=ln x 2+1-x +1,正实数a ,b 满足f (2a )+f (b -4)=2,则4b a +a2ab +b 2的最小值为( )A.1B.2C.4D.658【答案】B【解析】f x +f -x =ln x 2+1-x +1+ln x 2+1+x +1=2,故函数f x 关于0,1 对称,又f x 在R 上严格递增;f (2a )+f (b -4)=2,∴2a +b -4=0即2a +b =4.4b a +a 2ab +b 2=4b a +a b 2a +b =4b a +a4b ≥24b a ⋅a 4b=2.当且仅当a =169,b =49时取得.故选:B .3.(2023·全国·高三专题练习)已知函数f x 的定义域为R ,f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈0,1 时,f x =ax +b .若f 4 =1,则3i =1f i +12=( )A.12B.0C.-12D.-1【答案】C【解析】因为f 2x +2 为偶函数,所以f -2x +2 =f 2x +2 ,用12x +12代替x 得:f -x +1 =f x +3 ,因为f x +1 为奇函数,所以f -x +1 =-f x +1 ,故f x +3 =-f x +1 ①,用x +2代替x 得:f x +5 =-f x +3 ②,由①② 得:f x +5 =f x +1 ,所以函数f x 的周期T =4,所以f 4 =f 0 =1,即b =1,因为f -x +1 =-f x +1 ,令x =0得:f 1 =-f 1 ,故f 1 =0,f 1 =a +b =0,解得:a =-1,所以x ∈0,1 时,f x =-x +1,因为f -x +1 =-f x +1 ,令x =12,得f 12 =-f 32 ,其中f 12 =-12+1=12,所以f 32 =-12,因为f -2x +2 =f 2x +2 ,令x =14得:f -2×14+2 =f 2×14+2 ,即f 32 =f 52 =-12,因为T=4,所以f 72 =f72-4=f-12,因为f-x+1=-f x+1,令x=32得:f-12=-f52 =12,故f 72 =12,3 i=1fi+12=f32 +f52 +f72 =-12-12+12=-12.故选:C4.(2023·四川资阳·统考模拟预测)已知函数f x 的定义域为R,f x-2为偶函数,f x-2+f-x=0,当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4.则13k=1f k=( )A.16B.20C.24D.28【答案】C【解析】因为f x-2是偶函数,所以f-x-2=f(x-2),所以f(x)=f(-x-4),所以函数f(x)关于直线x=-2对称,又因为f x-2+f-x=0,所以-f x-2=f-x,所以f(x)=-f(-x-2),所以f(x)关于点(-1,0)中心对称,由f(x)=f(-x-4)及f(x)=-f(-x-2)得f(-x-4)=-f(-x-2)所以f(-x-4)=-f(-x-2)=f(-x)所以函数f(x)的周期为4,因为当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4,所以4=1a-2+2a-4,解得:a=2或a=-4,因为a>0且a≠1,所以a=2.所以当x∈-2,-1时,f x =12x-2x-4,所以f(-2)=4,f(-1)=0,f(-3)=f(-1)=0,f(0)=-f(-2)=-4,f(1)=f(1-4)=f(-3)=0,f(2)=f(-2)=4,f(3)=f(-1)=0,f(4)=f(0)=-4,所以f(1)+f(2)+f(3)+f(4)=8,所以13k=1f k=f(1)+3×8=24,故选:C.5.(2023·全国·高三专题练习)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =( )A.-21B.-22C.-23D.-24【答案】D【解析】因为y =g (x )的图像关于直线x =2对称,所以g 2-x =g x +2 ,因为g (x )-f (x -4)=7,所以g (x +2)-f (x -2)=7,即g (x +2)=7+f (x -2),因为f (x )+g (2-x )=5,所以f (x )+g (x +2)=5,代入得f (x )+7+f (x -2) =5,即f (x )+f (x -2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D6.(2023·全国·高三专题练习)设函数f x =x 3+ax 2+bx +2a ,b ∈R ,若f 2+x +f 2-x =8,则下列不等式正确的是( )A.f e +f 32>8 B.f e +f 2-3 >8C.f ln7 +f 2+3 >8 D.f ln5 +f 3ln2 <8【答案】C【解析】由题(2+x )3+a (2+x )2+b (2+x )+2+(2-x )3+a (2-x )2+b (2-x )+2=8,化简整理得(6+a )x 2+2(2a +b +3)=0,于是6+a =0,2a +b +3=0⇒a =-6,b =9,所以f (x )=x 3-6x 2+9x +2,进而f (x )=3x 2-12x +9=3(x -1)(x -3),据此,f (x )在(-∞,1),(3,+∞)上单调递增,f (x )在(1,3)上单调递减,因为f (2+x )+f (2-x )=8,即f (x )+f (4-x )=8.对于A ,由f (e )+f (4-e )=8,又1<4-e <32<3,所以f (4-e )>f 32,即f (e )+f 32<8,故A 错误;对于B ,f (2-3)=(2-3)3-6(2-3)2+9(2-3)+2=4,因为1<2<e<3,所以f(2)>f(e),而f(2)=23-6×22+9×2+2=4,所以f(e)+f(2-3)<8,故B错误;对于C,f(2+3)=(2+3)3-6(2+3)2+9(2+3)+2=4,而1<ln7<2,所以f(ln7)>f(2)=4,所以f(ln7)+f(2+3)>8,故C正确;对于D,由f(ln5)+f(4-ln5)=8,因为1<3ln2<4-ln5<3,所以f(3ln2)>f(4-ln5),所以f(ln5)+f(3ln2)>8,故D错误.故选:C.7.(2023·全国·高三专题练习)定义在R上的奇函数f x 满足f2-x=f x ,且在0,1上单调递减,若方程f x =-1在0,1上所有实根之和是( )上有实数根,则方程f x =1在区间-1,11A.30B.14C.12D.6【答案】A【解析】由f2-x=f x 知函数f x 的图象关于直线x=1对称,∵f2-x=f x ,f x 是R上的奇函数,∴f-x=f x+2=-f x ,∴f x+4=f x ,∴f x 的周期为4,考虑f x 的一个周期,例如-1,3,由f x 在0,1上是增函数,上是减函数知f x 在1,2f x 在-1,0上是减函数,f x 在2,3上是增函数,对于奇函数f x 有f0 =0,f2 =f2-2=f0 =0,故当x∈0,1时,f x <f2 =0,时,f x <f0 =0,当x∈1,2当x∈-1,0时,f x >f0 =0,当x∈2,3时,f x >f2 =0,方程f x =-1在0,1上有实数根,则这实数根是唯一的,因为f x 在0,1上是单调函数,则由于f2-x上有唯一实数,=f x ,故方程f x =-1在1,2在-1,0上f x >0,和2,3则方程f x =-1在-1,0上没有实数根,和2,3从而方程f x =-1在一个周期内有且仅有两个实数根,当x∈-1,3,方程f x =-1的两实数根之和为x+2-x=2,当x∈-1,11,方程f x =-1的所有6个实数根之和为x+2-x+4+x+4+2-x+x+8+2-x+8=2+8+2+8+2+8=30.故选:A.8.(2023·全国·高三专题练习)对于三次函数f x =ax3+bx2+cx+d a≠0,给出定义:设f'x 是函数y=f x 的导数,f″x 是f'x 的导数,若方程f″x =0有实数解x0,则称点x0,f x0为函数y =f x 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =13x3-12x2+3x-512,则g12019+g22019+⋯+g20182019=( )A.2016B.2017C.2018D.2019【答案】C【解析】函数g x =13x3-12x2+3x-512,函数的导数g'x =x2-x+3,g'x =2x-1,由g'x0=0得2x0-1=0,解得x0=12,而g12 =1,故函数g x 关于点12,1对称,∴g x +g1-x=2,故设g12019+g22019+...+g20182019=m,则g20182019+g20172019+...+g12019=m,两式相加得2×2018=2m,则m=2018,故选C.9.(2023春·云南曲靖·高三曲靖一中校考阶段练习)定义在R上的函数f x 满足f-x+f x =0 ,f x =f2-x,且当x∈0,1时,f x =x2.则函数y=7f x -x+2的所有零点之和为( ) A.7 B.14 C.21 D.28【答案】B【解析】依题意,f x 是奇函数.又由f x =f2-x知,f x 的图像关于x=1对称.f x+4=f1+x+3=f1-x+3=f-2-x=-f2+x=-f2--x=-f-x=f x ,所以f x 是周期为4的周期函数.f2+x=f1+1+x=f1-1+x=f-x=-f x =-f2-x,所以f x 关于点2,0对称.由于y=7f x -x+2=0⇔f x =x-2 7从而函数y=7f x -x+2的所有零点之和即为函数f x 与g x =x-27的图像的交点的横坐标之和.而函数g x =x-27的图像也关于点2,0对称.画出y=f x ,g x =x-27的图象如图所示.由图可知,共有7个交点,所以函数y=7f x -x+2所有零点和为7×2=14.故选:B10.(2023·全国·高三专题练习)已知定义在R上的可导函数f x 的导函数为f (x),满足f (x)<f(x)且f x+3为偶函数,f(x+1)为奇函数,若f(9)+f(8)=1,则不等式f x <e x的解集为( )A.-3,+∞B.1,+∞C.(0,+∞)D.6,+∞【答案】C【解析】因为f x+3为偶函数,f(x+1)为奇函数,所以f x+3=f-x+3,f(x+1)+f(-x+1)=0.所以f x =f-x+6,f(x)+f(-x+2)=0,所以f(-x+6)+f(-x+2)=0.令t=-x+2,则f(t+4)+f(t)=0.令上式中t取t-4,则f(t)+f(t-4)=0,所以f(t+4)=f(t-4).令t取t+4,则f(t)=f(t+8),所以f(x)=f(x+8).所以f x 为周期为8的周期函数.因为f(x+1)为奇函数,所以f(x+1)+f(-x+1)=0,令x=0,得:f(1)+f(1)=0,所以f(1)=0,所以f(9)+f(8)=1,即为f(1)+f(0)=1,所以f(0)=1.记g x =f xe x,所以gx =f x -f xe x.因为f (x)<f(x),所以g x <0,所以g x =f xe x在R上单调递减.不等式f x <e x可化为f xe x<1,即为g x <g0 .所以x>0.故选:C11.(2023·全国·高三专题练习)设函数f x 的定义域为R,f x+1为奇函数,f x+2为偶函数,当x∈1,2时,f(x)=ax2+b.若f0 +f3 =6,则f 92 =( )A.-94B.-32C.74D.52【答案】D【解析】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92 =f 52+2 =f -52+2 =f -12 f -12 =f -32+1 =-f 32+1 =-f 52-f 52 =-f 12+2 =-f -12+2 =-f 32所以f 92 =-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .二、多选题12.(2023春·云南·高三云南师大附中校考阶段练习)已知定义域为R 的函数f x 在-1,0 上单调递增,f 2+x =f 2-x ,且图象关于3,0 对称,则f x ( )A.周期T =4B.在0,2 单调递减C.满足f 2021 <f 2022 <f 2023D.在0,2023 上可能有1012个零点【答案】ABD【解析】A 选项:由f (2+x )=f (2-x )知f (x )的对称轴为x =2,且f (4+x )=f (-x ),又图象关于3,0 对称,即f (3+x )=-f (3-x ),故f (6+x )=-f (-x ),所以-f (4+x )=f (6+x ),即-f (x )=f (2+x ),所以f (x )=f (x +4),f (x )的周期为4,正确;B 选项:因为f (x )在-1,0 上单调递增,T =4,所以f (x )在3,4 上单调递增,又图象关于3,0 对称,所以f (x )在2,3 上单调递增,因为关于x =2对称,所以f (x )在1,2 上单调递减,f (1)=f (3)=0,故f (x )在0,2 单调递减,B 正确;C 选项:根据周期性,f (2021)=f (1),f (2022)=f (2),f (2023)=f (3),因为f (x )关于x =2对称,所以f (1)=f (3)=0,f (2)<f (1),故f (2022)<f (2021)=f (2023),错误;D 选项:在0,4 上,f (1)=f (3)=0,f (x )有2个零点,所以f (x )在0,2020 上有1010个零点,在2020,2023 上有2个零点,故f (x )在0,2023 上可能有1012个零点,正确,故选:ABD .13.(2023春·广东广州·高三统考阶段练习)已知函数f x 、g x 的定义域均为R ,f x 为偶函数,且f x +g 2-x =1,g x -f x -4 =3,下列说法正确的有( )A.函数g x 的图象关于x =1对称 B.函数f x 的图象关于-1,-1 对称C.函数f x 是以4为周期的周期函数 D.函数g x 是以6为周期的周期函数【答案】BC【解析】对于A 选项,因为f x 为偶函数,所以f -x =f x .由f x +g 2-x =1,可得f -x +g 2+x =1,可得g 2+x =g 2-x ,所以,函数g x 的图象关于直线x =2对称,A 错;对于B 选项,因为g x -f x -4 =3,则g 2-x -f -2-x =3,又因为f x +g 2-x =1,可得f x +f -2-x =-2,所以,函数f x 的图象关于点-1,-1 对称,B 对;对于C 选项,因为函数f x 为偶函数,且f x +f -2-x =-2,则f x +f x +2 =-2,从而f x +2 +f x +4 =-2,则f x +4 =f x ,所以,函数f x 是以4为周期的周期函数,C 对;对于D 选项,因为g x -f x -4 =3,且f x =f x -4 ,∴g x -f x =3,又因为f x +g 2-x =1,所以,g x +g 2-x =4,又因为g 2-x =g 2+x ,则g x +g x +2 =4,所以,g x +2 +g x +4 =4,故g x +4 =g x ,因此,函数g x 是周期为4的周期函数,D 错.故选:BC .14.(2023春·湖南长沙·高三长郡中学校考阶段练习)设定义在R 上的函数f x 与g x 的导函数分别为f x 和g x ,若f x +2 -g 1-x =2,f x =g x +1 ,且g x +1 为奇函数,则下列说法中一定正确的是( )A.g 1 =0 B.函数g x 的图象关于x =2对称C.2021k =1f k g k =0D.2022k =1g k =0【答案】AC【解析】因为g x +1 为奇函数,所以g x +1 =-g -x +1 ,取x =0可得g 1 =0,A 对,因为f x +2 -g 1-x =2,所以f x +2 +g 1-x =0;所以f x +g 3-x =0,又f x =g x +1 ,g x +1 +g 3-x =0,故g 2+x +g 2-x =0,所以函数g x 的图象关于点(2,0)对称,B 错,因为f x =g x +1 ,所以f x -g x +1 =0,所以f x -g x +1 =c ,c 为常数,因为f x +2 -g 1-x =2,所以f x -g 3-x =2,所以g x +1 -g 3-x =2-c ,取x =1可得c =2,所以g x +1 =g 3-x ,又g x +1 =-g -x +1 ,所以g 3-x =-g -x +1 ,所以g x =-g x -2 ,所以g x +4 =-g x +2 =g (x ),故函数g (x )为周期为4的函数,因为g x +2 =-g x ,所以g 3 =-g 1 =0,g 4 =-g 2 ,所以g (1)+g (2)+g (3)+g (4)=0,所以2022k =1g k =g (1)+g (2)+g (3)+g (4) +g (5)+g (6)+g (7)+g (8) +⋅⋅⋅+g (2017)+g (2018)+g (2019)+g (2020) +g (2021)+g (2022),所以2022k =1g k =505×0+ g (2021)+g (2022)=g (1)+g (2)=g (2),由已知无法确定g (2)的值,故2022k =1g k 的值不一定为0,D 错;因为f x +2 -g 1-x =2,所以f x +2 =2-g x +1 ,f x +6 =2-g x +5 ,所以f x +2 =f (x +6),故函数f (x )为周期为4的函数,f (x +4)g (x +4)=f (x )g (x )所以函数f (x )g (x )为周期为4的函数,又f (1)=2-g (0),f (2)=2-g (1)=2,f (3)=2-g (2)=2+g (0),f (4)=2-g (3)=2,所以f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4)=0+2g (2)+2g (4)=0,所以2021k =1f k g k =505f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4) +f (2021)g (2021)2021k =1f kg k =f (1)g (1)=0 ,C 对,故选:AC .15.(2023·全国·高三专题练习)设函数y =f (x )的定义域为R ,且满足f (x )=f (2-x ),f (-x )=-f (x -2),当x ∈(-1,1]时,f (x )=-x 2+1,则下列说法正确的是( )A.f (2022)=1B.当x ∈4,6 时,f (x )的取值范围为-1,0C.y =f (x +3)为奇函数D.方程f (x )=lg (x +1)仅有5个不同实数解【答案】BCD【解析】依题意,当-1<x<0时,0<f x <1,当0≤x≤1时,0≤f x ≤1,函数y=f(x)的定义域为R,有f(x)=f(2-x),又f(-x)=-f(x-2),即f(x)=-f(-x-2),因此有f(2-x)=-f(-x-2),即f(x+4)=-f(x),于是有f(x+8)=-f(x+4)=f(x),从而得函数f(x)的周期T=8,对于A,f2022=-f0 =-1,A不正确;=f252×8+6=f6 =f-2对于B,当4≤x≤5时,0≤x-4≤1,有0≤f(x-4)≤1,则f(x)=-f(x-4)∈[-1,0],当5≤x≤6时,-4≤2-x≤-3,0≤(2-x)+4≤1,有0≤f[(2-x)+4]≤1,f(x)=f(2-x)=-f[(2-x)+4]∈[-1,0],当x∈4,6,B正确;时,f(x)的取值范围为-1,0对于C,f(x+3)=-f[(x+3)+4]=-f(x-1)=-f[2-(x-1)]=-f(-x+3),函数y=f(x+3)为奇函数,C正确;对于D,在同一坐标平面内作出函数y=f(x)、y=lg(x+1)的部分图象,如图:方程f(x)=lg(x+1)的实根,即是函数y=f(x)与y=lg(x+1)的图象交点的横坐标,观察图象知,函数y=f(x)与y=lg(x+1)的图象有5个交点,因此方程f(x)=lg(x+1)仅有5个不同实数解,D正确.故选:BCD16.(2023·全国·高三专题练习)已知定义在R上的单调递增的函数f x 满足:任意x∈R,有f1-x+f1+x=2,f2+x=4,则( )+f2-xA.当x∈Z时,f x =xB.任意x∈R,f-x=-f xC.存在非零实数T,使得任意x∈R,f x+T=f xD.存在非零实数c,使得任意x∈R,f x -cx≤1【答案】ABD【解析】对于A,令x=1-t,则f t +f2-t=2,=2,即f x +f2-x又f2+x=4-2-f x=f x +2;=4-f2-x+f2-x=4,∴f x+2令x=0得:f1 +f1 =2,f2 +f2 =4,∴f1 =1,f2 =2,则由f x+2=f x +2可知:当x∈Z时,f x =x,A正确;对于B ,令x =1+t ,则f -t +f 2+t =2,即f -x +f 2+x =2,∴f -x =2-f 2+x =2-4-f 2-x =f 2-x -2,由A 的推导过程知:f 2-x =2-f x ,∴f -x =2-f x -2=-f x ,B 正确;对于C ,∵f x 为R 上的增函数,∴当T >0时,x +T >x ,则f x +T >f x ;当T <0时,x +T <x ,则f x +T <f x ,∴不存在非零实数T ,使得任意x ∈R ,f x +T =f x ,C 错误;对于D ,当c =1时,f x -cx =f x -x ;由f 1-x +f 1+x =2,f 2+x +f 2-x =4知:f x 关于1,1 ,2,2 成中心对称,则当a ∈Z 时,a ,a 为f x 的对称中心;当x ∈0,1 时,∵f x 为R 上的增函数,f 0 =0,f 1 =1,∴f x ∈0,1 ,∴f x -x ≤1;由图象对称性可知:此时对任意x ∈R ,f x -cx ≤1,D 正确.故选:ABD .17.(2023·全国·高三专题练习)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1)时,f (x )=-x 2+1,则下列结论正确的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上为减函数D.方程f (x )+lg x =0仅有6个实数解【答案】ABD【解析】f (x +1)为偶函数,故f (x +1)=f (-x +1),令x =52得:f 72 =f -52+1 =f -32,f (x -1)为奇函数,故f (x -1)=-f (-x -1),令x =12得:f -32 =-f 12-1 =-f -12,其中f -12 =-14+1=34,所以f 72 =f -32 =-f -12 =-34,A 正确;因为f (x -1)为奇函数,所以f (x )关于-1,0 对称,又f (x +1)为偶函数,则f (x )关于x =1对称,所以f (x )周期为4×2=8,故f (x +7)=f (x -1),所以f (-x +7)=f (-x -1)=-f x -1 =-f x -1+8 =-f x +7 ,从而f (x +7)为奇函数,B 正确;f (x )=-x 2+1在x ∈(-1,0)上单调递增,又f (x )关于-1,0 对称,所以f (x )在-2,0 上单调递增,且f (x )周期为8,故f (x )在(6,8)上单调递增,C 错误;根据题目条件画出f (x )与y =-lg x 的函数图象,如图所示:其中y =-lg x 单调递减且-lg12<-1,所以两函数有6个交点,故方程f (x )+lg x =0仅有6个实数解,D 正确.故选:ABD18.(2023·全国·高三专题练习)已知f (x )是定义域为(-∞,+∞)的奇函数,f (x +1)是偶函数,且当x ∈0,1 时,f (x )=-x (x -2),则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为-1,1D.y =f x 在0,2π 上有4个零点【答案】BCD【解析】对于A ,f x +1 为偶函数,其图像关于x 轴对称,把f x +1 的图像向右平移1个单位得到f x 的图像,所以f (x )图象关于x =1对称,即f (1+x )=f (1-x ),所以f (2+x )=f (-x ),f x 为R 上的奇函数,所以f (-x )=-f x ,所以f (2+x )=-f (x ),用2+x 替换上式中的x 得, f (4+x )=-f (x +2),所以,f (4+x )=f (x ),则f x 是周期为4的周期函数.故A 错误.对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1.故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域-1,1 .故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2)①∴x ∈[0,2]时,f (x )=-x (x -2),此时函数的零点为0,2;∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),②∴x ∈2,4 时,∵f (x )的周期为4,∴x -4∈-2,0 ,f x =f x -4 =x -2 x -4 ,此时函数零点为4;③∴x ∈4,6 时,∴x -4∈0,2 ,f x =f x -4 =-(x -4)(x -6),此时函数零点为6;④∴x ∈6,2π 时,∴x -4∈2,4 ,f x =f x -4 =x -6 x -8 ,此时函数无零点;综合以上有,在(0,2π)上有4个零点.故D 正确;故选:BCD19.(2023春·广东广州·高三广州市禺山高级中学校考阶段练习)已知f x 是定义域为(-∞,+∞)的奇函数,f x +1 是偶函数,且当x ∈0,1 时,f x =-x x -2 ,则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为[-1,1]D.f x 的图象与曲线y =cos x 在0,2π 上有4个交点【答案】BCD【解析】根据题意,对于A ,f x 为R 上的奇函数,f x +1 为偶函数,所以f (x )图象关于x =1对称,f (2+x )=f (-x )=-f (x )即f (x +4)=-f (x +2)=f (x )则f x 是周期为4的周期函数,A 错误;对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1;故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域[-1,1].故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2),∴x ∈[0,2],f (x )=-x (x -2),∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),∵f (x )的周期为4,∴x ∈[2,4],f (x )=(x -2)(x -4),∴x ∈[4,6],f (x )=-(x -4)(x -6),∴x ∈[6,2π],f (x )=(x -6)(x -8),设g (x )=f (x )-cos x ,当x ∈[0,2],g (x )=-x 2+2x -cos x ,g ′(x )=-2x +2+sin x ,设h(x)=g′(x),h′(x)=-2+cos x<0在[0,2]恒成立,h(x)在[0,2]单调递减,即g′(x)在[0,2]单调递减,且g′(1)=sin1>0,g′(2)=-2+sin2<0,存在x0∈(1,2),g′(x0)=0,x∈(0,x0),g′(x)>0,g(x)单调递增,x∈(x0,2),g′(x)<0,g(x)单调递减,g(0)=-1,g(1)=1-cos1>0,g(x0)>g(1)>0,g(2)=-cos2>0,所以g(x)在(0,x0)有唯一零点,在(x0,2)没有零点,即x∈(0,2],f x 的图象与曲线y=cos x有1个交点,当x∈2,4时,,g x =f x -cos x=x2-6x+8-cos x,则g′x =2x-6+sin x,h x =g′x =2x-6+sin x,则h′x =2+cos x>0,所以g′x 在2,4上单调递增,且g′3 =sin3>0,g′2 =-2+sin2<0,所以存在唯一的x1∈2,3⊂2,4,使得g′x =0,所以x∈2,x1,g′x <0,g x 在2,x1单调递减,x∈x1,4,g′x >0,g x 在x1,4单调递增,又g3 =-1-cos3<0,所以g x1<g(3)<0,又g2 =-cos2>0,g4 =-cos4>0,所以g x 在2,x1上有一个唯一的零点,在x1,4上有唯一的零点,所以当x∈2,4时,f x 的图象与曲线y=cos x有2个交点,,当x∈4,6时,同x∈[0,2],f x 的图象与曲线y=cos x有1个交点,当x∈[6,2π],f(x)=(x-6)(x-8)<0,y=cos x>0,f x 的图象与曲线y=cos x没有交点,所以f x 的图象与曲线y=cos x在0,2π上有4个交点,故D正确;故选:BCD.20.(2023·全国·高三专题练习)已知函数f2x+1的图像关于直线x=1对称,函数y=f x+1关于点1,0对称,则下列说法正确的是( )A.f1-x=f1+xB.f x 的周期为4C.f1 =0D.f x =f32-x【答案】AB【解析】f2x的图像关于直线x=32对称,f x 的图像关于x=3对称,又关于点2,0中心对称,所以周期为4,所以B正确而D错误;又f 3-x =f 3+x ,其中x 换x +1得f 2-x =f 4+x =f x ,再将x 换x +1得f 1-x =f 1+x ,但无法得到f (1)=0 所以A 正确C 错误.故选:AB .21.(2023·全国·高三专题练习)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x ,g (2+x )均为偶函数,则( )A.f (0)=0B.g -12 =0C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x=f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x =g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R ,所以g 32=0,结合g (x )关于x =2对称,从而周期T =4×2-32 =2,所以g -12 =g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .[方法二]:【最优解】特殊值,构造函数法.由方法一知g (x )周期为2,关于x =2对称,故可设g x =cos πx ,则f x =1πsin πx +c ,显然A ,D 错误,选BC .故选:BC .[方法三]:因为f 32-2x,g (2+x )均为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ,g (2+x )=g (2-x ),所以f 3-x =f x ,g (4-x )=g (x ),则f (-1)=f (4),故C 正确;函数f (x ),g (x )的图象分别关于直线x =32,x =2对称,又g (x )=f (x ),且函数f (x )可导,所以g 32 =0,g 3-x =-g x ,所以g (4-x )=g (x )=-g 3-x ,所以g (x +2)=-g (x +1)=g x ,所以g -12=g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.22.(2023·全国·高三专题练习)定义f x 是y =f x 的导函数y =f x 的导函数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数y =f x 的“拐点”.可以证明,任意三次函数f x =ax 3+bx 2+cx +d a ≠0 都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题,其中正确命题是( )A.存在有两个及两个以上对称中心的三次函数B.函数f x =x 3-3x 2-3x +5的对称中心也是函数y =tan π2x 的一个对称中心C.存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心D.若函数g x =13x 3-12x 2-512,则g 12021+g 22021 +g 32021 +⋅⋅⋅+g 20202021 =-1010【答案】BCD【解析】对于A .设三次函数f x =ax 3+bx 2+cx +d a ≠0 ,易知y =f x 是一次函数,∴任何三次函数只有一个对称中心,故A 不正确;对于B .由f x =x 3-3x 2-3x +5,得f x =3x 2-6x -3,f x =6x -6,由6x -6=0,得x =1,函数f x 的对称中心为1,0 ,又由π2x =k π2,k ∈Z ,得x =k ,k ∈Z ,∴f x 的对称中心是函数y =tan π2x 的一个对称中心,故B 正确;对于C .设三次函数h x =ax 3+bx 2+cx +d a ≠0 ,所以h x =3ax 2+2bx +c ,h x =6ax +2b联立3ax 02+2bx 0+c =0,6ax 0+2b =0,得3ac -b 2=0,即当3ac -b 2=0时,存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心,故C 正确.对于D .∵g x =13x 3-12x 2-512,∴g x =x 2-x ,g x =2x -1,令g x =2x -1=0,得x =12,∵g 12 =13×12 3-12×12 2-512=-12,∴函数g x =13x 3-12x 2-512的对称中心是12,-12,∴g x +g 1-x =-1,设T =g 12021+g 22021 +g 32021 +⋯+g 20202021 ,所以2T =g 12021 +g 20202021 +g 22021 +g 20192021 +⋯+g 20202021 +g 12021 =-2020所以g 12021 +g 22021 +g 32021+⋯+g 20202021 =-1010,故D 正确.故选:BCD .三、填空题23.(2023·全国·高三专题练习)设f x 的定义域为R ,且满足f 1-x =f 1+x ,f x +f -x =2,若f 1 =3,则f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030=___________.【答案】2024【解析】因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1,f 2 =f 0 =1,由f 1-x =f 1+x ,得f -x =f x +2 ,f x =f 2-x ,有f x +2 +f 2-x =2,可得f x +f 2-x -2 =2,有f x +f 4-x =2,又由f x +f -x =2,可得f 4-x =f -x ,可知函数f x 的周期为4,可得f 2023 =f -1 =-1,f 2028 =f 0 =1,f 2030 =f 2 =1,有f 2023 +f 2028 +f 2030 =1,因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1由f 1-x =f 1+x 得f -x =f x +2 ,所以f x +f x +2 =2,f x +1 +f x +3 =2,即f x +f x +1 +f x +2 +f x +3 =4,所以f -1 +f 0 +f 1 +f 2 + f 3 +f 4 +⋯+f 2021 +f 2022 =4×506=2024所以f 1 +f 2 +f 3 +⋯+f 2022 =2024-f 0 -f -1 =2024-1--1 =2024.故f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030 =2024.故答案为:202424.(2023·全国·高三专题练习)对于定义在D 上的函数f x ,点A m ,n 是f x 图像的一个对称中心的充要条件是:对任意x ∈D 都有f x +f 2m -x =2n ,判断函数f x =x 3+2x 2+3x +4的对称中心______.【答案】-23,7027【解析】因为f x =x 3+2x 2+3x +4,由于f x +f -23×2-x =x 3+2x 2+3x +4+-23×2-x 3+2-23×2-x 2+3-23×2-x +4=7027×2=14027.即m =-23,n =7027.所以-23,7027是f x =x 3+2x 2+3x +4的一个对称中心.故答案为:-23,7027 .25.(2023·全国·高三专题练习)对于三次函数f x =ax 3+bx 2+cx +d a ≠0 ,现给出定义:设f x 是函数y =f x 的导数,f x 是f x 的导数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数f x =ax 3+bx 2+cx +d a ≠0 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =2x 3-3x 2+1,则g 1100+g 2100+⋯+g 99100 =____.【答案】4912【解析】依题意得,g x =6x 2-6x ,g x =12x -6,令g x =0,得x =12, ∵g 12 =12,∴函数g x 的对称中心为12,12,则g 1-x +g x =1,∵1100+99100=2100+98100=⋯=49100+51100=1,∴g 1100 +g 99100 =g 2100 +g 98100 =⋯=g 49100 +g 51100 =1∴g 1100 +g 2100+⋯+g 99100 =g 1100 +g 99100 +g 2100 +g 98100 +⋯+g 49100 +g 51100 +g 12=49+12=4912,故答案为4912.26.(2023·四川成都·成都七中校考模拟预测)已知S n 为数列a n 的前n 项和,数列a n 满足a 1=-2,且S n =32a n+n ,f x 是定义在R 上的奇函数,且满足f 2-x =f x ,则f a 2021 =______.【答案】0【解析】∵S n =32a n +n ,∴S n -1=32a n -1+n -1n ≥2 ,两式相减得,a n =32a n -32a n -1+1,即a n -1=3a n -1-1 ,∴a n -1a n -1-1=3,即数列a n -1 是以-3为首项,3为公比的等比数列,∴a n -1=-3⋅3n -1=-3n ,∴a n =-3n +1.∵f x 是定义在R 上的奇函数,且满足f 2-x =f x ,∴令x =2,则f 2 =f 0 =0,又f2-x=f x =-f(-x),∴f(2+x)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=-[-f(-x)]=f(x),即f(x+4)=f(x),即f x 是以4为周期的周期函数.∵a2021=-32021+1=-4-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+C2021202140⋅-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+2其中C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020能被4整除,∴f a2021=f-32021+1=f2 =0.故答案为:0.27.(2023·全国·高三专题练习)已知定义域为R的奇函数f x 满足f x+1=f3-x,当x∈0,2时,f x =-x2+4,则函数y=f x -a a∈R在区间-4,8上的零点个数最多时,所有零点之和为__________.【答案】14【解析】由于定义域为R的奇函数f x 满足f x+1=f3-x,∴f-x=-f x ,f x+4=f-x,∴f x+4=-f x ,∴f x+8=-f x+4=f x ,∴函数f x 为周期函数,且周期为8,当x∈0,2时,f x =-x2+4,函数y=f x -a a∈R在区间-4,8上的零点的个数,即为函数y=f x 与y=a 的交点的个数,作出函数 y=f x ,x∈-4,8上的函数的图象,显然,当a=0 时,交点最多,符合题意,此时,零点的和为-4+-2+0+2+4+6+8=14 .28.(2023·全国·高三专题练习)已知函数f(x)满足f(x+3)=f(1-x)+9f(2)对任意x∈R恒成立,又函数f x +9 的图象关于点(-9,0)对称,且f (1)=2022,则f (45)=_________.【答案】-2022【解析】因为函数f (x )满足f (x +3)=f (1-x )+9f (2)对任意x ∈R 恒成立,所以令x =-1,即f (2)=f (2)+9f (2),解得f (2)=0,所以f (x +3)=f (1-x )对任意x ∈R 恒成立,又函数f x +9 的图象关于点(-9,0)对称,将函数f x +9 向右平移9个单位得到f (x ),所以f (x )关于点(0,0),即f (x )为R 上的奇函数,所以f (x )=-f -x ,又f (x +3)=f (1-x )对任意x ∈R 恒成立,令x =-x -3,得f (-x )=f (x +4),即-f (x )=f (x +4),再令x =x +4,得-f (x +4)=f (x +8),分析得f (x )=f (x +8),所以函数f (x )的周期为8,因为f (1)=2022,所以在f (x +3)=f (1-x )中,令x =0,得f (3)=f (1)=2022,所以f (45)=f 6×8-3 =f -3 =-f 3 =-2022.故答案为:-2022.29.(2023·全国·高三专题练习)已知f x 是定义在R 上的函数,若对任意x ∈R ,都有f (x +8)=f (x )+f (4),且函数f (x -2)的图像关于直线x =2对称,f (2)=3,则f (2022)=_______.【答案】3【解析】因为函数f (x -2)的图像关于直线x =2对称,所以函数f (x )的图像关于直线x =0对称,即函数f x 是偶函数,则有f x =f -x ;因为对任意x ∈R ,都有f (x +8)=f (x )+f (4),令x =-4,得f -4+8 =f -4 +f 4 ⇒f -4 =f 4 =0,所以对任意x ∈R ,都有f (x +8)=f (x )+f (4)=f x ,即函数f x 的周期为8,则f 2022 =f 252×8+6 =f 6 =f 6-8 =f -2 =f 2 =3,故答案为:3.30.(2023·全国·高三专题练习)已知定义在R 上的函数f (x )和函数g (x )满足2f (x )=g (x )-g (-x ),且对于任意x 都满足f (x )+f (-x -4)+5=0,则f (2021)+f (2019)=________.【答案】5050【解析】由题意知:f (x )定义域为R ,2f (-x )=g (-x )-g (x ),可得:f (x )+f (-x )=0,f (x )为奇函数,又f (-x -4)=-f (x )-5=-f (x +4),则f (x +4)=f (x )+5,可得:f (2021)+f (2019)=f (1+4×505)+f (-1+4×505)=f (1)+5×505+f (-1)+5×505=5050.故答案为:5050.31.(2023·全国·高三专题练习)已知定义域为R 的奇函数f x ,当x >0时,有f x =-log 34-x ,0<x ≤54f x -3 ,x >54,则f 2 +f 4 +f 6 +⋅⋅⋅+f 2022 =______.【答案】0【解析】R上的奇函数f x ,则有f-x=-f(x),而当x>0时,有f x =-log34-x,0<x≤5 4f x-3,x>5 4,于是有f(2)=f(-1)=-f(1)=1,f(4)=f(1)=-1,f(6)=f(3)=f(0)=0,因∀x>54,f(x)=f(x-3),则有∀n∈N∗,f(6n-4)=f(2)=1,f(6n-2)=f(1)=-1,f(6n)=f(3)=0,所以f2 +f4 +f6 +⋅⋅⋅+f2022=337f2 +f4 +f6=0.故答案为:032.(2023·全国·高三专题练习)已知函数f x =x3-3x2+9x+4,若f a =7,f b =15,则a+b=___________.【答案】2【解析】因为f x =3x2-6x+9,对称轴为x=1,所以f x 的对称中心为1,f1,即1,11,因为f x =3x2-6x+9=3(x-1)2+6>0,所以f x 在R上单调递增,所以方程f a =7,f b =15的解a,b均有且只有一个,因为f a +f b =2f1 =22,所以a,7,b,15关于对称中心1,11对称,所以a+b=2,故答案为:233.(2023·全国·高三专题练习)已知函数f x 的定义域为R,且f x 为奇函数,其图象关于直线x=2对称.当x∈0,4时,f x =x2-4x,则f2022=____.【答案】4【解析】∵f x 的图象关于直线x=2对称,∴f(-x)=f(x+4),又f x 为奇函数,∴f(-x)=-f x ,故f(x+4)=-f x ,则f(x+8)=-f(x+4)=f x ,∴函数f x 的周期T=8,又∵2022=252×8+6,∴f2022= f6 =f(-2)=-f2 =-(4-8)=4.故答案为:4.34.(2023·全国·高三专题练习)若函数f(x)=1-x2x2+ax+b,a,b∈R的图象关于直线x=2对称,则a+b=_______.【答案】7【解析】由题意f(2+x)=f(2-x),即f(x)=f(4-x),所以f(0)=f(4)f(1)=f(3),即b=-15(16+4a+b)0=-8(9+3a+b),解得a=-8b=15,此时f(x)=(1-x2)(x2-8x+15)=-x4+8x3-14x2-8x+15,f(4-x)=-(4-x)4+8(4-x)3-14(4-x)2-8(4-x)+15=-(x4-16x3+96x2-256x+256)+8(64-48x+12x2-x3)-14(16-8x+x2)-32+8x+15= -x4+8x3-14x2-8x+15=f(x),满足题意.所以a=-8,b=15,a+b=7.故答案为:7.35.(2023·全国·高三专题练习)已知函数f x =3x-5x-2,g x =2x+22x-2+1,记f(x)与g(x)图像的交点横,纵坐标之和分别为m与n,则m-n的值为________.【答案】-2.【解析】f(x)=3x-5x-2=3+1x-2在(-∞,2)和(2,+∞)上都单调递减,且关于点(2,3)成中心对称,g(x)=2x+22x-2+1=4×2x-2+22x-2+1=4-22x-2+1在(-∞,+∞)上单调递增,g(4-x)+g(x)=4-222-x+1+4-22x-2+1=8-2(2x-2+1)+2(22-x+1)(22-x+1)(2x-2+1)=8-2(2x-2+22-x+2)2+2x-2+22-x=8-2=6,所以g(x)的图像也关于点(2,3)成中心对称,所以f(x)与g(x)图像有两个交点且关于点(2,3)对称,设这两个交点为(x1,y1)、(x2,y2),则x1+x2=2×2=4,y1+y2=2×3=6,所以m=4,n=6,所以m-n=4-6=-2.故答案为:-2.。

函数对称性与周期性几个重要结论赏析

函数对称性与周期性几个重要结论赏析

函数对称性与周期性几个重要结论赏析对称性和周期性是函数的两个重要性质,下面总结这两个性质的几个重要结论及运用它们解决抽象型函数的有关习题。

一、 几个重要的结论(一)函数图象本身的对称性(自身对称)1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。

2、函数)(x f y =满足)2()(x T f x f -=(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。

3、函数)(x f y =满足)()(x b f x a f -=+的充要条件是)(x f y =图象关于直线22)()(b a x b x a x +=-++=对称。

4、如果函数)(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。

5、如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以4T 为周期的周期性函数。

6、如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。

(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、曲线)(x f y =与)(x f y -=关于X 轴对称。

2、曲线)(x f y =与)(x f y -=关于Y 轴对称。

3、曲线)(x f y =与)2(x a f y -=关于直线a x =对称。

4、曲线0),(=y x f 关于直线b x =对称曲线为0)2,(=-y b x f 。

5、曲线0),(=y x f 关于直线0=++c y x 对称曲线为0),(=----c x c y f 。

抽象函数的性质及其经典例题

抽象函数的性质及其经典例题

抽象函数的性质及其金典例题函数的周期性:1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数;2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数;3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数;4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数;5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ;6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x),则y=f(x)是周期为2|a|的周期函数;7、若在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。

函数图像的对称性:1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线对称;2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称;3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点成中心对称图形;4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0;5、形如的图像是双曲线,由常数分离法知:对称中心是点;6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线对称;7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。

高三数学函数的周期性和对称性形典型例题解析1

高三数学函数的周期性和对称性形典型例题解析1

高三数学函数的周期性和对称性典型例题解析11.函数定义域为,且对任意,都有,若在区间上则( )A.B. C. D.【答案】C【解析】第一步,准确求出函数的周期性:由()()2f x f x +=,可知()f x 是周期为2的函数, 第二步,运用函数的周期性求解实际问题:令1-=x 故()()11f f -=,代入解析式,得()22a a e -+=-,解得2a =, 从而()()22,10{22,01x x x f x x e x +-≤≤=-<≤,故()()()()2017201810022f f f f +=+=+=,故选C.2.已知定义域为R 的函数()f x 满足()2()f x f x +=,且当01x ≤≤时,()2(12)f x g x =+,则()2021f -=()A .lg3-B .lg 9C .lg 3D .0【答案】C 【分析】由()()2f x f x +=得出函数的周期2T =,所以()()20211f f -=代入解析式可得答案. 【详解】由()f x 满足()()2f x f x +=,所以函数的周期2T =,且当01x ≤≤时,()2(12)f x g x =+,所以()()20211lg3f f -==. 故选:C.3.已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【分析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.4.函数y =f(x)在[0,2]上单调递增,且函数f(x +2)是偶函数,则下列结论成立的是( ) A . f(1)<f(52)<f(72) B . f(72)<f(52)<f(1) C . f(72)<f(1)<f(52) D . f(52)<f(1)<f(72) 【答案】C5.函数f(x +2)是偶函数,则其图象关于y 轴对称,所以函数y =f(x)的图像关于x =2对称,则f(52)=f(32),f(72)=f(12),函数y =f(x)在[0,2]上单调递增,则有 f(12)<f(1)<f(32),所以f(72)<f(1)<f(52).选C . 考点:抽象函数的周期性.6.(多选)已知函数()1y f x =-的图象关于直线1x =-对称,且对x ∀∈R 有()()4f x f x +-=.当(]0,2x ∈时,()2f x x =+.则下列说法正确的是( ) A .()f x 的周期8T = B .()f x 的最大值为4 C .()20212f = D .()2f x +为偶函数【答案】ABD 【分析】由函数()1y f x =-的图象关于直线1x =-对称,得()()22f x f x -+=--,又()()4f x f x +-=,所以()()()44f x f x f x =--=--,()()444f x f x --++=,从而可得()()8f x f x +=,进而根据周期性、对称性、(]0,2x ∈时()f x 的解析式即可求解. 【详解】解:函数()1y f x =-的图象关于直线1x =-对称,∴函数()y f x =的图象关于直线2x =-对称, ∴()()22f x f x -+=--对x R ∀∈有()()4f x f x +-=,∴函数()y f x =的图象关于()0,2中心对称,∴()()2222f x f x -++=--+⎡⎤⎣⎦,即()()()44f x f x f x =--=--,又()()444f x f x --++=,即()()444f x f x --=-+,∴()()4f x f x +=-,∴()()()444f x f x f x ++=-+=⎡⎤⎡⎤⎣⎦⎣⎦,即()()8f x f x +=,()()22f x f x +=-+, ∴()f x 的周期8T =,选项A 正确;()2f x +为偶函数,选项D 正确;当(]0,2x ∈时,()2f x x =+,()()4f x f x +-=,∴当[)2,0x ∈-时,(]0,2x -∈,()24f x x +-+=,即()2f x x =+, ∴当[]2,2x ∈-时,()2f x x =+,又函数()y f x =的图象关于直线2x =-对称,∴在一个周期[]6,2-上,()()max24f x f ==, ()f x ∴在R 上的最大值为4,选项B 正确;()()()()()2021252855141121f f f f f =⨯+==+=-=-+=∴,选项C 错误. 故选:ABD.7. 已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+ ⎪⎝⎭ ,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( )A .669B .670C .2008D .1 【答案】D 【解析】试题分析:由()32f x f x ⎛⎫=-+⎪⎝⎭得()()3f x f x =+,又()()11,02f f -==-, (1)(13)(2)f f f ∴-=-+=,(0)(3)f f =,()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,所以()1131()()(1),(1)(2)(3)0222f f f f f f f -=--=-+=∴++=,由()()3f x f x =+可得()()()()()()()123...2008669(123)(1)(1)(1)1f f f f f f f f f f ++++=⨯+++==-=,故选D.考点:函数的周期性;函数的对称性.8.已知()21y f x =-为奇函数, ()y f x =与()y g x =图像关于y x =对称,若120x x +=,则()()12g x g x +=( )A. 2B. -2C. 1D. -1 【答案】B 【解析】()21y f x =-为奇函数,故()21y f x =-的图象关于原点()0,0对称,而函数()y f x =的图象可由()21y f x =-图象向左平移12个单位,再保持纵坐标不变,横坐标伸长到原来的2倍得到,故()y f x =的图象关于点()1,0-对称,又()y f x =与()y g x =图象关于y x =对称,故函数()y g x =的图象关于点()0,1-对称,120x x +=,即12x x =-,故点()()()()1122,,,x g x x g x ,关于点()0,1-对称,故()()122g x g x +=-,故选B.9.已知函数()tan sin cos f x x x x =-,现有下列四个命题: ①f (x )的最小正周期为π; ②f (x )的图象关于原点对称;③f (x )的图象关于(2π,0)对称; ④f (x )的图象关于(π,0)对称. 其中所有真命题的序号是( ) A .①②③ B .②③④ C .①②③④ D .①②④【答案】C 【分析】利用函数的对称性和周期的判断方法直接对选项进行逐一判断即可得出答案. 【详解】因为tan y x =与1sin cos sin 22y x x x ==的最小正周期均为π,所以f (x )的最小正周期是π.因为()()f x f x -=-,所以f (x )是奇函数,其图象关于原点对称. 因为()()tan sin cos f x x x x f x π-=-+=-,所以f (x )的图象关于(2π,0)对称. 因为()()2tan sin cos f x x x x f x π-=-+=-,所以f (x )的图象关于(π,0)对称. 所以①②③④均正确 故选:C10.设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果. 11.设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【解析】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x --=-不是奇函数; 对于B ,()211f x x -=+是奇函数;对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数.12.已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点: 函数图象的性质13.已知f(x)是定义域为(−∞,+∞)的奇函数,满足f(1−x)=f(1+x) .若f(1)=2 则f(1)+f(2)+f(3)+⋯+f(50)=( )A . −50B . 0C . 2D . 50 【答案】C【解析】因为f(x)是定义域为(−∞, + ∞)的奇函数,且f(1−x)=f(1+x), 所以f(1+x)=−f(x −1)∴f(3+x)=−f(x +1)=f(x −1)∴T =4,因此f(1)+f(2)+f(3)+⋯+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2), 因为f(3)=−f(1),f(4)=−f(2),所以f(1)+f(2)+f(3)+f(4)=0,∵f(2)=f(−2)=−f(2)∴f(2)=0,从而f(1)+f(2)+f(3)+⋯+f(50)=f(1)=2,选C. 14.已知函数f(x)=lnx +ln(2−x),则A . f(x)在(0,2)单调递增B . f(x)在(0,2)单调递减C . y =f(x)的图像关于直线x=1对称D . y =f(x)的图像关于点(1,0)对称 【答案】C【解析】由题意知,f(2−x)=ln(2−x)+lnx =f(x),所以f(x)的图象关于直线x =1对称,故C 正确,D 错误;又f(x)=ln[x(2−x)](0<x <2),由复合函数的单调性可知f(x)在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C . 【考点】函数的对称性、单调性。

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。

如何快速解答抽象函数对称性与周期性问题

如何快速解答抽象函数对称性与周期性问题

如何快速解答抽象函数对称性与周期性的问题?高考对抽象函数的考察中经常结合对称性与周期性一同考察,下面我们看看函数的对称性与周期性究竟有什么样的关系?若函数)(x f 的图象关于直线a x =对称,也关于直线b x =对称,则)(x f 是以||2b a T -=为周期的周期函数证明:因为)(x f 的图象关于直线a x =对称,所以有)()(x a f x a f -=+即)()2(x f x a f -=+,同理)()2(x f x b f -=+。

所以有)2()2(x a f x b f +=+, 即有)22()(b a x f x f -+=所以函数)(x f 是以||2b a T -=为周期的周期函数.定理1:一般地我们有,若函数)(x f 满足对于任意的实数x 都有)()(x a f x a f -=+和)()(x b f x b f -=+都成立(其中b a ≠),即函数)(x f 的图象关于两条直线a x =和b x =都对称,则)(x f 是周期函数,且周期是||2a b T -=.。

同样的思路我们也可以得出:定理2:若函数)(x f 的图象关于直线a x =对称,关于点)0,(m (其中m a ≠)中心对称,那么函数)(x f 是周期函数,且周期是||4m a T -=证明 因为)(x f 关于直线a x =对称所以有)()(x a f x a f -=+,即有:)2()(x a f x f -=又)(x f 关于点)0,(m 对称所以有式子)()(x m f x m f --=+成立,即有:)2()(x m f x f --=由上述两个式子得到:)2()2(x m f x a f --=-,即有:)22()(m a x f x f -+-= 令x 为m a x 22-+所以又得到)44()22(m a x f m a x f -+-=-+所以有:)44()(m a x f x f -+=所以)(x f 是周期函数,且周期是||4m a T -=。

函数对称性周期性的应用知识点总结练习题及答案解析

函数对称性周期性的应用知识点总结练习题及答案解析

专题 函数对称性、周期性的应用高考对函数性质的考查往往是综合性的,如将奇偶性、周期性、单调性及函数的零点综合考查,因此,复习过程中应注意在掌握常见函数图象和性质的基础上,注重函数性质的综合应用的演练. (一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数) (2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a bx +=为所给对称轴即可.例如:()f x 关于1x =轴对称()()2f x f x ⇒=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称.① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称. 2、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(当0a =时,恰好就是奇函数) (2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫⎪⎝⎭中心对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a bx +=为所给对称中心即可.例如:()f x 关于()1,0-中心对称()()2f x f x ⇒=---,或得到()()35f x f x -=--+均可,同样在求函数值方面,一侧是()f x 更为方便(3)()f x a +是奇函数,则()()f x a f x a +=--+,进而可得到:()f x 关于(),0a 中心对称. ① 要注意奇函数是指自变量取相反数,函数值相反,所以在()f x a +中,x 仅是括号中的一部分,奇函数只是指其中的x 取相反数时,函数值相反,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是奇函数,则()()f x a f x a +=--+⎡⎤⎣⎦:()f x 是奇函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相反,所以有()()f x a f x a +=--+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是奇函数,则()f x a +关于()0,0中心对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于(),0a 对称.4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点: (1)可利用对称性求得某些点的函数值(2)在作图时可作出一侧图像,再利用对称性得到另一半图像 (3)极值点关于对称轴(对称中心)对称(4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同 (二)函数的周期性1、定义:设()f x 的定义域为D ,若对x D ∀∈,存在一个非零常数T ,有()()f x T f x +=,则称函数()f x 是一个周期函数,称T 为()f x 的一个周期2、周期性的理解:可理解为间隔为T 的自变量函数值相等3、若()f x 是一个周期函数,则()()f x T f x +=,那么()()()2f x T f x T f x +=+=,即2T 也是()f x 的一个周期,进而可得:()kT k Z ∈也是()f x 的一个周期4、最小正周期:正由第3条所说,()kT k Z ∈也是()f x 的一个周期,所以在某些周期函数中,往往寻找周期中最小的正数,即称为最小正周期.然而并非所有的周期函数都有最小正周期,比如常值函数()f x C = 5、函数周期性的判定:(1)()()f x a f x b +=+:可得()f x 为周期函数,其周期T b a =- (2)()()()f x a f x f x +=-⇒的周期2T a =分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:()()2f x a f x a +=-+ 所以有:()()()()()2f x a f x a f x f x +=-+=--=,即周期2T a =注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期 (3)()()()1f x a f x f x +=⇒的周期2T a = 分析:()()()()1121f x a f x f x a f x +===+ (4)()()f x f x a k ++=(k 为常数)()f x ⇒的周期2T a =分析:()()()(),2f x f x a k f x a f x a k ++=+++=,两式相减可得:()()2f x a f x += (5)()()f x f x a k ⋅+=(k 为常数)()f x ⇒的周期2T a =(6)双对称出周期:若一个函数()f x 存在两个对称关系,则()f x 是一个周期函数,具体情况如下:(假设b a >)① 若()f x 的图像关于,x a x b ==轴对称,则()f x 是周期函数,周期()2T b a =- 分析:()f x 关于x a =轴对称()()2f x f a x ⇒-=+ ()f x 关于x b =轴对称()()2f x f b x ⇒-=+()()22f a x f b x ∴+=+ ()f x ∴的周期为()222T b a b a =-=-② 若()f x 的图像关于()(),0,,0a b 中心对称,则()f x 是周期函数,周期()2T b a =-③ 若()f x 的图像关于x a =轴对称,且关于(),0b 中心对称,则()f x 是周期函数,周期()4T b a =-7、函数周期性的作用:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质. (1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值(2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制+粘贴”(3)单调区间:由于间隔()kT k Z ∈的函数图象相同,所以若()f x 在()(),a b b a T -≤上单调增(减),则()f x 在()(),a kT b kT k Z ++∈上单调增(减)(4)对称性:如果一个周期为T 的函数()f x 存在一条对称轴x a = (或对称中心),则()f x 存在无数条对称轴,其通式为()2kTx a k Z =+∈ 证明:()f x 关于x a =轴对称 ()()2f x f a x ∴=-函数()f x 的周期为T ()()f x kT f x ∴+=()()2f x kT f a x ∴+=- ()f x ∴关于2kTx a =+轴对称 注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法.【经典例题】例1.(2019·北京高考真题(文))设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【解析】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数; ()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.例2.(2015·广东高考真题(文))下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+ B .2cos y x x =- C .122xx y =+ D .sin 2y x x =+【答案】A 【解析】A . f (﹣x )=(﹣x )2+sin (﹣x )=x 2﹣sin x ,则f (﹣x )≠﹣f (x )且f (﹣x )≠f (x ),则函数f(x )为非奇非偶函数;B .f (﹣x )=(﹣x )2﹣cos (﹣x )=x 2﹣cos x =f (x ),则函数f (x )是偶函数;C .f (﹣x )122xx --=+=2x12x+=f (x ),则函数f (x )是偶函数; D .f (﹣x )=﹣x +sin2(﹣x )=﹣x ﹣sin2x =﹣f (x ),则函数f (x )是奇函数,故选:A .例3.(2019·全国高考真题(文))设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= ( ) A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+【答案】D 【解析】()f x 是奇函数, 0x ≥时,()1x f x e =-.当0x <时,0x ->,()()e1xf x f x -=--=--,得()e 1x f x -=-+.故选D .例4.(2019·全国高考真题(理))函数3222x xxy-=+在[]6,6-的图像大致为()A. B.C. D.【答案】B【解析】设32()22x xxy f x-==+,则332()2()()2222x x x xx xf x f x----==-=-++,所以()f x是奇函数,图象关于原点成中心对称,排除选项C.又34424(4)0,22f-⨯=>+排除选项D;36626(6)722f-⨯=≈+,排除选项A,故选B.例5.(2018·全国高考真题(理))已知是定义域为的奇函数,满足.若,则()A. B. C. D.【答案】C【解析】因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.例6.(2019·全国高考真题(文))设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C 【解析】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .例7.(2019·吉林长春市实验中学高三期末(理))设函数()f x 是定义在R 上的函数,且对任意的实数x ,恒有()()f 0.x f x --=13()()22f x f x -=+,当[1,0]x ∈-时,2()f x x =.若()()log a g x f x x =-在(0,)x ∈+∞上有且仅有三个零点,则a 的取值范围为( )A .(3,5)B .[4,6]C .[3,5]D .(4,6)【答案】A 【解析】∵f (x )﹣f (﹣x )=0,∴f (x )=f (﹣x ),∴f (x )是偶函数, ∴131222f x f x f x ⎛⎫⎛⎫⎛⎫-=+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令12x t -=,则x=t+12,∴有()()2f t f t +=成立,∴f (x )是的周期为2, 根据函数的周期和奇偶性作出f (x )的图象如图所示:∵g (x )=f (x )﹣log a x 在x ∈(0,+∞)上有且仅有三个零点, ∴y =f (x )和y =log a x 的图象在(0,+∞)上只有三个交点,∴31511a a log log a ⎧⎪⎨⎪⎩<>>,解得3<a <5. 故选:A .例8.(2019·厦门市第三中学高三期中(理))已知函数()y f x =是周期为2的周期函数,且当[]1,1x ∈-时,()21xf x =-,则函数()()lg F x f x x =-的零点个数是__________【答案】10 【解析】函数()()lg F x f x x =-的零点,转化为函数()21xf x =-与y lg x =的交点,()[]0,1f x ∈.当x 10,=,时()()1000f f ==,lg101=,当x 10>时lg 1x >,两函数无交点.所以当x 10<-时,也无交点.所以交点在[]10,10-范围内,由函数图像可知,有10个交点. 【总结提升】对于已知函数零点个数(或方程根的个数)求参数的取值或范围时,一般转化为两函数的图象的公共点的个数的问题,利用数形结合的方法求解.(1)若分离参数后得到()a f x =(a 为参数)的形式,则作出函数()f x 的图象后,根据直线y a =和函数()f x 的图象的相对位置得到参数的取值范围.(2)若不能分离参数,则可由条件化为()()f x g x =的形式,在同一坐标系内画出函数()y f x =和函数()y g x =的图象,根据两图象的相对位置关系得到参数的取值范围.【精选精练】1.(2019·江西师大附中高考模拟(文))若函数()222,0,0x x x f x x ax x ⎧-≥=⎨-+<⎩为奇函数,则实数a 的值为( )A .2B .2-C .1D .1-【答案】B 【解析】()f x 为奇函数 ()()f x f x ∴-=-当0x <时,0x -> ()()()2222f x f x x x x x ∴=--=-+=--又0x <时,()2f x x ax =-+ 2a =-∴本题正确选项:B2. (2018·浙江高考真题)函数y =sin2x 的图象可能是A .B .C .D .【答案】D 【解析】令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C ,选D.3.(2018届山东省枣庄市第三中学高三一调)已知定义在R 上的函数()f x 满足条件:①对任意的x R ∈,都有()()4f x f x +=;②对任意的[]12,0,2x x ∈且12x x <,都()()12f x f x <有;③函数()2f x +的图象关于y 轴对称,则下列结论正确的是 ( )A. ()()()7 6.5 4.5f f f <<B. ()()()7 4.5 6.5f f f <<C. ()()()4.57 6.5f f f <<D. ()()()4.5 6.57f f f << 【答案】C【解析】∵对任意的x ∈R,都有f(x+4)=f(x); ∴函数是4为周期的周期函数, ∵函数f(x+2)的关于y 轴对称 ∴函数函数f(x)的关于x=2对称,∵对任意的[]12,0,2x x ∈,且12x x <,都有()()12f x f x <. ∴此时函数在[0,2]上为增函数, 则函数在[2,4]上为减函数, 则f(7)=f(3), f(6.5)=f(2,5), f(4.5)=f(0.5)=f(3.5), 则f(3.5)<f(3)<f(2.5), 即f(4.5)<f(7)<f(6.5), 故选:C.4.(2019·山东高三月考(文))已知定义在R 上的函数()f x 满足()()()63f x f x y f x +==+,为偶函数,若()f x 在()0,3内单调递减,则下面结论正确的是( )A .()1219ln 22f f e f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()1219ln 22f e f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()1219ln 22f f f e ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()1219ln 22f f e f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】 ()()6f x f x +=,()f x ∴的周期为6,又()3y f x =+为偶函数,()()33f x f x ∴-+=+,1977115633222222f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 122,10ln 21e <<<<,1253ln 202e ∴>>>>, 又()f x 在()0,3内单调递减,125(ln 2)2f f e f ⎛⎫⎛⎫∴<< ⎪ ⎪⎝⎭⎝⎭, ()2119ln 22f f e f ⎛⎫⎛⎫∴=< ⎪ ⎪⎝⎭⎝⎭,故选A. 5.(2019·山东高三期末(理))已知()f x 是定义在R 上的奇函数,满足()()11f x f x +=-,若()11f =,则()()()()1232019f f f f +++⋯+=( )A .-1B .0C .1D .3【答案】B【解析】 ()f x 是定义在R 上的奇函数,()()f x f x ∴-=-且()00f =, ()()11f x f x +=-,()()11f x f x ∴+=--,()()2f x f x ∴+=-,()()()42f x f x f x ∴+=-+=,()f x ∴是周期为4的函数,()11f =,()()111f f ∴-=-=-,()()()33411f f f ∴=-=-=-,()()()2242f f f -=-+=且()()22f f -=-,()20f ∴=,又()()()44400f f f =-==,()()()()12340f f f f ∴+++=,()()()()123...+2019f f f f ∴+++()()()()()50512342020f f f f f ⎡⎤=+++-⎣⎦()()()()()50512344f f f f f ⎡⎤=+++-⎣⎦505000=⨯-=,故选B.6.(2018·荆门市龙泉中学高三月考(理))设函数()f x 为定义域为R 的奇函数,且()(2)f x f x =-,当[0,1]x ∈时,()sin f x x =,则函数()cos()()g x x f x π=-在区间[3,5]-上的所有零点的和为( )A .10B .8C .16D .20【答案】B【解析】因为函数()f x 为定义域为R 的奇函数,所以()()f x f x -=- ,又因为()()2f x f x =-,所以()()2f x f x --=-,可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,且()y f x = 图像关于直线1x =对称.故()()()cos g x x f x π=-在区间[]3,5-上的零点,即方程()()cos x f x π= 的根,分别画出()cos y x π=与()y f x =的函数图像,因为两个函数图像都关于直线1x =对称,因此方程()()cos x f x π=的零点关于直线1x =对称, 由图像可知交点个数为8个,分别设交点的横坐标从左至右依次为123456,,,,,x x x x x x ,则1625342x x x x x x +=+=+=,所以所有零点和为8,故选B.7.(2019·黑龙江高考模拟(文))定义在R 上的函数()f x 同时满足:①对任意的x ∈R 都有(1)()f x f x +=;②当(1,2]x ∈时,()2f x x =-.若函数()()log a g x f x x =-(0a >且1a ≠)恰有3个零点,则a 的取值范围是( )A .10,4⎡⎫⎪⎢⎣⎭B .(]1,2C .(]2,3D .(]3,4 【答案】C【解析】由题意得方程()log a f x x =(0a >且1a ≠)有三个解,所以函数()y f x =和log a y x =的图象有三个交点.因为对任意的x R ∈都有()()1f x f x +=,所以函数()y f x =是周期为1的函数.又当(]1,2x ∈时,()2f x x =-,画出函数()y f x =的图象,如下图所示.又由题意可得,若函数log a y x =的图象与函数()y f x =的图象有交点,则需满足1a >.结合图象可得,要使两函数的图象有三个交点,则需满足2131a alog log <⎧⎨≥⎩,解得23a <≤, 所以实数a 的取值范围是(2,3].故选C .8.(2019·全国高考真题(理))已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】因为()f x 是奇函数,且当0x >时0x ->,()()ax f x f x e -=--=.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e -=,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3a =-.9.(2018·江苏高考真题)函数满足,且在区间上,则的值为____. 【答案】【解析】 由得函数的周期为4,所以因此10.(2019·广东高考模拟(理))已知定义在R 上的奇函数,当0x >时,()2log 3f x x x =-,则()1f -=__________.【答案】3【解析】因为()1f 2log 133=-=-,又()f x 为定义在R 上的奇函数,所以()1f -=()1 3.f -=11.(2019·辽宁高考模拟(文))已知()y f x =是定义域为R 的奇函数,且周期为2,若当[]0,1x ∈时,()()1f x x x =-,则()2.5f -=______.【答案】0.25-【解析】已知()y f x =是定义域为R 的奇函数,且周期为2,∴ ()()()()2.5 2.520.50.5f f f f -=-+=-=-. 当[]0,1x ∈时,()()1f x x x =-,∴()()0.50.510.50.25f =⨯-= ,∴()2.50.25f -=-. 故答案为:0.25-12.(2019·吉林长春市实验中学高三期末(文))已知函数()f x 是定义在R 上的周期为4的奇函数,当02x <<时,()4x f x =,则17()(2)2f f -+=(______). 【答案】2-【解析】 ∵f (x )是定义在R 上周期为4的奇函数,∴f (172-)=f (﹣812-)=f (12-)=﹣f (12) ∵x ∈(0,2)时,f (x )=4x ,∴f (172-)=﹣2, ∵f (x )是定义在R 上周期为4的奇函数,∴f (-2)=f (﹣2+4)=f (2),同时f (﹣2)=﹣f (2),∴f (2)=0,∴f (172-)+f (2)=﹣2. 故答案为:﹣2。

高三数学周期性和对称性试题答案及解析

高三数学周期性和对称性试题答案及解析

高三数学周期性和对称性试题答案及解析1.设是定义在R上的周期为2的函数,当时,,则 .【答案】1【解析】.【考点】周期函数及分段函数.2.设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真【答案】C【解析】由于函数y=sin2x的最小正周期为π,故命题P是假命题;函数y=cosx的图象关于直线x=kπ对称,k∈Z,故q是假命题由此结合复合命题的判断规则知:¬q为真命题,p∧q为假命题,p∨q为是假命题考查四个选项,C选项正确,故选C3.定义在R上的函数满足.当时,,当时,.则()A.335B.338C.1678D.2012【答案】B【解析】由,可知函数的周期为6,所以,,,,所以在一个周期内有,所以4.设定义在上的函数满足,若,则.【答案】【解析】∵,∴,∴,∴是一个周期为4的周期函数,∴.∵,∴==.【考点】抽象函数.5.已知定义在R上的函数f(x)满足f(1)=1,f(x+2)=对任意x∈R恒成立,则f(2011)等于() A.1B.2C.3D.4【答案】A【解析】由f(x+2)=,得f(-1+2)=,即f(1)f(-1)=1,而f(1)=1,故f(-1)=1,且f(x+4)==f(x),∴f(2011)=f(503×4-1)=f(-1)=1.故选A.6.已知奇函数f(x)满足f(x+2)=-f(x),且当x∈(0,1)时,f(x)=2x,则f()的值为.【答案】-【解析】∵f(x+2)=-f(x),∴f(x+4)=f((x+2)+2)=-f(x+2)=f(x),∴函数f(x)的周期T=4,∴f()=f(-4)=f(-)=-f()=-=-.7.函数y=f(x)(x∈R)有下列命题:①在同一坐标系中,y=f(x+1)与y=f(-x+1)的图象关于直线x=1对称;②若f(2-x)=f(x),则函数y=f(x)的图象关于直线x=1对称;③若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期;④若f(2-x)=-f(x),则函数y=f(x)的图象关于(1,0)对称,其中正确命题的序号是.【答案】②③④【解析】对于①,y=f(x+1)的图象由y=f(x)的图象向左平移1个单位得到,y=f(-x+1)的图象,由y=f(-x)的图象向右平移1个单位得到,而y=f(x)与y=f(-x)关于y轴对称,从而y=f(x+1)与y=f(-x+1)的图象关于直线x=0对称,故①错;对于②,由f(2-x)=f(x)将x换为x+1可得f(1-x)=f(1+x),从而②正确;对于③,由f(x-1)=f(x+1)将x换为x+1可得,f(x+2)=f(x),从而③正确.对于④,由f(2-x)=-f(x)同上可得f(1-x)=-f(1+x),从而④正确.【误区警示】解答本题时,易误以为①正确,出错的原因是混淆了两个函数y=f(x+1)与y=f(-x+1)的图象关系与一个函数y=f(x)满足f(x+1)=f(-x+1)时图象的对称关系.8.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=其中a,b∈R.若f=f,则a+3b的值为________.【答案】-10【解析】因为函数f(x)是周期为2的函数,所以f(-1)=f(1)⇒-a+1=,又f=f=f ⇒=-a+1,联立列成方程组解得a=2,b=-4,所以a+3b=2-12=-10.9.已知定义在R上的函数f(x)的图象关于点成中心对称,对任意实数x都有f(x)=-,且f(-1)=1,f(0)=-2,则f(0)+f(1)+…+f(2013)=________.【答案】-2【解析】由函数关于点对称可知,f(x)+f=0,所以f(1)+f=0,又f(x)=-,所以==-1,所以f(1)=1,因为f(x)=-,所以,所以f(1)=1,因为f(x)=-,所以f(x-3)=-=f(x),即f(x)是以3为周期的函数,故f(3)=f(0)=-2,f(2)=f(-1)=1,所以f(0)+f(1)+f(2)+…+(2013)=f(0)+[f(1)+f(2)+f(3)]×671=f(0)=-2.10.定义在上的函数满足,则 .【答案】.【解析】当时,,则当时,,故函数在上是周期为的周期函数,所以.【考点】1.分段函数;2.函数的周期性11.对于三次函数(),给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数,请你根据上面探究结果,计算+…++= .【答案】2013【解析】由题意可得.所以.所以.令可得.所以函数f(x)的拐点即对称中心为.即如果,则.所以+…++=.故填2013.【考点】1.新定义函数.2.函数的求导.3.函数的对称性.12.已知函数是定义在R上的函数,其最小正周期为3,且时,,则f(2014)=()A.4B.2C.-2D.【答案】B.【解析】因为函数是定义在R上的函数,其最小正周期为3.所以f(x)=f(x+3).所以f(2014)=f(1).又因为且时,,所以f(1)=.即选B.【考点】1.周期函数.2.分段函数的思想.13.若定义在R上的偶函数满足且时,则方程的零点个数是( )A.2个B.3个C.4个D.多于4个【答案】C【解析】由知,函数是周期为2的周期函数,且是偶函数,在同一坐标系中画出和的图像,有图可知零点个数为4个.【考点】1、周期函数;2、函数的图像;3、函数的零点.14.函数是定义域为的函数,对任意实数都有成立.若当时,不等式成立,设,,,则,,的大小关系是()A.B.C.D.【答案】A【解析】由知,函数图象关于直线对称,由时,不等式成立,得时,函数减,时,函数增;因为,而,所以即,选A.【考点】函数的对称性、利用导数研究函数的单调性.15.若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值是______.【答案】16;【解析】依题意,为偶函数,展开式中的系数为,故,的系数为,故,令,得,由对称轴为-2可知,将该式分解为,可知其在和处取到最大值,带入,可知最大值为16.【考点】本题考查函数的性质,考查学生的化归与转化能力以及基本运算能力.16.已知函数是定义在上的奇函数,若对于任意的实数,都有,且当时,,则的值为()A.B.C.D.【答案】A.【解析】由已知为上奇函数且周期为2,对于任意的实数,都有,.【考点】函数的性质.17.设是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图像,则+=()A.3B.2C.1D.0【答案】C【解析】,,所以+=.【考点】函数的周期性.18.已知是上最小正周期为的周期函数,且当时,,则函数在区间上的图像与轴的交点个数为()A.6B.7C.8D.9【答案】B【解析】当时,,与轴有两个交点,因为是上最小正周期为的周期函数,所以当和时分别有两个交点,另外当时也有一个交点,所以与轴的交点个数为7个.【考点】本小题主要考查函数的周期性的应用,考查函数图象与轴交点个数的判断,考查学生的推理判断能力.点评:函数的周期性也是常考的内容,要结合图象进行判断.19.已知是定义在R上的函数,且满足,当时,,则()A.B.C.D.【答案】B【解析】因为,那么说明函数f(x)的周期为4,同时当时,则,选B20.已知定义在R上的奇函数满足,且时,,甲,乙,丙,丁四位同学有下列结论:甲:;乙:函数在[-6,-2]上是增函数;丙:函数关于直线对称;丁:若,则关于x的方程在[-8,8]上所有根之和为-8,其中正确的是A.甲,乙,丁B.乙,丙C.甲,乙,丙D.甲,丁【答案】D【解析】解:因为定义在R上的奇函数满足,说明周期为8,且时,,那么利用抽象函数的性质可知正确的命题为甲和丁,选D21.已知函数满足:①定义域为R;②,有;③当时,.记.根据以上信息,可以得到函数的零点个数为()A.15B.10C.9D.8【答案】B【解析】根据条件:③当x∈[0,2]时,f(x)=2-|2x-2|可以作出函数图象位于[0,2]的拆线,再由?x∈R,有f(x+2)=2f(x),可将图象向右伸长,每向右两个单位长度,纵坐标变为原两倍,由此可以作出f(x)的图象,找出其与g(x)= (x∈[-8,8])的交点,就可以得出φ(x)的零点,问题迎刃而解.解:根据题意,作出函数y=f(x)(-8≤x≤8)的图象:在同一坐标系里作出g(x)= (x∈[-8,8])的图象,可得两图象在x轴右侧有8个交点.所以φ(x)="f(x)-" (x∈[-8,8])有8个零点,∵任意的x,有f(x+2)=2f(x),∴当x=-1时,f(-1+2)=2f(-1)?f(-1)=f(1)=1,满足φ(x)="f(x)-" =0而x=0也是函数φ(x)的一个零点,并且当x<-1时,函数φ(x)没有零点综上所述,函数φ(x)的零点一共10个故选B22.函数与的图象关于(▲ )A.x轴对称B.y轴对称C.原点对称D.直线y=x对称【答案】C【解析】本题考查函数图像的对称性.函数的图像关于y轴对称;函数的图像关于x轴对称;函数的图像关于原点轴对称;设是函数图像上任意一点,即则点关于原点的对称点为于是,即的坐标满足函数的解析式,所以点是函数的图像上的点;因此函数与的图象关于原点对称.故选C23.设g(x)是函数f(x)=ln(x+1)+2x的导函数,若函数g(x)按向量a平移后得到函数y=,则向量a等于A.(1,2)B.(-1,-2)C.(-2,-1)D.(2,1)【答案】A【解析】求出函数f(x)=ln(x+1)+2x的导函数,根据图象平移的原则,左加,右减,上加、下减的原则可得平移向量.解:∵f(x)=ln(x+1)+2x∴g(x)=f′(x)=+2而函数y==[+2]-2是由函数g(x)向右平移一个单位,再向下平移2个单位得到.∴a=(1,-2)故选A.24.函数的图像关于()对称A.y轴B.直线y= —x C.坐标原点D.直线y=x【答案】C【解析】略25.函数的图象与函数的图象关于直线对称,则A.B.tC.D.【解析】略26.函数对于任意实数满足条件,若则。

函数的对称性与周期性(解析版)--2024高考数学常考题型精华版

函数的对称性与周期性(解析版)--2024高考数学常考题型精华版

第2讲函数的对称性与周期性【考点分析】1.函数的对称性、周期性是高考命题热点,近两年新高考都考了一道选择题,分值5分,知识点比较灵活,需要全面掌握常见对称性,周期性的结论考点一:函数常见对称性结论①若函数()x f 对于任意的x 均满足()()f a x f b x +=-,则函数()y f x =关于直线()()22a xb x a bx ++-+==对称.②若函数()x f 对于任意的x 均满足()()2f a x f a x b ++-=则()y f x =关于点()a b ,对称.考点二:函数常见周期性结论若函数对于任意的x 都满足()()x f T x f =+,则T 为()x f 的一个周期,且()()x f nT x f =±几个常见周期性结论①若函数()y f x =满足()()f x m f x +=-,则2T m =.②若函数()y f x =满足)((1)f x m f x =±+,则2T m =.③若函数()y f x =满足1()()1()f x f x m f x -+=+,则2T m =.④若函数()y f x =满足()()b x f a x f +=+,则a b T -=.⑤若函数()y f x =的图象关于直线x a =,x b =都对称,则()f x 为周期函数且2||b a -是它的一个周期.⑥函数()y f x =()x R ∈的图象关于两点0()A a y ,、0()B b y ,都对称,则函数()y f x =是以2||b a -为周⑦函数()y f x =()x R ∈的图象关于0()A a y ,和直线x b =都对称,则函数()y f x =是以4||b a -为周期的周期函数.⑧若函数()y f x =满足1()()1()f x f x m f x ++=-,则函数()f x 是以4m 为周期的周期函数.【题型目录】题型一:利用周期性求函数值题型二:利用周期性求函数解析式题型三:根据函数的对称性、周期性、奇偶性写函数题型四:根据函数的对称性、奇偶性、周期性综合运用【典型例题】题型一:利用周期性求函数值【例1】设()f x 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,其中m R ∈.若13(()162f f =,则m 的值是.答案:1解析: ()x f 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,∴m m f f +-=+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛432122121232,41161161==⎪⎭⎫⎝⎛f ,∴14341=⇒+-=m m 【例2】设()f x 为定义在R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________答案:5.0-解析: (2)()f x f x +=-,∴()x f 是周期为4的函数,所以()()()5.05.05.05.7-=-=-=f f f 【例3】定义在R 上的函数()f x 对任意x R ∈,都有()()()()112,214f x f x f f x -+==+,则()2016f 等于A.14B.12C.13D.35答案:D解析: ()()()()()()()()x f x f x f x f x f x f x f x f =+-++--=+++-=+11111121214,所以()x f 是周期为4的函数,()()()()53212142016=+-==f f f f 【例4】(重庆南开高一上期中)已知定义在R 上的奇函数()f x 满足()()4f x f x +=,且()11f =,则()()20202019f f -的值为()A.1-B.0C.1D.2答案:C解析: ()()4f x f x +=所以4=T ,所以()()002020==f f ,()()()1112019-=-=-=f f f ,所以()()()20202010119f f =--=-【例5】(2022·云南昭通·高一期末)已知函数()y f x =是定义在R 上的周期函数,且周期为2,当[]0,1x ∈时,()21xf x =-,则132f ⎛⎫ ⎪⎝⎭=()A .1B .1C 1D .1【题型专练】1.(2021·山东·临沂市兰山区教学研究室高三开学考试)已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =()A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【详解】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.(2023·全国·高三专题练习)已知()f x 是定义在R 上的偶函数,且(6)()f x f x +=-,若当[]3,0x ∈-时,()6x f x -=,则(2021)f =()A .0B .1C .6D .216【答案】C【分析】由(6)()f x f x +=-可得函数周期为6,进而(2021)(33761)(1)f f f =⨯-=-,最后求出答案.【详解】根据题意,偶函数()f x 满足(6)()f x f x +=-,即(6)()f x f x +=,()f x 是周期为6的周期函数,则(2021)(33761)(1)f f f =⨯-=-,当[3,0]x ∈-时,()6x f x -=,则1(1)66f -==,故(2021)6f =故选:C3.(重庆南开高一上期末)函数()f x 的定义域为R ,且102f ⎛⎫=⎪⎝⎭,()00f ≠.若对任意实数x ,y 都有()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则()2020f =()A.B.-1C.0D.1答案:D解析:由题意知,令0==y x ,可得()()02022f f =,因()00f ≠,所以()10=f 102f ⎛⎫=⎪⎝⎭所以()()0212121=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++=++x x f x x f x f x f ,所以()()x f x f -=+1,所以2=T ,所以()()102020==f f 4.(2022·云南红河·高一期末)已知()f x 是定义在R 上的奇函数,R x ∀∈,都有(4)()f x f x +=,若当[0,1]x ∈时,2()log ()f x x a =+,则(7)f -=()A .1-B .0C .1D .2【答案】C【分析】()f x 是定义在R 上的奇函数得a ,有(4)=()f x f x +得到()f x 是周期函数,利用函数周期性可得答案.【详解】()f x 是定义在R 上的奇函数,(0)=0f ∴,得=1a ,∴当[]0,1x ∈时,2()log (1)=+f x x ,R x ∀∈,都有(4)=()f x f x +,()f x ∴是周期为4的周期函数,()()()7=7811f f f ∴--+==.故选:C.5.(2022·黑龙江·大庆中学高二期末)()f x 是定义在R 上的奇函数,且满足()()22f x f x -=+,又当(]0,1x ∈时,()3xf x =,则131log 72f ⎛⎫= ⎪⎝⎭______.题型二:利用周期性求函数解析式【例1】已知定义在实数集R 上的函数()x f 满足:(1)()()x f x f =-;(2)()()x f x f -=+22;(3)当[]2,0∈x 时解析式为12-=x y ,当[]0,4-∈x 时,求函数的解析式。

抽象函数周期性对称性相关定理全总结

抽象函数周期性对称性相关定理全总结

抽象函数周期与对称轴的相关结论一、教学内容 抽象函数的周期与对称轴二、教学重、难点 重点:抽象函数周期与对称轴的相关结论。

难点:结论的推导证明,利用结论解决问题三、具体内容1. 若)()(T x f x f +=则)(x f 的周期为T 。

2. 若)()(b x f a x f +=+则)(x f 的周期为a b T -=。

证:令a x x -= ∴ )()(a b x f x f -+=3. 若)()(b x f a x f +-=+则)(x f 的周期a b T -=2。

证:令a x x -= ∴ )()(a b x f x f -+-= ①令b x x -= ∴ )()(x f b a x f -=-+ ②由①②得: [][])()(a b x f b a x f -+-=-+-∴[][])()(a b x f b a x f -+=-+ ∴ a b T -=24. 若)()(x b f x a f -=+则)(x f 图象的对称轴为2b a x +=。

证:要证原结论成立只需证)2()2(x b a f x b a f -+=++ 令x a b x +-=2代入)()(x b f x a f -=+ 则)2()2(x b a f x b a f -+=++ 5. 若)()(x b f x a f --=+则)(x f 的图象,以⎪⎭⎫⎝⎛+0,2b a 为对称中心。

证:方法一:要证原结论成立只需证)2()2(x b a f x b a f -+-=++ 令x a b x +-=2代入)()(x b f x a f --=+ 则)2()2(x b a f x b a f -+-=++ 方法二:设)(x f y =它的图象为CC y x P ∈∀),(00 则P 关于点⎪⎭⎫ ⎝⎛+0,2b a 的对称点),(00'y x b a P --+‘[][])()()()(0000x f x b b f x b a f x b a f -=---=-+=-+∵ 00)(y x f = ∴ 00)(y x b a f -=-+ ∴ C '∈P【几个重要的结论】(一)函数图象本身的对称性(自身对称)1、函数)(x f y =满足)()(x T f x T f -=+(T 为常数)的充要条件是)(x f y =的图象关于直线T x =对称。

抽象函数背景下的对称性、周期性

抽象函数背景下的对称性、周期性

抽象函数背景下的对称性、周期性在高中数学的学习中,每个学生都或多或少的遇到过几次类似亦或这类关于函数的抽象描述,大多数学生都能够通过积累经验后,认识到前式涉及到函数对称性,后式涉及到函数周期性。

但是大部分学生对于这类抽象表示依然不理解,那么有没有一种较为实在又准确的方式来理解它们并加以记忆呢?一、对称性:1.轴对称(1)以为引例:关于的理解方式和角度非常多,但这里我们统一为:该式子体现的是函数的两个函数值之间的关系,其对应的两个自变量分别为和。

那么可以解读为:互为相反的两个自变量(和)所对应的函数值相等。

下面我们通过取若干个常数,来模拟的图象分别取,则描点后图象必呈现出如图①所示的对称性:那么就不难理解用作为偶函数的定义,即图象关于轴呈轴对称。

(2)下面按照上述方式对加以解读首先注意到这两个函数值之间的关系依然是相等关系,而其涉及到的两个自变量分为和。

因为,所以按照数轴上两点的中点坐标公式可得,这两个变化的自变量和始终保持着关于对称的位置关系。

那么可以解读为:关于对称的两个自变量对应的函数值始终相等。

模拟其图象易得其必呈现出图②的对称性。

且其对称轴是以中点坐标公式的形式产生,非常方便理解和记忆。

(3)对于一般的,对于函数,若对于任意的都有,那么其图象是关于对称的轴对称图象。

2.中心对称(1)在上文基础上我们更改关系为,那么此时应解读为:关于对称的两个自变量所对应的函数值互为相反数,那么模拟图象可知其图像会呈现如图③的对称性。

(2)一般的:对于函数,若对于任意的都有,那么其图象是关于点对称的中心对称图象。

例题分析:已知函数满足,且当时,,则与的图象的交点个数为参考解析:由易得为函数的对称轴,根据对称性作出与的图象,可知交点个数为5个二、周期性周期函数的定义:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.如果T是函数y=f(x)的周期,则kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期1. 对于,因为为定值,那么按照上述方式该抽象等式可以解读为:相差的两个自变量对应的函数值始终相等。

单元专题卷(人教版数学):2 抽象函数的周期性和对称性(答案版)

单元专题卷(人教版数学):2 抽象函数的周期性和对称性(答案版)

抽象函数的周期性和对称性1、抽象函数的对称性定理1. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (b -x),则函数y=f (x) 的图象关于直线x= 对称。

推论1. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (a -x)(或f (2a -x)= f (x) ),则函数y=f (x) 的图像关于直线x= a 对称。

推论2. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)=f (a -x), 又若方程f (x)=0有n个根,则此n 个根的和为na 。

定理2. 若函数y=f (x) 定义域为R ,且满足条件:f (a+x)+f (b -x)=c ,(a,b,c 为常数),则函数y=f (x) 的图象关于点 对称。

推论1.若函数y=f (x) 定义域为R ,且满足条件:f (a+x)+f (a -x)=0,(a 为常数),则函数y=f(x) 的图象关于点(a ,0)对称。

定理3.若函数y=f (x) 定义域为R ,则函数y=f (a+x) 与y=f (b -x)两函数的图象关于直线x=对称。

定理4.若函数y=f (x) 定义域为R ,则函数y=f (a+x) 与y=c -f (b -x)两函数的图象关于点对称。

性质1:对函数y=f(x),若f(a+x)= -f(b -x)成立,则y=f(x)的图象关于点(,0)对称。

性质2:函数y=f(x -a)与函数y=f(a -x)的图象关于直线x=a 对称。

性质3:函数y=f(a+x)与函数y=f(a -x)的图象关于直线x=0对称。

性质4:函数y=f(a+x)与函数y=-f(b -x)图象关于点(,0)对称。

2a b+(,)22a b c+2b a-(,)22b a c-2ba +2ab -知识讲解2、抽象函数的周期性定理5.若函数y=f (x) 定义域为R ,且满足条件f (x +a)=f (x -b),则y=f (x) 是以T=a +b 为周期的周期函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档