现代信号处理第10章小波变换(1)

合集下载

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

小波变换入门.ppt

小波变换入门.ppt

f f
(2 j , x, (2 j , x,
y)
y)
2
j
x
y
f f
(x, (x,
y) y)
a a
(x, (x,
y)
y)
2
j
grad
f
(x,
y)
a
(x,
y)
37/103
整个图像的二进小波变换即矢量:
W (1) f (2 j , x, y)
T
W
(
T
2)
f
(2
j,
x,
y)
WT
f
(2
j,
x,
尺度空间的递归嵌套关系: 0 V1 V0 V1 L2 R
小波空间 W是j 和V j 之V间j1 的差,即 时丢V 失j 的信息V j。1 推出:
V0 W0 W1 Wj V j1
V0
Vj,它Wj 捕 V捉j1 由 逼近
V j1
L2 R
V j1
Vj
多分辨率的空间关系图
19/103
两尺度方程
1 ( x, y)
(x) (y)
2 ( x, y)
(x)(y)
3 ( x, y)
(x) (y)
与 (x, y)一起就建立了二维小波变换的基础。
26/103
图像的小波变换实现
1. 正变换 图像小波分解的正变换可以依据二维小波变换按如 下方式扩展,在变换的每一层次,图像都被分解 为4个四分之一大小的图像。
线性
设: xt g t ht
WTx a,b WTg a,b WTh a,b 平移不变性
若 xt WTx a,b,则 xt WTx a,b
伸缩共变性

小波变换课件

小波变换课件

消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)

《小波变换》课件

《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。

小波变换和信号处理的应用

小波变换和信号处理的应用

小波变换和信号处理的应用小波变换(Wavelet Transform)是一种用于时频分析的数学工具,它可以将时间域数据分解为不同频率的分量,并提供一个分辨率越来越高的频率表示。

与傅里叶变换(Fourier Transform)不同,小波变换能够处理非平稳信号,并且可以在时域和频域之间进行转换。

在信号处理领域,小波变换被广泛应用于信号压缩、图像处理、模式识别等方面。

下面分别介绍小波变换在信号压缩和图像处理中的应用。

信号压缩在信号处理中,经常需要对信号进行压缩,以减少存储和传输的成本。

小波变换可以通过多分辨率分析(Multiresolution Analysis)的方式,将信号分解为多层不同程度的低频和高频分量。

其中,低频分量包含信号的大部分能量,高频分量包含信号的细节信息。

在压缩过程中,可以舍弃一部分高频分量,从而减少信号的体积。

这种方法被称为小波压缩(Wavelet Compression),它比传统的基于傅里叶变换的压缩方法更加适用于非平稳信号处理。

由于小波变换是局部的,它能够捕捉到信号的局部特征,从而提高信号的压缩效率。

图像处理小波变换在图像处理中的应用也非常广泛。

与信号压缩类似,小波变换可以将图像分解为不同尺度和方向上的频率分量,从而提取图像的纹理和边缘信息。

这种方法被称为小波去噪(Wavelet Denoising),它能够去除图像中的噪声,同时保留图像的结构特征。

在图像处理中,小波变换还常常用于图像压缩、图像增强、图像分割等方面。

总的来说,小波变换是一种十分有用的信号处理工具,它在非平稳信号处理、图像处理等领域具有广泛应用价值。

与传统的傅里叶变换方法相比,小波变换能够更好地反映信号的局部特征,并能提高信号处理的效率和准确性。

小波变换简介PPT课件

小波变换简介PPT课件
[H,V,D] = detcoef2 ('all',C,S,N) returns the horizontal H, vertical V, and diagonal D detail coefficients at level N.
47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
从小波和正弦波的形状可以看出,变化剧烈的信号, 用不规则的小波进行分析比用平滑的正弦波更好, 即用小波更能描述信号的局部特征。
18
连续小波基函数
将小波母函数 进行伸缩和平移后得到 函数
a,b(t)a1 2(t ab),a0,bR
称该函数为依赖于参数a,τ的 小波基函数。a 为尺度因子,b为位移因子 。
39
小波重构
重构概念
把分解的系数还原成原始信号的过程叫做小波重构 (wavelet reconstruction)或合成(synthesis),数学上叫做 逆离散小波变换(inverse discrete wavelet transform, IDWT)
两个过程
在使用滤波器做小波变换时包含滤波和降采样 (downsampling)两个过程,在小波重构时也包含升采 样(upsampling)和滤波两个过程。
Wavevlet “dB1”二级分解
水平细节分量cH
近似分量cA 垂直细节分量cV 对角细节分量cD
[C,S] = wavedec2(X,N,'wname')
returns the wavelet decomposition of the matrix X at level N, using the wavelet named in string 'wname‘. Outputs are the decomposition vector C and the corresponding bookkeeping matrix S.

小波变换课件

小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。

小波变换ppt课件

小波变换ppt课件
在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。

小波变换原理与应用ppt课件

小波变换原理与应用ppt课件
3.小波变换的基本原理与性质
信号的时域表示和频域表示只适用于平稳信号,对于
非平稳信号而言,在时间域各种时间统计量会随着时 间的变化而变化,失去统计意义;而在频率域,由于 非平稳信号频谱结构随时间的变化而变化导致谱值失 去意义
幅度 A |Y(f)|
信 号 x(t)的 时 域 波 形 1
0.5
0
-0.5
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.小波的发展历史——工程到数学
小波变换的概念是由法国从事石油信号处理的工程 师J.Morlet在1974年首先提出的,通过物理的直观和信 号处理的实际需要经验的建立了反演公式,当时未能 得到数学家的认可。幸运的是,1986年著名数学家 Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后 ,小波分析才开始蓬勃发展起来。
1.小波的发展历史——工程到数学
1909: Alfred Haar——发现了Haar小波 1980:Morlet——Morlet小波,并分别与20世纪70年代提
出了小波变换的概念,20世纪80年代开发出了连续小 波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和 重构算法)
Rx(t1,t2)ExE(t)x(t1)x ( tx2)f(x)dRxx()m,x t2 t1
Ex2(t)
非平稳信号 不满足平稳性条件至少是宽平稳条件的信号

小波变换在信号分析中的应用

小波变换在信号分析中的应用

小波变换在信号分析中的应用小波变换是一种广泛应用于信号分析的数学工具,它能够提供有关信号的时域和频域信息,具有优秀的时频分辨能力。

在信号处理领域,小波变换被广泛应用于音频、图像、视频处理以及生物医学、金融市场分析等诸多领域。

一、小波变换的基本概念及原理:小波变换是一种基于窗函数的信号分析方法。

与傅里叶变换相比,小波变换具有更好的局部性质。

傅里叶变换将信号分解为全局频域信息,而小波变换将信号分解为时域和频域的局部信息。

这种局部性质使得小波变换在信号分析中具有更强的时频定位能力。

小波变换的核心思想是通过选取适当的母小波函数,将信号分解成一系列不同尺度和不同位置的小波基函数的线性叠加。

小波基函数是通过母小波在时移、尺度(伸缩)、反射等变换下产生的。

通过对不同频率和时域尺度的小波基函数进行线性叠加,可以还原原始信号。

二、小波变换在信号分析中的应用:1. 信号压缩和去噪:小波变换能够将信号分解成不同频率和时域分辨率的小波系数,便于对不同频段的信号进行分析。

在信号压缩中,可以通过选择适当的小波基函数将信号的高频部分进行舍弃,以达到压缩信号的目的。

而在去噪方面,利用小波变换将信号分解成不同频带,可以提取出信号的主要成分,滤除噪声干扰。

2. 信号特征提取:小波变换还可以用于信号特征提取。

通过选择适当的小波基函数,可以将信号分解成不同频率和时域尺度的小波基函数的线性叠加,得到信号的局部特征。

这对于分析非平稳信号和瞬态信号非常有用,可以通过分析小波系数来获取和描述信号的特征。

3. 时间-频率分析:小波变换为信号的时频分析提供了一种有效的方法。

传统的频谱分析方法(如短时傅里叶变换)无法提供较好的时域和频域分辨率,在分析非平稳信号时效果较差。

而小波变换具有更好的时频局部性,能够提供精确的时域和频域信息,因此在时间-频率分析中得到广泛应用。

三、小波变换的应用案例:1. 声音信号分析:小波变换在音频处理中有着广泛的应用。

通过对音频信号进行小波变换,可以提取出每个时间段内不同频率的能量分布,并用于声音的识别、分类、音频编码等方面。

小波变换原理与应用

小波变换原理与应用

小波变换原理与应用小波变换是一种在时频领域中分析信号的方法,它能够同时提供时间和频率信息。

小波变换的原理基于信号的时频局部性质,通过对信号进行分解和重构,可以获得不同频率范围的子信号。

小波变换的原理可以通过数学公式进行表达。

对于一个连续时间信号x(t),小波变换可以表示为:W(a,b) = ∫x(t)ψ*(t-a)e^(-jωb)dt其中,ψ(t)为小波函数,a和b为尺度参数,ω为频率。

小波变换实际上是在对信号进行多尺度分解的过程中,对每个尺度上的小波函数与信号进行内积计算。

通过这种方法,可以得到信号在不同尺度和频率下的变化情况。

小波变换有许多应用,下面介绍其中几个常见的应用:1.信号处理:小波变换在信号处理领域中有广泛应用。

通过对信号进行小波变换,可以得到信号在不同频率范围的分量,有助于对信号的特征进行分析和提取。

例如,在音频处理中,可以将语音信号进行小波变换,以提取出不同频率范围的声音特征。

2.图像处理:小波变换在图像处理中也有重要应用。

图像可以看作是一个二维信号,对图像进行小波变换可以将其分解成不同频率范围的子图像。

这种分解可以用于图像压缩、图像增强、图像分割等应用领域。

3.数据压缩:小波变换在数据压缩中起到了重要作用。

通过将信号进行小波变换并选择适当的系数进行编码,可以实现对信号的有效压缩。

小波变换在压缩中的优势在于可以提供更好的时频局部性分析,从而实现更好的压缩效果。

4.模式识别:小波变换在模式识别中也有广泛应用。

通过对信号进行小波变换,可以得到信号在不同频率范围的分量,从而能够更好地捕捉信号的特征。

这些特征可以用于模式识别任务,如人脸识别、指纹识别等。

在实际应用中,小波变换还可以与其他方法结合使用,以提高信号处理的效果。

例如,将小波变换与神经网络结合使用,可以实现更高效的图像识别和分析。

同时,小波变换也有许多不同的变体和扩展,如离散小波变换、连续小波变换等,可以根据具体的应用需求选择合适的方法。

小波变换公式推导

小波变换公式推导

小波变换公式推导
1、定义小波函数:小波函数ψ(t)是一个具有零平均值的振荡函数,它在时间域和频率域都是局部化的。

2、小波变换的积分形式:对于信号f(t),其连续小波变换(CWT)定义为
其中,a是尺度参数,控制小波的宽度;b是平移参数,控制小波的位置。

3、小波函数的性质:小波函数需要满足一定的条件,如可容许性条件,以确保小波变换的存在性和唯一性。

4、逆变换:连续小波变换的逆变换为
其中,Cψ是一个与ψ有关的常数。

5、离散小波变换:在实际应用中,常常使用离散小波变换(DWT),它是对连续小波变换的尺度和平移参数进行离散化得到的。

6、多分辨率分析:小波变换的一个重要特性是多分辨率分析,它允许我们在不同的尺度上观察信号,从而揭示信号的局部特征。

7、小波基的选择:在实际应用中,需要选择适合信号特点的小波基函数,如Haar小波、Daubechies小波等。

8、快速小波变换:为了提高计算效率,可以使用快速小波变换(FWT)算法,它利用了小波变换的某些性质来减
少计算量。

小波变换课件ch1小波分析及其在信号处理中的应用

小波变换课件ch1小波分析及其在信号处理中的应用

A的闭包
1.1.5 平方可积空间与平方可和空间
如果将Euclidean空间中的内积定义具体化为 则称以满足 的f(x)为元素的线性空间为平方可积空间,记为 。
平方可积空间是Hilbert空间 希腊字母:kai
的序列为元素的线性空间为平方可和空间,记为 。
式中c为一序列,则称以满足
傅里叶(Fourier)分析是数字信号处理的基础,也是现代信号处理的出发点。它将信号分析从时间域变换到了频率域。
泛函简介
1.1.1 线性空间
一个线性空间是一个在标量域(实或复)F上的非空矢量集合L,并且对于其元素定义了如下性质的加法和标量乘法: 加法的封闭性;加法的交换律;加法的结合律;零元;加逆;乘法的封闭性;乘法结合律;存在单位标量1,1·x=x;乘法的分配律。
对于一个有限长序列 ,称 为它的离散Fourier变换 (Discrete Fourier Transform, DFT)。
逆变换定理:
在过去200年里, Fourier分析在科学与工程领域发挥了巨大的作用,但Fourier分析也有不足: 用傅立叶变换提取信号的频谱需要利用信号的全部时域信息。 傅立叶变换没有反映出随着时间的变化信号频率成分的变化情况。 傅立叶变换的积分作用平滑了非平稳信号的突变成分。 利用DFT作信号分析,就是通过在频域上用等间隔划分的窗口对信号进行的“观察”,而这一“观察”数据是时域上N点数据的共同贡献。
02
1.5 窗口Fourier变换
01
02
03
04
定义频域窗函数,其条件是
频域窗函数的中心频率
频域窗函数的有效频率半径
考察
05
正频率
窗函数的定义实际上就是对函数衰减性的控制,也就是说窗函数具有在坐标轴上具有很好的衰减性,从而达到对坐标轴进行局部化的目的。窗函数所确定的窗口是对它的局部性的一次刻画,它是可用来对信号进行时频局部化分析的基本函数,而窗函数本身则可由窗口的尺度来表征其局部性,若 越小,则说明 在时域上的局部化程度越高。

(数字图像处理)第十章小波变换的图像处理

(数字图像处理)第十章小波变换的图像处理

边缘检测与特征提取
80%
边缘检测原理
利用小波变换对图像进行多尺度 分解,通过检测小波系数中的突 变点实现边缘检测。
100%
特征提取
小波变换能够提供图像的多尺度 、多方向信息,因此可以用于提 取图像中的纹理、形状等特征。
80%
应用领域
边缘检测和特征提取在目标识别 、图像分割、场景理解等领域具 有广泛应用。
Meyer小波
Meyer小波是一种具有无穷光滑性和正交性的小 波基函数,其频率响应接近理想滤波器。Meyer 小波适用于对信号进行高精度的分解和重构,如 音频信号处理、图像处理等。
02
图像处理中的小波变换应用
图像压缩与编码
小波变换压缩原理
利用小波变换对图像进行多尺度分解,得到不同频率的子 带图像,通过对子带图像进行量化和编码实现压缩。
多分辨率分析实现
多分辨率分析可以通过构建一系列嵌套的子空间来实现,每个子空间对应一个 特定的尺度。通过在不同尺度下对信号或图像进行投影和重构,可以得到信号 或图像在不同尺度下的分量表示。
常见小波基函数介绍
Haar小波
Haar小波是最简单的小波基函数之一,具有紧 支撑性和正交性。它的波形类似于方波,适用于 对信号进行粗略的分解和重构。
不同噪声水平下算法性能分析
针对不同噪声水平(如高斯噪声、椒盐噪声等),分析并 比较各种去噪算法的性能表现。
算法实时性与计算复杂度评估
评估各种去噪算法的实时性和计算复杂度,为实际应用提 供参考依据。
05
小波变换在边缘检测中的应用
基于小波变换的边缘检测算法
小波基选择
选择适合图像处理的小波基,如 Haar小波、Daubechies小波等,用 于实现小波变换。

小波变换详解

小波变换详解

基于小波变换的人脸识别近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。

小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。

具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。

4.1 小波变换的研究背景法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。

傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。

在早期的信号处理领域,傅立叶变换具有重要的影响和地位。

定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下:()()dt e t f F t j ωω-⎰∞-∞+= (4-1) 傅立叶变换的逆变换为:()()ωωπωd e F t f t j ⎰+∞∞-=21 (4-2)从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。

可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。

尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。

但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。

整理版清华现代旌旗灯号ppt课件第10章小波变换_1

整理版清华现代旌旗灯号ppt课件第10章小波变换_1

2020/9/24
信号处理
装备一个铸造车间,需要熔炼设备、 造型及 制芯设 备、砂 处理设 备、铸 件清洗 设备以 及各种 运输机 械,通 风除尘 设备等 。只有 设备配 套,才 能形成 生产能 力。
2020/9/24
信号处理
装备一个铸造车间,需要熔炼设备、 造型及 制芯设 备、砂 处理设 备、铸 件清洗 设备以 及各种 运输机 械,通 风除尘 设备等 。只有 设备配 套,才 能形成 生产能 力。
2020/9/24
信号处理
装备一个铸造车间,需要熔炼设备、 造型及 制芯设 备、砂 处理设 备、铸 件清洗 设备以 及各种 运输机 械,通 风除尘 设备等 。只有 设备配 套,才 能形成 生产能 力。

2020/9/24
信号处理
装备一个铸造车间,需要熔炼设备、 造型及 制芯设 备、砂 处理设 备、铸 件清洗 设备以 及各种 运输机 械,通 风除尘 设备等 。只有 设备配 套,才 能形成 生产能 力。
2020/9/24
信号处理
装备一个铸造车间,需要熔炼设备、 造型及 制芯设 备、砂 处理设 备、铸 件清洗 设备以 及各种 运输机 械,通 风除尘 设备等 。只有 设备配 套,才 能形成 生产能 力。
2020/9/24
信号处理
装备一个铸造车间,需要熔炼设备、 造型及 制芯设 备、砂 处理设 备、铸 件清洗 设备以 及各种 运输机 械,通 风除尘 设备等 。只有 设备配 套,才 能形成 生产能 力。
2020/9/24
信号处理
装备一个铸造车间,需要熔炼设备、 造型及 制芯设 备、砂 处理设 备、铸 件清洗 设备以 及各种 运输机 械,通 风除尘 设备等 。只有 设备配 套,才 能形成 生产能 力。

小波变换在信号处理中的应用

小波变换在信号处理中的应用

第3页
一、从傅里叶变换到小波变换
(1)傅立叶变换的定义
1. 连续傅立叶变换对
FT : F j f t e jtdt
IFT : f t 1 F j e jtd
2
离散傅立叶变换对
N1
j 2 kn
DFT : X k F fn fne N
n0
IDFT
:
fn
在时域空间和频域空间上都具有局部性,其作用等同于
短时傅立叶变换中的窗函数。
第14页
二、连续小波变换
因此函数f(t)的小波变换为:
W f (a,b)
f , a,b
a
1 2
R
f (t) (t b )dt
a
平移参数
小波
尺度因子
式中 (t)为函数(t)的复共轭,由可容性条件得:
(t)dt 0
为函数 (t)的傅立叶变换,上式也可称为可容性条件。
令: a,b (t)
a
1 2
(
t
b) a
b R a R {0}
称为基本小波或母小波(Mother Wavelet) (t)依赖于a,b
生成的连续小波。式中 a为尺度因子,改变连续小波的形状; b 为位移因子,改变连续小波的位移。连续小波 a,b (t)
第9页
(3)小波变换
第10页
(4) 小波的时间和频率特性
时间A
时间B
运用小波基,可以提取信号中的“指定时间”和“指定频率” 的变化。
时间:提取信号中“指定时间”(时间A或时间B)的变化。顾 名思义,小波在某时间发生的小的波动。
频率:提取信号中时间A的比较慢速变化,称较低频率成分;而 提取信号中时间B的比较快速变化,称较高频率成分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档