高中数学必修二讲解
高中数学必修二ppt课件
CONTENTS 目录
• 引言 • 平面解析几何初步 • 立体几何初步 • 圆的性质与定理 • 圆锥曲线与方程 • 单元复习与习题解答
CHAPTER 01
引言
课程目标与重要性
课程目标
使学生掌握高中数学必修二的基本概 念、原理和解题方法,培养数学思维 和解决问题的能力。
圆锥曲线的概念和标准方程
理解圆锥曲线的概念和标准方程,包 括椭圆、双曲线和抛物线的标准方程 ,掌握各参数的意义。
圆锥曲线的几何性质
掌握圆锥曲线的几何性质,如焦点、 准线、离心率等,能够根据已知条件 求出相应圆锥曲线的几何量。
圆锥曲线的实际应用
了解圆锥曲线在实际问题中的应用, 如行星运动轨迹的计算、光学透镜的 设计等。
椭圆的参数方程
椭圆的焦点
椭圆的参数方程为 $x = a cos theta, y = b sin theta$,其中 $theta$ 是参数。
椭圆的焦点到椭圆上任意一点的距离之和 等于长轴的长度。
双曲线与方程
双曲线的标准方程
双曲线的标准方程为 $frac{x^2}{a^2} frac{y^2}{b^2} = 1$ 或 $frac{y^2}{b^2} frac{x^2}{a^2} = 1$,其中 $a$ 和 $b$ 是双曲 线的半实轴和半虚轴。
CHAPTER 05
圆锥曲线与方程
椭圆与方程
椭圆的标准方程
椭圆的性质
椭圆的标准方程为 $frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中 $a$ 和 $b$ 是椭圆的半长轴和半短轴。
椭圆具有对称性,即关于x轴、y轴和原点 都是对称的。此外,椭圆上任意一点到两 焦点的距离之和等于长轴的长度。
高中数学必修二《函数》课件详解
函数的表示方法
函数可以使用函数符号来表示,例 如 f(x) 或 y = f(x)。
函数的例子
例如,y = 2x 是一个函数,每个 x 对应唯一的 y 值。
种类
1 线性函数
函数图像是一条直线,表达 式通常是 y = mx + b。
2 二次函数
函数图像是一个 U 形曲线, 表达式通常是 y = ax²+ bx + c。
二次函数
函数图像呈 U 形曲线,开口向上 或向下取决于二次项的系数。
指数函数
函数图像呈增长或衰减的曲线, 增长或衰减速度由指数的底数决 定。
解方程
1 方程与函数
通过函数定义,可以将方程 的解与函数的零点对应。
2 解方程的方法
可以使用逆运算、因式分解、 公式或图像来解方程。
3 例子
对于函数 y பைடு நூலகம் 2x,解方程 2x = 6,得到 x = 3。
三角函数
1
正弦函数
正弦函数用于描述周期性变化,有形如 y =
余弦函数
2
sin(x) 的表达式。
余弦函数也用于描述周期性变化,有形如 y
= cos(x) 的表达式。
3
切线函数
切线函数是正弦函数的倒数,有形如 y = tan(x) 的表达式。
函数的图形表示
线性函数
函数图像呈直线,斜率决定了线 的倾斜程度。
性质
复合函数不满足交换律,即 f(g(x)) ≠ g(f(x))。
多项式函数
多项式函数的定义
多项式函数是一种形如 P(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 的函数。
高中数学必修二-直线的倾斜角与斜率
直线的倾斜角与斜率知识集结知识元直线的倾斜角知识讲解一、直线的倾斜角1.定义:平面直角坐标系中,对于一条与x轴相交的直线,如果把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,则叫做直线的倾斜角.2.规定:当直线和轴平行或重合时,直线倾斜角为,所以,倾斜角的范围是.3.(1)倾斜角的概念中含有三个条件:①直线向上的方向;②x轴的正方向;③小于平角的正角.(2)倾斜角是一个几何概念,它直观地描述且表现了直线对于x轴正方向的倾斜程度.(3)平面直角坐标系中每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.(4)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可.例题精讲直线的倾斜角例1.已知直线的倾斜角为,并且0°≤<120°,直线的斜率k的范围是()D.k≥0或A.B.C.k≥0或例2.已知点M(2m+3,m),N(m-2,1),当m∈________时,直线MN的倾斜角为锐角;当m∈________时,直线MN的倾斜角为直角;当m∈________时,直线MN的倾斜角为钝角.例3.若直线l的向上的方向与y轴的正方向成30°角,则直线l的倾斜角为( )A.30°B.60°C.30°或150D.60°或120°例4.直线l经过第二、四象限,则直线l的倾斜角α的范围是( )A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.直线的斜率知识讲解一、直线的斜率1.定义:倾斜角不是的直线,它的倾斜角的正切叫做这条直线的斜率,常用表示,即.2.注意:(1)当直线与x轴平行或重合时,=0°,k=tan0°=0;(2)直线与x轴垂直时,=90°,k不存在.由此可知,一条直线的倾斜角一定存在,但是斜率k不一定存在.二、斜率公式已知点、,且与轴不垂直,过两点、的直线的斜率公式.三、应用斜率公式求斜率时,首先应注意这两点的横坐标是否相等,若相等,则这两点的连线必与x轴垂直,即直线的倾斜角为90°,故其斜率不存在,也就不能运用斜率公式求斜率.事实上,此时若将两点坐标代入斜率公式,则其分母为零无意义,即斜率不存在;其次,在运用斜率公式时,分子的被减数与分母的被减数必须对应着同一点的纵坐标和横坐标.例题精讲直线的斜率例1.以下两点确定的直线的斜率不存在的是()A.(4,2)与(―4,1)B.(0,3)与(3,0)C.(3,―1)与(2,―1)D.(―2,2)与(―2,5)例2.已知三点A(2,―3),B(4,3),在同一条直线上,则k=________.例3.'如果三条直线mx+y+3=0,x―y―2=0,2x―y+2=0不能成为一个三角形三边所在的直线,求m的值.'例4.'直线mx+y+2=0与线段AB有公共点,其中A(-2,3),B(3,2),求实数m的取值范围.'备选题库知识讲解本题库作为知识点“直线的倾斜角和斜率”的题目补充.例题精讲备选题库已知三点A(1,-3),B(8,),C(9,1),求证:A、B、C三点共线.'例2.'直线l经过点(1,1),若抛物线y2=x上存在两点关于直线l对称,求直线l斜率的取值范围.'例3.'求下列在直线l的方程(1)过点A(0,2),它的倾斜角为正弦值是;(2)过点A(2,1),它的倾斜角是直线l1:3x+4y+5=0的倾斜角的一半;(3)过点A(2,1)和直线x-2y-3=0与2x-3y-2=0的交点.'例4.'已知M(1,-1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQ⊥MN,PN∥MQ.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.'当堂练习单选题练习1.已知直线l的倾斜角为60°,直线l2经过点A(1,),B(-2,-2),则直线l1,l2的位置关系是()A.平行或重合B.平行C.垂直D.重合已知直线经过点A(2,0),B(1,),则连直线的倾斜角是()A.B.C.D.练习3.已知直线l的方程为3x-y-2=0,则直线l的斜率是()A.3 B.-3C.D.练习4.在平面直角坐标系中,过点(2,1)且倾斜角为的直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限练习5.已知直线l:x+2y-1=0的倾斜角为θ,则cosθ=()A.-B.C.±D.-练习6.直线3x+2y+m=0与直线2x+3y-1=0的位置关系是()A.相交B.平行C.重合D.由m决定填空题练习1.已知点A(-1,2),B(2,3),若直线l:kx-y-k+1=0与线段AB相交,则实数k的取值范围是_____________.练习2.直线的斜率为k,若-1<k<,则直线的倾斜角的范围是_________.练习3.过点P(-4,0)的直线l与圆C:x2+y2=4相交于A,B两点,若点A恰好是线段PB的中点,_.则直线l的斜率是__练习4.已知平面内两点A(-4,1),B(-3,-1),过定点M(-2,2)的直线与线段AB恒有公共点,则直线斜率的取值范围是______._练习5.过点引直线l与曲线y=相交于A,B两点,O为坐标原点,当△AOB的面积取得最大值时,直线l的倾斜角为______.解答题练习1.'直线l经过点(1,1),若抛物线y2=x上存在两点关于直线l对称,求直线l斜率的取值范围.'练习2.'求下列在直线l的方程(1)过点A(0,2),它的倾斜角为正弦值是;(2)过点A(2,1),它的倾斜角是直线l1:3x+4y+5=0的倾斜角的一半;(3)过点A(2,1)和直线x-2y-3=0与2x-3y-2=0的交点.'练习3.'已知M(1,-1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQ⊥MN,PN∥MQ.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.'。
高中必修二数学知识点总结
高中必修二数学知识点总结高中数学是一门基础学科,对于高中生来说是必修课之一,高中必修二数学是高中数学的第二册教材,主要包括了以下几个知识点:平面向量、立体几何、解析几何与向量、数列与数列极限、三角函数与三角恒等变换、指数与对数函数以及概率与统计等。
下面将对这些知识点进行详细的总结。
一、平面向量平面向量是高中数学的一个重要知识点,平面向量既有大小也有方向,在空间中用箭头表示,平面向量的运算有加法、减法、数乘等。
平面向量的基本运算法则:平面向量的加法满足“平行四边形法则”和“三角形法则”;平面向量的减法是加法的逆运算;平面向量的数乘是指向量的长度与数相乘,得到的向量与原向量的方向相同或相反,具体取决于数的正负;平面向量的数量积又叫点积,数量积的结果是一个标量,具体的运算式是A·B=|A||B|cosθ,其中A和B为两个向量,|A|和|B|分别为它们的长度,θ为夹角;平面向量的叉积又叫向量积,叉积的结果是一个向量,具体的运算式是A×B=|A||B|sinθn,其中A和B为两个向量,|A|和|B|分别为它们的长度,θ为夹角,n为垂直于A和B所在平面的单位向量。
二、立体几何立体几何是讲述空间图形的形状、大小、位置关系等内容的学科,在高中必修二数学中,主要包括了空间几何体的表面积、体积、平行投影等知识点。
在立体几何中,常见的几何体有:球、圆柱体、圆锥体、棱柱、棱锥等,每种几何体都有其独特的性质。
球的表面积和体积公式是S=4πr²,V=4/3πr³,其中r为球的半径;圆柱体的表面积和体积公式是S=2πr²+2πrh,V=πr²h,其中r为圆柱的底面半径,h为圆柱的高;圆锥体的表面积和体积公式是S=πr²+πrl,V=1/3πr²h,其中r为圆锥的底面半径,l为斜高,h为圆锥的高;棱柱和棱锥的表面积和体积公式的推导可以根据四边形的面积公式和三角形的面积公式进行推导。
高中必修二数学知识点
高中必修二数学知识点高中必修二数学知识1不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式①会从实际情境中抽象出一元二次不等式模型.②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题①会从实际情境中抽象出二元一次不等式组.②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)根本不等式:①了解根本不等式的证明过程.②会用根本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点.数列(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.高中数学必修二知识点总结:不等式高中必修二数学知识2空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交.③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],假设两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aαa∩α=Aa‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,那么该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行. (线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.4、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为.②平面的垂线与平面所成的角:规定为.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算〞.在“作角〞时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与面垂直,由面面垂直性质易得垂线.(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中必修二数学知识3圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,那么有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比拟来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:圆上两点,圆心必在中垂线上;两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证假设干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中必修二数学知识4直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α 180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高中必修二数学知识51、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的外表积与体积(1)几何体的外表积为几何体各个面的面积的和.(2)特殊几何体外表积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式高中必修二数学知识点。
高中数学必修二知识点归纳
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
高中数学必修二知识点总结
高中数学必修二知识点总结高中数学必修二知识点总结「篇一」1定理总结公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
2空间两直线的位置关系空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
高中数学必修二知识点总结
高中数学必修二知识点总结引言高中数学必修二通常包括了高中数学的核心概念和技能,是学生深入理解数学和培养数学思维的关键阶段。
以下是对高中数学必修二知识点的详细总结。
一、几何基础1.1 平面几何概念:点、线、面、角的基本概念和性质。
1.2 三角形性质:等边三角形、等腰三角形、直角三角形的性质。
1.3 四边形性质:平行四边形、矩形、正方形、梯形的性质。
1.4 圆的性质定理:圆周角定理、圆心角定理、弦的性质。
二、解析几何2.1 坐标系统介绍:直角坐标系、极坐标系的基本概念。
2.2 直线方程形式:直线的点斜式、斜截式、一般式。
2.3 圆的方程形式:圆的标准方程、一般方程。
2.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
三、函数3.1 函数的基本概念定义:函数的定义、定义域、值域。
3.2 函数的性质总结:单调性、奇偶性、周期性、有界性。
3.3 反函数概念:反函数的定义、性质。
3.4 复合函数运算:复合函数的定义、运算法则。
3.5 函数图像绘制:函数图像的绘制方法和变换规律。
四、导数与微分4.1 导数的概念解释:导数的几何意义、物理意义。
4.2 导数的计算方法:基本初等函数的导数计算、复合函数求导法则。
4.3 高阶导数介绍:高阶导数的定义、计算方法。
4.4 微分的概念定义:微分的定义、几何意义。
五、积分学基础5.1 不定积分方法:不定积分的计算方法、积分公式。
5.2 定积分定义:定积分的定义、几何意义。
5.3 定积分的性质总结:定积分的基本性质、计算公式。
5.4 定积分的应用案例:定积分在几何、物理问题中的应用。
六、数列6.1 等差数列公式:等差数列的通项公式、求和公式。
6.2 等比数列公式:等比数列的通项公式、求和公式。
6.3 数列的极限概念:数列极限的定义、性质。
七、概率与统计7.1 概率的基本概念定义:随机事件、概率的定义。
7.2 概率的计算方法:加法公式、乘法公式、全概率公式。
7.3 统计量的计算指标:均值、中位数、众数、方差、标准差。
高中数学必修2知识点总结
高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。
求解一元二次方程的方法是配方法、公式法和因式分解法。
2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。
三角函数的定义域和值域以及其性质和图像都是必须掌握的。
3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。
三角恒等式是解决三角函数问题的重要工具。
4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。
二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。
必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。
5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。
向量的运算包括向量的加法、减法、数量积和向量积。
向量的坐标表示是将向量投影在坐标轴上来表示的。
6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。
此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。
7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。
轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。
8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。
9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。
10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。
函数的应用包括函数的极值、最大值和最小值等问题。
以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。
高中数学必修二平面解析几何
高中数学必修二平面解析几何
本文从知识点梳理、圆的方程、两个经典的解题和圆的方程的解释过程三个方面,分享了高中数学必修课《二平面解析几何》中圆的方程的介绍。
一、知识梳理
1.圆的定义及方程
2.点与圆的位置关系
二、平面解析几何——圆的方程两个易误点
三、经典考题
1、求圆的方程
(1)(2016·高考天津卷)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.
(2)(2016·高考浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x +8y+5a=0表示圆,则圆心坐标是________,半径是
________.
解题方法:求圆的方程的两种方法
2、与圆有关的最值问题
已知实数x,y满足方程x2+y2-4x+1=0.
(1)求的最大值和最小值;
(2)求y-x的最大值和最小值.
与圆有关的最值问题解题方法
3、与圆有关的轨迹问题
(2015·高考广东卷节选)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB的中点M的轨迹C的方程.
求与圆有关的轨迹方程的方法
(2017·湖南箴言中学三模)已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求实数m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.。
高中数学必修2《统计》知识点讲义
高中数学必修2《统计》知识点讲义一、引言高中数学必修2中的《统计》部分是我们在日常生活中应用广泛的数学知识。
通过学习统计,我们可以更好地理解世界,做出更明智的决策。
本篇文章将详细讲解统计部分的重要知识点。
二、知识点概述1、描述性统计描述性统计是统计学的基石,它主要研究如何用图表和数值来描述数据的基本特征。
这部分内容将介绍如何制作频数分布表、绘制条形图、饼图和折线图等。
2、概率论基础概率论是统计学的核心,它研究随机事件发生的可能性。
在本部分,我们将学习如何计算事件的概率,了解独立事件与互斥事件的概念。
3、分布论基础分布论是研究随机变量及其分布的数学分支。
本部分将介绍如何计算随机变量的期望和方差,了解正态分布的特点及其在日常生活中的应用。
三、知识点详解1、描述性统计本文1)频数分布表:频数分布表是一种用于表示数据分布情况的表格,其中每一列表示数据的一个取值,每一行表示该取值的频数。
通过频数分布表,我们可以直观地看到数据分布的集中趋势和离散程度。
本文2)图表:图表是描述数据的一种有效方式。
通过绘制条形图、饼图和折线图,我们可以直观地展示数据的数量关系和变化趋势。
2、概率论基础本文1)概率:概率是指事件发生的可能性,通常用P表示。
P(A)表示事件A发生的概率,其值在0和1之间,其中0表示事件不可能发生,1表示事件一定会发生。
本文2)独立事件与互斥事件:独立事件是指两个事件不相互影响,即一个事件的发生不影响另一个事件的概率;互斥事件是指两个事件不包括共同的事件,即两个事件不可能同时发生。
3、分布论基础本文1)期望:期望是随机变量的平均值,通常用E表示。
E(X)表示随机变量X的期望,它是所有可能取值的概率加权平均值。
期望对于预测随机变量的行为非常有用。
本文2)方差:方差是衡量随机变量取值分散程度的指标,通常用D表示。
D(X)表示随机变量X的方差,它是每个取值与期望之差的平方的平均值。
方差越大,随机变量的取值越分散;方差越小,取值越集中。
人教版高中数学必修二全册完整教案
人教版高中数学必修二全册完整教案第一章直线与函数1.1 直线的方程1.1.1 直线的斜率- 定义直线的斜率- 计算直线的斜率的公式- 利用斜率求直线上两点的坐标1.1.2 斜率的性质- 平行线的斜率相等- 垂直线的斜率的乘积为-11.2 一次函数1.2.1 一次函数的概念- 定义一次函数- 一次函数的图像特征1.2.2 一次函数的性质- 一次函数的图像是一条直线- 一次函数的零点和函数值1.3 函数的概念与性质1.3.1 函数的定义- 定义函数的概念- 函数的自变量和因变量1.3.2 函数的性质- 函数的奇偶性- 函数的单调性- 函数的周期性第二章二次函数2.1 二次函数的概念2.1.1 二次函数的定义- 定义二次函数- 二次函数的特征2.1.2 二次函数的图像- 二次函数的开口方向- 二次函数的对称轴2.2 二次函数的图像与性质2.2.1 二次函数图像的平移- 二次函数图像的平移规律- 利用平移法画出二次函数的图像2.2.2 二次函数的最值- 二次函数的最值与对称轴的关系- 求解二次函数的最值2.3 一元二次方程2.3.1 一元二次方程的概念- 定义一元二次方程- 一元二次方程的解的概念2.3.2 二次方程的解法- 利用因式分解法求解一元二次方程- 利用配方法求解一元二次方程第三章数据统计与概率3.1 统计的基本概念3.1.1 总体与样本- 定义总体和样本的概念- 总体与样本的区别和联系3.1.2 统计量- 定义统计量- 常用的统计量3.2 统计图3.2.1 条形图与折线图- 绘制条形图和折线图的步骤- 根据统计图分析数据3.2.2 饼图与频数分布直方图- 绘制饼图和频数分布直方图的步骤- 利用饼图和频数分布直方图分析数据3.3 概率与概率统计3.3.1 概率的定义和性质- 定义概率的概念- 概率的性质和运算法则3.3.2 随机变量和概率分布- 定义随机变量- 描述随机变量的概率分布这份文档包含了《人教版高中数学必修二》全册的完整教案。
高中数学必修二知识点整理
二)空间几何体的体积高中数学必修 2 知识点第一章空间几何体1.1 柱、锥、台、球的结构特征1.2 空间几何体的三视图和直观图1 三视图:正视图:从前往后下 2 画三视图的原则:长对齐、高对齐、宽相等 3 直观图:斜二测画法 4 斜二测画法的步骤:(1). 平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x,z 轴的线长度不变;(3). 画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(1.3 空间几何体的表面积与体积(一)空间几何体的表面积 1 棱柱、棱锥的表面积:侧视图:从左往右各个面面积之和俯视图:从上往2)画底面(3)画侧棱(4)成图2 圆柱的表面积S圆锥的表面积S rl4 圆台的表面积S rl2Rl R2球的表面积R21 柱体的体积V S底锥体的体积3 台体的体积1V3(S上S上S下S下)球体的体积1S底h3底4R3第二章直线与平面的位置关系2.1 空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A∈B∈A∈B∈公理 1 作用:判断直线是否在平面内(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
符号表示为: A 、 B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理 2 作用:确定一个平面的依据。
(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线。
符号表示为: P ∈α∩β => α∩β =L ,且 P ∈ L 公理 3 作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 共面直线平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。
高中数学必修2课程教案5篇
高中数学必修2课程教案5篇高中数学必修2课程教案5篇教案是实现教学目标的计划性和决策性活动。
教案以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
下面小编给大家带来关于高中数学必修2课程教案,方便大家学习高中数学必修2课程教案1一、知识点归纳(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。
(三)空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积:各个面面积之和②圆柱的表面积③圆锥的表面积④圆台的表面积⑤球的表面积⑥扇形的面积公式 (其中表示弧长,表示半径)2、空间几何体的体积①柱体的体积②锥体的体积③台体的体积④球体的体积二、练习与巩固(1)空间几何体的结构特征及其三视图1.下列对棱柱说法正确的是( )A.只有两个面互相平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,且各侧棱也平行2.一个等腰三角形绕它的底边所在的直线旋转360。
高中数学必修2知识点总结归纳(人教版最全)
高中数学必修2知识点总结归纳(人教版最全)高中数学必修二知识点汇总第一章:立体几何初步1、柱、锥、台、球的结构特征1) 棱柱:是由两个平行的多边形底面和若干个侧面组成的几何体。
根据底面多边形的边数不同,可以分为三棱柱、四棱柱、五棱柱等。
棱柱的侧面和对角面都是平行四边形,侧棱平行且相等,平行于底面的截面是与底面全等的多边形。
2) 棱锥:是由一个多边形底面和若干个三角形侧面组成的几何体。
根据底面多边形的边数不同,可以分为三棱锥、四棱锥、五棱锥等。
棱锥的侧面和对角面都是三角形,平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3) 棱台:是由一个平行于棱锥底面的平面截取棱锥,截面和底面之间的部分组成的几何体。
根据底面多边形的边数不同,可以分为三棱台、四棱台、五棱台等。
棱台的上下底面是相似的平行多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱:是由一个圆形底面和一个平行于底面的圆柱面组成的几何体。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥:是由一个圆形底面和一个以底面圆心为顶点的锥面组成的几何体。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台:是由一个圆形底面和一个平行于底面的圆台面组成的几何体。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个弓形。
7) 球体:是由一个半圆面绕其直径旋转一周所形成的几何体。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图三视图是指正视图(光线从几何体的前面向后面正投影)、侧视图(从左向右)和俯视图(从上向下)组成的视图。
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度。
俯视图和侧视图是用来反映物体在不同方向上的位置关系的,前者反映长度和宽度,后者反映高度和宽度。
斜二测画法是一种直观的图示方法,它的特点是原来与x轴平行的线段仍然与x轴平行且长度不变,原来与y轴平行的线段仍然与y轴平行,但长度为原来的一半。
高中数学必修二教学课件圆与圆的位置关系共9张PPT
图 形
公共 点个
数
性质 及判 定方
法
例题讲解
例1:判断下列两圆的位置关系
(1) x2 y2 4x 4 y 7 0
与 x2 y2 4x 10 y 13 0
(2)
x2
y2
4
与
x y
3 2cos 1 2cos
判断两圆位置关系的方法:
1.几何方法
小结:
1、圆和圆的五种位置关系、判断及应用。 2、相交两圆的有关计算。 3、圆的几何性质及运用。
A
O
Bx
6. 过两圆 x2 + y2 + 6x – 4 = 0
和 x2 + y2 + 6y – 28 = 0 的交点 且圆心在直线 x - y - 4 = 0上的圆方程是( ) (A)x2+y2+x-5y+2=0 (B)x2+y2-x-5y-2=0 (C)x2+y2-x+7y-32=0 (D)x2+y2+x+7y+32=0
的公切线有且仅有
条。
3. 求与点A(1,2)的距离为1,且与 点B(3,1)之距离为2的直线共有 条。
4.已知以C(- 4,3)为圆心的圆
与圆 x2 y2 1相切,求圆C的方程。
5.过圆 x2 + y2 = 4外一点 P( 3 , 4 )
作圆的两条切线,切点分别为数方法
例题讲解
例1:判断下列两圆的位置关系
(1) x2 y2 4x 4 y 7 0 与 x2 y2 4x 10 y 13 0
(2)
x2 y2 4
与
x y
32 1
高中数学必修2 全册知识点
第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
二、柱、锥、台、球的结构特征1.棱柱2.棱锥三棱台4.圆锥7.球的结构特征1、球的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球。
(1)半圆的半径叫做球的半径。
(2)半圆的圆心叫做球心。
(3)半圆的直径叫做球的直径。
2、球的表示:用表示球心的字母表示,如球O3、球的性质(1)用一个平面去截球,截面是圆面;用一个平面去截球面,截线是圆。
大圆---截面过圆心,半径等于球半径;小圆---截面不过圆心。
(2)球心和截面的圆心的连线垂直于截面。
(3)球心到截面的距离d 与球的半径R 及截面的半径r ,有下面的关系:r =解题方法:将立体中相关问题转化为平面几何问题棱锥内由某些线段组成的直角三角形,在计算有关问题时很重要,它是将立体中相关问题转化为平面几何问题的根据,如图2-7中的△AOE,△AOC,△ACE及△OCE.这四个直角三角形中,若知道AE、AC、AO、OE、OC及CE 这六条线段中的若干条时,则可以通过这些直角三角形间的关系求出其他线段.总结三、空间几何体的三视图和直观图1、中心投影与平行投影2、三视图正视图——从正面看到的图侧视图——从左面看到的图俯视图——从上面看到的图画物体的三视图时,要符合如下原则:位置:正视图侧视图俯视图大小:长对正,高平齐,宽相等.3、直观图-----斜二测画法重点:用斜二测画法画水平放置的平面图形的直观图,步骤如下:⑴在已知图形中取互相垂直的x轴和y轴,两轴相交于点O. 画直观图时,把它们画对应的x'轴与y'轴,两轴交于点O' ,且使∠x'O'y' =45º(或135º),它们确定的平面表示水平面.⑵已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段;⑶已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的一半.例1 用斜二测画法画水平放置的正六边形的直观图.说明:1. 保持平行关系不变.2.水平长度保持不变;纵向长度取其一半.例3 用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A'B'C'D'的直观图.四、 空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2Srl r ππ=+4 圆台的表面积22S rl r Rl R ππππ=+++5 球的表面积24SR π=6扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径)(二)空间几何体的体积 1柱体的体积 VS h =⨯底2锥体的体积 13V S h =⨯底 3台体的体积1)3V S S h =++⨯下上(4球体的体积343V R π= 222rrl S ππ+=第2讲 空间点、直线、平面之间的位置关系一、平面1、平面及其表示2、平面的基本性质 ①公理1:②公理2:不共线的三点确定一个平面③公理3:A lB l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭P l P l P ααββ∈⎫⇒⋂=∈⎬∈⎭则二、点与面、直线位置关系1、点与平面有2种位置关系2、点与直线有2种位置关系三、空间中直线与直线之间的位置关系1、异面直线2、直线与直线的位置关系⎧⎧⎨⎪⎨⎩⎪⎩相交共面平行异面3、公理4和定理 公理4:定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
高中数学必修二知识点
高中数学必修二知识点一、简述高中数学必修二,是我们在数学学习的旅程中不可或缺的一部分。
这一部分内容,就像打开数学大门的一把钥匙,为我们揭示了数学的魅力和重要性。
那么接下来让我们一起走近它,简要了解一下它的主要知识点。
开篇我们要讲的是立体几何,在现实生活中,我们经常会遇到各种立体图形,如立方体、球体等。
必修二里我们会深入学习这些图形的性质,比如它们的体积、表面积如何计算。
这些知识不仅有趣,而且在实际生活中非常有用。
紧接着是平面解析几何,这里我们会接触到直线的方程、圆的方程等概念。
想象一下通过数学公式,我们可以精确地描述平面上的任何一条直线或一个圆,这简直太神奇了!我们会学习如何利用这些方程解决与图形相关的问题。
还有数列和等差数列这一章节也非常重要,数列在生活中随处可见,像是贷款还款、银行的复利计算等。
等差数列作为一种特殊的数列,有着自己的规律。
掌握了等差数列,我们就能更好地理解和解决与数列相关的问题。
我们会接触到一些基本的统计与概率知识,在这个章节里,我们会学习如何收集数据、整理数据并进行分析。
同时概率论也会教我们预测未来事件的可能性,这些知识在日常生活和未来的工作中都非常有用。
高中数学必修二涵盖了立体几何、平面解析几何、数列和等差数列以及统计与概率等几大块内容。
这些知识点不仅能帮助我们更好地理解数学世界,也能在实际生活中发挥重要作用。
让我们一起期待并探索这一章节的奥秘吧!1. 高中数学必修二的重要性及其在整个数学学习中的地位和作用高中数学必修二,这本书可是数学学科中的重头戏哦!可以说它是数学学习的关键一环,对我们整个数学学习生涯都有着非常重要的地位和作用。
无论你是即将步入高中的学生,还是已经步入高中的学子,必修二都是你数学学习的必经之路。
为什么这样说呢?高中数学必修二不仅涵盖了高中数学的基础知识,更在学习难度和内容深度上进行了提升。
它就像一座桥梁,连接着初中数学和更为深入的数学学科。
通过必修二的学习,你不仅能巩固之前学过的知识,还能为未来的数学学习打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材分析 教学目标 教学内容 教学建议
本章知识框架
平面上的公理
直线与直线的位置 关系
空间直线、平面之间 的位置关系
直线与平面的位置 关系
直线、平面平行的判定及其性质 定理
平面与平面的位置 关系
直线与平面平行的判定及性质
平面与平面平行的判定及性质
直线、平面垂直的判定及其性质 定理
直线与平面垂直的判定及其性质
• 借助长方体模型或直观具体的实物,学生经历直观感知、 操作确认、思辨论证的过程,认识点、直线和平面的平行、 垂直等位置关系,经历从直观到抽象,从特殊到一般的过 程,从而发展学生的空间观念.
• 3、情感、态度与价值观
• 在直观感知,操作确认的前提下,学生产生学习立体几何 的兴趣,学生的空间想象能力、几何直观能力得到循序渐 进的培养,学生的数学思维能力得到提升,并在推理过程 中逐步熟悉公理化思想.
3.棱台:用一个平行于棱锥底面的平面去截棱 锥,底面于截面之间的部分
上底面、下底面
4.球:以半圆的直径所在直线为旋转轴,半 圆面旋转一周形成的旋转体 球心,半径,直径
A
O
R
教学重点难点:
重点:概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。
1.2空间几何体的三视图与直观图
三
面空 积间 与几 体何 积体
的 表
柱体、椎体、台体、球
1.1空间几何体的结构
柱、锥、台、球的结构特征
棱 柱
棱锥 棱台 圆柱 圆锥 圆台
球
多面体:1.棱柱:有两个面互相平行,其余各 面都是四边形
底面(底)、侧面、侧棱、顶点
2.棱锥:有一个面是多边形,其余各面都是有 一个公共顶点的三角形
底面(底)、侧面、侧棱、顶点
力和思维能力
过程与方法:
1.主要通过学生自己的亲身实践,运用观察类比等方法,了解 数学思想
情感态度价值观:
1.培养学生的空间想象能力和抽象概括能力 2.学生感受几何体表面积体积的求解过程,增强学习的积极性
本章知识结构图
空间几何体
结空 构间
几 何 体 的
视空 图间 和几 直何 观体 图的
教学目标 教学内容 教学建议
主讲人:吴格格 PPT制作:陈英杰
教学目标:
知识与技能:
1.掌握斜二测画法和画三视图的基本技能 2.掌握柱、锥、台、球的表面积和体积的求法 3.能运用公式求解,柱体、锥体、台体和球的体积和表面积 4.通过实物操作,增强学生的直观感知,培养学生空间想象能
•教材地位 •教学建议 •教材分析
教材地位
必修二所发展的学生的空间想象能力,推理 论证能力,运用图形语言进行交流的能力, 以及几何直观能力,是高中阶段数学课程 的基本要求。
在高考数学试题中,必修二题目近几年体 现为:大题部分,每年必考一个12分的立体 几何和14分的解析几何题。选择题为三视 图和点线面的位置关系判断题,以及求点 线距离、圆的方程、最大最小距离等填空 题,约两个选择,一个填空,两个解答题 共计40分左右.
半
半
平
l平
面
面
面 面 棱l
3.直线与平面垂直的性质定理
定理8:垂直于同一个平面的两条直线 平行
4.平面与平面垂直的性质定理
定理9:如果两个平面垂 直,那么在一个平面内垂 直于它们交线的直线垂直 于另一个平面.
本节重点、难点
• 教学重点:
1、掌握直线与平面垂直的判定定理和性质 定理、推论的内容以及简单应用。
公理4:(平行线的传递性)平行于同一条直
线的两条直线互相平行。
2.空间中直线与直线之间的位置关系:
如图,在长方体中,∠ADC与
∠A’D’C’, ∠ADC与∠BCD的两边分 D’
别对应平行, ∠ADC= ∠A’D’C’, A’
而∠ADC+ ∠BCD=180°
D
A
C’
B’ C
B
定理1:空间中如果两个角的两边分别对应平行 ,那么这两个角相等或互补。
• 难点:用图形表达直线与直线、直线与平 面、平面与平面的位置关系
• 教学用具: 多媒体课件 长方体模型 自制的空间四边 形模型
2.2直线、平面平行的判定及其性质 知识点
1.直线与平面平行判定定理
定理2 :平面外一条直线与此平面内 的一条直线平行,则该直线与此平面 平行
a b
a
b
本书章节:
教材分析
第一章 空间立体几何
第二章 点、直线、平面之间的位置关系
第三章 直线与方程
第四章 圆的方程
前两章为立体几何初步,后两章为平面解析几何初 步。立体几何初步与平面解析几何初步是高中阶段 传统的教学内容。
第一章 空间几何体
1.1空间几何体的结构………………1课时 1.2空间几何体的三视图和直观图…2课时 1.3空间几何体的表面积与体积……3课时
本章教学内容
• 2.1空间点、直线、平面之间的位置关系 • 2.2直线、平面平行的判定及其性质 • 2.3直线、平面垂直的判定及其性质
本章课时安排
本章课时安排大约为10课时左右: 第一节为3课时,第二节为3课时,第三 节为3课时,小结与习题1课时。 具体根据现况来安排。
2.1空间点、直线、平面之间的位置关系
(4)光线从几何体的上面向下面正投影 得到的投影图,叫做几何体的俯视图。
正视图
c ba
俯视图
特 点:
正—俯:长对正
正—左:高平齐
左—俯:宽相等
正视图
c
侧 视
图c
侧 视
a
b
图
俯视图
b a
斜二测画法:
立体几何中常用平行投影(斜投影)来画空间图形的直观图, 这种画法叫斜二测画法.
步骤:
(1)建坐标系,定水平面; (2)与坐标轴平行的线段保持平行; (3)水平线段等长,竖直线段减半.
1.平面上的公理
知识点
公理1:如果一条直线上的两点在一个平面内,那么 这条直线在此平面内。
公理2:过不在同一直线上的三点,有且 只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们 有且只有一条过该点的公共直线。
2.空间中直线与直线之间的位置关系
空间两条直线的位置关系有且只有三种:
如图:AB与BC相交于B点,AB与A′B′ 平行,AB与B′C′异面。
4.球的表面积:S=4πr 2
知识点二.柱、锥、台、球的体积
(1)柱体(圆柱和棱柱)的体积 V柱体=Sh. 其中,V圆柱=πr2h(其中r为底面半径).
(2)锥体(圆锥和棱锥)的体积 11
V锥体= 3 Sh.3 其中V圆锥= 1∕3πr2h, r为底面半径.
(3)台体的体积公式
1 V台= 3h(S+ S' S +S′).
a
//
a // b
2、平面与平面平行的判定定理
定理3:一个平面内两条相交直线与另一个 平面平行,则这两个平面平行.
a
P
b a
b
P
//
a //
b //
3.直线和平面平行的性质定理
定理4:如果一条直线和一个平面平行,经过这 条直线的任意平面和这个平面相交,那么这条直 线和交线平行。
教学重点难点:
重点:画出简单组合体的三视图 难点:用斜二测画法,画空间几何体的直
观图识别三视图所表示的空间几何体
1.3空间几何体的表面积与体积 知识点一:圆柱、圆锥、圆台、球的表面积
1.圆柱的表面积:S 2πr 2+2πrl
2.圆锥的表面积:S=πr(r+l)
3.圆台的表面积:S=π(r'2 + r 2 +r'l+rl)
a
b
a //
a ,
a // b
b
4.平面和平面平行的性质定理
定理5:如果两个平行平面同时和第三个平 面相交,那么它们的交线平行.
// 即: a a // b
b
本节重点、难点
• 教学重点: 1、通过直观感知、操作确认,掌握直线和 平面平行的判定定理与平面和平面平行的判 定定理及其应用。 2、掌握直线与平面平行的性质及其应用, 平面与平面平行的性质及其应用。
中心投影与平行投影 空间几何体的三视图 空间几何体的直观图
柱、锥、台、球的三视图 简单几何体组合的三视图
斜二测画法
把在一束平行光线照射下形成的投影, 叫做平行投影
把光由一点向外散射形成的投影, 叫做中心投影
三视图:
(1)几何体的正视图、侧视图、俯视图 统称为几何体的三视图; (2)光线从几何体的前面向后面正投影 得到的投影图,叫做几何体的正视图; (3)光线从几何体的左面向右面正投影 得到的投影图,叫做几何体的侧视图;
• 教学难点: 1、体会直线和平面平行的判定定理与平面 和平面平行的判定定理的探索过程。 2、体会直线与平面平行的性质定理,平面 与平面平行的性质定理的探索过程及应用。 3、运用所学定理证明一些简单命题与解决 一些实际问题。
2.3直线、平面垂直的判定及其性质 知识点
1.直线与平面垂直判定定理
定理6:一条直线与一个平面内的两条相交直 线都垂直,则该直线与此平面垂直。
注:h为台体的高,S′和S分别为上下两个 底面的面积.
其中V圆台=1∕3πh(r2+rr′+r′2) . 注:h为台体的高,r′、r分别为上、下两 底的半径. (4)球的体积
V球= 4∕3πR3.
教学重点难点:
重点:柱体、锥体、台体、球体的表面积 和体积计算