广西贺州市昭平县2019-2020学年九年级(上)期中数学试卷(含解析)
广西贺州市2019年中考数学试题及答案(word版)
2019年广西贺州市中考数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)下列各数是负数的是( )A .0B .13C .2.5D .﹣1 2.(3分)如图,下列各组角中,是对顶角的一组是( )A .∠1和∠2B .∠3和∠5C .∠3和∠4D .∠1和∠53.(3分)下列实数是无理数的是( )A .5B .0C .13D .2 4.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.(3分)一组数据3,2,x ,1,2的平均数是2,则这组数据的中位数和众数分别是( )A .3,2B .2,1C .2,2.5D .2,26.(3分)下列运算正确的是( )A .23326()()2x x x +=B .233212()()2x x x ⋅=C .426(2)2x x x ⋅=D .325(2)()8x x x -=- 7.(3分)把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x --B .2(2)x x y --C .22(44)x xy y x --D .22(44)x xy y x --++8.(3分)如图是由四个小正方体叠成的一个几何体,它的左视图是( )A .B .C .D .9.(3分)如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为100°,则∠DOB 的度数是( )A .34°B .36°C .38°D .40°10.(3分)已知120k k <<,则函数1k y x=和21y k x =-的图象大致是( )A .B .C .D .11.(3分)如图,BC 是⊙O 的直径,AD 是⊙O 的切线,切点为D ,AD 与CB 的延长线交于点A ,∠C =30°,给出下面四个结论:①AD =DC ;②AB =BD ;③AB =12BC ;④BD =CD , 其中正确的个数为( )A .4个B .3个C .2个D .1个12.(3分)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22019﹣1的末位数字是( )A .0B .3C .4D .8二、填空题(共6小题,每小题3分,共18分)13.(3分)函数1y x =+的自变量x 的取值范围为 .14.(3分)中国的陆地面积约为9 600 000km 2,这个面积用科学记数法表示为 .15.(3分)某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有 名.16.(3分)如图,在矩形ABCD 中,AB =3,AD =4,将矩形ABCD 绕点D 顺时针旋转90°得到矩形A ′B ′C ′D ′,则点B 经过的路径与BA ,AC ′,C ′B ′所围成封闭图形的面积是 (结果保留π).17.(3分)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①abc >0,②a ﹣b +c <0,③2a =b ,④4a +2b +c >0,⑤若点(﹣2,1y )和(13-,2y )在该图象上,则12y y >.其中正确的结论是 (填入正确结论的序号).18.(3分)如图,在△ABC 中,AB =AC =15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE =∠B =∠α,DE 交AB 于点E ,且tan ∠α=34.有以下的结论:①△ADE ∽△ACD ;②当CD =9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或214;④0<BE ≤245,其中正确的结论是 (填入正确结论的序号).三、解答题(共8小题,满分66分)19.(6分)计算:011(4)()2cos6032π--+--+-.20.(6分)解分式方程:2134412142x x x x +=--+-. 21.(8分)在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片.(1)用树状图或列表表示所有可能出现的结果;(2)求两次取出卡片的数字之积为正数的概率.22.(8分)根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速40千米/时,已知交警测速点M 到该公路A 点的距离为102米,∠MAB =45°,∠MBA =30°(如图所示),现有一辆汽车由A 往B 方向匀速行驶,测得此车从A 点行驶到B 点所用的时间为3秒.(1)求测速点M 到该公路的距离;(2)通过计算判断此车是否超速.(参考数据:2≈1.41,3≈1.73,5≈2.24)23.(8分)如图,将矩形ABCD 沿对角线BD 对折,点C 落在E 处,BE 与AD 相交于点F .若DE =4,BD =8.(1)求证:AF =EF ;(2)求证:BF 平分∠ABD .24.(8分)某商场销售一批同型号的彩电,第一个月售出50台,为了减少库存,第二个月每台降价500元将这批彩电全部售出,已知第一个月的销售额与第二个月的销售额相等,这两个月销售总额超过40万元.(1)求第一个月每台彩电销售价格;(2)这批彩电最少有多少台?25.(10分)如图,AB 是⊙O 的直径,C 为⊙O 上一点,AC 平分∠BAD ,AD ⊥DC ,垂足为D ,OE ⊥AC ,垂足为E . (1)求证:DC 是⊙O 的切线;(2)若OE =3cm ,AC =213cm ,求DC 的长(结果保留根号).26.(12分)如图,已知抛物线2y x bx c =-++与直线AB 相交于A (﹣3,0),B (0,3)两点.(1)求这条抛物线的解析式;(2)设C 是抛物线对称轴上的一动点,求使∠CBA =90°的点C 的坐标;(3)探究在抛物线上是否存在点P ,使得△APB 的面积等于3?若存在,求出点P 的坐标;若不存在,请说明理由.。
广西壮族自治区2019-2020学年九年级上学期数学期中考试试卷A卷
广西壮族自治区2019-2020学年九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(本大题有16个小题,共42分。
1-10小题每小题3分 (共16题;共38分)1. (2分)下列各组图形,可经平移变换由一个图形得到另一个图形的是()A .B .C .D .2. (2分) (2018九上·黄石期中) 一个三角形的两边长为3和8,第三边的长是方程x(x-9)-13(x-9)=0的根,则这个三角形的周长是()A . 20B . 20或24C . 9和13D . 243. (3分) (2016高一下·昆明期中) 用配方法解方程x2+4x+2=0,配方后的方程是()A . (x+2)2=0B . (x-2)2=4C . (x-2)2=0D . (x+2)2=24. (3分)下列关系式中,属于二次函数的是(x为自变量)()A . y=x2B . y=C . y=D . y=a2x25. (3分)已知火车站托运行李的费用C和托运行李的重量P(千克)(P为整数)的对应关系如下表P12345…C2 2.534…则C与P的对应关系为()A . C=0.5(P-1)B . C=2P-0.5C . C=2P+ 0.5D . C=2+0.5(P-1)6. (3分)(2018·福州模拟) 如图,在中,,将绕顶点逆时针旋转得到Rt△DEC,点M是BC的中点,点P是DE的中点,连接PM,若BC =2,∠BAC=30°,则线段PM的最大值是()A . 4B . 3C . 2D . 17. (3分) (2016九上·永泰期中) 如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在的平面内可作旋转中心的点共有()A . 1个B . 2个C . 3个D . 4个8. (2分)(2017·新泰模拟) 如图,▱ABCD的顶点A,B,D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A . 36°B . 46°C . 27°D . 63°9. (2分) (2016九上·萧山期中) 如图,在半径为5cm的圆中,圆心0到弦AB的距离为3cm,则弦AB的长为()A . 4cmB . 6cmC . 8cmD . 10cm10. (3分)下列事件中,必然事件是()A . 打开电视机,它正在播放广告B . 通常情况下,当气温低于零摄氏度,水会结冰C . 黑暗中,我从我的一大串钥匙中随便选了一把,用它打开了门D . 任意两个有理数的和是正有理数11. (2分)(2017·嘉兴) 红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A . 红红不是胜就是输,所以红红胜的概率为B . 红红胜或娜娜胜的概率相等C . 两人出相同手势的概率为D . 娜娜胜的概率和两人出相同手势的概率一样12. (2分)已知x、y是实数,若xy=0,则下列说法正确的是()A . x一定是0B . y一定是0C . x=0 或 y=0D . x=0且 y=013. (2分)抛一枚硬币,正面朝上的可能性是0.5.现在已经抛了三次,都是正面朝上,若再抛第四次,则正面朝上的可能性是()A . 大于0.5B . 等于0.5C . 小于0.5D . 无法判断14. (2分)(2018·秀洲模拟) 如图,点A,B分别在x轴、y轴上(OA>OB),以AB为直径的圆经过原点O,C是的中点,连结AC,BC.下列结论:①AC=BC;②若OA=4,OB=2,则△ABC的面积等于5;③若OA﹣OB=4,则点C的坐标是(2,﹣2).其中正确的结论有()A . 3个B . 2个C . 1个D . 0个15. (2分) (2018七上·无锡期中) 如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1 ,第2幅图形中“●”的个数为a2 ,第3幅图形中“●”的个数为a3 ,…,以此类推,则的值为()A .B .C .D .16. (2分) (2019九上·鄂尔多斯期中) 若抛物线 y=x2+2x+c 与 y 轴交点为(0,﹣3),则下列说法错误的是()A . 抛物线开口向上B . 当 x>﹣1 时,y 随 x 的增大而减小C . 对称轴为 x=﹣1D . c 的值为﹣3二、填空题(本大题共6个小题,每小题3分,共18分) (共6题;共17分)17. (3分)如图,A、B、C三点在正方形网格线的交点处.若将△ACB绕着点A逆时针旋转得到△AC′B′,则tanB′的值为________18. (3分)(2017·房山模拟) 若把代数式x2-4x-5化成(x-m)2+k的形式,其中m,k为常数,则m+k=________19. (3分) (2016八上·滨湖期末) 如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(4,8),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为________.20. (3分) (2018八上·江海期末) 16.如图,已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC=18cm,则DE的长为________cm.21. (2分)将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是________.22. (3分)“三月三,放风筝”,如图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH,小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是________(用字母表示).三、解答题(本大题共6个小题共60分) (共6题;共60分)23. (8分)(2018·建湖模拟) 已知关于的一元二次方程.(1)求证:该方程有两个实数根;(2)若该方程的两个实数根、满足,求的值.24. (10.0分)某校为了解七年级学生最喜欢的校本课程(厨艺课数字与生活、足球、采花戏)情况,随机抽取了七年级部分学生进行问卷调查,每名同学选且只选一门现将调查结果绘制成如下所示的两幅统计图:请结合这两幅统计图,解决下列问题:(1)在这次问卷调查中,一共抽取了________名学生;(2)请补全条形统计图;(3)若该校七年级共有1050名学生,请你估计其中最喜欢数字与生活的学生人数.25. (10分)(2018·信阳模拟) 如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=– x+3交AB,BC于点M,N,反比例函数的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.26. (10分) (2019九上·萧山开学考) 在菱形中,,是对角线上任意一点,是线段延长线上一点,且,连接.(1)如图1,当是线段的中点,且 =2时,求的面积;(2)如图2,当点不是线段的中点时,求证:;(3)如图3,当点是线段延长线上的任意一点时,(2)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.27. (10.0分)(2017·长沙模拟) 某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价2元,每天的销售量会减少8件.(1)当售价定为多少元时,每天的利润为140元?(2)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)28. (12分)(2020·枣阳模拟) 如图,等腰直角△OEF在坐标系中,有E(0,2),F(﹣2,0),将直角△OEF 绕点E逆时针旋转90°得到△ADE,且A在第一象限内,抛物线y=ax2+bx+c经过点A,E.且2a+3b+5=0.(1)求抛物线的解析式.(2)过ED的中点O'作O'B⊥OE于B,O'C⊥OD于C,求证:OBO'C为正方形.(3)如果点P由E开始沿EA边以每秒2厘米的速度向点A移动,同时点Q由点A沿AD边以每秒1厘米的速度向点D移动,当点P移动到点A时,P,Q两点同时停止,且过P作GP⊥AE,交DE于点G,设移动的开始后为t 秒.①若S=PQ2(厘米),试写出S与t之间的函数关系式,并写出t的取值范围?②当S取最小时,在抛物线上是否存在点R,使得以P,A,Q,R为顶点的四边形是平行四边形?如果存在,求出R的坐标;如果不存在,请说明理由.参考答案一、选择题(本大题有16个小题,共42分。
广西九年级数学上册期中试卷及答案
广西九年级上学期期中考试数学试卷一、选择题(每小题3分,共36分)1.(3分)下列函数关系式中属于反比例函数的是()A.y=3x B.y=﹣C.y=x2+3 D.x+y=52.(3分)关于x的方程3x2﹣5=2x的二次项系数和一次项系数分别是()A.3,﹣2 B.3,2 C.3,5 D.5,23.(3分)一元二次方程2x2+x﹣3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定4.(3分)下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4 B.a=1,b=,c=2,d=4C.a=4,b=5,c=8,d=10 D.a=2,b=3,c=4,d=55.(3分)反比例函数y=图象上有三个点(﹣2,y1),(﹣1,y2),(1,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y1<y2C.y2<y1<y3D.y3<y2<y16.(3分)用配方法解方程x2﹣2x﹣4=0时,配方后所得的方程为()A.(x﹣1)2=0 B.(x﹣1)2=5 C.(x+1)2=0 D.(x+1)2=57.(3分)若关于x的方程(m﹣1)x2+5x+2=0是一元二次方程,则m的值不能为()A.1 B.﹣1 C.D.08.(3分)某商品原价200元,连续两次降价a%后售价为108元,下列所列方程正确的是()A.200(1+a%)2=108 B.200(1﹣a2%)=108C.200(1﹣2a%)=108 D.200(1﹣a%)2=1089.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A .B .C .D .10.(3分)下面是某同学在一次测验中解答的填空题:①若x 2=a 2,则x =a ;②方程2x (x ﹣1)=x ﹣1的解是x =0;③已知三角形两边分别为2和6,第三边长是方程x 2﹣8x +15=0的根,则这个三角形的周长11或13.其中答案完全正确的题目个数是( ) A .0B .1C .2D .311.(3分)把方程(x +1)(3x ﹣2)=10化为一元二次方程的一般形式后为( ) A .2x 2+3x ﹣10=0;B .2x 2+3x ﹣10=0 C .3x 2﹣x +12=0D .3x 2+x ﹣12=012.(3分)一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm ,则它的最大边长为( )A .10cmB .15cmC .20cmD .25cm 二、填空题(每小题3分,共18分)13.(3分)若,则= .14.(3分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 .(无需确定x 的取值范围)15.(3分)若反比例函数y =(k ≠0),在每个象限内,y 随x 的增大而减小,则一次函数y =kx +k 的图象经过第 象限.16.(3分)已知线段AB =10cm ,点P 是线段AB 的黄金分割点,且AP >PB ,则AP ≈ cm .17.(3分)若点A 在反比例函数的图象上,AM ⊥x 轴于点M ,△AMO 的面积为5,则k = .18.(3分)如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 (填一个即可)三、解答题(共66分)19.(6分)用适当方法解方程:(1)(x﹣1)(x+3)=12 (2)x(3x+2)=6(3x+2)20.(6分)先化简,再求值:,其中x满足方程x2﹣x﹣2=0.21.(8分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.22.(8分)如图,点B、C、D在一条直线上,AB⊥BC,ED⊥CD,∠1+∠2=90°.求证:△ABC∽△CDE.23.(8分)在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:F A的值.24.(10分)如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)设每件商品降价x元,则商场此商品可多售出件,此商品每件盈利元,此商品每天可销售件.(2)每件商品降价多少元时,商场日盈利可达到2100元?26.(10分)如图,反比例函数y=的图象与一次函数y=ax﹢b的图象交于C(4,﹣3),E (﹣3,4)两点.且一次函数图象交y轴于点A.(1)求反比例函数与一次函数的解析式;(2)求△COE的面积;(3)点M在x轴上移动,是否存在点M使△OCM为等腰三角形?若存在,请你直接写出M点的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列函数关系式中属于反比例函数的是()A.y=3x B.y=﹣C.y=x2+3 D.x+y=5【解答】解:A、该函数是正比例函数,故本选项错误;B、该函数符合反比例函数的定义,故本选项正确;C、该函数是二次函数,故本选项错误;D、该函数是一次函数,故本选项错误;故选:B.2.(3分)关于x的方程3x2﹣5=2x的二次项系数和一次项系数分别是()A.3,﹣2 B.3,2 C.3,5 D.5,2【解答】解:化为一般式,得3x2﹣2x﹣5=0.二次项系数和一次项系数分别是3,﹣2,故选:A.3.(3分)一元二次方程2x2+x﹣3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【解答】解:在方程2x2+x﹣3=0中,△=12﹣4×2×(﹣3)=25>0,∴该方程有两个不相等的实数根.故选:B.4.(3分)下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4 B.a=1,b=,c=2,d=4C.a=4,b=5,c=8,d=10 D.a=2,b=3,c=4,d=5【解答】解:A、2×6=3×4,能成比例;B、4×1=×2,能成比例;C、4×10=5×8,能成比例;D、2×5≠3×4,不能成比例.故选:D.5.(3分)反比例函数y=图象上有三个点(﹣2,y1),(﹣1,y2),(1,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y1<y2C.y2<y1<y3D.y3<y2<y1【解答】解:∵k>0,函数图象如图,∴图象在第一、三象限,在每个象限内,y随x的增大而减小,∵﹣2<﹣1<1,∴y2<y1<y3.故选:C.6.(3分)用配方法解方程x2﹣2x﹣4=0时,配方后所得的方程为()A.(x﹣1)2=0 B.(x﹣1)2=5 C.(x+1)2=0 D.(x+1)2=5【解答】解:x2﹣2x=4,x2﹣2x+1=4+1,即(x﹣1)2=5,故选:B.7.(3分)若关于x的方程(m﹣1)x2+5x+2=0是一元二次方程,则m的值不能为()A.1 B.﹣1 C.D.0【解答】解:由题意,得:m﹣1≠0,m≠1,故选:A.8.(3分)某商品原价200元,连续两次降价a%后售价为108元,下列所列方程正确的是()A.200(1+a%)2=108 B.200(1﹣a2%)=108 C.200(1﹣2a%)=108 D.200(1﹣a%)2=108【解答】解:由题意可得:200(1﹣a%)2=108.故选:D.9.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B 选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.10.(3分)下面是某同学在一次测验中解答的填空题:①若x2=a2,则x=a;②方程2x(x﹣1)=x﹣1的解是x=0;③已知三角形两边分别为2和6,第三边长是方程x2﹣8x+15=0的根,则这个三角形的周长11或13.其中答案完全正确的题目个数是()A.0 B.1 C.2 D.3【解答】解:①若x2=a2,则x=±a,错误;②由2x(x﹣1)=x﹣1可得(x﹣1)(2x﹣1)=0,则方程的解是x=1或x=,错误;③由方程x2﹣8x+15=0可得(x﹣3)(x﹣5)=0,∴x=3或x=5,当x=3时,2、3、6构不成三角形,舍去;当x=5时,三角形的周长为2+5+6=13,错误;故选:A.11.(3分)把方程(x+1)(3x﹣2)=10化为一元二次方程的一般形式后为()A.2x2+3x﹣10=0 B.2x2+3x﹣10=0 C.3x2﹣x+12=0 D.3x2+x﹣12=0【解答】解:方程整理得:3x2+x﹣12=0,故选:C.12.(3分)一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm,则它的最大边长为()A.10cm B.15cm C.20cm D.25cm【解答】解:设它的最大边长为xcm,∵两个四边形相似,∴=,解得,x=20,故选:C.二、填空题(每小题3分,共18分)13.(3分)若,则=.【解答】解:由,得a=,∴=.故答案为:.14.(3分)近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式为y=.(无需确定x的取值范围)【解答】解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,由于点(0.25,400)在此函数解析式上,∴k=0.25×400=100,∴y=.故答案为:y=.15.(3分)若反比例函数y=(k≠0),在每个象限内,y随x的增大而减小,则一次函数y=kx+k的图象经过第一、二、三象限.【解答】解:∵反比例函数y=(k≠0),在每个象限内,y随x的增大而减小,∴k>0,∴一次函数y=kx+k的图象经过第一、二、三象限,故答案为:一、二、三.16.(3分)已知线段AB=10cm,点P是线段AB的黄金分割点,且AP>PB,则AP≈ 6.18cm.【解答】解:∵点P是线段AB的黄金分割点,且AP>PB,∴AP=AB≈6.18(cm).故答案为6.18.17.(3分)若点A在反比例函数的图象上,AM⊥x轴于点M,△AMO的面积为5,则k=±10.【解答】解:因为△AMO的面积为5,所以|k|=2×5=10.所以k=±10.故答案为:±10.18.(3分)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是∠C=∠BAD (填一个即可)【解答】解:∵∠B=∠B(公共角),∴可添加:∠C=∠BA D.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BA D.三、解答题(共66分)19.(6分)用适当方法解方程:(1)(x﹣1)(x+3)=12(2)x(3x+2)=6(3x+2)【解答】解:(1)x2+2x﹣15=0,(x+5)(x﹣3)=0,x+5=0或x﹣3=0,所以x1=﹣5,x2=3;(2)x(3x+2)﹣6(3x+2)=0,(3x+2)(x﹣6)=0,3x+2=0或x﹣6=0,所以x1=﹣,x2=6.20.(6分)先化简,再求值:,其中x满足方程x2﹣x﹣2=0.【解答】解:∵x2﹣x﹣2=0∴x=2或x=﹣1原式=•=•=当x=2时原式=1当x=﹣1时,原式=21.(8分)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.22.(8分)如图,点B、C、D在一条直线上,AB⊥BC,ED⊥CD,∠1+∠2=90°.求证:△ABC∽△CDE.【解答】证明:∵AB⊥BC,ED⊥CD,∴∠B=∠D=90°.∴∠A+∠1=90°.又∵∠1+∠2=90°,∴∠A=∠2,∴△ABC∽△CDE.23.(8分)在平行四边形ABCD中,E为BC边上的一点.连结AE.(1)若AB=AE,求证:∠DAE=∠D;(2)若点E为BC的中点,连接BD,交AE于F,求EF:F A的值.【解答】证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF∽△AFD,∴=,∵E为BC的中点,∴BE=BC=AD,∴EF:F A=1:2.24.(10分)如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ与△ABC相似?试说明理由.【解答】解:设经x秒钟△PBQ与△ABC相似,则AP=2xcm,BQ=4xcm,∵AB=8cm,BC=16cm,∴BP=AB﹣AP=(8﹣2x)cm,∵∠B是公共角,∵①当=,即=时,△PBQ∽△ABC,解得:x=2;②当=,即=时,△QBP∽△ABC,解得:x=0.8,∴经2或0.8秒钟△PBQ与△ABC相似.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)设每件商品降价x元,则商场此商品可多售出2x件,此商品每件盈利(50﹣x)元,此商品每天可销售(30+2x)件.(2)每件商品降价多少元时,商场日盈利可达到2100元?【解答】解:(1)设每件商品降价x元,则商场此商品可多售出2x件,此商品每件盈利(50﹣x)元,此商品每天可销售(30+2x)件.故答案是:2x,(50﹣x),(30+2x);(2)解:设每件商品降价x元,由题意得:(50﹣x)(30+2x)=2100,化简得:x2﹣35x+300=0,解得:x1=15,x2=20,∵该商场为了尽快减少库存,则x=15不合题意,舍去.∴x=20.答:每件商品降价20元,商场日盈利可达2100元.26.(10分)如图,反比例函数y=的图象与一次函数y=ax﹢b的图象交于C(4,﹣3),E (﹣3,4)两点.且一次函数图象交y轴于点A.(1)求反比例函数与一次函数的解析式;(2)求△COE的面积;(3)点M在x轴上移动,是否存在点M使△OCM为等腰三角形?若存在,请你直接写出M点的坐标;若不存在,请说明理由.【解答】解:(1)∵反比例函数y=的图象经过点C(4,﹣3),∴﹣3=,∴k=﹣12,∴反比例函数解析式为y=﹣,∵y=ax+b的图象经过C(4,﹣3),E(﹣3,4)两点,∴,解得,∴一次函数的解析式为y=﹣x+1.(2)∵一次函数的解析式为y=﹣x+1与y轴交于点A(0,1)∴S△COE=S△AOE+S△AOC=×1×3+×1×4=3.5.(3)如图,∵C(4,﹣3),∴OC==5,①当CM=OC时,可得M1(8,0).②当OC=OM时,可得M2(5,0),M3(﹣5,0).②当MC=MO时,设M4(x,0),则有x2=(x﹣4)2+32,解得x=,∴M4(,0).综上所述,点M坐标为M1(8,0)或M2(5,0)或M3(﹣5,0)或M4(,0).。
2019-2020学年广西贺州市中考数学试卷(有标准答案)(Word版)
广西贺州市中考数学试卷一、选择题:(本大题共12小题,每小题3分,共36分:给出的四个迭项中,只有一项是符合题目要求的。
)1.(3.00分)在﹣1、1、、2这四个数中,最小的数是()A.﹣1 B.1 C.D.22.(3.00分)如图,下列各组角中,互为对顶角的是()A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠53.(3.00分)4的平方根是()A.2 B.﹣2 C.±2 D.164.(3.00分)下列图形中,属于中心对称图形的是()A.B.C.D.5.(3.00分)若一组数据:1、2、x、4、5的众数为5,则这组数据的中位数是()A.1 B.2 C.4 D.56.(3.00分)下列运算正确的是()A.a2•a2=2a2B.a2+a2=a4 C.(a3)2=a6D.a8÷a2=a47.(3.00分)下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)8.(3.00分)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9π B.10πC.11πD.12π9.(3.00分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<210.(3.00分)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为()A.3B.3C.6 D.611.(3.00分)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为()A.B.C.D.12.(3.00分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A.()n﹣1B.2n﹣1 C.()n D.2n二、填空题(本大题共6小题,每小题3分,共18分;请把答案填在答題卡对应的位置上,在试卷上作答无效。
2019年广西贺州市中考数学试卷以及逐题解析版
2019年广西贺州市中考数学试卷以及逐题解析一、选择题:(本大题共12小题,每小题3分,共36分;给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.)1.(3分)2-的绝对值是( )A .2-B .2C .12D .12- 2.(3分)如图,已知直线//a b ,160∠=︒,则2∠的度数是( )A .45︒B .55︒C .60︒D .120︒3.(3分)一组数据2,3,4,x ,6的平均数是4,则x 是( )A .2B .3C .4D .54.(3分)如图是某几何体的三视图,则该几何体是( )A .长方体B .正方体C .三棱柱D .圆柱5.(3分)某图书馆有图书约985000册,数据985000用科学记数法可表示为( )A .398510⨯B .498.510⨯C .59.8510⨯D .60.98510⨯6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .圆7.(3分)如图,在ABC ∆中,D ,E 分别是AB ,AC 边上的点,//DE BC ,若2AD =,3AB =,4DE =,则BC 等于( )A .5B .6C .7D .88.(3分)把多项式241a -分解因式,结果正确的是( )A .(41)(41)a a +-B .(21)(21)a a +-C .2(21)a -D .2(21)a +9.(3分)已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( ) A .2- B .2 C .4- D .410.(3分)已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .11.(3分)如图,在ABC ∆中,O 是AB 边上的点,以O 为圆心,OB 为半径的O 与AC 相切于点D ,BD 平分ABC ∠,AD =,12AB =,CD 的长是( )A .B .2C .D .12.(3分)计算11111133557793739++++⋯+⨯⨯⨯⨯⨯的结果是( ) A .1937 B .1939 C .3739 D .3839二、填空题:(本大题共6小题,每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)13.(3分)若分式11x +有意义,则x 的取值范围是 . 14.(3分)计算3a a 的结果是 .15.(3分)调查我市一批药品的质量是否符合国家标准.采用 方式更合适.(填“全面调查”或“抽样调查” )16.(3分)已知圆锥的底面半径是1,则该圆锥的侧面展开图的圆心角是 度.17.(3分)已知抛物线2(0)y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x -<<时,0y >,正确的是 (填写序号).18.(3分)如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90︒得ABG ∆,则CF 的长为 .三、解答题:(本大题共8题,满分66分.解答应写出文宇说明、证明过程或演算步骤.在试卷上作答无效)19.(6分)计算:20190(1)( 3.14)2sin 30π-+-︒.20.(6分)解不等式组:564,841x x x ->⎧⎨-<+⋅⎩①② 21.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.22.(8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60︒方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离. 1.73 1.4,结果保留一位小数).23.(8分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?24.(8分)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE CF=.(1)求证:ABE CDF∆≅∆;(2)当AC EF⊥时,四边形AECF是菱形吗?请说明理由.25.(10分)如图,BD是O的直径,弦BC与OA相交于点E,AF与O相切于点A,交DB的延长线于点F,30BC=.∠=︒,8F∠=︒,120BAC(1)求ADB∠的度数;(2)求AC的长度.26.(12分)如图,在平面直角坐标系中,已知点B 的坐标为(1,0)-,且4OA OC OB ==,抛物线2(0)y ax bx c a =++≠图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标;(2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.2019年广西贺州市中考数学试卷答案与解析一、选择题:(本大题共12小题,每小题3分,共36分;给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效.)1.(3分)2-的绝对值是()A.2-B.2C.12D.12-【分析】根据绝对值的定义,可直接得出2-的绝对值.【解答】解:|2|2-=,故选:B.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键.2.(3分)如图,已知直线//a b,160∠=︒,则2∠的度数是()A.45︒B.55︒C.60︒D.120︒【分析】直接利用平行线的性质得出2∠的度数.【解答】解:直线//a b,160∠=︒,260∴∠=︒.故选:C.【点评】此题主要考查了平行线的性质,正确把握平行线的性质是解题关键.3.(3分)一组数据2,3,4,x,6的平均数是4,则x是()A.2B.3C.4D.5【分析】利用平均数的定义,列出方程234645x++++=即可求解.【解答】解:数据2,3,4,x,6的平均数是4,∴234645x++++=,解得:5x=,故选:D.【点评】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.4.(3分)如图是某几何体的三视图,则该几何体是( )A .长方体B .正方体C .三棱柱D .圆柱【分析】由已知三视图得到几何体是正方体.【解答】解:由已知三视图得到几何体是以正方体;故选:B .【点评】本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.5.(3分)某图书馆有图书约985000册,数据985000用科学记数法可表示为( )A .398510⨯B .498.510⨯C .59.8510⨯D .60.98510⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值是易错点,由于985000有6位,所以可以确定615n =-=.【解答】解:59850009.8510=⨯,故选:C .【点评】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .圆【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A .正三角形是轴对称图形,但不是中心对称图形;B .平行四边形是中心对称图形,但不是轴对称图形;C .正五边形是轴对称图形,但不是中心对称图形;D .圆既是轴对称图形,又是中心对称图形;故选:D .【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)如图,在ABC ∆中,D ,E 分别是AB ,AC 边上的点,//DE BC ,若2AD =,3AB =,4DE =,则BC 等于( )A .5B .6C .7D .8【分析】由平行线得出ADE ABC ∆∆∽,得出对应边成比例AD DE AB BC =,即可得出结果. 【解答】解://DE BC ,ADE ABC ∴∆∆∽, ∴AD DE AB BC=, 即243BC =, 解得:6BC =,故选:B .【点评】本题考查了相似三角形的判定与性质;证明三角形相似得出对应边成比例是解题的关键.8.(3分)把多项式241a -分解因式,结果正确的是( )A .(41)(41)a a +-B .(21)(21)a a +-C .2(21)a -D .2(21)a +【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:22()()a b a b a b -=+-;完全平方公式:2222()a ab b a b ±+=±;【解答】解:241(21)(21)a a a -=+-,故选:B .【点评】本题考查了分解因式,熟练运用平方差公式是解题的关键9.(3分)已知方程组2325x y x y +=⎧⎨-=⎩,则26x y +的值是( ) A .2- B .2 C .4- D .4【分析】两式相减,得32x y +=-,所以2(3)4x y +=-,即264x y +=-.【解答】解:两式相减,得32x y +=-,2(3)4x y ∴+=-,即264x y +=-,故选:C .【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.10.(3分)已知0ab <,一次函数y ax b =-与反比例函数a y x=在同一直角坐标系中的图象可能( ) A . B .C .D .【分析】根据反比例函数图象确定b 的符号,结合已知条件求得a 的符号,由a 、b 的符号确定一次函数图象所经过的象限.【解答】解:若反比例函数a y x=经过第一、三象限,则0a >.所以0b <.则一次函数y ax b =-的图象应该经过第一、二、三象限; 若反比例函数a y x=经过第二、四象限,则0a <.所以0b >.则一次函数y ax b =-的图象应该经过第二、三、四象限.故选项A 正确;故选:A .【点评】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.11.(3分)如图,在ABC ∆中,O 是AB 边上的点,以O 为圆心,OB 为半径的O 与AC 相切于点D ,BD 平分ABC ∠,AD =,12AB =,CD 的长是( )A .B .2C .D .【分析】由切线的性质得出AC OD ⊥,求出30A ∠=︒,证出ODB CBD ∠=∠,得出//OD BC ,得出90C ADO ∠=∠=︒,由直角三角形的性质得出60ABC ∠=︒,162BC AB ==,AC ==30CBD ∠=︒,再由直角三角形的性质即可得出结果.【解答】解:O 与AC 相切于点D ,AC OD ∴⊥,90ADO ∴∠=︒, 3AD OD =,tan OD A AD ∴==, 30A ∴∠=︒,BD 平分ABC ∠,OBD CBD ∴∠=∠,OB OD =,OBD ODB ∴∠=∠,ODB CBD ∴∠=∠,//OD BC ∴,90C ADO ∴∠=∠=︒,60ABC ∴∠=︒,162BC AB ==,AC = 30CBD ∴∠=︒,6CD ∴=== 故选:A .【点评】本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出//OD BC是解题的关键.12.(3分)计算11111133557793739++++⋯+⨯⨯⨯⨯⨯的结果是()A.1937B.1939C.3739D.3839【分析】把每个分数写成两个分数之差的一半,然后再进行简便运算.【解答】解:原式111111111111(1) 22233557793739 =⨯-+-+-+-+-+⋯-11(1)239=⨯-1939=.故选:B.【点评】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.二、填空题:(本大题共6小题,每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)13.(3分)若分式11x+有意义,则x的取值范围是1x≠-.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:分式11x+有意义,10x∴+≠,即1x≠--故答案为:1x≠-.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.14.(3分)计算3a a的结果是4a.【分析】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加【解答】解:34a a a=,故答案为4a.【点评】本题考查了幂的运算,熟练掌握同底数幂乘法的运算是解题的关键.15.(3分)调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适.(填“全面调查”或“抽样调查”)【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适, 故答案为:抽样调查.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.16.(3分)已知圆锥的底面半径是1,则该圆锥的侧面展开图的圆心角是 90 度.【分析】先根据勾股定理求出圆锥的母线为4,进而求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:设圆锥的母线为a ,根据勾股定理得,4a =,设圆锥的侧面展开图的圆心角度数为n ︒, 根据题意得421180n ππ⨯=,解得90n =, 即圆锥的侧面展开图的圆心角度数为90︒.故答案为:90.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)已知抛物线2(0)y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x -<<时,0y >,正确的是 ①③④ (填写序号).【分析】首先根据二次函数图象开口方向可得0a <,根据图象与y 轴交点可得0c >,再根据二次函数的对称轴12b x a=-=,结合a 的取值可判定出0b >,根据a 、b 、c 的正负即可判断出①的正误;把1x =-代入函数关系式2y ax bx c =++中得y a b c =-+,再根据对称性判断出②的正误;把2b a =-代入a b c -+中即可判断出③的正误;利用图象可以直接看出④的正误.【解答】解:根据图象可得:0a <,0c >, 对称轴:12b x a=-=, 2b a ∴=-,0a <,0b ∴>,0abc ∴<,故①正确; 把1x =-代入函数关系式2y ax bx c =++中得:y a b c =-+,由抛物线的对称轴是直线1x =,且过点(3,0),可得当1x =-时,0y =,0a b c ∴-+=,故②错误;2b a =-,(2)0a a c ∴--+=,即:30a c +=,故③正确;由图形可以直接看出④正确.故答案为:①③④.【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即0)ab >,对称轴在y 轴左侧; 当a 与b 异号时(即0)ab <,对称轴在y 轴右侧.(简称:左同右异);③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,)c .18.(3分)如图,正方形ABCD 的边长为4,点E 是CD 的中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90︒得ABG ∆,则CF 的长为 6-【分析】作FM AD ⊥于M ,FN AG ⊥于N ,如图,易得四边形CFMD 为矩形,则4FM =,利用勾股定理计算出AE ==AG AE ==,2BG DE ==,34∠=∠,90GAE ∠=︒,90ABG D ∠=∠=︒,于是可判断点G 在CB 的延长线上,接着证明FA 平分GAD ∠得到4FN FM ==,然后利用面积法计算出GF ,从而计算CG GF -就可得到CF 的长.【解答】解:作FM AD ⊥于M ,FN AG ⊥于N ,如图,易得四边形CFMD 为矩形,则4FM =, 正方形ABCD 的边长为4,点E 是CD 的中点,2DE ∴=,AE ∴=ADE ∆绕点A 顺时针旋转90︒得ABG ∆,AG AE ∴==,2BG DE ==,34∠=∠,90GAE ∠=︒,90ABG D ∠=∠=︒, 而90ABC ∠=︒,∴点G 在CB 的延长线上, AF 平分BAE ∠交BC 于点F ,12∴∠=∠,2413∴∠+∠=∠+∠,即FA 平分GAD ∠,4FN FM ∴==,1122AB GF FN AG =,GF ∴=426CF CG GF ∴=-=+--故答案为6-【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三、解答题:(本大题共8题,满分66分.解答应写出文宇说明、证明过程或演算步骤.在试卷上作答无效)19.(6分)计算:20190(1)( 3.14)2sin 30π-+-︒.【分析】先分别计算幂、三角函数值、二次根式,然后算加减法.【解答】解:原式111422=-+-+⨯ 41=-+3=-.【点评】本题考查了实数的运算,熟练掌握三角函数值、零指数幂的运算是解题的关键.20.(6分)解不等式组:564,841x x x ->⎧⎨-<+⋅⎩①② 【分析】分别解两个不等式得到2x >和3x >-,然后根据大小小大中间找确定不等式组的解集.【解答】解:解①得2x >,解②得3x >-,所以不等式组的解集为32x -<<.【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.【分析】(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果;(2)从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【解答】解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图如图所示,由图可知,共有12种等可能结果;(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为61 122=.【点评】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60︒方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离. 1.73 1.4,结果保留一位小数).【分析】过点C作CD AB⊥,垂足为点D,则60ACD∠=︒,45BCD∠=︒,通过解直角三角形可求出BD,AD的长,将其相加即可求出AB的长.【解答】解:过点C作CD AB⊥,垂足为点D,则60ACD∠=︒,45BCD∠=︒,如图所示.在Rt BCD∆中,sinBDBCDBC∠=,cosCDBCDBC∠=,sin 20342BD BC BCD ∴=∠=⨯≈,cos 20342CD BC BCD =∠=⨯≈; 在Rt ACD ∆中,tan AD ACD CD ∠=,tan 4272.2AD CD ACD ∴=∠=.72.242114.2AB AD BD ∴=+=+=.A ∴,B 间的距离约为114.2海里.【点评】本题考查了解直角三角形的应用-方向角问题,通过解直角三角形,求出BD ,AD 的长是解题的关键.23.(8分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于x 的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入2018=年该贫困户的家庭年人均纯收入(1⨯+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【解答】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x , 依题意,得:22500(1)3600x +=,解得:10.220%x ==,2 2.2x =-(舍去).答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)3600(120%)4320⨯+=(元),43204200>.答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(8分)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE CF=.(1)求证:ABE CDF∆≅∆;(2)当AC EF⊥时,四边形AECF是菱形吗?请说明理由.【分析】(1)由矩形的性质得出90B D∠=∠=︒,AB CD=,AD BC=,//AD BC,由HL 证明Rt ABE Rt CDF∆≅∆即可;(2)由全等三角形的性质得出BE DF=,得出CE AF=,由//CE AF,证出四边形AECF 是平行四边形,再由AC EF⊥,即可得出四边形AECF是菱形.【解答】(1)证明:四边形ABCD是矩形,90B D∴∠=∠=︒,AB CD=,AD BC=,//AD BC,在Rt ABE∆和Rt CDF∆中,AE CF AB CD=⎧⎨=⎩,Rt ABE Rt CDF(HL)∴∆≅∆;(2)解:当AC EF⊥时,四边形AECF是菱形,理由如下:ABE CDF∆≅∆,BE DF∴=,BC AD=,CE AF∴=,//CE AF,∴四边形AECF是平行四边形,又AC EF⊥,∴四边形AECF是菱形.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.25.(10分)如图,BD是O的直径,弦BC与OA相交于点E,AF与O相切于点A,交DB的延长线于点F,30F∠=︒,120BAC∠=︒,8BC=.(1)求ADB∠的度数;(2)求AC的长度.【分析】(1)由切线的性质得出AF OA⊥,由圆周角定理好已知条件得出F DBC∠=∠,证出//AF BC,得出OA BC⊥,求出903060BOA∠=︒-︒=︒,由圆周角定理即可得出结果;(2)由垂径定理得出142BE CE BC===,得出AB AC=,证明AOB∆是等边三角形,得出AB OB=,由直角三角形的性质得出12OE OB=,4BE==,求出OE=,即可得出2AC AB OB OE====.【解答】解:(1)AF与O相切于点A,AF OA∴⊥,BD是O的直径,90BAD∴∠=︒,120BAC∠=︒,30DAC∴∠=︒,30DBC DAC∴∠=∠=︒,30F∠=︒,F DBC∴∠=∠,//AF BC∴,OA BC∴⊥,903060BOA ∴∠=︒-︒=︒,1302ADB AOB ∴∠=∠=︒; (2)OA BC ⊥,142BE CE BC ∴===, AB AC ∴=,60AOB ∠=︒,OA OB =,AOB ∴∆是等边三角形,AB OB ∴=,30OBE ∠=︒,12OE OB ∴=,4BE ==,OE ∴,2AC AB OB OE ∴====【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA BC ⊥是解题的关键.26.(12分)如图,在平面直角坐标系中,已知点B 的坐标为(1,0)-,且4OA OC OB ==,抛物线2(0)y ax bx c a =++≠图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标;(2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【分析】(1)44OA OC OB ===,即可求解;(2)抛物线的表达式为:2(1)(4)(34)y a x x a x x =+-=--,即可求解;(3)2sin 434PD HP PFD x x x =∠=--++,即可求解. 【解答】解:(1)44OA OC OB ===,故点A 、C 的坐标分别为(4,0)、(0,4)-;(2)抛物线的表达式为:2(1)(4)(34)y a x x a x x =+-=--,即44a -=-,解得:1a =,故抛物线的表达式为:234y x x =--;(3)直线CA 过点C ,设其函数表达式为:4y kx =-,将点A 坐标代入上式并解得:1k =,故直线CA 的表达式为:4y x =-,过点P 作y 轴的平行线交AC 于点H ,4OA OC ==,45OAC OCA ∴∠=∠=︒,//PH y 轴,45PHD OCA ∴∠=∠=︒,设点2(,34)P x x x --,则点(,4)H x x -,22sin 434)22PD HP PFD x x x x =∠=--++=+,0<,PD ∴有最大值,当2x =时,其最大值为 此时点(2,6)P -.【点评】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD ,是本题解题的关键。
广西贺州市九年级上学期数学期中考试试卷
广西贺州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共8分)1. (1分) (2019九下·温州竞赛) 二次函数y=-(x-1)2+2图象的对称轴是()A . 直线x=2B . 直线x=1C . 直线x=-1D . 直线x=-22. (1分)在平面直角坐标系中,点(3,-2)关于原点对称点的坐标是()A . (3,2)B . (3,-2)C . (-3,2)D . (-3,-2)3. (1分)(2017·哈尔滨) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (1分) (2020九上·铁锋期末) 用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A .B .C .D .5. (1分)如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB 的长为()A .B .C .D .6. (1分)把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A . y=﹣(x+1)2+2B . y=﹣(x+1)2﹣2C . y=(x+1)2﹣2D . y=﹣(x﹣1)2+27. (1分) (2020七上·嘉定期末) 下面四个车标图案中,既不是旋转对称图形又不是轴对称图形的是()A .B .C .D .8. (1分) (2020九上·嘉兴月考) 一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC 于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A . 3B . 3C .D .二、填空题 (共8题;共8分)9. (1分) (2019九上·鼓楼期中) 若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2019﹣a﹣b的值是________.10. (1分)如图,已知二次函数y=ax2+bx+c(a≠0)的图形经过点(1,2),且与x轴交点的横坐标分别为x1 , x2 ,其中﹣1<x1<0,1<x2<2,下列结论:①abc<0;②a<b<﹣2a;③b2+8a<4ac;④﹣1<a<0.其中正确结论的序号是________11. (1分) (2018九上·江苏月考) 已知方程组有两组不相等的实数解,则的取值范围________.12. (1分)(2019·驻马店模拟) 如图,直线,,,且,则的度数为________.13. (1分)以下四个命题:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补;②边数相等的两个正多边形一定相似;③等腰三角形ABC中,D是底边BC上一点,E是一腰AC上的一点,若∠BAD=60°且AD=AE,则∠EDC=30°;④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.其中正确命题的序号为________.14. (1分) (2019九上·丽江期末) 某大型超市连锁集团元月份销售额为300万元,三月份达到了720万元,若二、三月份两个月平均每月增长率为x,则根据题意列出方程是________.15. (1分) (2018九上·黄冈月考) 若抛物线的对称轴是直线,则它的顶点坐标是________.16. (1分)(2019·赣县模拟) 如图,AC经过⊙O的圆心O , AB与⊙O相切于点B ,若∠A=50°,则∠C =________度.三、计算题 (共1题;共1分)17. (1分) (2020八上·松江月考) 解方程:四、解答题 (共11题;共21分)18. (1分) (2019八上·长安月考) 已知:如图,OC=OD,AD⊥OB于D,BC⊥OA于C,求证:EA=EB.19. (2分) (2016九上·通州期末) 小明四等分弧AB,他的作法如下:①连接AB(如图);作AB的垂直平分线CD交弧AB于点M,交AB于点T;②分别作AT,TB的垂直平分线EF,GH,交弧AB于N,P两点,则N,M,P三点把弧AB四等分。
2019-2020学年广西贺州市中考数学模拟试卷(有标准答案)(Word版)
广西贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)的倒数是()A.﹣2 B.2 C.D.2.(3分)下列各图中,∠1与∠2互为邻补角的是()A.B.C.D.3.(3分)下列式子中是分式的是()A.B.C.D.4.(3分)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×1045.(3分)现有相同个数的甲、乙两组数据,经计算得:=,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定 B.乙比较稳定C.甲、乙一样稳定D.无法确定6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形 C.矩形D.等边三角形7.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:48.(3分)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A. B.C.D.9.(3分)不等式组的解集在数轴上表示正确的是()A.B. C.D.10.(3分)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.11.(3分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM 的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.412.(3分)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使代数式有意义,则x的取值范围是.14.(3分)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是.(填“全面调查”或“抽样调查”)15.(3分)将多项式2mx2﹣8mx+8m分解因式的结果是.16.(3分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π).17.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc <0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有.18.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.20.(6分)先化简,再求值:÷(1+),其中x=+1.21.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.22.(8分)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)23.(8分)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.24.(8分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D 的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.26.(12分)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.广西贺州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共30分)1.(3分)的倒数是()A.﹣2 B.2 C.D.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.(3分)下列各图中,∠1与∠2互为邻补角的是()A.B.C.D.【分析】根据邻补角的定义作出判断即可.【解答】解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点评】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.(3分)下列式子中是分式的是()A.B.C.D.【分析】根据分式的定义求解即可.【解答】解:、、的分母中不含有字母,属于整式,的分母中含有字母,属于分式.故选:C.【点评】本题考查了分式的定义,分母中含有字母的式子是分式.4.(3分)一条关于数学学习方法的微博在一周内转发了318000次,将318000用科学记数法可以表示为()A.3.18×105B.31.8×105C.318×104D.3.18×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将318000用科学记数法可以表示为3.18×105,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)现有相同个数的甲、乙两组数据,经计算得:=,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定 B.乙比较稳定C.甲、乙一样稳定D.无法确定【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立解答即可.【解答】解:∵S甲2>S乙2,∴乙比较稳定,故选:B.【点评】本题考查的是平均数和方差,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是解题的关键.6.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形 C.矩形D.等边三角形【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、正五边形,不是中心对称图形,是轴对称图形,故本选项错误;B、平行四边形,是中心对称图形,不是轴对称图形,故本选项错误;C、矩形,既是中心对称图形又是轴对称图形,故本选项正确;D、等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,证出△ADE ∽△ABC,由相似三角形的性质得出△ADE的面积:△ABC的面积=1:4,即可得出结果.【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选:C.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟记三角形中位线定理,证明三角形相似是解决问题的关键.8.(3分)小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A. B.C.D.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选:B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.9.(3分)不等式组的解集在数轴上表示正确的是()A.B. C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≤13,得:x≤3,解不等式﹣x<1,得:x>﹣1,则不等式组的解集为﹣1<x≤3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(3分)一次函数y=ax+a(a为常数,a≠0)与反比例函数y=(a为常数,a≠0)在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】分为a>0和a<0两种情况,然后依据一次函数和反比例函数的图象的性质进行判断即可.【解答】解:当a>0时,一次函数y=ax+a,经过一二三象限,反比例函数图象位于一、三象限,当a<0时,一次函数y=ax+a,经过二、三、四象限,反比例函数图象位于二、四象限.故选:C.【点评】本题主要考查的是一次函数、反比例函数的图象和性质,熟练掌握相关性质是解题的关键.11.(3分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1 B.2 C.3 D.4【分析】根据==和点E是点D关于AB的对称点,求出∠DOB=∠COD=∠BOE=60°,求出∠CED,即可判断①②;根据圆周角定理求出当M和A重合时∠MDE=60°即可判断③;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断④.【解答】解:∵==,点E是点D关于AB的对称点,∴=,∴∠DOB=∠BOE=∠COD==60°,∴①正确;∠CED=∠COD==30°=,∴②正确;∵的度数是60°,∴的度数是120°,∴只有当M和A重合时,∠MDE=60°,∵∠CED=30°,∴只有M和A重合时,DM⊥CE,∴③错误;做C关于AB的对称点F,连接CF,交AB于N,连接DF交AB于M,此时CM+DM的值最短,等于DF长,连接CD,∵===,并且弧的度数都是60°,∴∠D==60°,∠CFD==30°,∴∠FCD=180°﹣60°﹣30°=90°,∴DF是⊙O的直径,即DF=AB=10,∴CM+DM的最小值是10,∴④正确;故选C.【点评】本题考查了圆周角定理,轴对称﹣最短问题等知识点,能灵活运用圆周角定理求出各个角的度数和求出M的位置是解此题的关键.12.(3分)将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)【分析】先找出被开方数的规律,然后再求得的位置即可.【解答】解:这组数据可表示为:、、、、;、、、、;…∵19×2=38,∴为第4行,第4个数字.故选:B.【点评】本题主要考查的是数字的变化规律,找出其中的规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)要使代数式有意义,则x的取值范围是x≥且x≠1 .【分析】直接利用二次根式的定义、分式的有意义的条件分析得出答案.【解答】解:由题意可得:2x﹣1≥0,x﹣1≠0,解得:x≥且x≠1.故答案为:x≥且x≠1.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.(3分)为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了调查某市中小学生对“营养午餐”的满意程度,因为人员多、所费人力、物力和时间较多所以适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.(3分)将多项式2mx2﹣8mx+8m分解因式的结果是2m(x﹣2)2.【分析】原式提取2m,再利用完全平方公式分解即可.【解答】解:原式=2m(x2﹣4x+4)=2m(x﹣2)2,故答案为:2m(x﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.(3分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π)π.【分析】利用余弦的概念求出AC,根据弧长公式计算即可.【解答】解:Rt△ABC中,∠A=60°,AC==2,∠ACB=30°,∴∠ACA1=150°,点A从开始到结束所经过的路径长为以C为圆心、2为半径的弧,即=π,故答案为:π.【点评】本题考查的是点的轨迹以及弧长的计算,掌握弧长公式、旋转变换的性质、正确找出点的运动轨迹是解题的关键.17.(3分)二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc <0;②2a+b<0;③b2﹣4ac=0;④8a+c<0;⑤a:b:c=﹣1:2:3,其中正确的结论有①④⑤.【分析】根据图象的开口可确定a,结合对称轴可确定b,根据图象与y轴的交点位置可确定c,根据图象与x轴的交点个数可确定△;根据当x=﹣2时,y<0;抛物线与x轴的另一个交点的坐标是(3,0),即可得出结论.【解答】解:①∵开口向下∴a<0∵与y轴交于正半轴∴c>0∵对称轴在y轴右侧∴b>0∴abc<0,故①正确;∵二次函数的对称轴是直线x=1,即二次函数的顶点的横坐标为x=﹣=1,∴2a+b=0,故②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③错误;∵b=﹣2a,∴可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y<0;即4a﹣(﹣4a)+c=8a+c<0,故④正确;∵二次函数的图象和x轴的一个交点是(﹣1,0),对称轴是直线x=1,∴另一个交点的坐标是(3,0),∴设y=ax2+bx+c=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,即a=a,b=﹣2a,c=﹣3a,∴a:b:c=a:(﹣2a):(﹣3a)=﹣1:2:3,故⑤正确;故答案为:①④⑤.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.18.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为 6 .【分析】由旋转的性质可知:AF=AG,∠DAF=∠BAG,接下来再证明∠GAE=∠FAE,由全等三角形的性质可知:AB=AH,GE=EF=5.设正方形的边长为x,接下来,在Rt△EFC中,依据勾股定理列方程求解即可.【解答】解:由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.故答案为:6.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了旋转的性质、全等三角形的性质和判定、勾股定理的应用,正方形的性质,依据旋转的性质构造全等三角形和直角三角形是解题的关键.三、解答题(本大题共8小题,共66分)19.(6分)计算:(﹣1)2017+﹣(π﹣3)0+2cos30°.【分析】直接利用算术平方根的性质以及零指数幂的性质和特殊角的三角函数值分别化简求出答案.【解答】解:原式=﹣1+3﹣1+2×=1+.【点评】此题主要考查了算术平方根的性质以及零指数幂的性质和特殊角的三角函数值,正确化简各数是解题关键.20.(6分)先化简,再求值:÷(1+),其中x=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=•=当x=+1时,原式==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.【分析】(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴规则不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】过C点作AB的垂线交AB的延长线于点D,由三角形外角的性质可得出∠ACB=30°,进而可得出BC=AB=4米,在Rt△CDB中利用锐角三角函数的定义即可求出CD的值.【解答】解:过C点作AB的垂线交AB的延长线于点D,∵∠CAD=30°,∠CBD=60°,∴∠ACB=30°,∴∠CAB=∠ACB=30°,∴BC=AB=4米,在Rt△CDB中,BC=4米,∠CBD=60°,sin∠CBD=,∴sin60°=,∴CD=4sin60°=4×=2≈3.5(米),故该生命迹象所在位置的深度约为3.5米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(8分)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.【分析】可设乙工程队单独完成这项工程需要x天,根据等量关系:甲、乙两个工程队合作10天完成了剩余的工程,即工程总量的1﹣,依此列出方程求解即可.【解答】解:设乙工程队单独完成这项工程需要x天,依题意有(+)×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.24.(8分)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2,求四边形ABCD的面积.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角平分线的定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠CBD,根据全等三角形的性质得到AO=OC,于是得到结论;(2)根据菱形的性质得到OD=BD=,根据勾股定理得到OC==2,于是得到结论.【解答】(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠CBD,∵AC⊥BD,AB=AD,∴BO=DO,在△AOD与△COB中,,∴△AOD≌△COB,∴AO=OC,∵AC⊥BD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OD=BD=,∴OC==2,∵AC=4,∴S=AC•BD=4.菱形ABCD【点评】本题考查了菱形的性质和判定,勾股定理,菱形的面积的计算,全等三角形的判定与性质,角平分线的定义,熟练掌握菱形的判定和性质定理是解题的关键.25.(10分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.(1)求证:AF⊥EF;(2)若AC=6,CF=2,求⊙O的半径.【分析】(1)连接OD,由切线的性质和已知条件可证得OD∥EF,则可证得结论;(2)过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,则可求得AB 的长,可求得圆的半径.【解答】(1)证明:如图1,连接OD,∵EF是⊙O的切线,且点D在⊙O上,∴OD⊥EF,∵OA=OD,∴∠DAB=∠ADO,∵AD平分∠BAC,∴∠DAB=∠DAC,∴∠ADO=∠DAC,∴AF∥OD,∴AF⊥EF;(2)解:如图2,过D作DG⊥AE于点G,连接CD,∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,∴BD=CD,DG=DF,在Rt△ADF和Rt△ADG中∴Rt△ADF≌Rt△ADG(HL),同理可得Rt△CDF≌Rt△BDG,∴BG=CF=2,AG=AF=AC+CF=6+2=8,∴AB=AG+BG=8+2=10,∴⊙O的半径OA=AB=5.【点评】本题主要考查切线的性质及圆周角定理,掌握过切点的半径与切线垂直是解题的关键,注意全等三角形的应用.26.(12分)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.(1)求抛物线的解析式;(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【分析】(1)首先依据等腰直角三角形的性质求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式求解即可;(2)设直线AB的解析式为y=kx+b,将点A和点B的坐标代入可求得直线AB的解析式,设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),然后列出EF关于t的函数关系式,最后利用配方法求得EF的最大值即可;(3)过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″,先求得点E和点F的纵坐标,然后将点E和点F的纵坐标代入抛物线的解析式求得对应的x的值,从而可求得点P、P′、P″的坐标.【解答】解:(1)∵A,C的坐标分别为(1,0),(﹣4,0),∴AC=5.∵△ABC为等腰直角三角形,∠C=90°,∴BC=AC=5.∴B(﹣4,﹣5).将点A和点B的坐标代入得:,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)如图1所示:设直线AB的解析式为y=kx+b,将点A和点B的坐标代入得:,解得:k=1,b=﹣1.所以直线AB的解析式为y=x﹣1.设点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3).∴EF=﹣t2﹣2t+3﹣(t﹣1)=﹣t2﹣3t+4=﹣(t+)2+.∴当t=﹣时,FE取最大值,此时,点E的坐标为(﹣,﹣).(3)存在点P,能使△PEF是以EF为直角边的直角三角形.理由:如图所示:过点F作直线a⊥EF,交抛物线于点P,过点E作直线b⊥EF,交抛物线P′、P″.由(2)可知点E的坐标为(t,t﹣1),则点F的坐标为(t,﹣t2﹣2t+3),t=﹣,∴点E(﹣,﹣)、F(﹣,).①当﹣t2﹣2t+3=时,解得:t=﹣或t=﹣(舍去).∴点P的坐标为(﹣,).②当﹣t2﹣2t+3=﹣时,解得:t=﹣1+或t=﹣1﹣.∴点P′(﹣1﹣,﹣),P″(﹣1+,﹣).综上所述,点P的坐标为(﹣,)或(﹣1﹣,﹣)或P″(﹣1+,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等腰直角三角形的性质、二次函数的性质,列出EF的长关于t的函数关系式是解题的关键.。
广西贺州市九年级上学期数学期中考试试卷
广西贺州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)下列图形中,既是轴对称图形,又是中心对称图形的是()A . 等腰梯形B . 平行四边形C . 正三角形D . 矩形2. (1分)(2017·深圳模拟) 下列命题为真命题的是A . 有两边及一角对应相等的两个三角形全等B . 方程x2+2x+3=0有两个不相等的实数根C . 面积之比为1∶2的两个相似三角形的周长之比是1∶4D . 顺次连接任意四边形各边中点得到的四边形是平行四边形3. (1分)已知x=1是方程x2+bx +b -3=0的一个根,那么此方程的另一个根为()A . -2B . -1C . 1D . 24. (1分)抛物线的顶点坐标是A . (1,3)B . (-1,-3)C . (-2,3)D . (-1,3)5. (1分)点A在数轴上距原点5个单位长度,将A点先向左移动2个单位长度,再向右移动6个单位长度,此时A点所表示的数是()A . – 1B . 9C . – 1或9D . 1或– 96. (1分) (2019九上·宜兴期末) 将抛物线向上平移2个单位后,得到的函数表达式是()A .B .C .D .7. (1分)(2017·历下模拟) 如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1 ,当点C1、B1、C三点共线时,旋转角为α,连接BB1 ,交AC于点D.下列结论:①△AC1C为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1 ,其中正确的是()A . ①③④B . ①②④C . ②③④D . ①②③④8. (1分)方程的解是().A . x=4B . x=2C . x=4或x=0D . x=09. (1分)某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为().A . 25(1+x)2=64B . 25(1-x)2=64C . 64(1+x)2=25D . 64(1-x)2=2510. (1分)二次函数y=x2-2x-3的图象如图所示,当y<0时,自变量 x的取值范围为()A . -1<x<3B . x<-1C . x>3D . x<-1或x>3二、填空题 (共6题;共6分)11. (1分)(2016·丹阳模拟) 将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是________.12. (1分)已知m , n满足│m+1│+( n-3)2=0,化简(x-m)(x-n)=________.13. (1分) (2018九上·丽水期中) 抛物线y=(x-1)2-2与y轴的交点坐标是________14. (1分)(2020·枣阳模拟) 目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x个人,那么可列方程为________.15. (1分)如图,一座抛物线型拱桥,桥下水面宽度是4m时,拱高为2m,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m,那么木船的高不得超过 ________m.16. (1分) (2017八上·深圳期中) 如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A ﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________三、解答题 (共7题;共15分)17. (2分)综合题。
广西省贺州市2019-2020学年中考数学模拟试题含解析
广西省贺州市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.B.C.10 D.2.下列运算结果为正数的是( )A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)3.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×1054.关于x的不等式2(1)4xa x><-⎧⎨-⎩的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3D.a≤3 5.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C.32D.336.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )A.k≤2且k≠1B.k<2且k≠1C.k=2 D.k=2或17.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为()A.B.C.D.8.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A .5B .C .D .79.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定10.如图,三棱柱ABC ﹣A 1B 1C 1的侧棱长和底面边长均为2,且侧棱AA 1⊥底面ABC ,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )A .3B .23C .22D .411.如图,把一个矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
广西省贺州市2019-2020学年中考数学第一次调研试卷含解析
广西省贺州市2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于( )A.2﹣2B.1 C.2D.2﹣l3.下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.4.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.225B.220C.324D.4255.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=132 B.x(x-1)=132 C.x(x+1)=132×12D.x(x-1)=132×26.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)2 7.如图所示的工件,其俯视图是()A.B.C.D.8.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=2AE2;④S△BEC=S△ADF.其中正确的有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.23B.2 C.4 D.310.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab11.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A .甲B .乙C .丙D .丁12.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一次函数y=﹣x+b (b 为常数)的图象经过点(1,2),则b 的值为_____.14.若代数式315x -的值不小于代数式156x -的值,则x 的取值范围是_____. 15.如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当扇形AOB 的半径为22时,阴影部分的面积为__________.16.将多项式32m mn -因式分解的结果是 .17.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.18.如图,在△OAB 中,C 是AB 的中点,反比例函数y=k x(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为圆O 的直径,点C 为圆O 上一点,若∠BAC=∠CAM ,过点C 作直线l 垂直于射线AM ,垂足为点D .(1)试判断CD 与圆O 的位置关系,并说明理由;(2)若直线l 与AB 的延长线相交于点E ,圆O 的半径为3,并且∠CAB=30°,求AD 的长.20.(6分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.21.(6分)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于()A 2,3-,B ()4,n 两点. (1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.22.(8分)先化简,再求值:(1﹣11x x -+)÷22691x x x ++-,其中x =1. 23.(8分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?24.(10分)解不等式组()()303129x x x -≥⎧⎨->+⎩. 25.(10分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?26.(12分)如图,AB 、AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D .过点A 作⊙O 的切线与OD 的延长线交于点P ,PC 、AB 的延长线交于点F .(1)求证:PC 是⊙O 的切线;(2)若∠ABC =60°,AB =10,求线段CF 的长.27.(12分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A .会;B .不会;C .有时会),绘制了两幅不完整的统计图(如图)(1)这次被抽查的学生共有______人,扇形统计图中,“A 组”所对应的圆心度数为______;(2)补全两个统计图;(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=2AC′=1,∴DC′=AC′-AD=2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×(2-1)2=2-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.3.B【解析】【分析】根据圆锥的侧面展开图的特点作答.【详解】A选项:是长方体展开图.B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形.4.B【解析】【分析】过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到=OH=13AE=13,由相似三角形的性质得到153AM AEFM FO===35,求得AM=38,根据相似三角形的性质得到AN ADFN BF==32,求得AN=35AF=5,即可得到结论.【详解】过F作FH⊥AD于H,交ED于O,则FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴=∵OH∥AE,∴HO DHAE AD==13,∴OH=13AE=13,∴OF=FH﹣OH=1﹣13=53,∵AE∥FO,∴△AME∽△FMO,∴153AM AEFM FO===35,∴AM=38AF=324,∵AD∥BF,∴△AND∽△FNB,∴AN ADFN BF==32,∴AN=35AF=625,∴MN=AN﹣AM=625﹣324=9220,故选B.【点睛】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线5.B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.6.C【解析】【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.7.B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.8.C【解析】【分析】根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.【详解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=12AB,FE=12AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,AEH CEB AE BEEAH CBE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴AB ADBC BE=,即BC•AD=AB•BE,∵∠AEB=90°,AE=BE,∴BEBE•BE,∴AE2;③正确;设AE=a ,则a ,∴a ﹣a ,∴BECABC CE?BE S CE 2AC?BE S AC 2===V V=22-,即BEC ABC 22S =V V , ∵AF=12AB , ∴ ADF ABD ABC 11S S S 24==V V V , ∴S △BEC ≠S △ADF ,故④错误,故选:C .【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.A【解析】连接CC′,∵将△ADC 沿AD 折叠,使C 点落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D ,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等边三角形,∴∠DC′C=60°,∵在△ABC 中,AD 是BC 边的中线,即BD=CD ,∴C′D=BD ,∴∠DBC′=∠DC′B=12∠CDC′=30°, ∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC•cos ∠DBC′=4×2故选A.【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.10.B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.11.D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.12.A【解析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=1.∴4BH==,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】把点(1,2)代入解析式解答即可.【详解】解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,解得:b=3,故答案为3【点睛】本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答.14.x≥11 43【解析】【分析】根据题意列出不等式,依据解不等式得基本步骤求解可得.【详解】解:根据题意,得:311556x x--≥,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥11 43,故答案为x≥11 43.【点睛】本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.15.π﹣1【解析】【分析】根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.【详解】连接OC∵在扇形AOB 中∠AOB =90°,正方形CDEF 的顶点C 是弧AB 的中点,∴∠COD =45°,∴OC =2CD =12 ,∴CD =OD =1,∴阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积=24522360g π() ﹣12×11 =π﹣1.故答案为π﹣1.【点睛】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.16.m (m+n )(m ﹣n ).【解析】试题分析:原式=22()m m n =m (m+n )(m ﹣n ).故答案为:m (m+n )(m ﹣n ).考点:提公因式法与公式法的综合运用.17.y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键. 18.4【解析】【分析】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,根据C 是AB 的中点得到CN 为AMB V 的中位线,然后设MN NB a ==,CN b =,2AM b =,根据OM AM ON CN ⋅=⋅,得到OM a =,最后根据面积32236a b ab =⋅÷==求得2ab =,从而求得224k a b ab =⋅==.【详解】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,如图Q 点C 为AB 的中点,∴CN 为AMB V 的中位线,∴MN NB a ==,CN b =,2AM b =,Q OM AM ON CN ⋅=⋅,∴()2OM b OM a b ⋅=+⋅,∴OM a =,∴32236AOB S a b ab =⋅÷==V ,∴2ab =,∴224k a b ab =⋅==.故答案为:4.【点睛】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2k ,且保持不变.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)CD 与圆O 的位置关系是相切,理由详见解析;(2) AD=92. 【解析】【分析】(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O的位置关系是相切;(2)连接BC,∵AB是⊙O的直径,∴∠BCA=90°,∵圆O的半径为3,∴AB=6,∵∠CAB=30°,∴13333 2BC AB AC BC====,,∵∠BCA=∠CDA=90°,∠CAB=∠CAD ,∴△CAB ∽△DAC , ∴,AC AB AD AC = ∴3333AD =, ∴92AD =. 【点睛】 本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.20. (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.【解析】【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y ,根据题意得到二次函数解析式y=x (31-2x )=-2x 2+31x ,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【详解】解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x 2-15x +36=1.解得x 1=3,x 2=2.又∵31-2x≤3,即x≥6,∴x=2(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S =x(31-2x)=-2(x -152)2+2252(6≤x≤4). ①当x =152时,S 有最大值,S 最大=2252; ②当x =4时,S 有最小值,S 最小=4×(31-22)=5.(3)令x(31-2x)=41,得x 2-15x +51=1.解得x 1=5,x 2=1∴x 的取值范围是5≤x≤4.21.(1)6y x =-;3342y x =-+;(2)2x <-或04x <<; 【解析】【分析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (4,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A ,B 两点的坐标即可写出一次函数的值大于反比例函数时自变量x 的取值范围.【详解】(1)m y x=Q 过点()2,3A -, 6m ∴=-, ∴反比例函数的解析式为6y x =-; Q 点()4,B n 在6y x=- 上, 32n ∴=-, 3(4,2B ∴- ), Q 一次函数y kx b =+过点()2,3A -,3(4,2B - ) 23342k b k b -+=⎧⎪∴⎨+=-⎪⎩, 解得:3432k b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴一次函数解析式为3342y x =-+; (2)由图可知,当2x <-或04x <<时,一次函数值大于反比例函数值.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.22.15. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】原式=2221(1)(1)1(3)x x x x x x +-++-⋅++=2(1)(1)(3)3113x x x x x x x +-=-++⋅++当x=1时,原式2123-=+=15.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.23.(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】【分析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.x<﹣1.【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()303129x x x -≥⎧⎪⎨->+⎪⎩①②, 由①得x≤1,由②得x <﹣1,∴原不等式组的解集是x <﹣1.点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.25.这项工程的规定时间是83天【解析】【分析】依据题意列分式方程即可.【详解】设这项工程的规定时间为x 天,根据题意得 .解得x =83.检验:当x =83时,3x≠0.所以x =83是原分式方程的解.答:这项工程的规定时间是83天.【点睛】正确理解题意是解题的关键,注意检验.26.(1)证明见解析(2)3【解析】【分析】(1)连接OC ,可以证得△OAP ≌△OCP ,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC ⊥PC ,即可证得;(2)先证△OBC 是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.【详解】(1)连接OC .∵OD ⊥AC ,OD 经过圆心O ,∴AD=CD ,∴PA=PC .在△OAP 和△OCP 中,∵OA OC PA PC OP OP =⎧⎪=⎨⎪=⎩,∴△OAP ≌△OCP (SSS ),∴∠OCP=∠OAP .∵PA 是半⊙O 的切线,∴∠OAP=90°,∴∠OCP=90°,即OC ⊥PC ,∴PC 是⊙O 的切线.(2)∵OB=OC ,∠OBC=60°,∴△OBC 是等边三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC•tan ∠3【点睛】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.27.(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.【解析】【分析】(1)由C 组人数及其所占百分比可得总人数,用360°乘以A 组人数所占比例可得;(2)根据百分比之和为1求得A 组百分比补全图1,总人数乘以B 的百分比求得其人数即可补全图2; (3)总人数乘以样本中A 所占百分比可得;(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.【详解】(1)这次被抽查的学生共有25÷50%=50人, 扇形统计图中,“A 组”所对应的圆心度数为360°×1550=108°, 故答案为50、108°;(2)图1中A 对应的百分比为1-20%-50%=30%,图2中B 类别人数为50×20%=5, 补全图形如下:(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;(4)不正确,因为在样本中浪费粮食的人数所占比例不是20%,所以这种说法不正确.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.。
广西贺州市2019-2020学年人教版九年级(上)期中数学试卷 含解析
2019-2020学年九年级(上)期中数学试卷一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请将符合题意的序号填在题号的括号内.)1.如果线段a=2cm,b=3cm,那么的值为()A.B.C.D.2.对于函数y=,自变量的取值范围为()A.x≥0 B.x≤0 C.x≠0 D.任意实数3.若x为自变量,则表达式不是二次函数的是()A.y=2x2﹣1 B.y=C.y=1x2D.y=﹣x2 +2x﹣14.已知线段a=2,c=4,线段b是a,c的比例中项,则线段b的值为()A.8 B.3 C.D.25.二次函数y=x2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=(x﹣1)2﹣3 D.y=(x+1)2+3 6.对于反比例函数y=﹣,下列说法不正确的是()A.点(﹣3,3)在它的图象上B.当x>0时,y随x的增大而增大C.它的图象在第二、四象限D.当x<0时,y随x的增大而减小7.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.8.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为()A.6 B.4 C.3 D.19.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小10.如图,抛物线y=ax2+bx+c(a≠0)与x轴一个交点为(﹣2,0),对称轴为直线x=1,则y<0时x的范围是()A.x>4或x<﹣2 B.﹣2<x<4 C.﹣2<x<3 D.0<x<311.若x===,则x等于()A.﹣1或B.﹣1 C.D.不能确定12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题:(每小题3分,共18分,请将答案直接写在题中的横线上,)13.已知函数y=x m﹣1是关于x的二次函数,则m=.14.若,则的值为.15.若二次函数y=4x2﹣4x﹣3的图象如下图所示,则当x时,函数值y0.16.如图,对称轴平行于y轴的抛物线与x轴交于(2,0),(6,0)两点,则它的对称轴为.17.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是km.18.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,点C为y轴上的一点,若△ABC的面积为,则k的值为.三、解答题:(共8小题,满分66分,解答题要写出文字说明、演算步骤或证明过程.)19.已知三条线段的长度分别是3、4、6,试写出另一条线段,使这四条线段成为比例线段.20.已知二次函数y=﹣2x2+bx+c的图象经过A(0,4)和B(1,﹣2),求该抛物线的解析式以及它的开口方向.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n)(1)求反比例函数y=上的表达式;(2)若两函数图象的另一交点为B,直接写出B的坐标.22.已知二次函数的解析式是y=x2﹣2x﹣3.(1)求该函数图象与x轴,y轴的交点坐标以及它的顶点坐标:(2)根据(1)的结果在坐标系中利用描点法画出此抛物线.23.已知:线段a、b、c,且==.(1)求的值.(2)如线段a、b、c满足a+b+c=27,求a﹣b+c的值.24.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,求汽车刹车后行驶的最大距离是多少?25.如图,在△ABC中,AD与BE相交于点G,且=4,=.(1)求的值;(2)若CE=5cm,则AC的长.26.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式;(2)点D为y轴右侧抛物线上一点,是否存在点D,使S△ABC=S△ABD?若存在,请求出点D坐标:若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.如果线段a=2cm,b=3cm,那么的值为()A.B.C.D.【分析】根据比例线段计算即可.【解答】解:因为线段a=2cm,b=10cm,所以的值,故选:A.2.对于函数y=,自变量的取值范围为()A.x≥0 B.x≤0 C.x≠0 D.任意实数【分析】根据分式的分母不为0列式计算,得到答案.【解答】解:由题意得2x≠0,解得,x≠0,故选:C.3.若x为自变量,则表达式不是二次函数的是()A.y=2x2﹣1 B.y=C.y=1x2D.y=﹣x2 +2x﹣1【分析】一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.根据二次函数的定义作出判断.【解答】解:A.y=2x2﹣1属于二次函数,不合题意;B.y=属于一次函数,符合题意;C.y=1x2属于二次函数,不合题意;D.y=﹣x2+2x﹣1属于二次函数,不合题意;故选:B.4.已知线段a=2,c=4,线段b是a,c的比例中项,则线段b的值为()A.8 B.3 C.D.2【分析】根据线段比例中项的概念,可得a:b=b:c,可得b2=ac=8,故b的值可求.【解答】解:若b是a、c的比例中项,即b2=ac=2×4=8,b=2(负值舍去),故选:D.5.二次函数y=x2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=(x﹣1)2﹣3 D.y=(x+1)2+3 【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.【解答】解:此题实际上是求y=x2﹣1向左平移1个单位,向上平移2个单位后抛物线的解析式.则y=x2﹣1向左平移1个单位后抛物线的解析式是:y=(x+1)2﹣1+2=y=(x+1)2+1.故选:B.6.对于反比例函数y=﹣,下列说法不正确的是()A.点(﹣3,3)在它的图象上B.当x>0时,y随x的增大而增大C.它的图象在第二、四象限D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质用排除法解答.【解答】解:A、把点(﹣3,3)代入反比例函数y=﹣得﹣3=﹣3,故A选项正确;B、当x>0时,y随x的增大而增大,故B选项正确;C、∵k=﹣9<0,∴图象在第二、四象限,故C选项正确;D、当x<0时,y随x的增大而证得,故D选项错误.故选:D.7.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.【分析】由a>0,b<0,c<0,推出﹣>0,可知抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,由此即可判断.【解答】解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.8.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为()A.6 B.4 C.3 D.1【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【解答】解:在y=x2﹣4x+3中,当y=0时,x=1、3;当x=0时,y=3;即A(1,0)、B(3,0)、C(0,3)故△ABC的面积为:×2×3=3;故选:C.9.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小【分析】把二次函数解析式化为顶点式,逐项判断即可得出答案.【解答】解:∵y=x2﹣2x+1=(x﹣1)2,∴抛物线开口向上,对称轴为x=1,当x>1时,y随x的增大而增大,∴A、C正确,D不正确;令y=0可得(x﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x轴有一个交点,∴B正确;故选:D.10.如图,抛物线y=ax2+bx+c(a≠0)与x轴一个交点为(﹣2,0),对称轴为直线x=1,则y<0时x的范围是()A.x>4或x<﹣2 B.﹣2<x<4 C.﹣2<x<3 D.0<x<3【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(4,0),然后观察函数图象,找出抛物线在x轴下方的部分所对应的自变量的范围即可.【解答】解:∵y=ax2+bx+c的对称轴为直线x=1,与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(4,0),∴y<0时x的范围是﹣2<x<4,故选:B.11.若x===,则x等于()A.﹣1或B.﹣1 C.D.不能确定【分析】分两种情况讨论:当a+b+c≠0时和当a+b+c=0时.【解答】解:∵x===,∴当a+b+c≠0时,x==;当a+b+c=0时,x===﹣1,故选:A.12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【分析】①利用抛物线与x轴有2个交点和判别式的意义对①进行判断;②由抛物线开口方向得到a>0,由抛物线对称轴位置确定b>0,由抛物线与y轴交点位置得到c>0,则可作判断;③利用x=﹣1时a﹣b+c<0,然后把b=2a代入可判断;④利用抛物线的对称性得到x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,则可进行判断.【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选:C.二.填空题(共6小题)13.已知函数y=x m﹣1是关于x的二次函数,则m= 3 .【分析】根据二次函数的定义列式计算.【解答】解:∵函数y=x m﹣1是关于x的二次函数,∴m﹣1=3,解得,m=3,故答案为:3.14.若,则的值为.【分析】根据合比性质,可得答案.【解答】解:由合比性质,得==.故答案为:.15.若二次函数y=4x2﹣4x﹣3的图象如下图所示,则当x时,函数值y≥0.【分析】根据函数的图象得出函数和x轴的交点坐标,根据交点坐标和图象得出即可.【解答】解:∵从二次函数y=4x2﹣4x﹣3的图象可知:图象过点(﹣,0)和(,0),∴当x时,函数值y≥0,故答案为:≥.16.如图,对称轴平行于y轴的抛物线与x轴交于(2,0),(6,0)两点,则它的对称轴为直线x=4 .【分析】利用抛物线与x轴的交点得出对称轴为:x=,进而得出答案.【解答】解:∵对称轴平行于y轴的抛物线与x轴交于(2,0),(6,0)两点,∴它的对称轴为:直线x==4.故答案为:直线x=4.17.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是 1.25 km.【分析】根据比例尺=图上距离:实际距离,列比例式直接求得甲、乙两地间的实际距离.【解答】解:设甲、乙两地间的实际距离为xcm,则:=,解得:x=125000cm=1.25km.故答案为:1.25.18.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,点C为y轴上的一点,若△ABC的面积为,则k的值为﹣5 .【分析】反比例函数中k的值与点A的坐标有关,设出点A的坐标,表示出三角形的面积,进而求出k的值.【解答】解:设A(a,b),则OB=﹣a,AB=b,S△ABC=,∴OB×AB=,即:﹣ab=5,∴k=ab=﹣5;故答案为:﹣5.三.解答题(共8小题)19.已知三条线段的长度分别是3、4、6,试写出另一条线段,使这四条线段成为比例线段.【分析】设所加的线段是x,则得到:=或=或=,即可求得.【解答】解:设所加的线段是x,则得到:=或=或=,解得:x=8或或2.20.已知二次函数y=﹣2x2+bx+c的图象经过A(0,4)和B(1,﹣2),求该抛物线的解析式以及它的开口方向.【分析】把A和B点坐标代入y=﹣2x2+bx+c得到关于b、c的方程组,则解方程组求出b、c得到抛物线解析式,然后根据二次函数的性质确定抛物线开口方向.【解答】解:把A(0,4)和B(1,﹣2)分别代入y=﹣2x2+bx+c得,解得,所以y=﹣2x2﹣4x+4,因为a=﹣2<0,所以抛物线的开口向下.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n)(1)求反比例函数y=上的表达式;(2)若两函数图象的另一交点为B,直接写出B的坐标.【分析】(1)把A的坐标代入y=﹣2x,求出n,得出A的坐标,再把A的坐标代入反比例函数的解析式求出k即可;(2)求出方程组的解,即可得出答案【解答】解:(1)∵点A(﹣1,n)在一次函数y=﹣2x的图象上,∴代入得:n=(﹣2)×(﹣1)=2,∴点A的坐标为(﹣1,2),∵点A在反比例函数的图象上,∴k=(﹣1)×2=﹣2.∴反比例函数的解析式为.(2)解方程组,得,∴一次函数y=﹣2x的图象与反比例函数的图象的另一个交点B的坐标是(1,﹣2).22.已知二次函数的解析式是y=x2﹣2x﹣3.(1)求该函数图象与x轴,y轴的交点坐标以及它的顶点坐标:(2)根据(1)的结果在坐标系中利用描点法画出此抛物线.【分析】(1)利用二次函数图象上点的坐标特征可以求得抛物线与x轴和y轴的交点,把一般式化成顶点式即可求得顶点坐标;(2)根据第一问中的三个坐标和二次函数图象具有对称性,在表格中填入合适的数据,然后再描点作图即可.【解答】解:(1)令y=0,则0=x2﹣2x﹣3.解得x1=﹣1,x2=3.令x=0,则y=﹣3,抛物线y=x2﹣2x﹣3与x轴交点的坐标为(﹣1,0),(3,0),与y轴交点的坐标为(0,﹣3),y=x2﹣2x﹣3=(x﹣1)2﹣4,所以它的顶点坐标为(1,﹣4);(2)列表:图象如图所示:.23.已知:线段a、b、c,且==.(1)求的值.(2)如线段a、b、c满足a+b+c=27,求a﹣b+c的值.【分析】(1)根据比例的性质得出=,即可得出的值;(2)首先设===k,则a=2k,b=3k,c=4k,利用a+b+c=27求出k的值,即可得出答案.【解答】解:(1)∵=,∴=,∴=;(2)设===k,则a=2k,b=3k,c=4k,∵a+b+c=27,∴2k+3k+4k=27,∴k=3,∴a=6,b=9,c=12,∴a﹣b+c=6﹣9+12=9.24.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,求汽车刹车后行驶的最大距离是多少?【分析】根据待定系数法先求出二次函数的解析式,再根据顶点坐标即可求解.【解答】解:把t=,s=6代入函数解析式为s=﹣6t2+bt,得:6=﹣6×+b×,解得b=15.∴函数解析式为s=﹣6t2+15t=﹣6(t﹣)2+∵﹣6<0,当t=时,s取得最大值,此时s=.答:汽车刹车后行驶的最大距离是米.25.如图,在△ABC中,AD与BE相交于点G,且=4,=.(1)求的值;(2)若CE=5cm,则AC的长.【分析】(1)过点D作DF∥BE交AC于点F,根据平行线的性质得到AE=4EF,CE=EF,代入计算得到答案;(2)把CE=5代入(1)中结论,求出AE,计算即可.【解答】解:(1)过点D作DF∥BE交AC于点F,∴,∴AE=4EF,∵DF∥BE,∴==,∴CE=EF,∴==;(2)∵=,∴=,解得,AE=8,∴AC=AE+CE=8+5=13(cm).26.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式;(2)点D为y轴右侧抛物线上一点,是否存在点D,使S△ABC=S△ABD?若存在,请求出点D坐标:若不存在,请说明理由.【分析】(1)把A、B点代入抛物线y=ax2+bx+2得到关于a、b的方程组,解方程组求出a、b得到抛物线解析式;(2)先确定C(0,2),设D(x,﹣x2+x+2)(x>0),利用三角形面积公式得到×(4+1)×|﹣x2+x+2|=×(4+1)×2,然后分别解方程﹣x2+x+2=2和﹣x2+x+2=﹣2,从而得到满足条件的D点坐标.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在点D,使S△ABC=S△ABD.当x=0时,y=﹣x2+x+2=2,则C(0,2),设D(x,﹣x2+x+2)(x>0),×(4+1)×|﹣x2+x+2|=×(4+1)×2,当﹣x2+x+2=2时,解得x1=0(舍去),x2=3,此时D(3,2);当﹣x2+x+2=﹣2时,解得x1=(舍去),x2=,此时D(,2).。
广西贺州市2020年九年级上学期数学期中考试试卷A卷
广西贺州市2020年九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共9分)1. (1分)一元二次方程的两实数根相等,则的值为()A .B . 或C .D . 或2. (1分) (2020七上·邛崃期末) 如果x=-2是一元一次方程ax-8=12-a的解,则a的值是()A . -20B . -4C . -3D . -103. (1分)(2019·台州模拟) 下列说法正确的是()A . 平行四边形的对角线互相平分且相等B . 矩形的对角线相等且互相平分C . 菱形的对角线互相垂直且相等D . 正方形的对角线是正方形的对称轴4. (1分) (2018九上·西安月考) 如图,直线l1∥l2∥l3 ,另两条直线分别交l1 , l2 , l3于点A,B,C及点D,E,F,且AB=3,DE=4,EF=2,则()A . BC∶DE=1∶2B . BC∶DE=2∶3C . BC·DE=8D . BC·DE=65. (1分)有两名男生和两名女生,王老师要随机地,两两一对地为他们排座位,一男一女排在一起的概率为()A .B .C .D .6. (1分) (2018九上·丹江口期末) 如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则AB离地面的距离为()m.A . 2.1B . 2C . 1.8D . 1.67. (1分)如图,小明在打网球时,要使球恰好能打过网,而且落在离网5米的位置上,则球拍拍球的高度h应为()A . 2.7米B . 1.8米C . 0.9米D . 6米8. (1分)如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是()A . 4cmB . 6cmC . 8cmD . 10cm9. (1分)如图,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点D逆时针旋转90°得到线段OQ.要使点Q恰好落在AD上,则BP的长是()A . 1B . 2C . 3D . 4二、填空题 (共8题;共8分)10. (1分) (2019七上·梁子湖期中) 若,则的值为________11. (1分) (2019九上·无锡月考) 某商场销售额3月份为16万元,5月份为25万元,设商场这两个月销售额的平均增长率为x,则可列方程为________.12. (1分)一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里大约有鲢鱼________尾.13. (1分)(2014·连云港) 如图1,折线段AOB将面积为S的⊙O分成两个扇形,大扇形、小扇形的面积分别为S1、S2 ,若 =0.618,则称分成的小扇形为“黄金扇形”.生活中的折扇(如图2)大致是“黄金扇形”,则“黄金扇形”的圆心角约为________°.(精确到0.1)14. (1分)(2012·淮安) 菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=________cm.15. (1分)如图,在矩形ABCD中,AB=3,AD=4,P是AD上不与A、D重合的一动点,PE⊥AC,PF⊥BD,E、F为垂足,则PE+PF的值为________.16. (1分)“三月三,放风筝”,如图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH,小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是________(用字母表示).17. (1分) (2017八下·北海期末) 在平面直角坐标系中,一只电子青蛙从原点O出发,按向上,向右,向下,向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,那么点的坐标是________.三、解答题 (共8题;共17分)18. (2分) (2019八上·沛县期末) 如图,方格中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的周长;(2)请判断三角形ABC是否是直角三角形,并说明理由;(3)△ABC的面积;(4)点C到AB边的距离.19. (2分) (2019八下·朝阳期中) 图①、图②、图③都是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形顶点叫做格点,图①中的△ABC的顶点都在格点上,图①中的△AB C的顶点都在格点上.(1)沿BC边上的高将△ABC分成两个全等的三角形,用这两个三角形在图②、图③中个拼成一个与△ABC面积相等的平行四边形,所拼得的两个平行四边形不完全重合;(2)直接写出(1)中所拼得的平行四边形较长的对角线的长.20. (1分) (2015八下·嵊州期中) 嵊州国商大厦服装柜在销售中发现:“宝乐”牌童装平均每天可以售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经调查发现:每件童装每降价1元,商场平均每天可多销售2件.若商场每天要想盈利1200元,请你帮助商场算一算,每件童装应降价多少元?21. (1分)如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)22. (2分)(2019·合肥模拟) 如图,D为⊙O上一点,点C在直径B4的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若BC=6,tan∠CDA= ,求CD的长,23. (4分) (2017八上·台州开学考) 某校的20年校庆举办了四个项目的比赛,现分别以A,B,C,D表示它们.要求每位同学必须参加且限报一项.以701班为样本进行统计,并将统计结果绘制如下两幅统计图,其中参加A项目的人数比参加C与D项目人数的总和多1人,参加D项目的人数比参加A项目的人数少11人.请你结合图中所给出的信息解答下列问题:(1)求出全班总人数;(2)求出扇形统计图中参加D项目比赛的学生所在的扇形圆心角的度数;(3)若该校7年级学生共有200人,请你估计这次活动中参加A和B项目的学生共有多少人?24. (2分)(2017·丹东模拟) 现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC,CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是________;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)25. (3分) (2019八上·金坛月考) 在平面直角坐标系中,点A的坐标为(﹣6,6),以A为顶点的∠BAC 的两边始终与x轴交于B、C两点(B在C左面),且∠BAC=45°.(1)如图,连接OA,当AB=AC时,试说明:OA=OB.(2)过点A作AD⊥x轴,垂足为D,当DC=2时,将∠BAC沿AC所在直线翻折,翻折后边AB交y轴于点M,求点M的坐标.参考答案一、单选题 (共9题;共9分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共8题;共8分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共17分)18-1、18-2、18-3、18-4、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、24-4、25-1、。
广西贺州市2020年九年级上学期数学期中考试试卷A卷
广西贺州市2020年九年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·玉林模拟) 如图,⊙O1与⊙O2相交于A,B两点,经过点A的直线CD分别与⊙O1、⊙O2交于C、D,经过点B的直线EF分别与⊙O1、⊙O2交于E、F,且EF∥O1O2.下列结论:①CE∥DF;②∠D=∠F;③EF =2O1O2.必定成立的有()A . 0个B . 1个C . 2个D . 3个2. (2分)抛物线y=x2+mx+1的顶点在坐标轴上,则m的值()A . 0B . ﹣2C . ±2D . 0,±23. (2分)抛物线y=(x﹣1)2+2与y轴交点坐标为()A . (0,1)B . (0,2)C . (1,2)D . (0,3)4. (2分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A .B .C .D .5. (2分)(2017·岱岳模拟) 如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,下列结论:① <0;②a﹣b+c=﹣9a;③若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9).其中正确的是()A . ①②③B . ①③④C . ①②④D . ①②③④6. (2分)(2012·南京) 如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为()A .B .C .D .7. (2分)(2016·临沂) 如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB= ,则阴影部分的面积是()A .B .C . ﹣D . ﹣8. (2分) (2017九下·萧山月考) 已知抛物线 ( <<0)与x轴最多有一个交点,现有以下结论:① <0;②该抛物线的对称轴在y轴左侧;③关于x的方程有实数根;④对于自变量x 的任意一个取值,都有,其中正确的为()A . ①②B . ①②④C . ①②③D . ①②③④9. (2分) (2018九上·新洲月考) 如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD 的面积最大值是()A . 12B . 18C . 24D . 3610. (2分)(2019·邯郸模拟) 在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A . y1B . y2C . y3D . y4二、填空题 (共14题;共95分)11. (1分) (2019九上·台安月考) 若点、、都在二次函数的图象上,则、、从小到大的关系是________.(用“ ”表示).12. (1分)(2020·台州模拟) 不透明袋子中装有红、绿小球各一个,除颜色外无其余差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为________.13. (1分)(2019·仙居模拟) 如图,等边△ABC的边长是4,O是△ABC的中心,连接OB,OC,把△BOC绕着点CO旋转到△AO′C的位置,在这个旋转过程中,线段OB所扫过的图形的面积是________.14. (1分) (2019九上·融安期中) 如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交y=x2的图象于点A i;,交直线y=-x于点Bi。
广西壮族自治区贺州市昭平县2024-2025学年九年级上学期11月期中考试数学试题
广西壮族自治区贺州市昭平县2024-2025学年九年级上学期11月期中考试数学试题一、单选题1.实数5-的倒数是()A .15-B .5C .5-D .152.下列图案属于轴对称图形的是()A .B.C.D.3.2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为()A .43.8410⨯B .53.8410⨯C .63.8410⨯D .538.410⨯4.下列各式中,计算正确的是()A .325a a a +=B .32a a a -=C .()325a a =D .235a a a ⋅=5.下列函数中,属于二次函数的是()A .227y x =-B .2y x=C .22024y x =+D .1y x=-6.如图,CM DN BE ∥∥,若AC CD DE ==,则AM MN NB ==.蕴含的数学道理是()A .两直线平行,同位角相等;B .两条平行线之间的距离处处相等;C .平行于同一直线的两条直线平行;D .两条直线被一组平行线所截,所得的对应线段成比例.7.不等式组21512x x ->⎧⎪⎨+≥⎪⎩中,不等式组的解集在数轴上表示正确的是()A .B .C .D .8.关于二次函数221y x =-+的图象,下列说法中,正确的是()A .对称轴为直线1x =B .顶点坐标为()21-,C .可以由二次函数22y x =-的图象向左平移1个单位长度得到D .在y 轴的左侧,y 随x 的增大而增大,在y 轴的右侧,y 随x 的增大而减小9.如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于()1,A n -、()2,1B -两点,与y 轴相交于点C ,则点C 的坐标是()A .()0,1-B .()0,0C .0,1D .0,210.上党腊驴肉是山西长治的传统名吃,其肉质肥而不腻、瘦而不柴,香味四溢、回味无穷.某特产专卖店购进一批袋装上党腊驴肉,进价为40元/袋,经市场调查发现,当销售单价为60元时,每天可售出300袋;销售单价每降低1元,每天可多售出20袋.若销售单价降低x 元,该专卖店每天销售这种腊驴肉可获得利润5000元,则可列方程为()A .()()6040300205000x x -++=B .()()6040300205000x x -+-=C .()()6040300205000x x ---=D .()()6040300205000x x --+=11.函数2y ax c =+与y ax c =+在同一平面直角坐标系中的图象大致是()A .B .C .D .12.二次函数()20y ax bx c a =++≠的部分图象如图所示,图象过点()1,0-,对称轴为直线2x =,下列结论:(1)0<a ,>0b ,0c >;(2)40a b +=;(3)93a c b +>;(4)若点()12,A y -,点()22,B y 、点()33,C y 在该函数图象上,则132y y y <<.其中正确的结论有()A .1个B .2个C .3个D .4个二、填空题13.分解因式:22a a +=.14.如图,AB CD ∥,直线l 分别与AB ,CD 相交,若1130∠=︒,则2∠度数为︒.15.若21a b -=,则整式482a b -+的值为.16.已知32a b =,那么a bb -等于.17.贺州市成为我国第一个“全域长寿市”,优越的自然环境丰富了文旅资源,在这秋高气爽的季节,某校准备组织初一年级600名学生进行秋季研学活动,该校随机抽取了其中50名同学进行研学目的地意向调查,调查结果如图所示,估计初一年级愿意去姑婆山的学生人数为人.18.如图,一次函数24y x =-+的图象与x 轴、y 轴分别交于A 、B 两点,点C 是OA 的中点,过点C 作CD OA ⊥于C 交一次函数图象于点D ,P 是OB 上一动点,则PC PD +的最小值为.三、解答题19.计算:()()3128-+-⨯--.20.解分式方程:3202x x -=-21.如图,在ABC V 中,8AB =,6AC =.(1)求作BAC ∠的平分线AD 交BC 于点D ;(要求:保留画图痕迹,不写画法.)(2)在(1)的条件下,若12ABD S = ,求ABC V 的面积.22.如图,一次函数3y x =-+的图象与x 轴、y 轴分别交于A 、B 两点,二次函数2y x bx c =-++的图象经过点A ,B .(1)求二次函数的表达式;(2)直线AB 与二次函数图象的对称轴交于点P ,求点P 坐标.23.为了培养学生对航天知识的学习兴趣,组织全校800名学生进行了“航天知识竞赛”,教务处从中随机抽取了n 名学生的竞赛成绩(满分100分,每名学生的成绩记为x 分)分成四组,A 组:6070x ≤<;B 组:7080x ≤<;C 组:8090x ≤<;D 组:90100x ≤≤,并得到如下不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)扇形统计图中表示“C ”的扇形圆心角的度数是_______.(2)请补全频数分布直方图;(3)规定学生竞赛成绩80x ≥为优秀,估计全校竞赛成绩达到优秀的学生人数有多少名?24.《九章算术》是我国古代数学的经典著作,奠定了中国传统数学的基本框架,书中记载:“今有大器六、小器一容五斛;大器一、小器六容二斛,问大小器各容几何?”译文:“今有大容器6个、小容器1个,总容量为5斛;大容器1个、小容器6个,总容量为2斛.问大小容器的容积各是多少斛?”25.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,点E 与点O 关于CD 对称.(1)连接CE 、DE ,求证:四边形CEDO 是菱形;(2)若2AB =,60AOB ∠=︒,求点E 、O 之间的距离.26.小明是一位羽毛球爱好者,在一次单打训练中,小明对“挑球”这种击球方式进行路线分析,球被击出后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系xOy ,击球点P 到球网AB 的水平距离 1.5m OB =.小明在同一击球点练习两次,球均过网,且落在界内.第一次练习时,小明击出的羽毛球的飞行高度y (单位:m)与水平距离x (单位:m)近似满足函数关系20.2( 2.5) 2.35y x =--+.第二次练习时,小明击出的羽毛球的飞行高度y (单位:m)与水平距离x (单位:m)的几组数据如下:水平距离/m x 01234飞行高度/my 1.11.61.921.9根据上述信息,回答下列问题:(1)直接写出击球点的高度;(2)求小明第二次练习时,羽毛球的飞行高度y 与水平距离x 满足的函数关系式;(3)设第一次、第二次练习时,羽毛球落地点与球网的距离分别为1d ,2d ,则1d 2d (填“>”,“<”或“=”).。
广西省贺州市2019-2020学年中考数学教学质量调研试卷含解析
广西省贺州市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知⊙O 1与⊙O 2的半径分别是3cm 和5cm ,两圆的圆心距为4cm ,则两圆的位置关系是( ) A .相交 B .内切 C .外离 D .内含2.下图是某几何体的三视图,则这个几何体是( )A .棱柱B .圆柱C .棱锥D .圆锥3.如图所示是放置在正方形网格中的一个ABC ∆ ,则tan ABC ∠的值为( )A .25B .5 C .2D .124.-5的倒数是 A .15B .5C .-15D .-55.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-616 ) A .±4B .4C .2D .±27.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( ) A .﹣3B .0C .6D .98.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y29.若分式14a-有意义,则a的取值范围为( )A.a≠4B.a>4 C.a<4 D.a=410.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.3 B.4 C.5 D.611.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC 12.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C.12aa=D.(﹣a﹣2)3=﹣61a二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是 ____ .14.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.15.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.16.计算:(12)﹣1﹣(5﹣π)0=_____.17.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).18.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?20.(6分)计算:2tan45°-(-13)º-13?()21.(6分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.(1)求证:PM∥AD;(2)若∠BAP=2∠M,求证:PA是⊙O的切线;(3)若AD=6,tan∠M=12,求⊙O的直径.22.(8分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.23.(8分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.(1)求k,a,b的值;(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.24.(10分)如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BF∥AC.25.(10分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)26.(12分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.27.(12分)“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选A.考点:圆与圆的位置关系.2.D【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.3.D【解析】【分析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A 向CB 引垂线,与CB 交于D ,△ABD 是直角三角形, ∵BD=4,AD=2, ∴tan ∠ABC=2142AD BD == 故选:D . 【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A 的对边a 与邻边b 的比叫做∠A 的正切,记作tanA . 4.C 【解析】 【分析】若两个数的乘积是1,我们就称这两个数互为倒数. 【详解】解:5的倒数是15-. 故选C . 5.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.6.B【解析】【分析】根据算术平方根的意义求解即可.【详解】4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.7.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.8.A【解析】【分析】分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,∴y1=−6,y1=−3,∵−3>−6,∴y1<y1.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.9.A【解析】【分析】分式有意义时,分母a-4≠0【详解】依题意得:a−4≠0,解得a≠4.故选:A【点睛】此题考查分式有意义的条件,难度不大10.C【解析】【分析】根据等腰三角形的性质可得BE=12BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.【详解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=12BC=2,又∵D是AB中点,∴BD=12AB=32,∴DE是△ABC的中位线,∴DE=12AC=32,∴△BDE的周长为BD+DE+BE=32+32+2=5,故选C.【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.11.D【解析】【分析】【详解】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【点睛】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.12.D 【解析】 【分析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可. 【详解】解:A :2a+3a=(2+3)a=5a ,故A 错误; B :x 8÷x 2=x 8-2=x 6,故B 错误;C :12a C 错误; D :(-a -2)3=-a -6=-61a,故D 正确. 故选D. 【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.25【解析】【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率. 【详解】袋子中有3个白球和2个红球,一共5个球,所以从中任意摸出一个球是红球的概率为:25, 故答案为25. 【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.14.【解析】 【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可. 【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度. ∵圆柱底面的周长为6cm ,圆柱高为2cm , ∴AB =2cm ,BC =BC′=3cm , ∴AC 2=22+32=13,∴AC=13cm,∴这圈金属丝的周长最小为2AC=213cm.故答案为213.【点睛】本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.15.k>3 4【解析】【分析】由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.【详解】∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>34,故答案为k>34.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.16.1【解析】【分析】分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题【详解】解:原式=2﹣1=1,故答案为1.【点睛】此题考查负整数指数幂,0指数幂的化简,难度不大17.【解析】【分析】本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.【详解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B点,∴∠C=30°,∴AB=AC•tan30°=30×3答:乙船的路程为海里.故答案为【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.18.0<m<13 2【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣5 12;由y=﹣512x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣512x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=125m,∴A(125m,0),B(0,m),即OA=125m,OB=m,在Rt△OAB中,AB=2222121355OA OB m m m⎛⎫+=+=⎪⎝⎭,过点O作OD⊥AB于D,∵S△ABO=12OD•AB=12OA•OB,∴12OD•135m=12×125m×m,∵m>0,解得OD=1213m,由直线与圆的位置关系可知1213m <6,解得m<132,故答案为0<m<13 2.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k=100>0,∴y随x的增大而增大,当x=21时,y有最小值,y最小=100×21+17360=19460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.20.【解析】【分析】先求三角函数,再根据实数混合运算法计算.【详解】解:原式=2×1-1-1【点睛】此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.21.(1)证明见解析;(2)证明见解析;(3)1;【解析】【分析】(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=12x,求出MN=2x+12x=2.1x,OM=12MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=12AD=3,求出x即可.【详解】(1)∵BD是直径,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)连接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半径,∴PA是⊙O的切线;(3)连接BN,则∠MBN=90°.∵tan∠M=12,∴BCCM=12,设BC=x,CM=2x,∵MN是⊙O直径,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴BC MC NC BC,∴BC2=NC×MC,∴NC=12x,∴MN=2x+12x=2.1x,∴OM=12MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中点,C是AB的中点,AD=6,∴OC=0.71x=12AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半径为1.【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.22.(1);(2)12;(3)t=或t=或t=1.【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考点:二次函数综合题.23.(1)k=1、a=2、b=4;(2)s=﹣32t2﹣152t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣73,53)【解析】【分析】(1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.(3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.【详解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,∴B(﹣1,3),将A(﹣4,0)B(﹣1,3)代入函数解析式,得340k bk b-+⎧⎨-+⎩==,解得14 kb=⎧⎨=⎩,直线AB的解析式为y=x+4,∴k=1、a=2、b=4;(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,∴当x=t时,y P=﹣t2﹣4t,y N=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=12PN(AM+BH)=12(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=12(﹣t2﹣5t﹣4)×3,化简,得s=﹣32t2﹣152t﹣6,自变量t的取值范围是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).当y=3时,x=﹣3,∴P(﹣3,3),连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,如图2,可证R 在DT 上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC ,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO ⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC过点Q 作QS ⊥PN ,垂足是S ,∴∠SPQ=∠BOR ∴tan ∠SPQ=tan ∠BOR ,可求2,2,设Q 点的横坐标是m ,当x=m 时y=m+4,∴SQ=m+3,PS=﹣m ﹣1 23122m m +=--,解得m=﹣73. 当x=﹣73时,y=53, Q (﹣73,53). 【点睛】本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.24.见解析.【解析】【分析】(1)画出⊙O 的两条直径,交点即为圆心O .(2)作直线AO 交⊙O 于F ,直线BF 即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 25.见解析【解析】【分析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键. 26.(1)反比例函数表达式为4y x =-,正比例函数表达式为y x =-; (2)(4,1)C -,6ABC S =V .【解析】试题分析:(1)将点A 坐标(2,-2)分别代入y=kx 、y=m x求得k 、m 的值即可;(2)由题意得平移后直线解析式,即可知点B 坐标,联立方程组求解可得第四象限内的交点C 得坐标,可将△ABC 的面积转化为△OBC 的面积.试题解析:(1)把()2,2A -代入反比例函数表达式m y x =, 得22m -=,解得4m =-, ∴反比例函数表达式为4y x =-, 把()2,2A -代入正比例函数y kx =,得22k -=,解得1k =-,∴正比例函数表达式为y x =-.(2)直线BC 由直线OA 向上平移3个单位所得,∴直线BC 的表达式为3y x =-+,由43y x y x ⎧=-⎪⎨⎪=-+⎩,解得1142x y =⎧⎨=-⎩或2214x y =-⎧⎨=⎩, ∵C 在第四象限,∴()4,1C -,连接OC ,∵OA BC P ,12ABC BOC C S S OB x ==⋅⋅V V , 1342=⨯⨯, 6=.27. (1) 3.4棵、3棵;(2)1.【解析】【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】解:(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是12233124854613.430⨯+⨯+⨯+⨯+⨯+⨯=(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有73007030⨯=户,故答案为:1.【点睛】此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年广西贺州市昭平县九年级(上)期中数学试卷一、选择题:(每小题3分,共36分.)1.如果线段a=2cm,b=3cm,那么的值为()A.B.C.D.2.对于函数y=,自变量的取值范围为()A.x≥0B.x≤0C.x≠0D.任意实数3.若x为自变量,则表达式不是二次函数的是()A.y=2x2﹣1B.y=C.y=1x2D.y=﹣x2 +2x﹣14.已知线段a=2,c=4,线段b是a,c的比例中项,则线段b的值为()A.8B.3C.D.25.二次函数y=x2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到()A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=(x﹣1)2﹣3D.y=(x+1)2+3 6.对于反比例函数y=﹣,下列说法不正确的是()A.点(﹣3,3)在它的图象上B.当x>0时,y随x的增大而增大C.它的图象在第二、四象限D.当x<0时,y随x的增大而减小7.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.8.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为()A.6B.4C.3D.19.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小10.如图,抛物线y=ax2+bx+c(a≠0)与x轴一个交点为(﹣2,0),对称轴为直线x=1,则y<0时x的范围是()A.x>4或x<﹣2B.﹣2<x<4C.﹣2<x<3D.0<x<311.若x===,则x等于()A.﹣1或B.﹣1C.D.不能确定12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题:(每小题3分,共18分,请将答案直接写在题中的横线上,)13.已知函数y=x m﹣1是关于x的二次函数,则m=.14.若,则的值为.15.若二次函数y=4x2﹣4x﹣3的图象如下图所示,则当x时,函数值y0.16.如图,对称轴平行于y轴的抛物线与x轴交于(2,0),(6,0)两点,则它的对称轴为.17.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是km.18.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,点C为y轴上的一点,若△ABC的面积为,则k的值为.三、解答题:(共8小题,满分66分,解答题要写出文字说明、演算步骤或证明过程.)19.已知三条线段的长度分别是3、4、6,试写出另一条线段,使这四条线段成为比例线段.20.已知二次函数y=﹣2x2+bx+c的图象经过A(0,4)和B(1,﹣2),求该抛物线的解析式以及它的开口方向.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n)(1)求反比例函数y=上的表达式;(2)若两函数图象的另一交点为B,直接写出B的坐标.22.已知二次函数的解析式是y=x2﹣2x﹣3.(1)求该函数图象与x轴,y轴的交点坐标以及它的顶点坐标:(2)根据(1)的结果在坐标系中利用描点法画出此抛物线.23.已知:线段a、b、c,且==.(1)求的值.(2)如线段a、b、c满足a+b+c=27,求a﹣b+c的值.24.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s =﹣6t2+bt(b为常数).已知t=时,s=6,求汽车刹车后行驶的最大距离是多少?25.如图,在△ABC中,AD与BE相交于点G,且=4,=.(1)求的值;(2)若CE=5cm,则AC的长.26.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式;(2)点D为y轴右侧抛物线上一点,是否存在点D,使S△ABC=S△ABD?若存在,请求出点D坐标:若不存在,请说明理由.2019-2020学年广西贺州市昭平县九年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请将符合题意的序号填在题号的括号内.)1.如果线段a=2cm,b=3cm,那么的值为()A.B.C.D.【解答】解:因为线段a=2cm,b=10cm,所以的值,故选:A.2.对于函数y=,自变量的取值范围为()A.x≥0B.x≤0C.x≠0D.任意实数【解答】解:由题意得2x≠0,解得,x≠0,故选:C.3.若x为自变量,则表达式不是二次函数的是()A.y=2x2﹣1B.y=C.y=1x2D.y=﹣x2 +2x﹣1【解答】解:A.y=2x2﹣1属于二次函数,不合题意;B.y=属于一次函数,符合题意;C.y=1x2属于二次函数,不合题意;D.y=﹣x2+2x﹣1属于二次函数,不合题意;故选:B.4.已知线段a=2,c=4,线段b是a,c的比例中项,则线段b的值为()A.8B.3C.D.2【解答】解:若b是a、c的比例中项,即b2=ac=2×4=8,b=2(负值舍去),故选:D.5.二次函数y=x2﹣1的图象可由下列哪个函数图象向右平移1个单位,向下平移2个单位得到()A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=(x﹣1)2﹣3D.y=(x+1)2+3【解答】解:此题实际上是求y=x2﹣1向左平移1个单位,向上平移2个单位后抛物线的解析式.则y=x2﹣1向左平移1个单位后抛物线的解析式是:y=(x+1)2﹣1+2=y=(x+1)2+1.故选:B.6.对于反比例函数y=﹣,下列说法不正确的是()A.点(﹣3,3)在它的图象上B.当x>0时,y随x的增大而增大C.它的图象在第二、四象限D.当x<0时,y随x的增大而减小【解答】解:A、把点(﹣3,3)代入反比例函数y=﹣得﹣3=﹣3,故A选项正确;B、当x>0时,y随x的增大而增大,故B选项正确;C、∵k=﹣9<0,∴图象在第二、四象限,故C选项正确;D、当x<0时,y随x的增大而证得,故D选项错误.故选:D.7.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.【解答】解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.8.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为()A.6B.4C.3D.1【解答】解:在y=x2﹣4x+3中,当y=0时,x=1、3;当x=0时,y=3;即A(1,0)、B(3,0)、C(0,3)故△ABC的面积为:×2×3=3;故选:C.9.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小【解答】解:∵y=x2﹣2x+1=(x﹣1)2,∴抛物线开口向上,对称轴为x=1,当x>1时,y随x的增大而增大,∴A、C正确,D不正确;令y=0可得(x﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x轴有一个交点,∴B正确;故选:D.10.如图,抛物线y=ax2+bx+c(a≠0)与x轴一个交点为(﹣2,0),对称轴为直线x=1,则y<0时x的范围是()A.x>4或x<﹣2B.﹣2<x<4C.﹣2<x<3D.0<x<3【解答】解:∵y=ax2+bx+c的对称轴为直线x=1,与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(4,0),∴y<0时x的范围是﹣2<x<4,故选:B.11.若x===,则x等于()A.﹣1或B.﹣1C.D.不能确定【解答】解:∵x===,∴当a+b+c≠0时,x==;当a+b+c=0时,x===﹣1,故选:A.12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【解答】解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选:C.二、填空题:(每小题3分,共18分,请将答案直接写在题中的横线上,)13.已知函数y=x m﹣1是关于x的二次函数,则m=3.【解答】解:∵函数y=x m﹣1是关于x的二次函数,∴m﹣1=3,解得,m=3,故答案为:3.14.若,则的值为.【解答】解:由合比性质,得==.故答案为:.15.若二次函数y=4x2﹣4x﹣3的图象如下图所示,则当x时,函数值y≥0.【解答】解:∵从二次函数y=4x2﹣4x﹣3的图象可知:图象过点(﹣,0)和(,0),∴当x时,函数值y≥0,故答案为:≥.16.如图,对称轴平行于y轴的抛物线与x轴交于(2,0),(6,0)两点,则它的对称轴为直线x=4.【解答】解:∵对称轴平行于y轴的抛物线与x轴交于(2,0),(6,0)两点,∴它的对称轴为:直线x==4.故答案为:直线x=4.17.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地间的实际距离是 1.25km.【解答】解:设甲、乙两地间的实际距离为xcm,则:=,解得:x=125000cm=1.25km.故答案为:1.25.18.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,点C为y轴上的一点,若△ABC的面积为,则k的值为﹣5.【解答】解:设A(a,b),则OB=﹣a,AB=b,S△ABC=,∴OB×AB=,即:﹣ab=5,∴k=ab=﹣5;故答案为:﹣5.三、解答题:(共8小题,满分66分,解答题要写出文字说明、演算步骤或证明过程.)19.已知三条线段的长度分别是3、4、6,试写出另一条线段,使这四条线段成为比例线段.【解答】解:设所加的线段是x,则得到:=或=或=,解得:x=8或或2.20.已知二次函数y=﹣2x2+bx+c的图象经过A(0,4)和B(1,﹣2),求该抛物线的解析式以及它的开口方向.【解答】解:把A(0,4)和B(1,﹣2)分别代入y=﹣2x2+bx+c得,解得,所以y=﹣2x2﹣4x+4,因为a=﹣2<0,所以抛物线的开口向下.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n)(1)求反比例函数y=上的表达式;(2)若两函数图象的另一交点为B,直接写出B的坐标.【解答】解:(1)∵点A(﹣1,n)在一次函数y=﹣2x的图象上,∴代入得:n=(﹣2)×(﹣1)=2,∴点A的坐标为(﹣1,2),∵点A在反比例函数的图象上,∴k=(﹣1)×2=﹣2.∴反比例函数的解析式为.(2)解方程组,得,∴一次函数y=﹣2x的图象与反比例函数的图象的另一个交点B的坐标是(1,﹣2).22.已知二次函数的解析式是y=x2﹣2x﹣3.(1)求该函数图象与x轴,y轴的交点坐标以及它的顶点坐标:(2)根据(1)的结果在坐标系中利用描点法画出此抛物线.【解答】解:(1)令y=0,则0=x2﹣2x﹣3.解得x1=﹣1,x2=3.令x=0,则y=﹣3,抛物线y=x2﹣2x﹣3与x轴交点的坐标为(﹣1,0),(3,0),与y轴交点的坐标为(0,﹣3),y=x2﹣2x﹣3=(x﹣1)2﹣4,所以它的顶点坐标为(1,﹣4);(2)列表:x…﹣10123…y…0﹣3﹣4﹣30…图象如图所示:.23.已知:线段a、b、c,且==.(1)求的值.(2)如线段a、b、c满足a+b+c=27,求a﹣b+c的值.【解答】解:(1)∵=,∴=,∴=;(2)设===k,则a=2k,b=3k,c=4k,∵a+b+c=27,∴2k+3k+4k=27,∴k=3,∴a=6,b=9,c=12,∴a﹣b+c=6﹣9+12=9.24.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s =﹣6t2+bt(b为常数).已知t=时,s=6,求汽车刹车后行驶的最大距离是多少?【解答】解:把t=,s=6代入函数解析式为s=﹣6t2+bt,得:6=﹣6×+b×,解得b=15.∴函数解析式为s=﹣6t2+15t=﹣6(t﹣)2+∵﹣6<0,当t=时,s取得最大值,此时s=.答:汽车刹车后行驶的最大距离是米.25.如图,在△ABC中,AD与BE相交于点G,且=4,=.(1)求的值;(2)若CE=5cm,则AC的长.【解答】解:(1)过点D作DF∥BE交AC于点F,∴,∴AE=4EF,∵DF∥BE,∴==,∴CE=EF,∴==;(2)∵=,∴=,解得,AE=8,∴AC=AE+CE=8+5=13(cm).26.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式;(2)点D为y轴右侧抛物线上一点,是否存在点D,使S△ABC=S△ABD?若存在,请求出点D坐标:若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在点D,使S△ABC=S△ABD.当x=0时,y=﹣x2+x+2=2,则C(0,2),设D(x,﹣x2+x+2)(x>0),×(4+1)×|﹣x2+x+2|=×(4+1)×2,当﹣x2+x+2=2时,解得x1=0(舍去),x2=3,此时D(3,2);当﹣x2+x+2=﹣2时,解得x1=(舍去),x2=,此时D(,2).。