2012年考研数学一真题及答案详解

合集下载

2012年研究生考试数学一试题及答案

2012年研究生考试数学一试题及答案

2012年全国硕士研究生考试数学(一)试题及答案一、选择题(1)曲线渐近线的条数为( ) .(A)(B)(C)(D)答案:选(C).解:,,而,所以有两条渐近线和,故选(C).【点评】本题属于基本题,其难度低于超越数学一模拟三第(1)题.(2)设函数,其中为正整数,则( ) .(A)(B)(C)(D)答案:选(A).解法一:,故选(A).解法二:,故选(A).(3)如果函数在处连续,那么下列命题正确的是( ) .(A)若极限存在,则在处可微(B)若极限存在,则在处可微(C)若在处可微,则极限存在(D)若在处可微,则极限存在答案:选(B).解:已知在处连续,设,因为,所以,故.由极限的性质有,其中是当,时的无穷小量,记,则.由全微分的定义知在点处可微分.【点评】本题考察的知识点是极限的基本性质及全微分的定义,所用知识点与2007年数学二的选择题类似.(4)设则有( ) .(A)(B)(C)(D)答案:选(D).解:,所以.,所以,故选(D).【点评】常规题型,但判定时有一定的技巧.(5)设,,,,其中为任意常数,则下列向量组线性相关的为( ) .(A)(B)(C)(D)答案:选(C).【点评】考点(1)列向量组进行行变换后,有相同的相关性;(2)三个三维的向量线性相关的充要条件为所构成的行列式为零.解法一:,显然有,故线性相关.解法二:因为,故线性相关.附:数二模二(7)已知向量组作为列向量组成矩阵,则(A)不能由其余向量线性表示.(B)不能由其余向量线性表示.(C)不能由其余向量线性表示.(D)不能由其余向量线性表示.(6)设为阶矩阵,为阶可逆矩阵,且,若,,则( ) .(A)(B)(C)(D)答案:选(B).【点评】考点(1)等价于.(2)也为的三个线性无关的特征向量.故.此题与超越五套模拟中的数一、三模五21题完全相同.每个数字都是一样的,真是惊人的巧合,这大概只有在超越才能把数学模拟到如此完美的地步.附:数一、三模五(21)(本题满分11分)为三阶实对称阵,为三阶正交阵,且.(Ⅰ)证明,;(Ⅱ)若,计算,,并证明与合同但不相似.(7)设随机变量与相互独立,且分别服从参数为和参数为的指数分布,则( ) .(A)(B)(C)(D)答案:选(A).解:的联合密度函数为.故选(A).(8)将长度为m的木棒随机地截成两段,则两段长度的相关系数为( ) .(A)(B)(C)(D)答案:选(D).解:设分别为两段长度,则,,因此.故选(D).二、填空题(9)若函数满足方程及,则.答案:“”.解:解此二阶常系数齐次线性方程得通解.又因满足可得,故.(10).答案:“”.解:.(11).答案:“”.解:记,则.【点评】本题考察的知识点是梯度的定义,在强化班中讲过梯度的定义以后,我们曾说过:“这个问题不需要举例题,人人都会做.”(12)设,则.答案:“”.解:,在面上的投影区域如图所示..【点评】本题考察的知识点是第一类曲面积分的基本计算方法,这也是历年考研试题中第一类曲面积分最简单的一个计算题.(13)设为三维单位向量,为三阶单位矩阵,则矩阵的秩为.【点评】考点(1)实对称矩阵的秩为其非零特征值的个数;(2)时,的特征值为,此题仅数一考,是代数三个小题中最难的一个.答案:“”.解法一:的特征值为,的特征值为,故秩为.解法二:令,则,从而秩为.(5),为维非零列向量则有①;②;的特征值只能取;③时,必可相似对角化,此时的特征值为一个,个零;特征值对应的特征向量为,特征值对应的特征向量为.(14)设是随机事件,与互不相容,,,.答案:“”.解:.【点评】会做超越冲刺班概率统计讲义例1.设随机事件两两独立,且,,,,已知至少发生一个,则仅有不发生的概率为.三、解答题(15)证明,.证法一:令,,,所以,当时,,;当时,,.故当时,.即证.证法二:由于为偶函数,故只需证明时不等式成立即可..当时,,,所以,,得证.证法三:.即证.证法四:由于为偶函数,故只需证明时不等式成立即可..所以得证.(15)(本题满分10分)设,证明:.中的不等式两边的函数,有多项式函数,三角函数和指数(对数)函数,惊人地相似.(15)【证法一】令,则,,,,,.因为,所以,单调递增,由知.从而单调递增,再由知,从而单调递增,最后由知,故要证的不等式成立.【证法二】,,,故当时,.【证法三】由于当时,,在依次作积分得:,,即,,即.(16)求函数的极值.解:令得驻点,.,,.在点处,,,.因为,且,所以是的极小值点,极小值.在处,,.因为,且,所以是的极大值点,极大值.(17)求幂级数的收敛域及和函数.解:记,由,可得.故收敛区间为.当时级数均发散,故收敛域为.设其中,,而,可得.,可得.所以(18)已知曲线,其中函数具有连续导数,且,,.若曲线的切线与轴的交点到切点的距离恒为,求函数的表达式,并求此曲线与轴与轴无边界的区域的面积.解:因为,故曲线上任一点,即点处的切线方程为.由此可得切线与轴的交点为,根据题意有.即,可得.由,可得,故.面积.(19)已知是第一象限中从点沿圆周到点,再沿圆周到点的曲线段,计算曲线积分.解法一:补充曲线为轴上从点到点的直线段,设与围成区域,由Green公式,.解法二:.在中,,.因为,所以积分与路径无关,取从点到点的直线段为,则.把分成两部分如图所示..,,.(20)设,.(Ⅰ)求;(Ⅱ)已知线性方程组有无穷多解,求并求的通解.解:(Ⅰ).(Ⅱ)得,当时,,,方程组无解舍去.当时,,,方程组有无穷多解,符合题意,通解为.(21)已知,二次型的秩为.(Ⅰ)求实数的值;(Ⅱ)求正交变换将化为标准形.解法一:由得,从而,,,有三个特征值.分别解三个线性齐次方程组,,.求得特征向量后,再单位化得正交阵,对角阵,正交变换,的标准型为.解法二:若不知也可做但很繁.,.此行列式难算,算出后还要因式分解,不容易!据我了解选择此方法的都没算出,得分也不会超过4分.(22(Ⅰ)求;(Ⅱ)求.解:(Ⅰ).(Ⅱ),,,,,,,.(23)设随机变量与相互独立且分别服从正态分布与,其中是未知参数且.设.(Ⅰ)求的概率密度;(Ⅱ)设为来自总体的简单随机样本,求的最大似然估计;(Ⅲ)证明为的无偏估计量.解:(Ⅰ)由于,所以的密度函数为,.(Ⅱ),,,令,解得.(Ⅲ),所以为的无偏估计量.。

2012考研数学一真题及解析

2012考研数学一真题及解析

2012考研数学一真题及解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1) 【答案】:C【解析】:221lim1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C(2) 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n -- (3) 【答案】:【解析】:由于(,)f x y 在()0,0处连续,可知如果22(,)limx y f x y x y →→+存在,则必有0(0,0)lim (,)0x y f f x y →→== 这样,220(,)limx y f x y x y →→+就可以写成2200(,)(0,0)lim x y f x y f x y ∆→∆→∆∆-∆+∆,也即极限220(,)(0,0)limx y f x y f x y ∆→∆→∆∆-∆+∆存在,可知lim 0x y ∆→∆→=,也即(,)(0,0)00f x y f x y o∆∆-=∆+∆+。

由可微的定义可知(,)f x y 在(0,0)处可微。

(4) 【答案】:(D) 【解析】:2sin kx k eI e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin kx k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)【答案】:(C )【解析】:由于()13411341111,,011011c c c c ααα--=-==-,可知134,,ααα线性相关。

2012考研数学一真题及详解

2012考研数学一真题及详解

2012年全国硕士研究生统一考试数学一试题及答案一、选择题:共8小题,每题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定的位置上。

1、曲线221x x y x +=-渐近线的条数( )(A )0; (B )1; (C )2; (D )3。

解:(C ):22211lim lim 1111x x x x x x x→∞→∞++==--,可得有一条水平渐近线1y =;222112lim 1lim 1x x x x x x →→+==∞--,可得有一条铅直渐近线1x =;22111(1)1lim lim lim 1(1)(1)12x x x x x x x x x x x x →-→-→-++===--+-,可得1x =-不是铅直渐近线,故答案为(C )。

2、设函数2()(1)(2)()x x nx y x e e e n =--- ,其中n 为正整数,则'(0)y =( ) (A )1(1)(1)!n n ---;(B )(1)(1)!n n --;(C )1(1)!n n --;(D )(1)!n n -。

解:(A ):(0)(11)(12)(1)0y n =---= ;则22000()(0)(1)(2)()(2)()'(0)lim lim lim0x x nx x nx x x x y x y e e e n x e e n y x x x→→→------===- 1(12)(1)(1)(1)!n n n -=--=-- 。

故答案为(A )。

3.如果函数(,)f x y 在(0,0)处连续,那么下列例题正确的是( )(A )若极限(,)(0,0)(,)lim ||||x y f x y x y →+存在,则(,)f x y 在(0,0)处可微;(B )若极限22(,)(0,0)(,)limx y f x y x y →+存在,则(,)f x y 在(0,0)处可微;(C )若(,)f x y 在(0,0)处可微,则极限(,)(0,0)(,)lim||||x y f x y x y →+存在;(D )若(,)f x y 在(0,0)处可微,则极限22(,)(0,0)(,)limx y f x y x y →+存在。

2012考研数一真题解析

2012考研数一真题解析
【答案】 3 12
【考点】曲面积分的计算 【难易度】★★★★ 【详解】本题涉及到的主要知识点:
8 第 8 页,共 21 页
梦想不会辜负每一个努力的人
曲面积分公式:
x 1
的间断点只有
x
1 .
由于 lim y ,故 x 1是垂直渐近线. x1
(而 lim y lim x(x 1) 1 ,故 x 1不是渐近线). x1 x1 (x 1)(x 1) 2
1 1
又 lim y lim x 1,故 y 1是水平渐近线.(无斜渐近线)
x
x 1
1 x2
综上可知,渐近线的条数是 2.故选 C.
lim
x0
f (x, y) x2 y2
lim x0
f
(x, y) f (0, 0) x2 y2
A
y0
y0
由极限与无穷小的关系
f (x, y) f (0, 0) x2 y2
A
o(1)
x y
0 0

其中 o(1) 为无穷小. f (x, y) f (0, 0) A(x2 y2) (x2 y2)o(1)
【答案】D 【考点】定积分的基本性质 【难易度】★★★ 【详解】本题涉及到的主要知识点:
b
c
b
设 a c b ,则 f (x)dx f (x)dx f (x)dx .
a
a
c
在本题中,
I1
0
ex2
sin
xdx

I2
2 0
ex2
sin
xdx ,
I3
3 ex2 sin xdx
0
I2 I1
y0
可微,但 lim x0

2012考研数学一真题及答案

2012考研数学一真题及答案

2012考研数学一真题及答案2012年的考研数学一真题是许多考生备战考研的重要参考资料。

本文将为大家介绍2012年考研数学一真题的内容,并提供详细的答案解析。

一、选择题部分1. 题目:设A为非空集合,a, b为A中的元素,则下列哪个式子一定成立?A) a∈A B) {a} ⊆ A C) (∅, a) ∈ A D) a ⊂ A答案解析:选项A中的a∈A是集合A定义的基本要素,因此一定成立。

2. 题目:设A = {a, b, c},B = {1, 2, 3},则A × B的元素个数为:A) 6 B) 5 C) 4 D) 9答案解析:集合A的元素个数为3,集合B的元素个数为3,所以A × B的元素个数为3 × 3 = 9。

二、填空题部分1. 题目:已知f(x) = e^x + x^2,则f'(0) = _______。

答案:1答案解析:对函数f(x)求导得到f'(x) = e^x + 2x,代入x = 0得到f'(0) = 1。

2. 题目:若A = [1, 2, 3],B = [2, 3, 4],则A ∩ B = _______。

答案:[2, 3]答案解析:A ∩ B表示集合A和集合B的交集,即共有的元素。

显然,A和B的交集为[2, 3]。

三、计算题部分1. 题目:已知平面直角坐标系xOy,点A的坐标是(2, 3),点B的坐标是(5, 7),则直线AB的斜率为_______。

答案:2答案解析:直线AB的斜率可以通过斜率公式求得,即斜率k =(y2 - y1) / (x2 - x1)。

代入点的坐标后可得斜率为2。

2. 题目:已知二次函数f(x) = ax^2 + bx + c,其中f(1) = 4,f(2) = 9,f(3) = 16,则a + b + c = _______。

答案:10答案解析:代入已知条件f(1) = 4、f(2) = 9、f(3) = 16,可以得到三个等式,联立解方程可得到a + b + c = 10。

2012年全国考研数学一真题

2012年全国考研数学一真题

lim
f ( x, y) M ,可得 f (0, 0) 0 , 1 | x|| y|
z f (x, y) ,则 f x'(0, 0) lim
在,
x 0
f (x, 0) f (0, 0) f (x, 0) | x | lim lim M 1不存 x 0 x 0 x | x | 0 x
(22)(本题满分 11 分) 设二维随机变量 X 、 Y 的概率分布为
X 0 1 2 (Ⅰ)求 PX 2Y (Ⅱ)求 Cov( X Y ,Y ) Y 0 1 0 2
1 4
0
1 4
0
1 3
0
1 12
1 12
第 5 页 共 17 页
(23)(本题满分 11 分) 设随机变量 X 与 Y 相互独立分别服从正态分布 N (,2) 与 N (,22) ,其中 是未知参数且
(15)(本题满分 10 分) 证明 x ln
1 x cos x 1 x 2 , (1 x 1) 1 x 2
第 2 页 共 17 页
(16)(本题满分 10 分)
求函数 f (x, y) xe

x2 y2 2
的极值
(17)(本题满分 10 分) 求幂级数
4n2 4n 3 2 n 2n 1 x 的收敛域及和函数 n0
f y' (0, 0) 0 B ,

lim
0
z Ax By

lim
0
f (x ,y )

lim
0
f (x ,y ) (x ) 2 (y ) 2 lim M 20 0 2 2 (x) (y) 0 ( x)2 ( y)2

2012年考研数一真题及答案解析(完整版)

2012年考研数一真题及答案解析(完整版)

2012年全国硕士研究生入学统一考试数学一试题一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-渐近线的条数( )(A) 0 (B) 1 (C) 2 (D) 3 (2) 设函数2()(1)(2)()x xn x y x e e e n =--- ,其中n 为正整数,则(0)y '=( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D)(1)!n n -(3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限0(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13 (C) 25 (D) 45(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为( )(A) 1 (B)12 (C) 12- (D)1-二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x = (10)2202d x x x x =-⎰(11)(2,1,1)()|zgrad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵TE XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)证明21ln cos 1(11)12x x x x x x ++≥+-<<- (16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n x n ∞=+++∑的收敛域及和函数(18)已知曲线(),:(0),c o s2x ft L t y t π=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L 的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。

2012年全国硕士研究生入学统一考试(数一)试题及答案

2012年全国硕士研究生入学统一考试(数一)试题及答案
解:(1) ,


(2) ,
而 ,其中 ,

可得 ;

可得 ;

从而可得相关系数 。
23(本题11分)设随机变量 与 相互独立,且分别服从正态分布 与 ,其中 是求知参数,设 。(1)求 的概率密度 ;(2)设 是来自总体 的简单随机样本,求 的最大似然估计量 ;(3)证明 是 的无偏估计量。
解:(1)∵ 与 相互独立,且 与 , 也服从正态分布,且
二、填空题:9-14,共6题,满分24分请将答案写在答题纸指定的位置上。
9、若函数 满足方程 及 ,则 。
解: : 的特征方程为 解得 ,可得通解为:
,代入 得 ,可得 。
故可得答案为 。
10、 。
解: : ,令 ,可得
由对称性得 ,再令 可得 。
11、 。
解: 或 :令 ,则 ,可得

12、已知曲面 ,则 。
(5)设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )
(A) (B) (C) (D)
(6)设A为3阶矩阵,P为3阶可逆矩阵,且 ,若 , 则 = ( )
(A) (B) (C) (D)
(7)设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则 = ( )
(A) (B) (C) (D)
(A)若极限 存在,则 在 处可微;
(B)若极限 存在,则 在 处可微;
(C)若 在 处可微,则极限 存在;
(D)若 在 处可微,则极限 存在。
解:(B):∵ 在 处连续:①对(A):令 ,可得 ,
,则 不存在,
同理得 也不存在,故(A)错;
②对(B):令 ,可得 ,
,同理 ,

2012考研数学一真题及答案

2012考研数学一真题及答案

2012年全国硕士研究生入学统一考试数学一试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 (2) 设函数2()(1)(2)()xxnx y x e ee n =---,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13 (C) 25 (D) 45(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B) 12 (C) 12- (D)1-二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x = (10)2202d x x x x =-⎰(11)(2,1,1)()|zgrad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵TE XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)证明21ln cos 1(11)12x x x x x x ++≥+-<<-(16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n x n ∞=+++∑的收敛域及和函数 (18)已知曲线(),:(0),cos 2x f t L t y tπ=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L 的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。

2012考研数学一真题及答案

2012考研数学一真题及答案

2012年全国硕士研究生入学统一考试数学一试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 (2) 设函数2()(1)(2)()xxnx y x e ee n =---,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13 (C) 25 (D) 45(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B) 12 (C) 12- (D)1-二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x =(10)2x =⎰(11)(2,1,1)()|zgrad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵T E XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p AB P C p AB C === 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)证明21ln cos 1(11)12x x x x x x ++≥+-<<-(16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n x n ∞=+++∑的收敛域及和函数 (18)已知曲线(),:(0),cos 2x f t L t y tπ=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L 的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。

2012年考研数学一真题解析

2012年考研数学一真题解析

2012年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 曲线221x xy x +=-渐进线的条数(A )0 (B)1 (C)2 (D)3【考点分析】:曲线的渐近线条数。

【求解过程】:C⏹ 方法一:利用函数图像的平移,将已知的函数的渐近线条数转化为简单的基本函数的渐进线条数。

由于22(1)111(1)(1)11x x x x x y x x x x x ++====+--+--, 可知,221x x y x +=- 的图像是由1y x=的图像向由右平移一个单位,再向上平移一个单位所得。

由于图像平移并不改变其渐进线的条数。

1y x=有两条渐进线,其中一条为水平渐近线0y =,一条为垂直渐近线0x =。

所以221x xy x +=-也有两条渐近线,选择C 。

【相关补充】:函数平移口诀:上加下减,左加右减。

例如,把函数()y f x =依次做以下四次的平移:(1)向上平移1个单位,(2)向下平移2个单位(3)向左平移1个单位(4)向右平移2个单位。

则新函数的解析式为(12)12(1)1y f x f x =+-+-=--。

⏹ 方法二:直接求解函数的渐近线。

因为 22lim 1,1x x xx →∞+=- 所以1y = 为水平渐进线。

又由于有水平渐进线,所以一定不存在同一趋向下的斜渐进线。

又因为221lim ,1x x xx →+=∞-所以1x =为垂直渐进线。

综上所述,221x xy x +=-也有两条渐近线,选择C 。

【相关补充】:斜渐进线的求解步骤:1) 考察是否有lim ()x f x →±∞=∞?若是,则转2)2) 考察是否有()limx f x a x→±∞=(常数)?,若是,则转3) 3) 是否有lim[()]x f x ax b →±∞-=存在?若是,则()y f x =有斜渐进线y ax b =+,上述任何一个步骤中,若否,则无斜渐进线。

2012考研数学一真题及答案

2012考研数学一真题及答案

2012年全国硕士研究生入学统一考试数学一试题一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx y x e e e n =--- ,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n - (3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)limx y f x y x y→→+存在 (4)设2sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15 (B) 13 (C) 25 (D) 45(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B)12 (C) 12- (D)1- 给大家分享点个人的秘密经验,让大家考得更轻松。

2012考研数学一试题、答案

2012考研数学一试题、答案

2012年全国硕士研究生统一考试数学一试题一、选择题:共8小题,每题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定的位置上。

1、曲线221x x y x +=-渐近线的条数( )(A )0; (B )1; (C )2; (D )3。

2、设函数2()(1)(2)()x x nx y x e e e n =--- ,其中n 为正整数,则'(0)y =( ) (A )1(1)(1)!n n ---;(B )(1)(1)!n n --;(C )1(1)!n n --;(D )(1)!n n -。

3.如果函数(,)f x y 在(0,0)处连续,那么下列例题正确的是( )(A )若极限(,)(0,0)(,)lim||||x y f x y x y →+存在,则(,)f x y 在(0,0)处可微;(B )若极限22(,)(0,0)(,)lim x y f x y →存在,则(,)f x y 在(0,0)处可微; (C )若(,)f x y 在(0,0)处可微,则极限(,)(0,0)(,)lim ||||x y f x y x y →+存在; (D )若(,)f x y 在(0,0)处可微,则极限22(,)(0,0)(,)lim x y f x y x y →+存在。

4、设2sin (1,2,3)kx k e I e xdx k ==⎰,则有( )(A )123I I I <<;(B )321I I I <<;(C )231I I I <<;(D )213I I I <<5、设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A )123,,ααα; (B )124,,ααα; (C )134,,ααα; (D )234,,ααα。

2012数学一考研真题答案解析

2012数学一考研真题答案解析

2012年全国硕士研究生考试数学一试题答案解析一、 选择题1. 解析:C由lim 1,1x y y →∞==得为水平渐近线由1lim 1x y x →=∞=得为垂直渐近线12.)3.4. 解析: D22222111sin |sin |.xxI I e xdx I ex dx I ππππ=+=-<⎰⎰2223312|sin |sin .xxI I ex dx e xdx ππππ=-+⎰⎰而2232()2sin sin xt e xdx x t etdt ππππππ+=+-⎰⎰2222()|sin ||sin |.x xex dx ex dx πππππ+=>⎰⎰31312..I I I I I ∴>∴>>5. 解析:C343400c c αα⎛⎫ ⎪+= ⎪ ⎪+⎝⎭,34αα+ 与1α成比例.6.110111010012012 ⎪ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭7. 解析:A~(1)X E ,,0~(4)()0,x x e x Y E f x x -⎧>⇒=⎨≤⎩.4,40()0,0y Y e y f y y -⎧>=⎨≤⎩.,X Y ∴独立.44,0,0(,)0,x y e e x y f x y --⎧>>∴=⎨⎩其他8.cov(,)(1)(1)X Y EX X EX E x =---2()[1]E X X EX EX =--- 22()EX EX EX EX =-+ 22()EXEX DX =-+=-1ρ∴=,选项D二、 填空题1. 解析:212202,1λλλλ+-=⇒=-=212()()2()0(),xxf x f x f x f x C e C e -"+'-=⇒=+代入12()()20, 1.xf x f x e C C '+===得2.3.4.121,:1(0,0)z x y D x y x y =--+≤≥≥112222x Dy ds y dx y dy δ-=⋅=⎰⎰⎰⎰⎰1134(1)(1)31212x dx x =-=--=⎰5. 解析:2.设2,TA E XX A A =-=()() 3.r A r E A ⇒+-=()()()1Tr E A r XX r X -=== () 2.r A ∴=6.11xx --2211lnsin 11x x x x xx++=+--- 01x <<时. 1ln01x x+>-,2211x x x x+≥-,又sin x x ≤.()0x ϕ∴>’;10x -<<时,1ln01x x+<-,2211x x x x+≤-,又sin x x ≥.()0x ϕ∴<’.0x ⇒=为()x ϕ在(-1,1)内最小点,而ϕ(0)=0 ∴当-1<x<1时. ϕ()0x ≥,即21x x+20A C B -> 且0A >,0y ∴⎨=⎩为极小点.极小值为12(1,0).f e--=-当1x y =⎧⎨=⎩时,11222,0,,A e B C e --=-==-2100,0x AC B A y =⎧-><∴⎨=⎩ 且为极大点 极大值为12(1,0)f e -=3. 解: 由1lim1n x na a +→∞=得R =1.当∴令n ==n ∞=⎛= ⎝⎛= ⎝当当x ≠0时,xS 1(x )=021n n =+∑[]2121()1nn xS x xx∞===-∑’111111()ln,()ln.2121x x xS x S x xxx++=∴=--223,0()111ln ,110(1)1x S x x xx x x x x =⎧⎪∴=++⎨+-<<≠⎪--⎩且4. 解析: ①/sin ./()dy dy dt t k dxdx dtf t -==='x ⇒ (f ②=⎰5. 解析:012:0(2,0)L L L L x y y I +====-⎰⎰22(313)x x d =+-σ=⎰2d dx σ=-而20⎰∴∴∴((当1a =时,A =11 0 0 1⎛⎫ ⎪0 1 1 0 -1⎪ ⎪0 0 1 1 0 ⎪1 0 0 1 0⎝⎭→100120101100110000⎛⎫⎪-- ⎪ ⎪⎪⎝⎭通解为12111010x k -⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭ 当1a =-时.A 11001100100110101011001100011011000--⎛⎫⎛⎫⎪ ⎪---- ⎪⎪=→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭通解为10111010x k ⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭7. 解析:A T A=1010010111a a -⎛⎫ ⎪ ⎪ ⎪-⎝⎭1010111001a a⎛⎫ ⎪ ⎪ ⎪- ⎪-⎝⎭22201011113a aa a aa -⎛⎫⎪=+-⎪ ⎪--+⎝⎭TT(A A )x x 秩为2. ∴TT(A A )2((A A )(A )2)r r r ===也可以利用 ⇒TA A 01a =⇒=- ( T22A A (3)(1)a a =++)(II)令T202A A =B =022224⎛⎫ ⎪ ⎪ ⎪⎝⎭ 由E λ-20-2λ-B =0λ-2-2-2-2λ-4=λ(λ-2)(λ-6)=0解λ当λ当λ当λ取r 令2223111.12026Q f x x x Q y y y T=-⎝=B = +8. 解析:(1)(2)=X ∴D 2222cov(,)13333X Y Y -=-⨯-=-.9. 解析:22~(,),~(,2)X N Y N μσμσ,,X Y 独立,0σ>,未知Z X Y =-. 解:(1)Z 的密度2(,)f z σ22~(,),~(,2),,X N Y N X Yμσμσ独立.2~(0,3)Z X Y Nσ=-22222236(,)z zf zσσσ--⋅∴==(2)设1nZ Z…样本.2n2~(0,3)iZ Nσ,~(0,1)ZN-∴,iZ是简单随机样本.221~(),niZnχ=⎛⎫⎝∑223iZE nσ∑∴=,223iE Z nσ∑=.。

2012考研数一真题答案及详细解析

2012考研数一真题答案及详细解析

2012年(数一)真题答案解析一、选择题Cl) C解函数y=X +x x z —l 的间断点为x =土l 由lim y =lim x 2 +x 工]X 丑Cx +l)(x�, ==, 故X =l 是垂直渐近线.又lim y =lim X (x+ l ) 1 =—,故X =-l 不是渐近线.工-I 工-1(x + 1) (x -1) 2 考察x -=时函数的极限1 —+1X 由lim y = lim = 1 , 故y =l 是水平渐近线.x-=工-= 1 1-—X 2 y 2因为lim —=limx +x =O, 故无斜渐近线.工-00X x -00 X (x 2 -1) 故应选C,有2条渐近线.(2)A解J '(x)=矿(e 红-2)(e 3x —3)…(e"x -n ) + (e x -1) (2 e 2x ) (e 3x -3)…(e 杠-n )+……+ce—l)(e 2x -2)(e 3x -3)···(ne 杠)当X =O 时e 工—1=0故J '(0) = 1• (1—2) (1 -3)…0-n )=(—l)n -1 (n —1) ! 故应选A .(3)Bf (x,y) 解A项用枚举法:设f (x,y )=l x l +I Y I 则lim x -。

l x l +I Y I 存在,y 一o 但儿(0,0),儿(0,0)都不存在即f (x,y )在(0,0)处不可微.A错误B项.由lim f (x,y) 工-o x z + y z =AC存在),则lim f (x,y ) =0, x 一o y-0 y 一0又f (x ,y )在点(0,0)处连续,故f (O,O )=0; X -0 且时f(x,y )是x 2+ y z 的高阶无穷小y-o:. lim f (x,y )—f (O,O ) f (x ,y) =lim =O.B 正确芦心2+ y 2�=g 心:2 + y 2 C、D项用枚举法.f (x,y )=x 满足条件,但lim f (x ,y) f (x ,y) 与lim 2 芦gl x l +I Y I�二g X + y 2 错误.故应选B.(4)D均不存在故C、D 解I 2 =『:六矿sin x d x =『矿sin x d x +厂矿sinxdx=!1 +厂矿sinxd x O 兀又兀<x<加时e x 2sin x < 0故厂心血d x < o 故l2< l1Ia =厂矿sinx dx =厂矿sinxdx +厂矿sinx dx = 12 +厂产sinx dx 0 02又纭<x<玩时e "'2sinx > 0 故厂矿si nx dx > 0 故12< Ia, Ia =厂尸sinx dx = I: 矿sinx dx +厂矿sinx dx = 11 +厂产sinx dx 厂e x 2si n x d x =『六e 工2sinx d x + f "矿sinx dx =『lt穴矿sin .x d x +『穴"e"五)'sin (t +:)d(t +亢)=厂矿sinx dx --J : e <工妇)2 si n xdx = J: [e 工2_ e (x 五)2 ]sin x d x > 0:. 13 > I 1 综上I a>I 1 > 12. 故应选D .(5)C解0 1 -1 l a 1,a3,a4I = O -1 1 =C11 C1 c3 c4 1 -1 =O-1 1 故U1,U3,U4线性相关.故应选C.(6)B 1 O O 1 O 0 解Q =(a,+a,,a,心)=(a,,a,,a,+ I o ]=+ I o ] 0 0 1 0 0 1 Q 一'A Q = [i � �r P -'A P[三三子]=[—又��][1 I J [上三�]=[I I J 故应选B.(7)A e -x,X>0,解八(x)= { o,X¾O , 由X,Y相互独立,故fy (y )=t e 五,y>O ,o , y�o. f (x ,y ) =八(x )•八(y )= {4e 玉如,x>O ,y>O , 0 ' 其他P{X<Y}= JI f (x ,y )d xd y= II 4e 玉+4y )dx d y (8)D <y 1 5.故应选A.解设两段木棒的长度为x,y 则X +y =1⇒ y =-x + 1由定理:若y =a x +b 则I P x Y I = 1,若心a <O则p xy = -1,®a >O 则p xy = 1.故px y =—1. 故应选D.1 2 .. l +x(l —X)2 s m x -x l —xl+x + 2x =l n-s m x -x l —X Cl+工:)(1—x) l+x =l n +x 1—x 1 +x 1 1 =l n1 十—sm x —x -x l —x I+x XE (O,l) /} 1 } } f (x) = + + + -cosx —1l+x 1—.r (1—x)2 O +x )2 x E (0,1)1 广(x)=—+ 12 2 —+O+x)2 Cl-x)2 (1—x)3 Cl+x)3 + s inx x E (0 , 1)因为O< 1 1 1 X <}时,>o, 1 (l-x)2-(l+x )2 (1-x)3-(l+x )3 > O,sinx > 0,故J"(x)> 0.又因为J'(x)在[O'1)是连续的,故J'(x)在[0,1)上是单调增加的,f I (X ) > f I (0) = 2 > 0 同理,f(x )在[O,1)上也是单调增加的,f(x )>f(O)=O,故F(x)在[O,1)上是单调增加的,F(x)> F (O) =O; 又因为F(x )是偶函数,则F(x)> O ,x E (—1,1) ,x #-0. 又因为F(O)=O, 故F(x )�o,即原不等式成立,证毕.(16)解先求出驻点叮^迁王丑+Y 2,-2+_v 2 —=e 一一+x e ——亡• (—x)=Cl -x 2)e-—广0.2 、丿。

2012年全国硕士研究生入学统一考试理工数学一试题详解及解析

2012年全国硕士研究生入学统一考试理工数学一试题详解及解析

2012年全国硕士研究生入学考试数学一试题及解析一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xy x +=-渐近线的条数()(A )0(B )1(C )2(D )3解析:C 由lim 1,1x yy →∞==得为水平渐近线 由1lim 1x yx →=∞=得为垂直渐近线由11lim,12x y x →-=≠∞=-得非垂直渐近线,选(C )(2)设函数2()(1)(2)x x nx f x e e e n =--…(-),其中n 为正整数,则(0)f '=()(A )1(1)(1)!n n --- (B )(1)(1)!nn --(C )1(1)!n n --(D )(1)!nn -解析: A2221()(2)(2)(1)2()(1)(2)(0)1(1)(1)(1)(1)!x x nx x x nx x x nxn f x e e e e e e n e e ne f n n ''-=--+-⋅-+--∴=⨯-⨯⨯-=--选(A )(3)如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是()(A )若极限00(,)lim x y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(B )若极限2200(,)limx x f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C )若(,)f x y 在(0,0)处可微,则极限00(,)limx y f x y x y→→+存在(D )若(,)f x y 在(0,0)处可微,则极限2200(,)lim x x f x y x y →→+存在解析:(B)2200(,)lim x y f x y k x y →→=+ (0,0)0(,)(0,0)00()f z f x y f x y ορ=⎧⇒⎨∆=-=⋅+⋅+⎩(,)f x y ⇒在(0,0)处可微.(4)设2k x k I eπ=⎰sin (1,2,3)xdx k =则有()(A )123I I I << (B)321I I I << (C)231I I I << (D)213I I I <<解析: D22222111sin |sin |.x x I I e xdx I e x dx I ππππ=+=-<⎰⎰2223312|sin |sin .x x I I e x dx e xdx ππππ=-+⎰⎰而2232()2sin sin x t e xdxx t etdt ππππππ+=+-⎰⎰2222()|sin ||sin |.x x e x dx e x dx πππππ+=>⎰⎰31312..I I I I I ∴>∴>>(5)设1234123400110111c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A )α1, α2, α3 (B )α1, α2, α 4(C )α1, α3, α4 (D )α2, α3, α4解析:C343400c c αα⎛⎫⎪+= ⎪⎪+⎝⎭,34αα+与1α成比例.1α∴与3α+4α线性相关,134ααα∴,,线性相关,选C 或13413411,,0110c c c ααα-=-= 134,,ααα∴线性相关,选C(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(α1, α2, α3),1223(,,).Q αααα=+则Q -1AQ =( ) (A)100020001⎛⎫⎪ ⎪ ⎪⎝⎭(B)100010002⎛⎫⎪ ⎪ ⎪⎝⎭ (C)200010002⎛⎫⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭解析:(B )1223100()110001Q P αααα⎛⎫⎪== ⎪⎪⎝⎭+,,111100100110110001001Q AQ P AP ---⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭100110011101110100120012⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪=-= ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则P {x <y }=( )(A)15(B)13(C)25(D)45解析:(A)~(1)X E ,,0~(4)()0,0x x e x Y E f x x -⎧>⇒=⎨≤⎩. 4,40()0,0y Y e y f y y -⎧>=⎨≤⎩. ,X Y ∴独立.44,0,0(,)0,x y e e x y f x y --⎧>>∴=⎨⎩其他()(,)x yP X Y f x y d δ<<=⎰⎰404x y x dx e e dy +∞+∞--=⎰⎰ 40(4)xy xe dx e d y +∞+∞--=⎰⎰ 40x x e e dx +∞--=⋅⎰ 50x e dx +∞-=⎰15=.(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为( ) (A) 1(B)12(C)12(D)1-解析:设一段长X ,另一段1YX =-,由ρ=(1)DX D X DY =-=cov(,)(1)(1)X Y EX X EX E x =---2()[1]E X X EX EX =--- 22()EX EX EX EX =-+ 22()EX EX DX=-+=-1ρ∴=,选项D二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上. (9)若函数f (x )满足方程()()2()0f x f x f x "'+-=及()()2x f x f x e '+=,则f (x )=_________.解析:212202,1λλλλ+-=⇒=-=212()()2()0(),x x f x f x f x f x C e C e -"+'-=⇒=+代入12()()20, 1.x f x f x e C C '+===得()x f x e ∴=(10)2________=⎰解析:2π[220(1)1(1)x x =-+-⎰⎰111(22x π--=+===⎰⎰⎰.(11)(2,1,1)_______z grad xy y ⎛⎫+= ⎪⎝⎭解析:{1,1,1}21,,z z grad xy y x y y y ⎛⎫⎧⎫+=-⎨⎬ ⎪⎝⎭⎩⎭ (2,1,1){1,1,1}z grad xy y ⎛⎫+= ⎪⎝⎭(12)设{(,,)|1,0,0,0}x y z x y z x y z =++=≥≥≥∑,则2y d s ∑=⎰⎰_____ .解析:12.1,:1(0,0)z x y D x y x y =--+≤≥≥1122202xDy ds y dx y dy δ-==⎰⎰⎰⎰⎰113400(1)(1)31212x dx x =-=--=⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵E T -XX 的秩为_________.解析:2. 设2,T A E XX A A =-=()() 3.r A r E A ⇒+-=()()()1T r E A r XX r X -===() 2.r A ∴=(14)设A,B,C 是随机事件,A,C 互不相容,11(),(),23P AB P C ==则C P AB ()=_________.解析:34解:()()()(|)1()()P ABC P AB P ABC P AB C P C P C -==- AC =∅,ABC ∴=∅.1()32(|)21()43P AB P AB C P C ∴===-.三、解答题:15~23小题,共94分,请将解答写在答题纸指定位置上.(15)(本题满分 分)证明x ln 11x x+-+cos x ≥1+22x (-1<x <1)证明:令21()ln cos 1.(0)0.12x x x x x x ϕϕ+=+--=-ϕ’212()ln sin 11x xx x x x x +=+---- 2211ln sin 11x x x x x x++=+--- 01x <<时. 1ln 01xx +>-,2211x x x x +≥-,又sin x x ≤. ()0x ϕ∴>’;10x -<<时,1ln 01xx +<-,2211x x x x +≤-,又sin x x ≥. ()0x ϕ∴<’.0x ⇒=为()x ϕ在(-1,1)内最小点,而ϕ(0)=0∴当-1<x<1时. ϕ()0x ≥,即 21ln cos 112x x x x x ++≥+-(16)(本题满分 分)求函数222(,)x y f x y xe+-=的极值解析:由22'2222'2(1)00x y x x y y f x e f xye +-+-=-==-=⎧⎪⎨⎪⎩得10x y =-⎧⎨=⎩及10x y =⎧⎨=⎩ 222222''32''22''22(3)(1)(1)x y xx x y xy x y yy f x x ef y x e f x y e+-+-+-=-=--=-当1x y =-⎧⎨=⎩时,11222,0,.A e B C e --=== 20AC B ->且0A >,10x y =-⎧∴⎨=⎩为极小点. 极小值为12(1,0).f e --=-当1x y =⎧⎨=⎩时,11222,0,,A e B C e --=-==-2100,0x AC B A y =⎧-><∴⎨=⎩且为极大点极大值为12(1,0)f e-=(17)(本题满分 分)求幂级数0n ∞=∑244321n n n +++x 2n的收敛域及和函数解:由1lim 1n x na a +→∞=得R =1.当1x=±时.2443()21n n n n ++→∞→∞+1x ∴=±时级数发散.收敛域为(-1,1) 令220443()21nn n n S x x n ∞=++=+∑202(21)21n n n x n ∞=⎡⎤=++⎢⎥+⎣⎦∑=2200(21)221nnn n x n x n ∞∞==+++∑∑ 22100221n n n n x x n ∞∞+==⎛⎫=+ ⎪+⎝⎭∑∑’21122212()2()1(1)x x S x S x x x +⎛⎫=+=+ ⎪--⎝⎭’当x =0时,S (0)=3.当x ≠0时,xS 1(x )=21021n n x n +∞=+∑[]2121()1n n xS x x x ∞===-∑’111111()ln ,()ln .2121x xxS x S x x x x ++=∴=--223,0()111ln ,110(1)1x S x x xx x x x x=⎧⎪∴=++⎨+-<<≠⎪--⎩且(18)(本题满分分)已知曲线L :()cos x f t y t=⎧⎨=⎩(0≤t <2π),其中函数 f (t )具有连续导数,且 f (0)=0,()f t '>0(0<t <2π),若曲线L 的切线与x 轴的交点到切点距离值恒为1,求函数f (t )的表达式,并求此曲线L 与x 轴无边界的区域的面积.解析:①/sin ./()dy dy dt t kdx dx dt f t -===' 切线为sin cos ()0ty t x f t y f t ==--=⇒'()(),令 ())cot x f t f t t =+'(⋅,切线与x 轴交点为(()()cos ,0)f t f t t +'.由题意222()cot cos 1f t t t '+=⇒242sin ().cos tf t t'= 2sin ()0.()sec cos .cos tf t f t t t t'>∴'==-()ln |sec tan |sin f t t t t C =+-+(0)0,()ln |sec tan |sin f f t t t t =∴=+-②220cos ()A ydx t f t dt ππ==⋅'⎰⎰22201sin .224t I πππ===⋅=⎰(19)(本题满分分)已知L 是第一象限中从点(0,0)沿圆周222x y x +=到点(2,0),再沿圆周224x y +=到点(0,2)的曲线段,计算曲线积分233(2)LIx ydx x x y dy =++-⎰解析:补充012:0(2,0)L L L L x y y I +====-⎰⎰22(313)L L Dx x d +=+-σ=⎰⎰⎰2Dd dx σ=-⎰⎰⎰而144ππ=⋅=⎰122ππ=⋅=⎰(依据定积分几何意义).22L L πππ+∴=-=⎰2(2) 4.L y dy ∴=-=⎰⎰4.2I π∴=-(20)(本题满分分)已知A =10010101,00100010a a a a β⎡⎤⎛⎫⎪⎢⎥- ⎪⎢⎥= ⎪⎢⎥⎪⎢⎥⎣⎦⎝⎭(1)计算行列式|A|;(2)当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.解析:(I )534A 1(1)1a a a =+-⋅=-(II )当1a =及1a =-时,A x=β有无穷多个解. 当1a =时,A =11 0 0 1⎛⎫ ⎪0 1 1 0 -1⎪ ⎪0 0 1 1 0 ⎪1 0 0 1 0⎝⎭ →10012010110011000000⎛⎫⎪-- ⎪ ⎪⎪⎝⎭通解为12111010x k -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭当1a =-时.A 110011001001101010110011000110100100000--⎛⎫⎛⎫ ⎪ ⎪----⎪ ⎪=→ ⎪ ⎪--⎪ ⎪-⎝⎭⎝⎭通解为10111010x k ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(21)(本题满分11分)已知110111001A a a ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x x T T =A A 的秩为2, (1) 求实数a 的值;(2) 求正交变换x=Qy 将f 化为标准型.解析:A TA=1010010111a a -⎛⎫ ⎪⎪ ⎪-⎝⎭110111001a a ⎛⎫⎪ ⎪ ⎪- ⎪-⎝⎭22201011113a a a a a a -⎛⎫ ⎪=+-⎪ ⎪--+⎝⎭T T (A A)x x 秩为2. ∴T T (A A)2((A A)(A)2)r r r ===也可以利用 ⇒T A A 01a =⇒=- (T 22A A (3)(1)a a =++)(II)令T202A A =B =022224⎛⎫ ⎪ ⎪ ⎪⎝⎭由E λ-20-2λ-B =0λ-2-2-2-2λ-4=λ(λ-2)(λ-6)=0解0,2,6123λ=λ=λ=当λ=0时,由(0)0E A x -=即0Ax =得1111-⎛⎫ ⎪ξ=- ⎪ ⎪⎝⎭. 当2λ=时,由(2)0E A x -=⇒1102-⎛⎫ ⎪ξ= ⎪ ⎪⎝⎭. 当6λ=时,由(6)0E A x -=⇒1123⎛⎫ ⎪ξ= ⎪ ⎪⎝⎭. 取1r231111,1,1.102r r --⎛⎫⎛⎫⎛⎫⎪⎪⎪-==⎪⎪⎪⎪⎪⎪⎭⎭⎭令2223.026Q f x x x Qy y y T⎛ = ⎝=B = +(22)(本题满分11分)设二维离散型随机变量X 、Y 的概率分布为(Ⅰ)求{2}P XY =; (Ⅱ)求cov(,).X Y Y -解析:(1)11(2)(0,0)(1,2)044P XY P X Y P X Y ====+===+= (2)cov(,)cov(,)cov(,)X Y Y X Y Y Y -=-EXY EXEY DY =--12012~,~.1111112312333X X Y ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭的边缘分布 12212,136333EX EY ∴=+==+=2221152()12113333DY EY EY =-=⨯+⨯-=-=1114211223123123EXY =⨯⨯+⨯⨯=+=2222cov(,)13333X Y Y -=-⨯-=-.(23)(本题满分 分)设随机变量X 与Y 相互独立且分别服从正态分布2(,)N μσ与2(,2)N μσ,其中σ是未知参数且σ>0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(7) 设随机变量 x 与 y 相互独立, 且分别服从参数为 1 与参数为 4 的指数分布, 则 px y ()
( A) 1 5 ( B) 1 3 (C ) 2 5 ( D) 4 5
( 8 )将长度为 1m 的木棒随机地截成两段,则两段长度的相关系数为() 1 1 ( A) 1 ( B) (C ) ( D) 1 2 2 二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答题纸 指定位置 ... 上. (9)若函数 f ( x) 满足方程 f '' ( x) f ' ( x) 2 f ( x) 0 及 f ' ( x) f ( x) 2e x ,则 f ( x) =________。 (10) x 2 x x 2 dx ________。
x2 x y 2 x 1 渐近线的条数为() (1)曲线
(A)0 (B)1 (C)2 (D)3 【答案】 :C
x2 x lim 2 x 1 x 1 【解析】 : ,所以 x 1 为垂直的 lim x2 x 1 x x 2 1 ,所以 y 1 为水平的,没有斜渐近线 故两条选 C
2012 年全国硕士研究生入学统一考试 数学(一)试卷
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选 项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上. (1)曲线 y (A)0 (D)3
x2 x 渐近线的条数为() x2 1
(B)1
(C)2
列向量组线性相关的是( (A) 1 , 2 , 3
) (C) 1 , 3 , 4 (D)
(B) 1 , 2 ,4
第 1 页 共 17 页
2 , 3 , 4
1 1 P 1 , 2 , 3 , (6) 设 A 为 3 阶矩阵, 且 P AP 1 P 为 3 阶可逆矩阵, , 2
1 0 1 T (21) (本题满分 10 分)三阶矩阵 A 0 1 1 , A 为矩阵 A 的转置,已知 1 0 a
r ( AT A) 2 ,且二次型 f xT AT Ax 。
1)求 a 2)求二次型对应的二次型矩阵,并将二次型化为标准型,写出正 交变换过程。
2
I k ' e sin k 0, k 0,
调增函数,又由于
, 即可知
I k e x sin xdx
e
关于 k 在
0, 上为单
1, 2,3 0,
I ,则 1
I 2 I 3 ,故选 D
0 0 1 1 1 0 , 2 1 , 3 1 , 4 1 c c c c 1 2 3 4 其中 c1 , c2 , c3 , c4 为任意常数, (5) 设 则下列向量
(2)设函数 (A) (1) (B) (1) (C) (1)
f ( x) (e x 1)(e2 x 2)
(enx n) ,其中 n 为正整数,则 f ' (0)
n 1
(n 1)!
n
(n 1)! n!
n 1
(D) (1)
n
n!
【答案】 :C 【解析】 :
f ' ( x) e x (e2 x 2)
(22) (本题满分 10 分) 已知随机变量 X , Y 以及 XY 的分布律如下表所示, X P 0 1/2 1 1/3 2 1/6 Y P 0 1/3 1 1/3 2 1/3 XY P 0 7/12 1 1/3 2 0
4 1/1
求:(1) P X 2Y ;
(2) cov X Y , Y 与 XY .
x 0 y 0

f ( x, y ) 存在,则 f ( x, y) 在 (0, 0) 处可微 x y f ( x, y ) 存在,则 f ( x, y) 在 (0, 0) 处可微 x2 y 2
(B)若极限 lim
x 0 y 0
(C)若 f ( x, y) 在 (0, 0) 处可微,则极限 lim
x 0 y 0
f ( x, y ) 存在 x y f ( x, y ) 存在 x2 y 2
(D)若 f ( x, y) 在 (0, 0) 处可微,则极限 lim
x 0 y 0
(4)设 I k
e x sinxdx(k=1,2,3),则有 D
2
k
e
(A)I1< I2 <I3. I1< I2< I3.
x 0 y 0
f ( x, y ) x y f ( x, y ) x2 y 2
存在
lim
(D)若 f ( x, y ) 在 (0, 0) 处可微,则极限 【答案】 :
x 0 y 0
存在
0, 0 处 连 续 , 可 知 如 果 【 解 析 】: 由 于 f ( x, y ) 在
f (0, 0) lim f ( x, y ) 0
f ( x, y ) x y
存在,则 f ( x, y ) 在 (0, 0) 处可微
第 5 页 共 17 页
lim
(B)若极限
x 0 y 0
f ( x, y ) x2 y 2
存在,则 f ( x, y ) 在 (0, 0) 处可微
lim
(C)若 f ( x, y ) 在 (0, 0) 处可微,则极限
云梯教育,专注考研,更加专业,旗下推出的免费手机应用“口袋题库考研”更 是新一代的考研利器,内含免费历年真题及答案解析,科学的复习笔记,更有学 长学姐的经验分享,更多功能及资料下载请抓紧时间下载应用或者加入 QQ 群 97240410! (23) (本题满分 11 分) 设随机变量 X 与 Y 相互独立且分别服从正态分布 N , 2 与 N , 2 2 , 其中 是未知参数且 0 ,设 Z X Y , (1) 求 z 的概率密度 f z, 2 ; (2) 设 z1 , z2 ,
(19) (本题满分 10 分) 已 知 L 是 第 一 象 限 中 从 点 0, 0 沿 圆 周 x2 y 2 2 x 到 点 2, 0 , 再 沿 圆 周
x2 y 2 4 到点 0, 2 的曲线段,计算曲线积分 J = 3 x 2 ydx x 2 x 2 y dy 。
x 0 y 0
lim
x 0 y 0
f ( x, y ) x2 y 2
存在,则必有
lim
这样,
x 0 y 0
f ( x, y ) x2 y 2
就可以写成
x 0 y 0
lim
f (x, y ) f (0, 0) x 2 y 2
, 也即极限

x 0 y 0
(B) I2< I2< I3.
(C) I1< I3 <I1,
(D)
0 0 1 1 (5)设 1 0 , 2 1 , 3 1 , 4 1 其中 c1 , c2 , c3 , c4 为任意常数,则下 c c c c 1 2 3 4
(18) (本题满分 10 分) 已知曲线
,其中函数 f (t ) 具有连续导数,且 f (0) 0 , f (t ) 0 0 t 。若曲线 L 的切 2
线与 x 轴的交点到切点的距离恒为 1,求函数 f (t ) 的表达式,并求此曲线 L 与 x 轴与 y 轴无边界的区域的面积。
所以
(enx n) (e x 1)(2e2 x 2)
(enx n)
(e x 1)(e2 x 2)
(nenx n)
f ' (0) (1)n1 n!

0, 0 处连续,那么下列命题正确的是( (3)如果 f ( x, y ) 在
lim
(A)若极限
x 0 y 0
2
zn 为来自总体 Z 的简单随机样本,求 2 的最大似然估计量 ;
2
(3) 证明 为 2 的无偏估计量。
第 4 页 共 17 页
参考答案
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合 题目要求的,请将所选项前的字母填在答题纸指定位置上 .
0 2
z (11) grad xy ________。 y (2,1,1)
(12)设 x, y, z x y z 1, x 0, y 0, z 0, 则 y 2 ds ________。 (13)设 X 为三维单位向量,E 为三阶单位矩阵,则矩阵 E xxT 的秩为 ________。
Q 1 2 , 2 , 3 则 Q1 AQ (

2 (C) 1 2
1 (A) 2 1
2 2 1
1 (B) 1 2
(D)
L
(20) (本题满分 10 分)
第 3 页 共 17 页
1 0 设A 0 a
a 0 0 1 1 a 0 1 ,b 0 0 1 a 0 0 1 0
(Ⅰ)求 A (Ⅱ)已知线性方程组 Ax b 有无穷多解,求 a ,并求 Ax b 的通解。
第 2 页 共 17 页
(14)设 A, B, C 是随机事件, A, C 互不相容, P( AB)
1 1 , P(C ) ,则 2 3
P( ABC ) ________。
三、解答题:15—23 小题,共 94 分.请将解答写在答题纸 指定位置上.解答应写 ... 出文字说明、证明过程或演算步骤. (15) (本题满分 10 分)
相关文档
最新文档