第1章流体流动-1-流体静力学详解
2 化工原理_刘雪暖_第1章流体流动流体静力学
⒉压力的单位及换算:
1atm=1.013105 Pa=10.33 mH2O=760mmHg 1at=9.81104Pa=10mH2O=735.6mmHg=1kgf/cm2 1atm=1.033at 1bar=1105Pa 1kgf/m2=1mmH2O
1.2 流体静力学 ⒊压力的表示方法:
以绝对真空(0atm)为基准:绝对压力,真实压力 以当地大气压为基准:表压或真空度 绝压>大气压:压力表→表压力 表压=绝压-大气压力 绝压<大气压:真空表→真空度 真空度=大气压力-绝压 注:①大气压力应从当地气压计上读得; ②对表压和真空度应予以注明。
整理后得:
P P1 P2 ( g ) gR gR
(ρ>>ρg)
1.2 流体静力学 ⒊斜管压差计(Inclined manometer)
采用倾斜 U 型管可在测量较小的压差 p 时, 得到较大的读数 R1 值。
压差计算式:
p 1 p 2 R 1 sin 0 g
1.2 流体静力学
(二)液面测量
• 解:
pa pb p a p o gh
h
p b p o o gR
2 . 72 m
o R
13600 1250 0 . 2
1.2 流体静力学
(三)液封高度的计算
如各种气液分离器的后面、 气体洗涤塔底以及气柜等, 为了防止气体泄漏和安全等 目的,都要采用液封(或称 水封)。
根据流体静力学基本方程式,可得:
P A P1 gZ 1
PB P2 gZ 2 0 gR
P1 gZ 1 P2 gZ
2
0 gR
化工原理 流体流动 第一节 流体静力学基本方程讲解
p1 p2 A C gR
——微差压差计两点间压差计算公式
2021/4/14
14
例:用3种压差计测量气体的微小压差 P 100Pa
试问:(1)用普通压差计,以苯为指示液,其读数R为多少?
(2)用倾斜U型管压差计,θ=30°,指示液为苯,其读 数R’为多少? (3)若用微差压差计,其中加入苯和水两种指示液,扩大室截面积远远
学习这一章我们主要掌握有五个方面:1、流体的基本概念;2、流体静力学方
程及其应用;3、机械能衡算式及柏努利方程;4、流体流动的现象;5、流体流动
阻力的计算及管路计算。 流体静力学是研究流体在外力作用下的平衡规律,也就是说,研究流体在外力
作用下处于静止或相对静止的规律。静止流体的规律实际上是流体在重力作用下
第一章 流体流动
第 一 节 流体静力学基本方程
一、流体的密度 二、流体的压强 三、流体静力学方程 四、流体静力学方程的应用
2021/4/14
1
气体和液体统称流体。流体的特征是具有流动性,即其抗剪和抗张的能力很 小;无固定形状,随容器的形状而变化;在外力作用下其内部发生相对运动。流 体有多种分类方法:(1)按状态分为气体、液体和超临界流体等;(2)按可压缩性 分为不可压缩流体和可压缩流体;(3)按是否可忽略分子之间作用力分为理想流 体与粘性流体(或实际流体);(4)按流变特性可分为牛顿型和非牛顿型流体。
例水:层图高中度开h2=口0的.6m容,器密内度盛为有油2 和 1水00,0油kg层/ 高m3度h1=0.7m, 密度1 800kg / m3
1) 判断下列两关系是否成立pA=pA’,pB=pB’ 。
2) 计算玻璃管内水的高度h。
解:(1)判断题给两关系是否成立 ∵A,A’在静止的连通着的同一种液体的同
化工原理-1章流体流动
yi为各物质的摩尔分数,对于理想气体,体积分数与摩尔分数相等。
②混合液体密度计算
假设液体混合物由n种物质组成,混合前后体积
不变,各物质的质量百分比分别为ωi,密度分 别为ρi
n 1 2 混 1 2 n
1
例题1-1 求甲烷在320 K和500 kPa时的密度。
第一节 概述
流体: 指具有流动性的物体,包括液体和气体。
液体:易流动、不可压缩。 气体:易流动、可压缩。 不可压缩流体:流体的体积不随压力及温度变化。
特点:(a) 具有流动性 (b) 受外力作用时内部产生相对运动
流动现象:
① 日常生活中
② 工业生产过程中
煤气
填料塔 孔板流量计
煤气
水封
泵 水池
水
煤 气 洗 涤 塔
组分黏度见---附录9、附录10
1.2.1 流体的压力(Pressure) 一.定义
流体垂直作用于单位面积上的力,称为流体 的压强,工程上一般称压力。
F [N/m2] 或[Pa] P A
式中 P──压力,N/m2即Pa(帕斯卡);
F──垂直作用在面积A上的力,N;
A──作用面积,m2。
工程单位制中,压力的单位是at(工程大气压)或kgf/cm2。 其它常用的压力表示方法还有如下几种: 标准大气压(物理大气压)atm;米水柱 mH2O; 毫米汞柱mmHg; 流体压力特性: (1)流体压力处处与它的作用面垂直,并总是指向流体 的作用面。
液体:T↑,μ↓(T↑,分子间距↑,范德华力↓,内摩擦力↓) 气体:T↑,μ↑(T↑,分子间距有所增大,但对μ影响不大, 但T↑,分子运动速度↑,内摩擦力↑)
压力P 对气体粘度的影响一般不予考虑,只有在极高或极 低的压力下才考虑压力对气体粘度的影响。
第一章流体流动
第一章流体流动液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小。
流体流动的原理及其流动规律主要应用于这几个方面:1、流体的输送;2、压强、流速和流量的测量;3、为强化设备提供适宜的流动条件。
在研究流体流动时,常将流体视为由无数分子集团所组成的连续介质。
第一节流体静力学基本方程式1-1-1 流体的密度单位体积流体具有的质量称为流体的密度,其表达式为:对于一定质量的理想气体:某状态下理想气体的密度可按下式进行计算:空气平均分子量的计算:M=32×0.21+28×0.78+40×0.01=28.9629 (g/mol)1-1-2 流体的静压强法定单位制中,压强的单位是Pa,称为帕斯卡。
1atm 1.033kgf/cm2760mmHg 10.33mH2O 1.0133bar 1.0133×105 Pa工程上常将1kgf/cm2近似作为1个大气压,称为1工程大气压。
1at1kgf/cm2735.6mmHg10mH2O 0.9807bar9.807×105 PaP(表)=P(绝)-P(大)P(真)=P(大)-P(绝)=-P(表)1-1-3 流体静力学基本方程式描述静止流体内部压力(压强)变化规律的数学表达式称为流体静力学基本方程式。
对于不可压缩流体,常数;静止、连续的同一液体内,处于同一水平面上各点的压强相等(连通器)。
压强差的大小可用一定高度的液体柱表示(必需标注为何种液体)。
1-1-4 流体静力学基本方程式的应用一、压强与压强差的测量以流体静力学基本方程式为依据的测压仪器统称为液柱压差计,可用来测量流体的压强或压强差。
1、U型管压差计2、倾斜液柱压差计(斜管压差计)3、微差压差计二、液位的测量三、液封高度的计算第二节流体在管内流动反映流体流动规律的有连续性方程式与柏努利方程式。
1-2-1 流量与流速单位时间内流过管道任一截面的流体量,称为流量。
化工原理--流体流动--第一节-流体静力学基本方程
① 液体混合物的密度ρm
mi 其中xwi m总 当m总 1 kg时,xwi mi m总 x x x 假设混合后总体积不变,V总 wA wB wn 1 2 n m
取1kg液体,令液体混合物中各组分的质量分率分别为:
xwA、xwB、 、xwn ,
1
m
2) 倾斜U型管压差计
假设垂直方向上的高度为Rm,读 数为R1,与水平倾斜角度α
R1 sin Rm
Rm R1 sin
2018/8/3
13
3) 微差压差计
U型管两侧管的顶端增设两个小扩大室,其内径与U型管的内径之比大于10, 装入两种密度接近且互不相溶的指示液A和C,且指示液C与被测流体B亦不互溶。 根据流体静力学方程可以导出:
2018/8/3 2
一、流体的密度
1、密度的定义
单位体积的流体所具有的质量,ρ; SI单位kg/m3。
m V 2、影响密度的主要因素
液体:
f T ——不可压缩性流体
f T , p
气体:
3、密度的计算
(1) 理想气体
f T , p ——可压缩性流体
0
1、压强的定义
流体垂直作用于单位面积上的压力,称为流体的静压强,简称压强。
SI制单位:N/m2,即Pa。 其它常用单位有: atm(标准大气压)、工程大气压kgf/cm2、bar;流体柱高度(mmH2O, mmHg等)。 换算关系为: 1atm 1.033kgf / cm 2 760mmHg
p1 p2 A C gR
——微差压差计两点间压差计算公式
2018/8/3
14
例:用3种压差计测量气体的微小压差 P 100Pa 试问:(1)用普通压差计,以苯为指示液,其读数R为多少? (2)用倾斜U型管压差计,θ=30°,指示液为苯,其读 数R’为多少? (3)若用微差压差计,其中加入苯和水两种指示液,扩大室截面积远远 大于U型管截面积,此时读数R〃为多少?R〃为R的多少倍? 3 3 水的密度 998 kg / m c 879kg / m 已知:苯的密度 A 计算时可忽略气体密度的影响。 解:(1)普通管U型管压差计 100 P R 0.0116m C g 879 9.807 (2)倾斜U型管压差计 (3)微差压差计 100 P " 0.0857m R A C g 998 879 9.807 R" 0.0857 故: 7.39 R 0 . 0116 2018/8/3
化工原理-流体静力学方程
pa p2 Bg Z m AgR 于是 p1 Bg(m R) p2 Bg Z m AgR
18
一、压强与压强差的测量
上式化简,得
p1 p2 (A B )gR BgZ
若
Z 0
则 p1 p2 (A B )gR
若U管的一端与被测流体连接,另一端与大 气相通,此时读数反映的是被测流体的表压强。
不同基准压力之间的换算 表压力 = 绝对压力-大气压力 真空度 = 大气压力-绝对压力 真空度 = -表压力
5
第1章 流体流动
1.2 流体静力学基本方程式 1.2.1 静止流体的压力 1.2.2 流体静力学基本方程式
6
流体静力学方程
微元立方流体
边长:dx、dy、dz 密度:ρ
图1-6 微元流体的静力平衡
例1-7 附 图
25
动画16
三、液封高度的计算
设备内操作条件不同,采用液封的目的也就 不同。流体静力学原理可用于确定设备的液封 高度。具体见[例1-8]、[例1-9]。
26
三、液封高度的计算
1-与真空泵相通的不凝性气体出口 2-冷水进口 3-水蒸气进口 4-气压管 5-液封槽
例1-9 附图
27
练习题目
ΔP,在此情况下,单位面积上所受的压力,称
为压力强度,简称压强,俗称压力,其表达式
为
p P A
ห้องสมุดไป่ตู้
p lim P A0 A
4
静止流体的压力
压力的单位 在SI单位制中,压力单位是N/m2或Pa。 其 他 单 位 还 有 : 1atm = 101300 N/m2 =
101.3kPa = 1.033kgf/cm2 = 10.33mH2O = 760mmHg
第一章 流体流动
气体密度 一般温度不太低,压强不太高时气体可按理想气 体考虑,所以理想气体密度可由理想气体状态方程 导出: T0 p M pM m
v
RT
0
Tp 0
0 22.4 ,kg / m
3
混合气体密度
ρm= ρ1y1+ ρ2y2+ …+ ρnyn
MT0 p 22.4Tp 0
式 y1、y2……yn——气体混合物各组分的体积分数 ρ1、 ρ2、…、 ρn—气体混合物中各组分的密度,kg/m3; ρm——气体混合物的平均密度,kg/m3;
2.2 流体静力学基本方程的应用
1、压力的测量 (1) U型管压差计 构造: U型玻璃管内盛指示液A 指示液:指示液A(蓝色)与被测液B(白)互不相溶,且ρA>ρB 原理:图中a、b两点在相连通的同一静止流体内,并且在 同一水平面上,故a、b两点静压力相等,pa=pb。 对a、b两点分别由静力学基本方程,可得 pa= p1+ρB· g(Z+R) pb= p2+ρB· gZ+ρAgR
三、流体的研究方法
连续介质假说:流体由无数个连续的质点组
成。﹠质点的运动过程是连 续的 质点:由许多个分子组成的微团,其尺寸比 容器小的多,比分子自由程大的多。 (宏观尺寸非常小,微观尺寸又足够大)
四、流体的物理性质
◆密度ρ 单位体积流体的质量,称为流体的密度,其表 m 达式为
V
式中 ρ——流体的密度,kg/m3; m——流体的质量,kg; V——流体的体积,m3。 流体的密度除取决于自身的物性外,还与其温 度和压力有关。液体的密度随压力变化很小,可 忽略不计,但随温度稍有改变;气体的密度随温 度和压力变化较大。
pA=p0+ ρgz pB=p0+ ρi gR 又∵ pA=pB
化工原理第一章_流体流动
非标准状态下气体的密度: 混合气体的密度,可用平均摩尔质量Mm代替M。 式中yi ---各组分的摩尔分数(体积分数或压强分数)
比体积
• 单位质量流体的体积称为流体的比体积,用v表示, 单位:m3/kg
• v=V/m=1/ρ
5 流体的压强及其特性
垂直作用于单位面积上的表面力称为流体的静压强,简 称压强。流体的压强具有点特性。工程上习惯上将压强 称之为压力。
R
a
b
0
2. 倒置 U 型管压差计
用于测量液体的压差,指示剂密度 0 小于被测液体密度 , U 型管内位于同 一水平面上的 a、b 两点在相连通的同一 静止流体内,两点处静压强相等
p1 p2 R 0 g
由指示液高度差 R 计算压差
若 >>0
p1 p2 Rg
0
a
b
R
p1 p2
3. 微差压差计
p1 p2 R 01 02 g
对一定的压差 p,R 值的大小与 所用的指示剂密度有关,密度差越小, R 值就越大,读数精度也越高。
p1 p2
02
a
b
01
4. 液封高度
液封在化工生产中被广泛应用:通过液封装置的液柱高度 , 控制器内压力不变或者防止气体泄漏。
为了控制器内气体压力不超过给定的数值,常常使用安全液 封装置(或称水封装置),其目的是确保设备的安全,若气体压 力超过给定值,气体则从液封装置排出。
传递定律(巴斯葛原理):当液面上方有变化时,必 将引起液体内部各点压力发生同样大小的变化。
液面上方的压强大小相等地传遍整个液体。
静力学基本方程式的应用
1.普通 U 型管压差计
U 型管内位于同一水平面上 的 a、b 两点在相连通的同一静 止流体内,两点处静压强相等
南京理工化工原理课件1--流体流动
衡算基准: 单位重量流体为基准(m):
We hf H 压头损失 H e 有效压头; f g g
2 u12 p1 We u2 p2 We h f Z1 Z2 2g g g 2g g g g
z1:位压头 u12/2g:动压头 p/ρ g:静压头 单位体积流体为计算基准(Pa)
三. 静压强的表示方法
绝对压强(ata):以绝对真空为基准量得的压强; 表压强(atg):以大气压强为基准量得的压强。
1-1-3 流体静力学基本方程
流体静力学基本方程是描述静止流体内部在压力和重力作用下, 流体的平衡规律,实质上是描述静止流体内部压强的变化规律。
对于dz微元:pA-(p + dp)A-ρ gAdZ= 0 对于同一流体,ρ 为常数,积分得: p1 p gz1 2 gz2
物理意义:促使流体流动产生单位速度梯度时剪应力
的大小。
粘度总是与速度梯度相联系,只有在运动时才显现出
来。
粘度是流体物理性质之一,其值由实验测定
1-3-2 流动类型与雷诺准数
雷诺实验
流动类型:层流和湍流
雷诺指出: (1)当Re≤2000时,出现层流区,层流是稳定的。
(2)当2000<Re<4000时,有时出现层流,有时出现 湍流,决定于外界的扰动,此为过渡区。
p/ρ —单位质量液体所具有的静压能
1-1-4
流体静力学基本方程式的应用
一、压强与压强差的测量 1.U 型压差计
(pA+ρ gzA)-(pB+ρ gzB)=Rg (ρ A-ρ ) 两测压口处于等高面
pA-pB=(ρ A-ρ )gR
2.微差压差计
(1)两种指示 液密度相 接近且不互溶。
第一章 1[1].1流体流动静力学基本方程分析
第一章流体流动1-0 概述一学习本章的意义:1.流体存在的广泛性。
在化工厂中,管道和设备中绝大多数物质都是流体(包括气体、液体或气液混合物)。
只是到最后,有些产品才是固体。
2 .通过研究流体流动规律,可以正确设计管路和合理选择泵、压缩机、风机等流体输送设备,并且计算其所需的功率。
3 .流体流动是化工原理各种单元操作的基础,对强化传热、传质具有重要的实践意义。
因为热量传递,质量传递,以及化学反应都在流动状态下进行,与流体流动密切相关。
所以大家要认真学习这一章,充分打好基础。
二流体流动的研究范畴1 流体定义:具有流动性的液体和气体统称为流体。
2 连续性介质假定:流体是由大量的单个分子组成,而每个分子之间彼此有一定的间隙,它们将随时都在作无规则随机的运动。
所以,若把流体分子作为研究对象,则流体将是一种不连续介质,这将使研究非常困难。
好在在化工生产过程中,我们对流体流动规律的研究感兴趣的并非是单个分子的微观运动,而是流体宏观的机械运动。
所以我们不取单个分子作为考察对象,而取比分子平均自由程大得多,比设备尺寸小得多的这样一个流体质点作为最小考察对象,质点是由大量分子组成的微团,它可以代表流体的性质。
流体可以看成是由大量微团组成的,质点间无空隙,而是充满所占空间的连续介质,从而可以使用连续函数的数学工具对流体的性质加以描述。
提高:连续性介质假定如图1所示,考虑一个微元体积内流体平均密度的变化情况:取包含P(x,y,z)点在内的微元体积⊿V,其中包含流体的质量为⊿m,则微元流体的平均密度为⊿m/⊿V,微元流体的平均密度随体积的变化如图2所示。
当微元体积⊿V从非常小逐渐增大,趋向一个特定的微元体积V时,流体的平均密度逐渐趋向一个极限值,且不再随微元体积的继续增大而发生变化。
当微元体积⊿V比δV小时,这时微元体积内所包含的流体分子数目是那样少,以致流体分子由于其无规则的热运动,进入或离开微元体积的流体分子数目已足以引起该微元体积内流体平均密度的随机波动。
第一章流体流动
压强的基准:
绝对压强——以绝对真空(零压)为基准测得 表 压——以大气压强为基准测得(高于大气压) 真 空 度——以大气压强为基准测得(低于大气压) 表 压=绝对压强-大气压强 P表=P绝-P大 P真=P大-P绝 P绝=P大-P真 P绝=P大+P表
真 空 度=大气压强-绝对压 绝对压力=大气压-真空度 =大气压+表压
推而广之即: uA =常数 若为不可压缩流体则: uA =常数 上两式即为连续性方程式。
[例] 在定态流动系统中,水连续地从粗管流入细管。 粗管内径为细管的两倍,求细管内水的流速是粗管内的 若干倍。 解:以下标1及2分别表示粗管和细管。不可压缩流体 的连续性方程式为: u 1A 1 = u 2A 2
第一章 第一节
四、流体静力学基本方程式的应用
(一)压力测量
1、U型管差压计 如图1-4所示 压差(p1-p2)与R的关系根据流体静力学基本方程式 进行推导。 a,a’是等压点,即Pa=Pa’ Pa=P1+ ρBg(m+R) Pa’=P2+ ρBg(Z+m)+ ρAgR
所以:P1+ ρBg(m+R)=P2+ ρBg(Z+m)+ ρAgR
目的: ① 恒定设备内的压力, 防止超压;
气
气 液
p
水
溢流
0 安全液封 h0 0
② 防止气体外泄; 水封 液封高度计算:
0
p
0 h.0
p h0 g
水
气体
煤气柜
第一章 第一节
• 如本题附图所示,某厂为了控制乙炔发生炉a内的压强不超过 10.7×103Pa(表压),需在炉外装有安全液封(又称水封)装置,其 作用是当炉内压强超过规定值时,气体就从液封b中排山。试求此 炉的安全液封管应插入槽内水面下的深度h。 解:当炉内压强超过规定值时,气体将由液封管排出, 故先按炉内允许的最高压强计算液封管插入槽内水面
1-2 流体流动基本方程
面达到最高时,h为零,R亦为零。
(2)远距离液位测量装置
管道中充满氮气,其密 度较小,近似认为
p A pB
pA pa gh
pB pa 0 gR
A
B
所以
0 h R
3、液封高度的计算
液封作用:
确保设备安全:当设备
内压力超过规定值时,气
体从液封管排出; 防止气柜内气体泄漏。 液封高度: h p
二、静力学方程的讨论
p = p0 + ρgh
①传递定律: p0 有变化时,流体内部其他各点上的 压强也发生变化; ②等压面的概念:在静止的同一连续流体内,处于 同一水平面上各点的压强都相等; ③压强可以用一定高度的流体柱来表示 p p0 h g 但必须说明液体的种类。
④ 静力学方程的能量形式:
液A和C;
扩大室内径与 U 管内径之比应 大于10 。
p1 p2 Rg( A C )
[分析]同压差下,两种指示液密度越接近,高度 差越大。
2、液位的测量 (1)近距离液位测量装置
压差计读数R反映出容器 内的液面高度。
0 h R
ρ
ρo
液面越高,h越小,压差计读数 R越小;当液
作业:
P54
1-5;1-8
§ 1.2 管内流体流动的基本方程 ( Basic equations of fluid flow )
一、流量与流速
1. 体积流量 (volumetric flow rate) 单位时间内流经管道任意截面的流体体积 , qV, 单位为m3/s。 2. 质量流量(mass flow rate) 单位时间内流经管道任意截面的流体质量, qm, 单位为 kg/s。 二者关系:
化工原理第一章 流体流动-学习要点
1.3 流体动力学 ( Fluid dynamics )
1.3.3 伯努利方程 ( Bernoulli equation ) 机械能的形式
位能: 流体在重力场中, 位能: 流体在重力场中,相对于基准水平面所具有的能量 动能: 动能: 流体由于流动所具有的能量 静压能:流体由于克服静压强流动所具有的能量 静压能: 能量损失: 能量损失:流体克服流动阻力损失的机械能 外加功:流体输送机械向流体传递的能量 外加功:
ε r :=
1
2ε 18.7 ) = 1.74 − 2 ⋅ lg( + d Re λ λ
Re :=
−3
0.005 × 10
−3
ε r = 2.857 × 10
1.1 流体性质 ( Properties of fluid )
1.1.2 压强 ( pressure )
表 压=绝对压力-大气压力 绝对压力真空度= 真空度=-表压强 真空度=大气压力真空度=大气压力-绝对压力 压强表:读数为表压强, 压强表:读数为表压强,用于被测体系绝对压强高于环境 大气压 真空表:读数为真空度, 真空表:读数为真空度,用于被测体系绝对压强低于环境 大气压 说明:(1)表压于当地大气压强有关 说明:(1)表压于当地大气压强有关 (2)绝压、表压、真空度, (2)绝压、表压、真空度,一定要标注 绝压 (3)压力相除运算时, (3)压力相除运算时,一定要用绝压 压力相除运算时 压力加减运算时,都可以,但要统一并注明 压力加减运算时,都可以,
1.4 流体流动现象 ( Fluid-flow phenomena )
1.4.1 流动类型 (The types of fluid flow)
Re = duρ
µ
Reynolds number is a dimensionless group .
制药工程原理-流体[2]..
pa = pa
,
p1 − ρgM = p2 − ρg ( M − R ) − ρ g gR
整理得: p1 − p2 = ( ρ − ρ g ) gR ρg << ρ ,上式可简化为:
p1 − p2 ≈ ρgR
液面测定
确定液封高度
• 在化工生产中,为了控制设备内气体压力不超过 规定的数值,常常装有如图所示的安全液封(或 称为水封)装置。 其作用是当设备内压力超过 规定值时,气体就从液封管 排出,以确保设备操作的安 全。若设备要求压力不超过 P1(表压),按静力学基本 方程式,则水封管插入液面 下的深度h为 p1 h= ρ H 2o g
流体在管内的流动
• 基本方程 • 流动现象
流 体 流 动 的 基 本 方 程
流量与流速
在管内同一横截面 上流体的流速是不 同的
1、定义 体积流量qv:单位时间流过管路任一截面的流体体积。 质量流量qm:单位时间流过管路任一截面的流体质量。 流速um:体积流量除以管截面积所得之商。(平均流速) 质量流速umm :质量流量除以管截面积所得之商。 2、表达式及单位 (1)体积流量: qv =V/θ (m3/s) (2)质量流量: qm=m/θ (kg/s)=ρqV. (3)流速: um= qv /A (m/s) (4)质量流速: umm= qm /A= qv ρ /A= ρum (kg/㎡s)
(2) 计算水在玻璃管的高度h。
流体静力学基本方程式的应用
• • • • • • 一、压强与压强差的测量 1、U形管压差计 2、微差压差计 3 倒U形管压差计 二、液面测定 三、确定液封高度
U形管压差计
pa = p1 + ρ B g ( z + R )
化工原理——第一章 流体流动
黏度在物理单位制中的导出单位,即
dyn / cm 2 dyn s
g
P(泊)
du
cm/ s
dy
cm
cm2 cm s
1cP 0.01P 0.01 dyn s
1
1 100000
N
s
1
Pa s
cm2
100
(
1 100
)
2
mபைடு நூலகம்
2
1000
即1Pa s 1000cP
流体的黏性还可用黏度μ与密度ρ的比值表示。这 个比值称为运动黏度,以ν表示即
pM
RT
注意:手册中查得的气体密度都是在一定压力与温度 下之值,若条件不同,则密度需进行换算。
三、混合物的密度
混合气体 各组分在混合前后质量不变,则有
m A xVA B xVB n xVn
xVA, xVB xVn——气体混合物中各组分的体积分率。
或
m
pM m RT
M m ——混合气体的平均摩尔质量
例如用手指头插入不同黏度的流体中,当流体大 时,手指头感受阻力大,当小时,手指头感受阻 力小。这就是人们对粘度的通俗感受。
在法定单位制中,黏度的单位为
du
Pa m
Pa • s
dy
s
m
某些常用流体的黏度,可以从本教材附录或手册中查
得,但查到的数据常用其他单位制表示,例如在手册中
黏度单位常用cP(厘泊)表示。1cP=0.01P(泊),P是
M m M A yA M B yB M n yn
yA, yB yn——气体混合物中各组分的摩尔(体积)分率。
混合液体 假设各组分在混合前后体积不变,则有
1 xwA xwB xwn
流体力学资料复习整理
流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿内摩擦定律: 单位面积上的摩擦力为:3/g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=h U μτ=内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。
化工原理09-流体流动(生物)解析
=100×103+1.2×103×9.81×5+1.5×103×9.81 ×(5-3) =188.3×103Pa
10
U型管压强计
p1 p2 m R
34
静止液体 p3=p4 p3=p1+(m+R)g p4=p2+R ig +m g p1-p2=R( i - )g 若为气体,气体的密度远 远小于指示液密度 p=p1-p2=R i g
4
2 相对密度 定义 在一定温度下,物质的密度和277K的水 的密度之比
dT277=/H2O
3 比容 定义 单位质量流体所占有的体积,[m3/kg] v = V/m =1/ 气体是可以压缩的,称为可压缩性流体; 液体是不可压缩的,称为不可压缩性流体。
5
二 流体的压强 1 定义:流体垂直作用于单位面积上的力。
C 影响黏度的因素 黏度受温度和压力的影响,但压力的影响一般可以 不考虑。
气体 温度升高 黏度增大
液体 温度升高 黏度减小
19
D 混合物的黏度的确定: 可以从附录中查到一些液体和气体随温度变化 的黏度 实验法:利用沉降速度、距离求黏度(在后 面介绍) 经验公式估算法
20
二、稳定流动下的物料衡算(质量恒算)
11
可见:(p1-p2)一定时指示液密度越大,读数 R越小,读数误差大。
U型管可以用来测两点的压强差,也可以用
来 测一点的压强。
测量液面
见P6例1-1
求液封
微差压差计:p= p1-p2=R( 2 -1 )g
12
斜管压差计
13
14
15
第二节 流体流动的基本方程 一、基本概念 1、流量:单位时间内通过任一截面的流体量。 体积流量:流体量为体积。Vs[m3/s] 质量流量:流体量为质量。 ms[kg/s] ms =Vs 2、流速:单位时间流体在流动方向上流过的距离,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特别注意:
1)R=8.314 kJ/(kmol· K) ,其单位与其它参数单位遵循单 位一致性原则; 2)此处的气体压力为绝对压力。
1.压强的表示方法 1)压强的单位 法定计量单位:N/m2、Pa mmH2O、mmHg 非法定计量单位: 2)压强单位换算 1 mmH2O=9.81 Pa atm、bar、kgf/cm2
同理:系统内部对流出流体所作的功为:
Wp 2 p2 V2
二. 流体静力学
关于流体密度的说明: a) 对于液体,在低压下(<10MPa),其密度可以认为不
随压力变化而变化。
b) 对于气体,在低压下( <10MPa ),可以认为是理想气
体。其密度可由理想气体状态方程求出。
m nM pM V V R T
取长度为 dl 的静止流 体微元,截面积为 A ,
与垂直方向的夹角为 α。
依据牛顿第二定律,
知:衡算方向上的合 外力为零。
列式有:
ρ·A · dl·g
pA ( p dp) A A dl g cos 0
整理得: 又有: 因此,有:
dp g dl cos 0
相对高度
为什么要有这些不同的表示方法?
与实际压力的测量有关,多数压力表的读数都是表压,即 绝对压强与外界大气压的差值;真空表的读数为真空度。 在计算过程中,如无特别说明,一律按绝对压力计算。
表 压 大气压线 真 空 度 绝 对 压 强
相对高度 (山脚平原) 深度 海拔高度
绝 对 压 强 绝对零压线
Lagrange法:跟踪一辆汽车,对整条路的状况 进行分析研究。
Euler法:选择一段路,对这段路的状况进行 分析研究。
3. 流体的受力与能量 法向力:压力等
表面力
流体受力 切向力:摩擦力、剪力 质量力(体积力):重力、离心力 p0 动能 p1
机械能
能量
位能
静压能
G p2
z2
z1
热力学能:内能
L
p1 p2 g z1 g z2
压力形式 能量形式
p1 p2 g ( z2 z1 )
p1 p2 g z1 g z2
上式即为流体静力学基本方程,适用于重力场中连续、 静止、不可压缩流体。
该方程表明:
1. 静压强仅与流体的密度和垂直位置有关。
绝对高度
(海平面)
2. 压强
a. 定义:p=F/A
p lim
F dF A 0 A dA
b. Pascal 定律:静止流体中,作用于同一点上不同方向 的压强,其数值相等。 c. 特点:连续、均一的静止流体中,同一水平面的各点 压强相等。 1 2 1’ 2’
3. 流体静力学方程
(推导方法与教材上不同,更具一般性)来自1 mmHg=133.4 Pa
1 atm=101325 Pa =1.01325×105 Pa 1 bar=100000 Pa=1.0×105 Pa 1 kgf/cm2=98100 Pa=9.81×104 Pa
3) 压强的表示方法
可类比于山高的表 示方法
海拔高度
绝对压强:以绝对真空为基准的压强 表压:绝对压强-大气压强 真空度:大气压强-绝对压强
2. gz表示单位质量流体所具有的位能, p/ρ为单位质量流体所具有的静压能。
第1章 流体流动
——流体静力学
流体是液体和气体的总称,是由大量的、不断地作热
运动而且无固定平衡位置的分子构成的,它的基本特
征是没有固定的形状和具有流动性。 没有特定形状
共性
具有流动性 流动时内部质点也会发生相对位移
气体可压缩性较大,压力较低时可按理想气体处理
特性
液体可压缩性较小,一般可按不可压缩流体处理
所谓静压能,实质上是外部流 体对流入或流出系统的流体做 的功,如右图所示。 1截面处的静压强为p1, 该截面 上流体所受到的静压力为:
FP 1A 1
u1 A1 p1
u2 A2 p2
单位时间内流过1截面的流体长度为:L u1 t u1
则静压强对流体所作的功为:
Wp1 F L p1 A1 u1 p1 V1
注意:二者的密度都随温度的变化而变化,这种变化是不
能忽略的,相关参数可查书后附录。
流体静力学
Introduction of Hydrostatics
定义 : 流体在重力与压力下达到平衡,呈现静止状
态,流体静力学研究的是在这种状态下流体内部
不同位置上压力变化的规律。 Key words: Fluid, Hydrostatics, Pressure, Kinetic energy, Internal energy, Pressure energy, Potential energy
F ma m du dt
质点运动的守恒原理:如机械能守恒;质量守恒等。
2. 流体流动的考察方法 a. 连续性假设:流体是无数质点组成的连续介质,流体的
物性及运动参数在流动空间连续分布。
质点是指含有大量分子的流体微团。
b. 稳态流动:运动空间各点状态不随时间变化。
c. 考察流体运动的方法(教材上没有,了解) Lagrange法:选择一个流体质点,跟踪观察,描述其运 动参数(如位移、速度)与时间的关系。 Euler法: 在固定空间位置上观察流体质点的运动情 况。直接描述各有关运动参数在空间各点 的分布情况和随时间的变化。
dl cos dz
dp g dz 0 dp 写成微分形式,有: g dz
若流体密度ρ为定值,即流体不可压缩,将上式分离变量并 p2 z2 积分有: dp g dz
p1 z1
p1 p2 g ( z2 z1 )
本节主要内容
一. 流体流动概述
1. 物理力学基础 2. 考察方法 3. 流体的受力与能量
二. 流体静力学方程
1. 2. 3. 4. 压强 压强的表示方法 静力学方程 例题
一. 流体流动概述
流体输送是生产过程中的普遍现象。传热、传质及化学 反应过程等都与流体流动状态密切相关。 流体在管内流动的规律,管路的设计、输送机 研究目的: 械的选择和所需功率的计算。 1. 物理力学基础 牛顿第二定律: