数字电路与系统设计
数字电路与系统设计
目录分析
1.2数制
1.1数字信号与数 字电路概述
1.3码制
1.5 HDL
1.4算术运算与逻 辑运算
习题
2.1逻辑代数中的运 算
2.2逻辑运算的电路 实现
2.3逻辑运算的公式
2.4逻辑运算的基本 规则
2.5逻辑函数的标准 形式
2.6逻辑函数的化简
2.7 VHDL描述逻辑 门电路
习题
3.2常用中规模集 成组合逻辑电路
程逻辑器件 (CPLD)
3 6.6现场可编
程门阵列 (FPGA)
4
6.7 HDPLD应 用举例
5
习题
1
7.1概述
2
7.2数字系统 的描述工具
3
7.3控制器设 计
4 7.4数字系统
设计及VHDL实 现
5
习题
8.2模数转换(A/D)
8.1数模转换(D/A)
习题
作者介绍
这是《数字电路与系统设计》的读书笔记模板,暂无该书作者的介绍。
(MSI)
3.1 SSI构成的组 合电路的分析和设
计
3.3竞争和冒险
3.4 VHDL描述 组合逻辑电路
习题
4.1概述 4.2基本SRFF
4.3钟控电位触发器 4.4边沿触发器
4.5集成触发器的参 数
4.6触发器应用举例
4.7 VHDL描述触发 器
习题
5.1概述 5.2寄存器
5.3计数器 5.4序列信号发生器
数字电路与系统设计
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
数字电路与系统设计课后习题答案
1、7将下列个数分别转换成十六进制数:(11111111)2,(377)8,(255)10
解:结果都为(FF)16
1、8转换下列各数,要求转换后保持原精度:
解:(1、125)10=(1、0010000000)10——小数点后至少取10位
(0010 1011 0010)2421BCD=(11111100)2
A-B=(90)10-(47)10=(43)10
C×D=(84)10×(6)10=(504)10
C÷D=(84)10÷(6)10=(14)10
两种算法结果相同。
1、11试用8421BCD码完成下列十进制数的运算。
解:(1)5+8=(0101)8421BCD+(1000)8421BCD=1101 +0110=(1 0110)8421BCD=13
(2)9+8=(1001)8421BCD+(1000)8421BCD=1 0001+0110=(1 0111)8421BCD=17
(3)58+27=(0101 1000)8421BCD+(0010 0111)8421BCD=0111 1111+0110=(1000 0101)8421BCD=85
(4)9-3=(1001)8421BCD-(0011)8421BCD=(0110)8421BCD=6
1、1将下列各式写成按权展开式:
(352、6)10=3×102+5×101+2×100+6×10-1
(101、101)2=1×22+1×20+1×2-1+1×2-3
(54、6)8=5×81+54×80+6×8-1
精品课程“数字电路与系统设计”教学体系
第 3期
电 气 电 子教 学 学 报
J 0URNAL 0F E EE
Vo. 2 No 3 13 .
21 0 0年 6月
J n. 0 0 u 2 1
精 品 课 程 “ 字 电 路 与 系 统 设 计 ’ 学 体 系 数 ’ 教
孙 万 蓉 , 爱峰 , 秀琴 , 任 初 邓 成
教 学模式 。
小规模 集 成 电路 发展 到 大 规 模 集成 电路 ( S ) L I 和超 大规模 集 成 电路 ( S ) VL I 。相 应地 , 字 电路 和数 字 数
( 西安 电子科技 大学 电子 工程 学院 , 陕西 西安 7 0 7 ) 1 0 1
摘 要 : 文提出了国家级精 品课 程“ 本 数字电路与系统设计 ” 三种各具特色的教学体系的设 计与实践 。介绍 了 E A课 程的建设与 实验项 目的 D
形式 , 针对双语 教学实施过 程中的问题 提出了改 进的办法。并 详细介绍了精品课程 网站 与多媒体课件 的建设 。教学实 践结果表 明, 三种教学 体 系 的 设计 为 不 同层 次 的学 生 提供 了 可选 择 、 方 位 、 学 方 法 灵 活 的 学 习 平 台 。 这 样 不 仅 提 高 了 学 生 的 学 习 兴 趣 , 提 高 了 学 生综 合 应 用 的 多 教 也
能 力 , 到 了 良好 的 教 学 效 果 。 收 关 键 词 : 家 级 精 品 课 程 ; 字 电 路 与 系 统 设 计 ; DA课 程 国 数 E 中图 分 类 号 : 4 . ; N7 G6 2 0 T 9 文献标识码 : A 文 章 编 号 :0 80 8 (0 0 0 —0 70 1 0 —66 2 1 )30 0 —3
数字集成电路-电路系统与设计第二版课程设计
数字集成电路-电路系统与设计第二版课程设计
一、课程设计介绍
数字集成电路是现代电路设计中的重要组成部分,也是计算机科学与工程的重要分支。
本课程设计旨在通过对数字集成电路的系统与设计进行探究,并结合具体的案例来设计和实现数字集成电路,使学生能够熟悉数字集成电路的基本原理、设计方法和实现技术。
本课程设计主要包含以下内容:
1.数值系统和编码
2.逻辑功能设计:组合逻辑电路和时序逻辑电路
3.集成电路设计方法和流程
4.VHDL和FPGA实现数字逻辑电路
5.数字信号处理器
通过本次课程设计,学生将掌握数字集成电路的系统性设计思路和实现方法,具备数字电路设计的基本能力和实际操作技术,能够针对具体应用场景提出解决方案,实现数字电路的设计、验证和调试。
二、课程设计要求
1. 课程设计题目
本次课程设计的题目为“4位计数器设计”。
2. 软件工具
VHDL编程软件和EDA工具
1。
《数字电路与系统设计》第6章习题答案
l ee t h e \1210101…X/Z0/01/0X/Z11…100…6.3对下列原始状态表进行化简: (a)解:1)列隐含表: 2)进行关联比较3)列最小化状态表为:a/1b/0b b/0a/0aX=1X=0N(t)/Z(t)S(t)解:1)画隐含表: 2)进行关联比较: 6.4 试画出用MSI 移存器74194构成8位串行 并行码的转换电路(用3片74194或2片74194和一个D 触发器)。
l ee t-h e \r 91行''' 试分析题图6.6电路,画出状态转移图并说明有无自启动性。
解:激励方程:略 状态方程:略状态转移图 该电路具有自启动性。
6.7 图P6.7为同步加/减可逆二进制计数器,试分析该电路,作出X=0和X=1时的状态转移表。
解:题6.7的状态转移表X Q 4nQ 3nQ 2nQ 1nQ 4n +1Q 3n +1Q 2n +1Q 1n +1Z 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 11 1116.8分析图6.8电路,画出其全状态转移图并说明能否自启动。
数字集成电路 电路系统与设计
数字集成电路电路系统与设计
数字集成电路是指将若干个数字电路组合在一起,形成一个完整
的电路系统的过程。
数字集成电路充分利用了数字电子技术的优势,
将不同的数字电路模块集成至一个芯片上,从而大大提高了电路系统
的性能和可靠性。
数字集成电路的设计需要遵循特定的规范和标准,包括电路功能
的设计、电路参数的计算和选取,以及电路布局和制造等方面。
同时,数字集成电路的设计需要充分考虑电路系统的稳定性、抗干扰能力、
低功耗、高可靠性等特点,以满足不同应用场景的需求。
数字集成电路常常应用于各种高精度、高复杂度数字系统中,包
括计算机、通信系统、音视频处理、自动化控制等领域。
在数字集成
电路的设计和制造中,还需要根据具体应用场景选择不同的设计方案
和制造工艺,以获得最优性能和可靠性。
数字集成电路--电路、系统与设计
数字集成电路是现代电子产品中不可或缺的一部分,它们广泛应用于计算机、手机、汽车、医疗设备等领域。
数字集成电路通过在芯片上集成大量的数字电子元件,实现了电子系统的高度集成和高速运算。
本文将从电路、系统与设计三个方面探讨数字集成电路的相关内容。
一、数字集成电路的电路结构数字集成电路的电路结构主要包括逻辑门、寄存器、计数器等基本元件。
其中,逻辑门是数字集成电路中最基本的构建元件,包括与门、或门、非门等,通过逻辑门的组合可以实现各种复杂的逻辑功能。
寄存器是用于存储数据的元件,通常由触发器构成;而计数器则可以实现计数和计时功能。
这些基本的电路结构构成了数字集成电路的基础,为实现各种数字系统提供了必要的支持。
二、数字集成电路与数字系统数字集成电路是数字系统的核心组成部分,数字系统是以数字信号为处理对象的系统。
数字系统通常包括输入输出接口、控制单元、运算器、存储器等部分,数字集成电路在其中充当着处理和控制信号的角色。
数字系统的设计需要充分考虑数字集成电路的特性,包括时序和逻辑的正确性、面积和功耗的优化等方面。
数字集成电路的发展也推动了数字系统的不断完善和创新,使得数字系统在各个领域得到了广泛的应用。
三、数字集成电路的设计方法数字集成电路的设计过程通常包括需求分析、总体设计、逻辑设计、电路设计、物理设计等阶段。
需求分析阶段需要充分了解数字系统的功能需求,并将其转化为具体的电路规格。
总体设计阶段需要根据需求分析的结果确定电路的整体结构和功能分配。
逻辑设计阶段是将总体设计转化为逻辑电路图,其中需要考虑逻辑函数、时序关系、并行性等问题。
电路设计阶段是将逻辑电路图转化为电路级电路图,包括门电路的选择和优化等。
物理设计阶段则是将电路级电路图转化为实际的版图设计,考虑布线、功耗、散热等问题。
在每个设计阶段都需要充分考虑电路的性能、面积、功耗等指标,以实现设计的最优化。
结语数字集成电路作为现代电子系统的关键组成部分,对于数字系统的功能和性能起着至关重要的作用。
精品课程《数字电路与系统设计》的项目教学法实践与探索
实 践 与探 索
林 华
( 京 航 空航 天 大 学 自动 化 学 院 , 京 20 1 ) 南 南 10 6
★
摘 要 :以精 品课 程 《 字 电路 与 系统设 计 》 背景 , 数 为 以课 程 内容 为依 托 , 用 项 目教 学 法 对 课 程 教 运 学模 式进 行 探 索和 实践 。 实践 表 明 , 目教 学 法 能 够很 好 地 调 动 学 生的 主 观 能 动 性 , 益 于 项 有 知识 之 间 的 融 会 贯 通 , 利 于研 究 性 教 学和 研 究性 学 习 的 发 展 , 有 因而 具 有 较 好 的 示 范 作 用
利用业余 时间通过借阅书刊 、 查找器件手册 、 网上搜索
等 方 式 了解 了 很 多 集 成 触 发 器 .通 过 小 组 讨 论 确 定 了 多种 设 计 方 案
一
与探索 . 不仅使学生掌握 系统 的学科 知识 . 还可 以培养 其科学技 术研究和创新能力 .以适应 当今科 学研究和
步 掌 握 集 成 触 发 器 的 正 确 使 用
1 方案 的确 定 . 2
学 生 在 拿 到设 计 任 务 后 表 现 出 了 浓 厚 的 兴 趣 . 并
根据 已学知识通过查 阅资料 、集体研讨 等方式确定设
计 方 案 . 现 设 计 指 标 项 目教 学 法 重 在 引 导 学 生 进 行 实 研 究 性 自主 学 习 . 分 析 、 决 问题 的 过程 中 学 会 研 究 在 解
自学 了 时 钟 脉 冲 的产 生 与 整 形 .并 借 阅 了 图书 馆 关 于 5 5定 时 器 的应 用 实例 类 书籍 . 计 逻 辑 电路 图 如 图 2 5 设
数字电路与系统设计实验
第二章 实验基本仪器
数字系统设计实验所需设备有: 直流稳压电源,示波器,基于CPLD的 数字电路实验系统,万用表,信号源, 计算机。
一、直流稳压电源
二、示波器
示波器是一种用来测量电信号波形的 电子仪器。用示波器能够观察电信号 波形,测量电信号的电压大小,周期 信号的频率和周期大小。双踪示波器 能够同时观察两路电信号波形。
能块相对集中地排列器件 3.布线顺序 VCC,GND,输入/输出,控制线 4. 仪器检测(电源,示波器,信号源) 5.实验 测试、调试与记录
6.撰写实验总结报告
(1)实验内容 (2)实验目的 (3)实验设备 (4)实验方法与手段 (5)实验原理图 (6)实验现象(结果)记录分析 (7)实验结论与体会
(((四三一)))、、、实实验实验目验的提内示容
•• 11..注测1意试.掌被T握T测LT器T器L件、件H7的CT4引和L脚HS7C器0和件4引的一脚传个输1特非4性门分。的别传接输地特和 十性5。V2。.掌握万用表的使用方法。
•• •
(2连为输23特二.接 被 入)..性将测测、123到 测 电。实试 试...被 非 压六六六验验HH反反反测 门 值所CC台相相相T器用非 的 。上器器器器件器门输4件777件7的入.444774输电LHH4KH入压SCCHΩC00T端。电C4400,旋位T片片44转R器0片T一电LR4的个T位一L输非的器个出门电改非端的压变门电传输非的压输出门传作特端的输性。
四、数字电路测试及故障查找、排除
1.数字电路测试
数字电路静态测试指的是给定数字电路若干组静态输 入值,测定数字电路的输出值是否正确。
数字集成电路:电路系统与设计(第二版)
数字集成电路:电路系统与设计(第二版)简介《数字集成电路:电路系统与设计(第二版)》是一本介绍数字集成电路的基本原理和设计方法的教材。
本书的内容覆盖了数字电路的基础知识、逻辑门电路、组合逻辑电路、时序逻辑电路、存储器和程序控制电路等方面。
通过学习本书,读者可以了解数字集成电路的概念、设计方法和实际应用。
目录1.数字电路基础知识 1.1 数字电路的基本概念 1.2 二进制系统与数制转换 1.3 逻辑运算与布尔代数2.逻辑门电路 2.1 与门、或门、非门 2.2 与非门、或非门、异或门 2.3 多输入门电路的设计方法3.组合逻辑电路 3.1 组合逻辑电路的基本原理 3.2 组合逻辑电路的设计方法 3.3 编码器和译码器4.时序逻辑电路 4.1 时序逻辑电路的基本原理 4.2 同步时序电路的设计方法 4.3 异步时序电路的设计方法5.存储器电路 5.1 存储器的基本概念 5.2 可读写存储器的设计方法 5.3 只读存储器的设计方法6.程序控制电路 6.1 程序控制电路的基本概念 6.2 程序控制电路的设计方法 6.3 微程序控制器的设计方法内容概述1. 数字电路基础知识本章主要介绍数字电路的基本概念,包括数字电路与模拟电路的区别、数字信号的表示方法以及数制转换等内容。
此外,还介绍了数字电路中常用的逻辑运算和布尔代数的基本原理。
2. 逻辑门电路逻辑门电路是数字电路中的基本组成单元,本章主要介绍了与门、或门、非门以及与非门、或非门、异或门等逻辑门的基本原理和组成。
此外,还介绍了多输入门电路的设计方法,以及逻辑门电路在数字电路设计中的应用。
3. 组合逻辑电路组合逻辑电路是由逻辑门电路组成的,本章主要介绍了组合逻辑电路的基本原理和设计方法。
此外,还介绍了编码器和译码器的原理和应用,以及在数字电路设计中的实际应用场景。
4. 时序逻辑电路时序逻辑电路是在组合逻辑电路的基础上引入了时序元件并进行时序控制的电路。
本章主要介绍了时序逻辑电路的基本原理和设计方法,包括同步时序电路和异步时序电路的设计。
数字集成电路—电路、系统与设计
数字集成电路(IC)在当今的电子装置和系统中发挥着至关重要的作用。
这些电路的设计将大量电子组件集成到一个单一芯片上,提供高性能和紧凑的尺寸。
在本篇文章中,我们将探索数字IC设计的关键方面,侧重于电路,系统和设计方面。
我们探索数字IC的电路方面。
数字 IC由晶体管,电阻器,电容器等基本电子元件构建而成,这些电子元件相互连接,可以实现逻辑功能。
现代数字IC集成水平惊人,数十亿晶体管被包装成一个芯片。
这种密集的集成使得在很小的物理空间内可以执行复杂的功能,如微处理器,内存单元,以及通信接口。
数字IC还设计为高速运行,消耗最小功率。
实现高速运行需要仔细考虑信号传播延迟,交叉对讲,以及动力消散。
为了应对这些挑战,IC设计师采用了先进的电路设计技术,如管道衬线,时钟标注,以及动力标注,以优化数字电路的性能和能效。
转到系统方面,数字IC常是更大的电子系统的一部分,它们与其他组件如传感器、起动器和通信接口相互作用。
数字IC的设计必须考虑到系统层面的要求,包括与外部组件的接口,处理输入、输出信号,以及支持各种通信协议。
数字IC在系统层面设计中的一个有趣例子是汽车电子领域。
现代车辆配备了广泛的数字IC,控制发动机,传输,安全系统,以及信息娱乐等功能。
这些IC必须满足可靠性、性能和安全性的严格要求,同时与各种传感器和起动器接口。
汽车数字IC的设计不仅涉及电路层面的考虑,还涉及系统层面的方面,如故障耐受性,通信协议,以及实时操作。
让我们谈谈数字IC的设计方面。
IC设计开始于具体说明电路的功能,之后是建筑和逻辑设计,电路执行,以及验证。
设计过程涉及各种工具和技术,包括逻辑综合、地点和路线、时间分析和功能核查。
设计可制造性和可检验性是关键考虑因素,可确保能够大规模生产高产量的IC并测试其可靠性。
IC设计中一个有趣的例子是开发适用于加密货币开采的集成电路。
为此目的设计的ASIC高度优化,用于履行采矿所需的密码散列功能,与一般用途处理器相比,往往能达到更高的性能和能源效率。
数字电路及系统设计课程设计
数字电路及系统设计课程设计
简介
数字电路及系统设计课程是电子信息类专业中的重要专业基础课程之一。
本课程旨在培养学生对数字电路和系统的设计、分析和实现能力,为学生后续的专业课程打好扎实的基础。
在本次课程设计中,我们将通过实际设计数字电路及系统的案例,来巩固和加深学生的理论知识。
设计目标
本次课程设计的目标是设计一款音乐播放器。
音乐播放器具有以下功能:•支持音乐文件的格式:mp3、wav、flac
•支持音乐文件的存储介质:SD卡、U盘、内置存储
•支持音量控制和播放模式切换
•支持LCD屏幕显示音乐信息和操作提示
设计思路
本次课程设计的核心是数字电路和系统的设计,因此我们将采用FPGA作为设计工具。
FPGA可以通过可编程逻辑单元来实现数字电路的设计。
我们将对音乐播放器的各个功能模块进行分析和设计,如下:
音频解码模块
因为音频文件的格式多种多样,不同的格式会有不同的压缩算法和解码方式。
我们将采用DSP模块解码音频数据,DSP模块是FPGA内部的数字信号处理模块,能够高效地实现音频解码。
1。
数字电路与系统设计实验报告
数字电路与系统设计实验报告学院:班级:姓名:实验一基本逻辑门电路实验一、实验目的1、掌握TTL与非门、与或非门和异或门输入与输出之间的逻辑关系。
2、熟悉TTL中、小规模集成电路的外型、管脚和使用方法。
二、实验设备1、二输入四与非门74LS00 1片2、二输入四或非门74LS02 1片3、二输入四异或门74LS86 1片三、实验内容1、测试二输入四与非门74LS00一个与非门的输入和输出之间的逻辑关系。
2、测试二输入四或非门74LS02一个或非门的输入和输出之间的逻辑关系。
3、测试二输入四异或门74LS86一个异或门的输入和输出之间的逻辑关系。
四、实验方法1、将器件的引脚7与实验台的“地(GND)”连接,将器件的引脚14与实验台的十5V连接。
2、用实验台的电平开关输出作为被测器件的输入。
拨动开关,则改变器件的输入电平。
3、将被测器件的输出引脚与实验台上的电平指示灯(LED)连接。
指示灯亮表示输出低电平(逻辑为0),指示灯灭表示输出高电平(逻辑为1)。
五、实验过程1、测试74LS00逻辑关系(1)接线图(图中K1、K2接电平开关输出端,LED0是电平指示灯)(2)真值表2、测试74LS02逻辑关系(1)接线图(2)真值表3、测试74LS86逻辑关系接线图(1)接线图(2)真值表六、实验结论与体会实验是要求实践能力的。
在做实验的整个过程中,我们首先要学会独立思考,出现问题按照老师所给的步骤逐步检查,一般会检查处问题所在。
实在检查不出来,可以请老师和同学帮忙。
实验二逻辑门控制电路实验一、实验目的1、掌握基本逻辑门的功能及验证方法。
2、掌握逻辑门多余输入端的处理方法。
3、学习分析基本的逻辑门电路的工作原理。
二、实验设备1、基于CPLD的数字电路实验系统。
2、计算机。
三、实验内容1、用与非门和异或门安装给定的电路。
2、检验它的真值表,说明其功能。
四、实验方法按电路图在Quartus II上搭建电路,编译,下载到实验板上进行验证。
数字集成电路——电路、系统与设计
IC,这些微小但强大的芯片,是我们电子设备的无名英雄,从我们口袋里的光滑智能无线终端,到我们桌子上的强大的截肢者,甚至我们车上最先进的汽车系统。
当它到数字集成电路时,全部是创建顶尖的系统,来传递心跳的性能,而吸电就像一个花哨的鸡尾酒,永远,永远,投球在可靠性上。
这些电路是数据处理、信号处理和控制系统的摇滚巨星,使得我们技术精湛的世界开始运转。
但是,在所有的滑翔和魅力背后,工作上有大量的脑力。
设计数字集成电路就像开始一个令人惊叹的冒险,任务包括设定舞台有规格,通过模型化将人物带入生命,在模拟中通过脚步化,通过合成来伤害它们的存在,最后通过彻底的验证确保一切的平稳航行。
就像是数字交响乐的策划者,进行电路,系统和设计技术的和谐混合,在区块上创建最高效和可靠的集成电路。
这是一个疯狂的旅程,但有人必须做到这一点!设计数字集成电路需要使用不同的工具和方法来开发和改进数字系统。
首先要弄清楚数字系统需要做什么以及它需要多好的表现我们用维利洛格和VHDL等特殊语言创建模型并测试数字系统。
接下来,我们把模型变成逻辑门列表,我们努力确保设计符合所有要求。
我们用半导体制造来制造实际的电路。
这涉及到根据设计创建布局和建造电路。
数字集成电路领域是一个不断发展和动态的研究领域,其特点是设计方法、技术和应用方面不断取得进展。
随着数字系统继续在各种电子装置和系统中发挥重要作用,对数字集成电路设计专业人才的需求日益增加。
对这一领域感兴趣的个人必须在数字电路、系统和设计原则方面奠定坚实的基础,并随时了解数字集成电路技术的最新发展。
只要具备必要的知识和技能,就能够有助于创造创新的数字集成电路,推动技术进步,提高电子系统的性能。
数字电路与系统设计介绍
数字电路与系统设计介绍关于数字电路与系统设计介绍如下:一、数字电路基础数字电路是处理二进制数字信号的电路,其主要特点是将信号表示为离散的二进制形式。
数字信号具有抗干扰能力强、精度高等优点。
数字电路的基本单元是逻辑门电路,它们通过组合和时序逻辑设计,实现各种复杂的逻辑功能。
二、逻辑门电路逻辑门电路是数字电路的基本单元,它根据输入信号的逻辑值来决定输出信号的状态。
常见的逻辑门电路包括与门、或门、非门、与非门、或非门等。
这些逻辑门电路可以通过不同的组合和配置,实现复杂的逻辑运算。
三、组合逻辑电路组合逻辑电路是指只包含组合关系的逻辑电路。
在组合逻辑电路中,输出信号的状态仅取决于输入信号的当前状态,而不受时间的限制。
常见的组合逻辑电路包括加法器、比较器、多路选择器等。
四、时序逻辑电路时序逻辑电路是指包含时序关系的逻辑电路。
在时序逻辑电路中,输出信号不仅取决于当前的输入信号,还与前一时刻的输入信号有关。
常见的时序逻辑电路包括寄存器、计数器、移位器等。
五、数字系统设计方法数字系统设计是指将一组特定的功能需求转化为数字电路或数字系统的方法。
数字系统设计的方法主要包括自顶向下设计和自底向上设计两种。
自顶向下设计是指从高级抽象开始,逐步向低级抽象过渡的设计方法;自底向上设计是指从底层硬件开始,逐步构建更高层次抽象的设计方法。
六、可编程逻辑器件可编程逻辑器件是一种集成电路,其内部逻辑结构可以通过编程来配置。
可编程逻辑器件的出现,使得数字系统的设计和实现变得更加灵活和方便。
常见的可编程逻辑器件包括现场可编程门阵列(FPGA)和复杂可编程逻辑器件(CPLD)等。
七、硬件描述语言硬件描述语言是一种用于描述数字系统硬件的语言。
它使用高级语言的形式来描述数字系统的结构和行为,使得数字系统的设计和实现更加方便和高效。
常见的硬件描述语言包括Verilog和VHDL等。
八、数字系统测试与验证数字系统测试与验证是确保数字系统正确性和可靠性的重要环节。
《数字电路与系统设计》课后答案
F3:ABCD在8~11之间。
F4:ABCD不等于0。
解:由题意,各函数是4变量函数,故须将
74138扩展为4-16线译码器,让A、B、C、D分别接4-16线译码器的地址端A3、A2、A1、A0, 可写出各函数的表达式如下:
F1(A,B,C,D)
m(0,4,8,12)
= m0m4m8m12
自低位的借位、本位差、本位向高位的借位。
A
-B
F2C
F1
被减数减数
借位
差
4.4设ABCD是一个8421BCD码,试用最少与非
门设计一个能判断该8421BCD码是否大于等于5的电路,该数大于等于5,F=1;否则为0。
解:(1)列真值表
(2)写最简表达式
CD
AB00
00
01
11
10
011110
F = A + BD +BC
B
CF1
A
F2
图P4.2
解:(1)从输入端开始,逐级推导出函数表达式
F1=A⊕B⊕C
F2= A(B⊕C) +BC
= A BC + ABC + ABC + ABC
(2)列真值表
(3) 确定逻辑功能
假设变量A、B、C和函数F1、F2均表示一位二进制数,那么, 由真值表可知,该电路实现了全减器的功能。
A、B、C、F1、F2分别表示被减数、减数、来
BC
A00011110
0
1
F1=A+B
00011110
0
1
F2=AB
4.11试将2/4译码器扩展成4/16译码器
A3A2
A1A0
数字集成电路——电路、系统与设计
数字集成电路——电路、系统与设计目录第一部分基本单元第1章引论1.1 历史回顾1.2 数字集成电路设计中的问题1.3 数字设计的质量评价1.4 小结1.5 进一步探讨第2章制造工艺2.1 引言2.2 CMOS集成电路的制造2.3 设计规则——设计者和工艺工程师之间的桥梁2.4 集成电路封装2.5 综述:工艺技术的发展趋势2.6 小结2.7 进一步探讨设计方法插入说明A——IC版图第3章器件3.1 引言3.2 二极管3.3 MOS(FET)晶体管3.4 关于工艺偏差3.5 综述:工艺尺寸缩小3.6 小结3.7 进一步探讨设计方法插入说明B——电路模拟第4章导线4.1 引言4.2 简介4.3 互连参数——电容、电阻和电感4.4 导线模型4.5 导线的SPICE模型4.6 小结4.7 进一步探讨第二部分电路设计第5章CMOS反相器5.1 引言5.2 静态CMOS反相器——直观综述5.3 CMOS反相器稳定性的评估——静态特性5.4 CMOS反相器的性能——动态特性5.5 功耗、能量和能量延时5.6 综述:工艺尺寸缩小及其对反相器衡量指标的影响5.7 小结本文由整理提供5.8 进一步探讨第6章CMOS组合逻辑门的设计6.1 引言6.2 静态CMOS设计6.3 动态CMOS设计6.4 设计综述6.5 小结6.6 进一步探讨设计方法插入说明C——如何模拟复杂的逻辑电路设计方法插入说明D——复合门的版图技术第7章时序逻辑电路设计7.1 引言7.2 静态锁存器和寄存器7.3 动态锁存器和寄存器7.4 其他寄存器类型7.5 流水线:优化时序电路的一种方法7.6 非双稳时序电路7.7 综述:时钟策略的选择7.8 小结7.9 进一步探讨第三部分系统设计第8章数字IC的实现策略8.1 引言8.2 从定制到半定制以及结构化阵列的设计方法8.3 定制电路设计8.4 以单元为基础的设计方法8.5 以阵列为基础的实现方法8.6 综述:未来的实现平台8.7 小结8.8 进一步探讨设计方法插入说明E——逻辑单元和时序单元的特性描述设计方法插入说明F——设计综合第9章互连问题9.1 引言9.2 电容寄生效应9.3 电阻寄生效应9.4 电感寄生效应9.5 高级互连技术9.6 综述:片上网络9.7 小结9.8 进一步探讨第10章数字电路中的时序问题10.1 引言10.2 数字系统的时序分类本文由整理提供10.3 同步设计——一个深入的考察10.4 自定时电路设计10.5 同步器和判断器10.6 采用锁相环进行时钟综合和同步10.7 综述:未来方向和展望10.8 小结10.9 进一步探讨设计方法插入说明G——设计验证第11章设计运算功能块11.1 引言11.2 数字处理器结构中的数据通路11.3 加法器11.4 乘法器11.5 移位器11.6 其他运算器11.7 数据通路结构中对功耗和速度的综合考虑11.8 综述:设计中的综合考虑11.9 小结11.10进一步探讨第12章存储器和阵列结构设计12.1 引言12.2 存储器内核12.3 存储器外围电路12.4 存储器的可靠性及成品率12.5 存储器中的功耗12.6 存储器设计的实例研究12.7 综述:半导体存储器的发展趋势与进展12.8 小结12.9 进一步探讨设计方法插入说明H——制造电路的验证和测试本文由整理提供。
数字集成电路--电路、系统与设计(第二版)复习资料
第一章 数字集成电路介绍第一个晶体管,Bell 实验室,1947第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。
(随时间呈指数增长)抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。
这一模型含有用来在下一层次上处理这一模块所需要的所有信息。
固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。
可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。
每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。
可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。
一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。
为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。
NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。
一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。
理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。
传播延时、上升和下降时间的定义传播延时tp 定义了它对输入端信号变化的响应有多快。
它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。
上升和下降时间定义为在波形的10%和90%之间。
对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。
数字集成电路与系统设计
数字集成电路与系统设计是指基于数字电路技术和集成电路技术,设计和实现数字电路系统的过程。
它涵盖了从电路级到系统级的设计和实现,包括电路设计、逻辑设计、芯片设计、系统设计和验证等方面。
在数字集成电路与系统设计中,需要考虑以下几个方面:
电路设计:根据系统需求和功能要求,设计各种数字电路,包括逻辑门、寄存器、计数器、多路选择器等。
电路设计要考虑电路的功耗、时序要求、可靠性等因素。
逻辑设计:根据系统功能需求,将电路设计抽象成逻辑功能的表示,使用逻辑门和时序元件进行逻辑功能的实现。
逻辑设计要考虑时序关系、数据通路、控制信号等。
芯片设计:基于所需的电路和逻辑设计,进行芯片级的设计,包括电路布局、线路布线、电源分配、时钟设计等。
芯片设计要考虑电路的集成度、功耗、散热等因素。
系统设计:将多个数字电路组合成完整的系统,包括处理器、存储器、输入输出接口等。
系统设计要考虑系统的性能、功耗、可靠性、通信接口等。
验证与测试:对设计的数字电路和系统进行验证和测试,确保其功能正确和性能满足要求。
验证与测试包括功能验证、时序验证、功耗测试、可靠性测试等。
数字集成电路与系统设计是现代电子技术领域的重要组成部分,它广泛应用于计算机、通信、控制系统等领域,推动了数字技术的发展和应用。
精品文档-数字电路与系统设计(第二版)(邓元庆)-第6章
第6章
从表6- 1中可以看出,为了得到应该输出的电压,只要保
证输入D2D1D0=100时输出电压UO = 0即可。为此,在求和放大器的 输入端增加了偏移电压UB和偏移电阻RB。根据图6- 8所示电路, 为 了使输入D2D1D0=100时输出电压UO = 0,电流IΣ和偏移电流IB之和 必须为零,则有:
n1
Di 2i
i0
(6-9) (6-10)
第6章 3. 倒T型电阻网络DAC电路
图6- 7所示为4位倒T型电阻网络DAC电路的原理图, 它同样 由R- 2R电阻网络、单刀双掷模拟开关(S0、S1、S2和S3)、 基准电 压UREF和求和放大器四部分构成。它与T型电阻网络DAC电路的区别在 于:
① 电阻网络呈倒T型分布。
第6章
4. 双极性DAC电路
偏移二进制码是在带符号二进制码的基础上加上一个偏移 量得到的。n位二进制数D 的偏移二进制码为
DB = DC+2n
(6- 14)
式中2n 就是偏移量,DC是n位二进制数D 的补码。例如一个正的3 位二进制数D = (+110)2,其补码为(0110)2,则对应的偏移二进制 码为:
U LSB
| U REF 2n
|
(6-16)
第6章
满量程输出电压UFSR定义为:输入数字量的所有位均为1 时, DAC输出模拟电压的幅度。有时也把UFSR称为最大输出电压 Umax。 对于n位DAC电路,满量程输出电压UFSR为
U FSR
2n 1 2n
| U REF
|
(6-17)
对于电流输出的DAC,则有ILSB和IFSR两个概念,其含义与 ULSB和UFSR相对应。有时也将ULSB和ILSB简称为LSB,将UFSR和IFSR简称 为FSR(Full Scale Range)。