七级数学上册 第1章 有理数教学参考资料素材 (新版)新人教版
2019学年新初一数学上(人教版)第一章《有理数》1.2.3 相反数(素材)
1.2.3相反数情景导入置疑导入归纳导入复习导入类比导入悬念激趣图1-2-21情景导入活动内容:(多媒体出示“南辕北辙”的图片)成语故事《南辕北辙》讲了一个人从魏国要到楚国去,楚国在南边,他硬要往北边走.他的马越好,赶车的本领越大,盘缠带得越多,走得越远,就越到不了楚国.1.如果点O表示魏国的位置,点A表示楚国的位置,我们假设楚国与魏国的距离为30 km,以魏国为原点,我们规定向南为正方向,而此人从魏国出发向北到了点B也走了30 km,请同学们把这3个点在数轴上表示出来.图1-2-222.你还能在数轴上表示出类似于A,B这样的点吗?[说明与建议] 说明:利用学生感兴趣的成语故事《南辕北辙》,培养学生的学习兴趣,激发求知欲,同时也让学生进一步加深对数轴的理解,表示30,-30的点与原点的距离相等,但方向相反,引出了相反数,为新课的导入做好铺垫.建议:首先用简短的成语故事《南辕北辙》激发学生的兴趣,然后让一名学生在黑板上画出数轴,将30,0,-30这3个数用数轴上的点表示出来,其余学生在练习本上完成.完成后教师引导学生复习数轴的三要素,加深学生对数轴的理解,体会用数轴上的点表示一个给定的有理数的方法.问题2由学生口答完成,让学生体会解决问题所用的数形结合的方法,从而引出新课.复习导入回答下列问题:问题1:如果支出50元记作-50元,那么收入50元记作什么?问题2:如果河道中的水位比正常水位高3厘米记作+3厘米,那么比正常水位低3厘米记作什么?比较上述问题中的两组数据,除了发现它们表示具有相反意义的量之外,你还有什么发现吗?[说明与建议] 说明:用正负数表示具有相反意义的量,并发现特殊的一对数,从而为本节课的学习做好铺垫.建议:引导学生通过类比的方法,完成上述两个问题的解答.然后教师总结这些问题的共性,即实际生活中存在着许多具有相反意义的量,因此产生了正数与负数,并且像+3与-3这样的一对数较为特殊,比较后发现两数只有符号不同,从而引出新课.悬念激趣一天,有理数王国的公民+1不小心掉进了一个魔瓶里.谁知出来后竟变成胖乎乎的0,你说怪不怪?冷眼旁观的2说:“谁叫这瓶里睡着他的相反数兄弟呢?幸好我没掉进去!”同学们,你想知道+1的相反数兄弟是谁吗?为什么他俩见面后就变成了0呢?就让我们一起走进神奇的相反数的世界吧![说明与建议] 说明:七年级的学生还是很可爱,很喜欢听故事的.所以这里通过小故事,激发同学们的兴趣,引入我们今天的学习内容——相反数.建议:先留给学生自主思考的时间,然后教师要引导学生进行分析,为进一步学习积累数学活动经验.教材母题——教材第10页练习第2题写出下列各数的相反数:6,-8,-3.9,,-,100,0.【模型建立】求一个数的相反数,可以在这个数的前面添一个“-”号.如-5的相反数可表示为-(-5),我们知道-5的相反数是5,所以-(-5)=5.【变式变形】1.-1的相反数是1;-2是2的相反数;-与互为相反数.2.-(-2)的相反数是-2.3.若-x=10,则x的相反数在原点的右侧;若x的相反数是-3,则x=3;若-x的相反数是-5.7,则x=-5.7.4.写出下列各数的相反数,并在数轴上把这些相反数表示出来:+2,-3,0,-(-1),-3,-(+2).[答案:-2,+3,0,-1,+3,+2在数轴上表示略]5.化简下列各数:(1)-(-100);(2)--5;(3)++;(4)+(-2.8);(5)-(-7);(6)-(+12).[答案:(1)100(2)5(3)(4)-2.8(5)7(6)-12][命题角度1] 求一个数的相反数在任意一个数的前面添上“-”号,就可以得到该数的相反数.其中0比较特殊,其相反数等于它本身.例如果a与-2互为相反数,那么a等于(B)A.-2B.2C.-D.[命题角度2] 相反数的数学意义相反数是成对出现的,且互为相反数的两个数的和为0.例已知x+y=0,则x与y(B)A.互为倒数B.互为相反数C.都为0D.以上均不正确[命题角度3] 多重符号的化简在一个数的前面添上“-”号,表示这个数的相反数;在一个数的前面添上“+”号,仍表示这个数本身.当a前面有偶数个“-”号时,结果为a;当a前面有奇数个“-”号时,结果为-a.例-(-2)等于 (B)A.-2B.2C.D.±2[命题角度4] 已知数轴上的点判断互为相反数的点给出数轴上的一些点,从中找出互为相反数的点,一般可以直接从各个点所代表的有理数判断,或从是否在原点的两侧并且到原点的距离相等进行判断.例如图1-2-23,数轴上的单位长度为1,有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C表示的数是(C)图1-2-23A .-2B .0C .1D .4P10练习1.判断下列说法是否正确:(1)-3是相反数; (2)+3是相反数; (3)3是-3的相反数; (4)-3与+3互为相反数.[答案] (1)错误,相反数是成对出现的,单独的一个数不是相反数; (2)错误;(3)正确;(4)正确. 2.写出下列各数的相反数: 6,-8,-3.9,52,-211,100,0.[答案] -6,8,3.9,-52,211,-100,0.3.如果a =-a ,那么表示a 的点在数轴上的什么位置? [答案] 在数轴上的原点处. 4.化简下列各数:-(-68),-(+0.75),-⎝⎛⎭⎫-35,-(+3.8). [答案] 68,-0.75,35,-3.8.[当堂检测]1.-9的相反数是( )A .-91B .91C .-9D .92. 如果a 的相反数是2,那么a 等于( )A .-2B .2C .21D .- 213.下列说法:(1)-a是相反数,(2)a的相反数一定是负数, (3)a与-a互为相反数,(4)互为相反数的两个数符号一定相反, (5)互为相反数的两个数到原点的距离相等. 其中正确的有( ) A .一个B. 二个C. 三个D. 四个4.化简下列各数(1)-(- 4)=____,(2) – (+32)=____ ,(3) – [- (-5)]=______ .5. 已知数轴上点A 和点B 分别表示互为相反数的两个数a 、b (a <b ),并且A 、B 两点间的距离是10,求a ,b 两数。
新人教版七年级上册数学第一章有理数全章教案
第一章有理数第一课时1.1 正数和负数教学目标1.知识与技能①通过生活实例,了解正数与负数是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观①通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务.②通过正负数的学习,渗透对立、统一的辩证思想.教学重点难点重点:会判断正数、负数,运用正负数表示相反意义的量,理解0•表示量的意义.难点:负数的引入.教与学互动设计(一)创设情境,导入新课珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米,等.2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负号来表示(零除外).活动每组同学之间相互合作交流,一同学任说有关相反的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1举出几对具有相反意义的量,并分别用正、负数表示.提示相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.点评这是一道开放性试题,旨在考查用正负数与相反意义量的表示能力.例2在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?答案表示比标准质量低0.03克.例3 2001年美国的商品进出口总额比上年减少6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .提示通过观察可见,数字的排列是按正常的大小顺序,符号是负正相间,第奇数个为负,第偶数个为正.点评本节是对探究问题的训练.2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16+5.0-1.2-2.1-0.9+10-2.6(1)本周小张一共用掉了多少钱?存进了多少钱?答案 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?答案多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.答案用文字说明,但前者更简洁.(五)课堂跟踪反馈教材第4页1、2、3、4题第5页 1、2、3题(六)作业教材第5页 4、5题第二课时1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.3.情感、态度与价值观通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.教学重点难点重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数⎧⎧⎪⎨⎩⎪⎨⎧⎪⎨⎪⎩⎩正整数整数零正分数分数负分数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合. (三)应用迁移,巩固提高例1 把下列各数填入相应的集合内:127,-3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合整数集合 分数集合答案正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...例2 以下是两位同学的分类方法,你认为他们的分类的结果正确吗 为什么?有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零答案两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.例3下列关于零的说法,正确的有()①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.答案不一定,a可能是正数,可能是负数,也可能是0.(四)总结反思,拓展升华今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.图1-2-1答案答案不唯一,如图1-2-2所示.-1250.4813图1-2-22.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗?(2)生活中,我们也常常对事物进行分类,请你举例说明.答案(1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?分数集合负数集合答案负分数(五)课堂跟踪反馈教材第6页1、2题(六)作业《同步练习》相应内容第三课时1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课在一条东西方向的马路上,有一个学校,学校东50m和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度;表示-a的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边.(三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①②-1021③④0⑤-101⑥0-3⑦答案 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0答案-1-45EDC BA图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?提示 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.答案 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数..例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)A.1个B.2个C.3个D.4个提示 题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有 两 个,它们分别表示有理数 2.5 •和 -2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是 +3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.答案 -2,-1,0,1例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若这个数轴上随意画出一条长2000cm 的线段AB ,则线段AB 盖住的整点是(C )A .1998或1999B .1999或2000C .2000或2001D .2001或2002提示分两种情况分析:(1)当线段AB 的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB 的起点不是整点时,•终点也不落在整点上,那么线段AB 盖住了2000个整点.(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:5M 4M 3M 2M 1(1)点M 4和M 2所表示的有理数是什么? (2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明; (4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?答案 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单位长度.(五)课堂跟踪反馈教材第9页1、2、3题 (六)作业《同步练习》相应内容第四课时 1.2.3 相反数教学目标1.知识与技能①借助数轴了解相反数的概念,知道互为相反数的位置关系.②给一个数,能求出它的相反数.2.过程与方法①训练学生利用数轴应用数形结合的方法解决问题.②培养学生自己归纳总结规律的能力.3.情感、态度与价值观①通过相反数的学习,渗透数形结合的思想.②感受事物之间对立、统一联系的辩证思想.教学重点难点重点:理解相反数的意义.难点:理解和掌握双重符号简化的规律.教与学互动设计(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,223和-223,7和-7,57和-57,并把它们在数轴上标出.想一想(1)上述各对数之间有什么特点?(2)表示这两对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的数吗?观察像这样只有符号不同的两个数叫相反数.两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,•并且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=•-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0•的相反数是0.(三)应用迁移,巩固提高例1填空(1)-5.8是 5.8 的相反数, 3 的相反数是-(+3),a的相反数是–a ,a-b的相反数是-(a-b),0的相反数是0 .(2)正数的相反数是负数,负数的相反数是正数,0 的相反数是它本身.例2下列判断不正确的有(C)①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个例3化简下列各符号:(1)-[-(-2)] (2)+{-[-(+5)]}(3)-{-{-…-(-6)}…}(共n个负号)答案(1)-2 (2)5 (3)当n为偶数时,为6;当n为奇数时,为-6.例4数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A•的距离为2,点B和点C各对应什么数?答案 C点表示2或6,则相应的B点应表示-2或-6.(四)总结反思,拓展升华归纳①相反数的概念及表示方法.②相反数的代数意义和几何意义.③符号的化简.1.(1)王亮说:“一个数总比它的相反数大”.你认为正确吗?为什么?(2)若数轴上表示一对相反数的两点之间的距离为26.8,求这两个数.答案(1)不正确,如0的相反数还是0,负数的相反数是正数.(2)其中的一个数到原点的距离为13.4,所以这两个数是+13.4和-13.4.2.你若a是不小于-1又不大于3的数,那么a的相反数是什么样的数呢?提示结合数轴进行观察比较.解:由题意知-1≤a≤,而-1,a,3的相反数分别是1,-a,-3.∴-a在1和-3之间∴-3≤a≤1∴a的相反数是不小于-3又不大于1的数.点评在解决问题中,能进行简单的、有条理的思考.(五)课堂跟踪反馈教材第10页1、2、3、4题(六)作业教材第14页第4题第五课时1.2.4 绝对值(一)教学目标1.知识与技能①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用.2.过程与方法经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.3.情感、态度与价值观①通过解释绝对值的几何意义,渗透数形结合的思想.②体验运用直观知识解决数学问题的成功.教学重点难点重点:给出一个数,会求它的绝对值.难点:绝对值的几何意义、代数定义的导出.教与学互动设计(一)创设情境,导入新课活动请两同学到讲台前,分别向左、向右行3米.交流①他们所走的路线相同吗?②若向右为正,分别可怎样表示他们的位置?③他们所走的路程的远近是多少?(二)合作交流,解读探究观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,•它们的__________不同,__________相同.总结例如6和-6两个数在数轴上的两点虽然分布在原点的两边,•但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.想一想(1)-3的绝对值是什么?(2)+237的绝对值是多少?(3)-12的绝对值呢?(4)a的绝对值呢?答案略.交流同桌间合作交流,每位同学任说五个数,由同桌指出它们的绝对值.思考例1 求8,-8,3,-3,14,-14的绝对值.(出示胶片)由此,你想到什么规律?总结互为相反数的两个数的绝对值相同.求+2.3,-1.6,9,0,-7,+3的绝对值.(出示胶片)由此,你想到什么规律?讨论交流正数的绝对值是它本身,负数的绝对值是它的相反数,0•的绝对值是零.总结正数的绝对值是它本身.负数的绝对值是它的相反数.零的绝对值是零.讨论字母a可以代表任意的数,那么表示什么数?这时a的绝对值分别是多少?学生活动:分组讨论,教师加入讨论,学生相反补充回答.归纳若a>0,则│a│=a若a<0,则│a│=-a若a=0,则│a│=0(三)应用迁移,巩固提高例题填空:(1)绝对值等于4的数有 2 个,它们是±4 .(2)绝对值等于-3的数有0 个.(3)绝对值等于本身的数有无数个,它们是0和正数(非负数).(4)①若│a│=2,则a= ±2 .②若│-a│=3,则a= ±3 .(5)绝对值不大于2的整数是0,±1,±2 .(6)根据绝对值的意义,思考:①如果=1,那么a > 0;②如果=-1,那么a < 0;③如果a<0,那么-│a│= a .(四)总结反思,拓展升华本节课,我们学习认识了绝对值,要注意掌握以下两点:①一个数的绝对值是在数轴上表示这个数的点到原点的距离;②求一个数的绝对值必须先判断是正数还是负数.(五)课堂跟踪反馈教材第11页1、2、3题(六)作业《同步练习》相应内容第六课时1.2.4 绝对值(二)教学目标1.知识与技能会利用绝对值比较两个负数的大小.2.过程与方法利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.3.情感、态度与价值观敢于面对数学活动中的困难,有学好数学的自信心.教学重点难点重点:利用绝对值比较两个负数的大小.难点:利用绝对值比较两个异分母负分数的大小.教与学互动设计(一)创设情境,导入新课投影你能比较下列各组数的大小吗?(1)│-3│与│-8│(2)4与-5 (3)0与3(4)-7和0 (5)0.9和1.2(二)合作交流,解读探究讨论交流由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.思考若任取两个负数,该如何比较它的大小呢?点拨若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?总结两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.注意①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.(三)应用迁移,巩固提高例1比较下列各组数的大小(1)-56和-2.7(2)-57和-34解:(1)∵|-56|=56│-2.7│=2.7,而56<2.7∴-56>-2.7(2)∵|-57|=57=2028,|-34|=34=2128,而2028<2128∴-57>-34例2按从大到小的顺序,用“〈”号把下列数连接起来.-412,-(-23),│-0.6│,-0.6,-│4.2│解:∵-(-23)=23,│-0.6│=0.6,-│4.2│=-4.2而|-412|=412,│-0.6│=0.6,│-4.2│=4.2且412>4.2>0.6,0.6<23∴ -412<-│4.2│<-0.6<│-0.6│<-(-23)例3自己任写三个数,使它大于-57而小于-18.点评此题是一个开放型问题,培养学生发散性思维.例4已知│a│=4,│b│=3,且a>b,求a、b的值.答案 a=4,b=±3(四)总结反思,拓展升华1.本节课所学的有理数的大小比较你能掌握两种方法吗?(1)利用数轴,在数轴上把这些数表示出来,•然后根据“数轴上左边的数总比右边的数大”来比较;(2)利用比较法则:“正数大于零,负数小于零,两个负数,•绝对值大的反而小”来进行.(五)课堂跟踪反馈教材第13页练习(六)作业教材第14页第5、6题第七课时1.3.1 有理数的加法(一)教学目标1.知识与技能经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.2.过程与方法①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.3.情感、态度与价值观①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.②运用知识解决问题的成功体验.教学重点难点重点:有理数的加法法则的理解和运用.难点:异号两数相加.教与学互动设计(一)创设情境,导入新课下午放学时,小新的车子坏了,他去修车,不能按时回家,怕妈妈担心,打电话告诉妈妈,可妈妈坚持要去接他,问他在什么地方修车,他说在我们学校门前的东西方向的路上,你先走20米,再走30米,就能看到我了.于是妈妈来到校园门口.(二)合作交流,解读探究讨论妈妈能找到他吗?讨论交流若规定向东为正,向西为负.(1)若两次都向东,很显然,一共向东走了50米.算式是:20+30=50即这位同学位于学校门口东方50米.这一运算可用数轴表示为-100(2)若两次都向西,则他现在位于原来位置的西50米处.算式是:(-20)+(-30)=-50这一算式在数轴上可表示成:-20(3)若第一次向东20米,第二次向西走30米.•则利用数轴可以看到这位同学位于原位置的西方10米处.算式是:+20+(-30)=-10(学生试画数轴以下同)(4)若第一次向西走20米,第二次向东走30米.•利用数轴可以看到这位同学位于原位置的什么地方?如何用算式表示?算式是:(-20)+(+30)=+10对以下两种情形,你能表示吗?(5)第一次向西走了20米,第二次向东走了20米,•那这位同学位于原位置的什么地方?这位同学回到了原位置.即:-(20)+(+20)=0.(6)如果第一次向西走了20米,第二次没有走,那如何呢?-20+0=-20思考:根据以上6个算式,你能总结出有理数相加的符号如何确定?•和的绝对值如何确定?互为相反数相加,一个有理数和0相加,和分别为多少?学生活动小组讨论、试看分类、归纳观察(1)式,两个加数都为正,和的符号也是正,•和的绝对值正好是两个加数绝对值的和.观察(2)式,两个加数都为负,和的符号也是负,•和的绝对值是两个加数绝对值的和.由(1)(2)归纳:同号两数相加,取相同的符号,并把绝对值相加.如:(-7)+(-8)=-15,16+17=+33,(-4)+(-9)=-13观察(3)式、(4)式可见:两个加数的符号不同,和的符号有的是“+”号,有的是“-”号,为了更清楚总结规律.可引导学生再举几个类似的例子,从而可总结得到:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.观察(5)可知:互为相反的两个数和为0.观察(6)可知:一个数和零相加,仍然得这个数.总结有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,•并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.(三)应用迁移,巩固提高例1计算(1)(-4)+(-6)= -10(2)(+15)+(-17)= -2(3)(-39)+(-21)= -60(4)(-6)+│-10│+(-4)= 0(5)(-37)+22= -15(6)-3+(3)= 0例2某足球队在一场比赛中上半场负5球,下半场胜4球,•那么全场比赛该队净胜-1 球.例3绝对值小于2005的所有整数和为0 .例4一个数是11,另一个数比11的相反数大2,那么这两个数的和为(C)A.24 B.-24 C.2 D.-2例5下面结论正确的有(B)①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个 B.1个 C.2个 D.3个例6 根据有理数加法法则,分别根据下列条件,利用│a│与│b│表示a•与b的和:(1)a>0,b>0,则a+b= │a│+│b│(2)a<0,b<0,则a+b= -(│a│+│b│)(3)a>0,b<0,│a│>│b│,则a+b= │a│-│b│(4)a>0,b<0,│a│<│b│,则a+b= -(│b│-│a│)例7 如果a>0,b<0,且a+b<0,比较a、+a、b、-b的大小.提示由a>0,b<0,且a+b<0,根据加法法则来确定a、b的绝对值的大小再利用数轴来比较大小.。
2020七年级数学上册 第1章 有理数 1.1 正数和负数备课素材 (新版)新人教版
第一章有理数1.1正数和负数置疑导入归纳导入类比导入悬念激趣细心观察图片中的数字,你有什么发现呢?这些数相信有的同学见过,甚至有的同学还能读出来.为什么会出现这些数呢?它们对我们的生活有用吗?要想解决上述问题,就需要搞清楚它们所代表的具体含义,下面我们一起来学习本节课的内容.[说明与建议] 说明:利用生活中的实际问题设置一系列的问题串,紧紧抓住了学生的好奇心,使学生带着疑惑来学习内容,能极大地保证学生学习注意力的集中,且可使其自然而然地紧跟老师的节奏展开新课.建议:引导学生发现生活中的负数时,给其适当时间来发表自己的观点,然后教师在学生意见的基础上做总结,使其在学习中有参与感、成就感.问题1:小学里已经学过哪些类型的数呢?学生回答后,教师总结展示小学里学过的三类数:整数、分数和零(小数包括在分数之中),它们的出现对我们的生活有什么影响吗?借助图片提示它们都是由于实际需要而产生的.图1-1-2问题2:你会表示下列数吗?图1-1-3[说明与建议] 说明:通过展示实际生活情景引导学生认识到数字的发展源于生活的需要,进而认识负数的出现亦源于生活的需要.建议:让学生认识负数后,建议其思考为什么要引入负数,“-”的出现有哪些优点呢?进而系统地讲授具有相反意义的量.3页例题(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%.写出这些国家这一年商品进出口总额的增长率.【模型建立】用正负数表示具有相反意义的量的基本步骤:(1)找“基准”——表示正、负的相对基准;(2)明确哪一个表示正,那么另一个就表示负.相反意义的量必须满足以下两个条件:(1)它们属于同一属性;(2)它们的意义相反.【变式变形】1.节约4吨水与__浪费__4吨水是一对具有相反意义的量.2.[南宁中考] 如果水位升高3 m时水位变化记作+3 m,那么水位下降3 m时水位变化记作(A)A.-3 m B.3 m C.6 m D.-6 m3.[济宁中考] 一运动员某次跳水的最高点离跳台2 m,记作+2 m,则水面离跳台10 m可以记作(A) A.-10 m B.-12 m C.+10 m D.+12 m4.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作__-20__个,2月生产200个零件记作__20__个.5.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过__10.05__毫米,最小不小于__9.95__毫米.6.一批螺帽产品的内径要求可以有±0.02 mm的误差,现抽查5个样品,超过规定的毫米值记为正数,不足毫米数记为负数,检查结果如表,则合乎要求的产品有(B)0.015A.1个B.2个.3个.5个7.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面__70__米的深处.[命题角度1] 正、负数的识别熟记正、负数的概念是关键,正确理解“一个数,如果不是正数,必定是负数或零”“零既不是正数,也不是负数”.如教材P4练习第1题.[命题角度2] 用正负数表示相反意义的量用正负数表示相反意义的量的基本步骤:(1)找“基准”——表示正、负的相对基准;(2)明确哪一个表示正,那么另一个就表示负.相反意义的量必须满足以下两个条件:(1)它们属于同一属性;(2)它们的意义相反.例1 [达州中考] 向东行驶3 km,记作+3 km,向西行驶2 km,记作(B)A.+2 km B.-2 km C.+3 km D.-3 km例2 (1)如果节约20度电记作+20度,那么浪费10度电记作什么?(2)如果-20.50元表示亏本20.50元,那么+100.57元表示什么? (3)如果+20%表示增加20%,那么-6%表示什么? 解:(1)浪费10度电记作-10度. (2)+100.57元表示盈利100.57元. (3)-6%表示减少6%.[命题角度3] 正、负的规定,零界的选取利用正数和负数表示具有相反意义的量时其零界状态是可以根据实际情况人为规定的.如素材二变式变形第4题.[命题角度4] 利用正负数探究规律寻找数的规律的方法:寻找数的规律时,可以从符号和数字两个方面进行观察,若是分数,还要从分子、分母的变化形式进行观察,从变化中发现一般性的规律.例 观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第101个数、第2016个数分别是什么吗?(1)-1,-2,+3,-4,-5,+6,-7,-8,________,________,________,……(2)-1,12,-3,14,-5,16,-7,18,________,________,________,……解:(1)+9 -10 -11这列数中的第10个数为-10,第101个数为-101,第2016个数为2016. (2)-9110-11 这列数中的第10个数为110,第101个数为-101,第2016个数为12016.说明:探索规律时,应充分考查题中所给的所有数据,这样才能准确得到反映一列数的特征.P3练习1.2010年我国全年平均降水量比上年增加108.7 mm ,2009年比上年减少81.5 mm ,2008年比上年增加53.5 mm.用正数和负数表示这三年我国全年平均降水量比上年的增长量.[答案] 2010年为+108.7 mm ;2009年为-81.5 mm ;2008年为+53.5 mm.2.如果把一个物体向右移动1 m 记作移动+1 m ,那么这个物体又移动了-1 m 是什么意思?如何描述这时物体的位置?[答案] 物体向左移动了1 m ,物体回到了原来的位置. P4练习1.读下列各数,并指出其中哪些是正数,哪些是负数.-1,2.5,+43,0,-3.14,120,-1.732,-27.[答案] 正数:2.5,+43,120;负数:-1,-3.14,-1.732,-27.2.如果80 m 表示向东走80 m ,那么-60 m 表示________.[答案] 向西走60 m3.如果水位升高3 m 时水位变化记作+3 m ,那么水位下降3 m 时水位变化记作____m ,水位不升不降时水位变化记作____m.[答案] -3 04.月球表面的白天平均温度零上126 ℃,记作________℃,夜间平均温度零下150 ℃,记作________℃. [答案] +126 -150 P5习题1.1 复习巩固1.下面各数哪些是正数,哪些是负数?5,-57,0,0.56,-3,-25.8,125,-0.0001,+2,-600.[答案] 正数:5,0.56,125,+2;负数:-57,-3,-25.8,-0.0001,-600.2.某蓄水池的标准水位记为0 m ,如果用正数表示水面高于标准水位的高度,那么(1)0.08 m 和-0.2 m 各表示什么?(2)水面低于标准水位0.1 m 和高于标准水位0.23 m 各怎样表示?[答案] (1)水面高于标准水位0.08 m ,水面低于标准水位0.2 m .(2)-0.1 m ,0.23 m. 3.“不是正数的数一定是负数,不是负数的数一定是正数”的说法对吗?为什么? [答案] 错.0既不是正数也不是负数. 综合运用4.如果把一个物体向后移动5 m 记作移动-5 m ,那么这个物体又移动+5 m 是什么意思?这时物体离它两次移动前的位置多远?[答案] 向前移动5 m ,在原来位置上.5.测量一幢楼的高度,七次测得的数据分别是:79.4 m ,80.6 m ,80.8 m ,79.1 m ,80 m ,79.6 m ,80.5 m .这七次测量的平均值是多少?以平均值为标准,用正数表示超出部分,用负数表示不足部分,它们对应的数分别是什么?[解析] (79.4+80.6+80.8+79.1+80+79.6+80.5)÷7=80 (m).以平均值为标准,这七次测得的数据分别记作:-0.6 m ,0.6 m ,0.8 m ,-0.9 m ,0 m ,-0.4 m ,0.5 m.[答案] 这七次测量的平均值是80 m ,以平均值为标准,这七次测得的数据分别记作:-0.6 m ,0.6 m ,0.8 m ,-0.9 m ,0 m ,-0.4 m ,0.5 m.6.科学实验表明,原子中的原子核与电子所带电荷是两种相反的电荷.物理学规定,原子核所带电荷为正电荷. 氢原子中的原子核与电子各带1个电荷,把它们所带电荷用正数和负数表示出来.[答案] +1,-1. 拓广探索7.某地一天中午 12时的气温是7 ℃,过5 h 气温下降了4 ℃,又过7 h 气温又下降了4 ℃.第二天0时的气温是多少?[答案] -1 ℃.8.某年,一些国家的服务出口额比上年的增长率如下:这一年,上述六国中哪些国家的服务出口额增长了?哪些国家的服务出口额减少了?哪国增长率最高?哪国增长率最低?[答案] 中国、意大利增长了;美国、德国、英国、日本减少了;意大利最高;日本最低.[当堂检测]1. 下列说法:(1)正数前加上负号就是负数,(2)不是正数的数就是负数,(3)只有带“+”的数才是正数,(4)0既不是正数也不是负数,其中正确的有()A.一个B.二个C.三个D.四个2. 【2012•河北】下列各数中,为负数的是()A.0 B.-2 C.1 D.213.【2012•陕西】如果零上5 ℃记作+5 ℃,那么零下7 ℃可记作()A.-7 ℃ B.+7 ℃C.+12 ℃ D.-12 ℃4. 2012年6月24日,我国自行研制的“蛟龙”号载人潜水器在马里亚纳海域成功突破7000米深度,再创中正数:{…};负数:{…}.参考答案:1. B2. B3. A4. 1005. 解:正数:{3.14,+72,227, …};负数:{-2.5,-2,-0.6, …}.[能力培优]专题一用正负数表示相反意义的量1.“佳佳”超市2012年下半年的营业额与2011年同月营业额相比的增长率如下:月份 7 8 9 10 11 12比上年同 -1.8 0 0.2 -1.5 0.3 0.4月增长(%)请问:(1)“佳佳”超市2012年下半年的营业额与2011年同月营业额相比,哪几个月是增长的?(2)2012年7月和2012年10月比上年同月增长率是负数,表示什么意思?(3)2012年下半年与2011年下半年同月份相比营业额没有增长的是哪几个月?2.一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%,想一想.(1)±10%的含义是什么?(2)请你计算出该商品的最高价格和最低价格;(3)如果以标准价格为基准,超过标准价记“+”,低于标准价记“-”,•该商品价格的浮动范围又可以怎样表示?3.王老师是七年级(1)班数学老师,王老师先拿出一支新买的2B铅笔,请5位同学估计这只铅笔的长度,并把它们的估计的值写在了黑板上,如图所示:下图是王老师让学生用刻度尺测量这支铅笔的图片:(单位:厘米):(1)请读出这支铅笔的长度,再以它为基准,大于这个值的规定为正,小于这个值的为负,用正、负数表示五位同学对这支铅笔的估计出的五个数.(2)试问哪一位同学的估计值最接近新买的2B铅笔的长度.4.某数学俱乐部有一种“秘密”的记账方式.当他们收入300元时,记为—240元.当他们用去300元时,记为360元.猜一猜,当他们用去100元时,可能记为多少?当他们收入100元时,可能记为多少?他们的基准是什么?专题二探索数字的规律5.观察下面排列的每一列数,研究它的排列有什么规律?并填出空格上的数.(1)1,-2,1,-2,1,-2,,,,…(2)-2,4,-6,8,-10,,,,…(3)1,0,-1,1,0,-1,,,,…知识要点:1.大于0的数叫正数.小于0的数叫负数.一个数前面的“+”“-”号叫做它们的符号.“+”号通常省略不写.2.0既不是正数也不是负数.3.如果一个问题中出现相反意义的量,我们可以用正数和负数分别表示它们.温馨提示:1.判断一个数是正是负,不能仅仅看其前面的符号.2.0既不是正数也不是负数.方法技巧:1.用正负数表示相反意义的量时,应先找到基准量,再规定相反意义的量中的一个为正,则另一个为负.2.寻找一列数的规律时,通常从符号、与去掉符号后的数字两个方面入手分别寻找规律.答案:1.解析:(1)增长的月份是:9、11、12.(2)-1.8%表示2012年7月的营业额比2011年7月的营业额减少了1.8%;-1.5%表示2012年10月的营业额比2011年10月的营业额减少了1.5%.(3)2012年下半年与2011年下半年同月份相比营业额没有增长的是月份是:7、8、10.2.解析:(1)+10%表示比标准价格高10%,-10%表示比标准价格低10%;(2)最高价格200(1+10%)=220(元),最低价格200(1-10%)=180(元);(3)-20~+20元.3.解析:(1)新买的2B铅笔长度为17.7厘米,这5个数分别可记作:-2.7厘米,+0.3厘米,-0.7厘米,+2.3厘米,-1.7厘米.(2)估计值为18厘米的这位同学的估计值最接近新买的2B铅笔的长度.4.解析:当他们用去100元时,可能记为+160元. 当他们收入100元时,可能记为-40元. 他们的基准是收入60元时记为0元.5.解析:(1)第一列数1,-2交替出现,第奇数个数为1,第偶数个数为-2,所以空格上的数依次为1 -2 1 (2)第二列数负数、正数交替出现,且数字依次比前面的数字大2,所以空格上的数依次为12 -14 16 (3)第三列数1,0,-1交替出现,所以空格上的数依次为1 0 -1。
【重点推荐】新七年级数学上册-第1章1.4.2-有理数的除法-第1课时-有理数的除法法则备课素材练习
【重点推荐】新七年级数学上册-第1章1.4.2-有理数的除法-第1课时-有理数的除法法则备课素材练习试卷1.4 有理数的乘除法1.4.2 有理数的除法情景导入类比导入悬念激趣活动内容:(1)前面我们学习了“有理数的乘法”,那么自然会想到有理数有除法吗?如何进行有理数的除法运算呢?开门见山,直接引出本节知识的核心.(-12)÷(-3)=?(2)回忆小学里乘法与除法互为逆运算,并提问:被除数、除数、商之间有何关系?[说明与建议] 说明:利用乘法与除法互为逆运算的关系,将有理数的除法转化为有理数的乘法来解决,为下一环节的学习做好准备.建议:在学习过程中,引导学生发现只需找到-12=(-3)×?就能找到商是多少来猜想:(-12)÷(-3)=4.体现除法与乘法的互逆性.活动内容:(1)叙述有理数的乘法法则.4.a |a|(a≠0)的所有可能的值有(B ) A .1个 B .2个C .3个D .4个5.一只手表七天的走时误差是-35秒,平均每天的走时误差是__-5__秒. 6.规定一种新的运算:A★B=A×B-A÷B,如4★2=4×2-4÷2=6,则6★(-3)的值为__-16__.7.计算:(1)(-49)÷74×47÷(-16);(2)(-4)÷[(-45)÷(-12)]. 解:(1)(-49)÷74×47÷(-16)=(-49)×47×47×(-116)=49×47×47×116=1. (2)(-4)÷[(-45)÷(-12)]=(-4)÷[(-45)×(-2)]=(-4)÷85=(-4)×58=-52.[命题角度1] 有理数的除法运算有理数除法法则的选择和注意事项:1.选择原则:能整除时直接相除,不能整除时应用法则:除以一个不等于0的数,等于乘这个数的倒数.2.注意事项:(1)应用直接相除时,要先确定符号,再确定绝对值;(2)应用法则除以一个不等于0的数,等于乘这个数的倒数时,如果有小数或带分数,要化小数为分数,化带分数为假分数.例计算:(1)(-21)÷(-7);(2)(-36)÷2÷(-3);(3)(-114)÷123;(4)(-6)÷(-73)÷(-247).解:(1)(-21)÷(-7)=+(21÷7)=3.(2)(-36)÷2÷(-3)=-(36÷2)÷(-3)=(-18)÷(-3)=+(18÷3)=6.(3)(-114)÷123=(-54)×35=-34.(4)(-6)÷(-73)÷(-247)=(-6)×(-3 7)×(-718)=-(6×37×718)=-1.[命题角度2] 化简分数化简分数的方法:直接对分数的分子、分母的绝对值进行约分.如果分子(或分母)含有小数,那么可先根据分数的基本性质对分数变形,然后按照上面的步骤进行.例化简:-42-7.[答案:6][命题角度3] 有理数的乘除混合运算有理数的乘除混合运算,把除法转化为乘法后先确定符号,再确定积的绝对值,小数要化成分数,带分数要化为假分数.例-2.5÷58×⎝⎛⎭⎪⎫-14.[答案:1][命题角度4] 有理数的四则混合运算有理数的加减乘除四则混合运算应注意以下顺序:(1)先算乘除,再算加减;(2)同一级运算,从左到右依次进行;(3)如有括号,先算括号里的运算,按照小括号,中括号,大括号的顺序依次进行.例计算:(1)-1+5÷(-12)×(-2);(2)(1-16)×(-3)-(1+12+13)÷(-713)解:(1)-1+5÷(-12)×(-2)=-1+5×(-2)×(-2)=19.(2)(1-16)×(-3)-(1+12+13)÷(-713)=56×(-3)-116÷(-223)=-52-116×(-322)=-52+14=-94 .[命题角度5] 利用计算器进行有理数的加减乘除混合运算不同品牌的计算器的操作方法可能有所不同,具体参见计算器的使用说明,要合理准确使用计算器的功能键,使得运算顺序符合题目要求.例 用计算器计算:41.9×(-0.6)+23.5.[答案:-1.64]P35练习计算:(1)(-18)÷6; (2)(-63)÷(-7);(3)1÷(-9); (4)0÷(-8);(5)(-6.5)÷(0.13);(6)⎝ ⎛⎭⎪⎫-65÷⎝ ⎛⎭⎪⎫-25. [答案] (1)-3;(2)9;(3)-19;(4)0; (5)-50;(6)3.P36练习1.化简:(1)-729; (2)-30-45; (3)0-75.[答案] (1)-8;(2)23;(3)0.2.计算:(1)⎝⎛⎭⎪⎫-36911÷9;(2)(-12)÷(-4)÷⎝ ⎛⎭⎪⎫-115;(3)⎝ ⎛⎭⎪⎫-23×⎝ ⎛⎭⎪⎫-85÷(-0.25).[答案] (1)-4511;(2)-52;(3)-6415.P36练习 计算:(1)6-(-12)÷(-3); (2)3×(-4)+(-28)÷7; (3)(-48)÷8-(-25)×(-6);(4)42×⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫-34÷(-0.25).[答案] (1)2;(2)-16;(3)-156;(4)-25.P37练习用计算器计算:(1)357+(-154)+26+(-212); (2)-5.13+4.62+(-8.47)-(-2.3); (3)26×(-41)+(-35)×(-17); (4)1.252÷(-44)-(-356)÷(-0.196). [答案] (1)17;(2)-6.68;(3)-471; (4)1816.35. P37习题1.4 复习巩固 1.计算:(1)(-8)×(-7); (2)12×(-5); (3)2.9×(-0.4); (4)-30.5×0.2; (5)100×(-0.001); (6)-4.8×(-1.25).[答案] (1)56;(2)-60;(3)-1.16; (4)-6.1;(5)-0.1;(6)6. 2.计算: (1)14×⎝ ⎛⎭⎪⎫-89;(2)⎝ ⎛⎭⎪⎫-56×⎝ ⎛⎭⎪⎫-310;(3)-3415×25; (4)(-0.3)×⎝ ⎛⎭⎪⎫-107.[答案] (1)-29;(2)14;(3)-1703;(4)37.3.写出下列各数的倒数:(1)-15; (2)-59; (3)-0.25;(4)0.17 (5)414; (6)-525.[答案] -115;(2)-95;(3)-4;(4)10017;(5)417;(6)-527.4.计算:(1)-91÷13; (2)-56÷(-14); (3)16÷(-3); (4)(-48)÷(-16); (5)45÷(-1); (6)-0.25÷38.[答案] (1)-7;(2)4;(3)-163;(4)3;(5)-45;(6)-23.5.填空:1×(-5)=______; 1÷(-5)=______; 1+(-5)=______; 1-(-5)=______; -1×(-5)=____; -1÷(-5)=____; -1+(-5)=____; -1-(-5)=____. [答案] -5;-15;-4;6;5;15;-6;4.6.化简下列分数:(1)-217; (2)3-36;(3)-54-8; (4)-6-0.3.[答案] (1)-3;(2)-112;(3)274;(4)20.7.计算:(1)-2×3×(-4); (2)-6×(-5)×(-7);(3)⎝ ⎛⎭⎪⎫-825×1.25×(-8);(4)0.1÷(-0.001)÷(-1);(5)⎝ ⎛⎭⎪⎫-34×⎝⎛⎭⎪⎫-112÷⎝ ⎛⎭⎪⎫-214;(6)-6×(-0.25)×1114;(7)(-7)×(-56)×0÷(-13); (8)-9×(-11)÷3÷(-3).[答案] (1)24;(2)-210;(3)165;(4)100;(5)-12;(6)3328;(7)0;(8)-11.综合运用 8.计算:(1)23×(-5)-(-3)÷3128;(2)-7×(-3)×(-0.5)+(-12)×(-2.6);(3)⎝ ⎛⎭⎪⎫134-78-712÷⎝ ⎛⎭⎪⎫-78+⎝ ⎛⎭⎪⎫-78÷⎝ ⎛⎭⎪⎫134-78-712; (4)-⎪⎪⎪⎪⎪⎪-23-⎪⎪⎪⎪⎪⎪-12×23-⎪⎪⎪⎪⎪⎪13-14-|-3|.[答案] (1)13;(2)20.7;(3)-103;(4)-4112.9.用计算器计算(结果保留两位小数):(1)(-36)×128÷(-74);(2)-6.23÷(-0.25)×940;(3)-4.325×(-0.012)-2.31÷(-5.315);(4)180.65-(-32)×47.8÷(-15.5).[答案] (1)62.27;(2)23424.80;(3)0.49;(4)81.97.10.用正数或负数填空:(1)小商店平均每天可盈利250元,一个月(按30天计算)的利润是________元;(2)小商店每天亏损20元,一周的利润是________元;(3)小商店一周的利润是1400元,平均每天的利润是________元;(4)小商店一周共亏损840元,平均每天的利润是________元.[答案] (1)7500;(2)-140;(3)200;(4)-120.11.一架直升机从高度为450 m的位置开始,先以20 m/s 的速度上升60 s ,后以12 m/s 的速度下降120 s ,这时直升机所在高度是多少?[答案] 210米. 拓广探索12.用“>”“<”或“=”号填空:(1)如果a <0,b >0,那么a ·b ______0,ab______0;(2)如果a >0,b <0,那么a ·b ______0,ab______0;(3)如果a <0,b <0,那么a ·b ______0,ab______0;(4)如果a =0,b ≠0,那么a ·b ______0,那么ab______0.[答案] (1)<,<;(2)<,<;(3)>,>;(4)=,=.13.计算2×1,2×12,2×(-1);2×⎝ ⎛⎭⎪⎫-12.联系这类具体的数的乘法,你认为一个非0有理数一定小于它的2倍吗?为什么?[答案] 2,1,-2,-1.不一定,若是负数,则大于它的2倍.14.利用分配律可以得到-2×6+3×6=(-2+3)×6.如果用a 表示任意一个数,那么利用分配律可以得到-2a +3a 等于什么?[答案] a .15.计算(-4)÷2,4÷(-2),(-4)÷(-2).联系这类具体的数的除法,你认为下列式子是否成立(a ,b 是有理数,b ≠0)?从它们可以总结什么规律?(1)-a b =a-b =-a b ; (2)-a -b =a b.[答案] 略.[当堂检测]第1课时 有理数的除法法则 1.计算6÷(-3)的结果是( )A .21B .-3C .-2D .-182. 下列运算错误的是 ( )A. 31÷(-3)=3×(-3)B. -5÷(-21)=-5×(-2)C. 8÷(-2)= - 8×1/2D. 0÷3=0 3. 如果:a+b=0, 则下列说法: (1),a 、b 互为相反数, (2) |a| =|b|, (3).a 、b 在原点的两旁,(4)b a = - 1,其中正确的有( ) A .一个 B .二个 C .三个D .四个4. 化简下列各式:(1) 138--= _____ ; (2 -108-= ______ ; (3)3025-= _______ .)﹔(3)(43 )÷(-73)÷(-161)· 参考答案: 1. C 2. B 3. B4. (1)138 (2) 54 (3) - 65 5.(1) 3 (2) - 21 (3) -23第2课时 有理数的乘除混合运算1. 计算(-1)÷5×(-15)的结果是( ) A.-1 B.1 C.125 D.252. 计算(-7)×(-6)×0÷(-42)的结果是( )A.0B.1C.-1D.- 423. 计算12-7×(-32)+16÷(-4)之值为何( ) A .36 B .-164 C .-216 D .2324. -32324÷(-112)=______ ×___=(____+ ___)× ____ =___+___ = ___.5. 计算:(1)- 32× 54 ÷(-132); (2) 125 ÷(31- 65+ 41) (3) (- 252 ) ÷56×65+ ( - 1)÷ ( -54). 参考答案: 1. C 2. A 3. D4. 32324 12 3 2324 12 36 223 4721; 5.(1)258(2) - 35 (3)- 125。
七年级数学上册第1章有理数教学参考资料素材新人教版(new)
第一章教学参考资料一、有理数的含义整数和分数统称有理数,很多学生想知道“为什么将这些数取名‘有理数’” ?要回答这个问题并不难,只需要略微多了解一点数学的发展史就可以了.“有理数”是一个外来词,是由英语rational number 翻译而来的.rational number 的准确含义是“能表示成两个整数的比的数”,即“凡是能表示成两个整数的比的数就是有理数”,或者说“凡能用分数的形式来表示的数就是有理数”,因此,rational number 相对准确地翻译可以是“比数”,可惜的是我们的先辈并没有把rational number 翻译为“比数”,而是按照rational 一词的另一意思“有理的”,把rational number 翻译成了“有理数”,而且这种称呼一直沿用到今.如果我们的老师能给学生一些类似的解释,相信学生不会再为这个名称而苦恼.在小学的时候,我们的学生都能把“整数表示成分母是1的分数”,而且大多数学生也都能把有限小数和循环小数表示成分数的形式.这样,整数、分数、有限小数、循环小数都属于有理数.教科书中说“整数和分数统称有理数",其中当然包括有限小数和无限循环小数.例 把3, 0。
2, 0.3,0.231⋅⋅,0.231,0.21341表示成分数.思路分析:3=13, 0。
2=15,0.3=3193=, 0.231⋅⋅=23177999333=,0.231=229990231-2=990,0.21341=213412199900-=10664995. 特别提醒:把循环小数化成分数是有规律可循的.下面我们用方程的思想,借助具体的例子来总结这个规律:设 0.231⋅⋅=x ……………①,现将左右两端同时乘以1000得231。
231⋅⋅=1000 x ………②于是,由②-①,得231=1000 x — x即 999x =231故 x =231999, 约分,得 x =77333. 可见0.231⋅⋅转化成分数是231999.于是在此基础上给出纯循环小数化为分数的一般方法就不困难了.请老师引导学生,尽量让学生自已从中归纳得出相应的一般方法来.设0.231y =,则有10y =2.31……………①1000y =231。
七年级数学上册第一章有理数12有理数121有理数教案新版新人教版.docx
1. 2. 1有理数课题:1.2. 1有理数课时一课时教学设计课标要求理解有理数的意义教材及学情分析本节内容位于本章第二节的第一小节,是继小学学的数的范围的第一次扩充,主要类容是有理数的概念,为后面学习数轴、相反数、绝对值、有理数的运算打*下基础。
学生已经知道,0以外的自然数实际上是正数,对负整数、正分数、负分数的知识都有一定的了解,为学习本节•提供了知识基础。
但是学生对知识的归纳整理的能力相对较弱,可以让学生先自己回顾,再帮助整理。
课时教学目标1.掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力。
2.了解分类标准与分类结果的相关性,初步了•解“集合”的含义。
3.体会分类是数学上常用的处理问题的方法。
重点正确理解有理数的概念难点掌握有理数的分类方法教法学法指导引导、归纳与练习相结合教具准备.多媒体课件教学过程提要环节学生要解•决的问题或完成的任务师生活动设计意图引入新课.回顾学过的数,尝试将它们进行分类我们学过的数冇哪些?如1, 2, 3,…;0;女0 — 1, —2, —3,…;通过对整数、分数的回忆,引出有理数的概念。
知道有理数的定义一、有理数的定义:师:通过之前的学习我们知道:正整数、0和负整数合称整数;正分数、负分数合称分数;现在我通过对整数、分们将整数和分数统称为有理数。
数的复习,引出生:回顾Z前学习的数,尝试对数进行分类。
有理数的概念…再根据概念,为二、有理数的分类:有理数的分类做问题:你能对有理数进行分类吗?铺垫。
方法一: 按定义分类r正整数〔整数j 0有理数<[负整数< 「正分数.教根据不同的分类依1分数[负分数.据・,会对有理数进彳亍分类学过程明确有理数分类需要注意的问题根据不同的分类有理数分类盂要注意的问题:方法.对有理数1、能约分成整数的数不能算做分数;进行分类…体会2、两个整数的比、有限小数、无限循环小数都是分类方法,尝试分数;但无限不循环小数不是分数;进行分类3、无限不循坏小数不是有理数;(无理数)4、整数中除了正整数和负整数,还有0知道n (无理数)这一特殊的数,属.于正数,却不是正有理数教.学过程完成练习,巩固知识厂正有理数屮,I正分数.有理数 < 零〜负整数.I负有理数J ,[负分数.思考:正数和正有理数有什么区别呢?二、练习:例仁把下列备数填在相应的集合中:177—3,— ,0, J,兀,+2. /2 ,—0.65 ,+300 %, —0. —2 7 正数朶合:{ } 负数集合:{ } 分数集合:{ } 整数集合:{ } 非负数集合:{ } 有理数集合:{ }注意:1、可以先化简成整数的数是整数不是分数;2、非负整数集合包括正整数和0,也称为自然数集合。
最新人教版七年级上册数学第一章有理数全章教案
最新人教版七年级上册数学第一章有理数全章教案1.1正数和负数的概念教学目标述评▲知识目标:(1). 让学生判断一个数字是正还是负,(2).使学生会用正数或负数表示生活中具有相反意义的量.▲ 能力目标:(1)使学生了解数是为了满足生产和生活的需要而产生、发展起来的。
(2). 列出前后意义相反的数量,培养学生的观察、归纳和概括能力。
(3).经历探索负数概念的形成过程,使学生建立正数与负数的数感。
(4)培养学生的数学应用意识,将数学应用于生活。
▲情感目标:借助情感因素,营造亲切、和谐、活泼的课堂气氛,鼓励全体学生积极参与教学活动。
以团结协作、严谨求实的学习作风、坚韧不拔的毅力和创新精神陪伴和支持他们。
2学情分析评论.从认知特征来看,七年级学生具有探究性、探究性和想象力。
我从教学中的动画视频开始,以孩子们喜欢的方式进入课堂。
在游戏中学习,在活动中成长,在实践中提高。
在教学中,借助情感因素,营造亲切、和谐、活泼的课堂气氛,鼓励全体学生积极参与教学活动。
以团结协作、严谨求实的学习作风、坚韧不拔的毅力和创新精神陪伴和支持他们。
营造自主探索、合作交流的氛围,在个人展示、讲解、观察、实践等活动中运用多媒体,提高教学效率,验证结论,激发学生学习兴趣。
3重点难点评论.要点:了解正数和负数是由实际需要产生的,能够用正数和负数来表示生活中常用的意义相反的量。
难点:学习负数的必要性,能准确地举出具有相反意义的量的典型例子。
4.教学过程4.1第一学时4.1.1教学活动活动1【导入】动画视频导入评论.小学已经学了六年数学,初中将继续学三年。
要学什么?数学自然与数字的研究密不可分。
早在古代,人们就开始了解数字及其混淆!(动画视频导入)活动2【活动】游戏中学习评论.古代人们的困惑是什么?什么是相反的行为?我们在比赛结束后见。
“反讽”游戏中,预习量的含义正好相反。
活动3【活动】小组讨论,合作交流评论.请列举在生活中具有相反意义的数量。
新人教版七上第一篇有理数全套教案(共70页)
第一章有理数教案教学目标1.知识与技术①通过生活实例,了解有理数等知识是生活的需要.②明白得并把握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,把握有理数的加、减、乘、除、乘方及简单的混合运算.2.进程与方式通过全章的学习,培育学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力. 3.情感、态度与价值观①通过生活实例的引入,通过教师、学生双边的教学活动,鼓励学生学习数学的爱好,让学生真正体验到数学知识来源于生活并效劳于生活.②通过本章知识的学习,给学生渗透辩证唯物主义思想.教学重点难点重点:有理数的运算,这一章的要紧学习目标都能够归结到有理数的运算上,诸如有理数的有关概念、运算法那么、运算律、近似数与有效数字等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的成立,对有理数中的有关概念和有理数法那么的明白得,绝对值意义和运算中符号的确信.课时分派内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元温习与验收 21.1 正数和负数教学目标1.知识与技术①了解正数与负数是实际生活的需要.②会判定一个数是正数仍是负数.③会用正负数表示互为相反意义的量.2.进程与方式通过正负数的学习,培育学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观①通过教师、学生双边的教学活动,激发学生学习的爱好,让学生体验到数学知识来源于生活并为生活效劳.②通过正负数的学习,渗透对立、统一的辩证思想.教学重点难点重点:会判定正数、负数,运用正负数表示相反意义的量,明白得0•表示量的意义.难点:负数的引入.教与学互动设计(一)创设情境,导入新课课件展现珠穆朗玛峰和吐鲁番盆地,由同窗感受高于水平面和低于水平面的不同情形.(二)合作交流,解读探讨1.举出一些生活中常碰到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米,等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,咱们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同窗之间彼此合作交流,一同窗任说有关相反的两个量,由其他同窗用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数仍是负数?•自己列举正数、负数.【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并别离用正、负数表示.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例3 2001年美国的商品进出口总额比上年减少%可记为% ,中国增加%可记为+% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时刻单位,•并记为天天上午10时为0,10时以前记为负,10时以跋文为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() B.-3 C. 【点拨】读懂题意是解决此题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数确实是咱们过去学过(除零外)的数,在正数前加上“-”号确实是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观看可见,数字的排列是按正常的大小顺序,符号是负正相间,第奇数个为负,第偶数个为正.【点评】本节是对探讨问题的训练.2.表1-1-1是小张同窗一周中简记储蓄罐中钱的进出情形表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 + +10(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】元,31元.(2)储蓄罐中的钱与原先多了仍是少了?【答案】多了.(3)若是不用正、负数的方式记账,你还能够如何记账?比较各类记账的好坏.【答案】用文字说明,但前者更简练.3.数学游戏:4个同窗站成一排,从左到右每一个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同窗高声喊:+1,-2,-3,+4,那么第一、第4个同窗站,第二、第3个同窗蹲,并维持那个姿势,然后再高声喊:-1,-2,+3,+4,若是第二、第4个同窗中有改变姿势的,那么表示输了,作小小的“处惩”;(2)增加游戏难度,把4个同窗顺序调整一下,但每一个人记作自己原先的编号,再重复1.的游戏;(3)这不单单是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(专门是二进制数)表示的.例如,没有专门的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”仍是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)若是节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)若是4年跋文作+4,那么8年前记作 -8 .(3)若是运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,那么小阳增加了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)+1=(米)提升能力3.粮食每袋标准重量是50千克,现测得甲、乙、丙三袋粮食重量如下:52千克,49千克,千克.若是超重部份用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,.4.有无如此的有理数,它既不是正数,也不是负数?【答案】有,是0.5.以下各数中哪些是正数?哪些是负数?-15,,67,-171,4,-213,,0,,π【答案】正数:67,4,,,π;负数:-15,,-171,-213开放探讨6.同窗聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最先到的同窗记为+3点,最迟到的同窗记为点,•你明白他们别离是何时到的吗?最先到的同窗比最迟到的同窗早多少小时?【答案】最先的同窗上午9点到,最迟的是下午1点半到,最先的比最迟的早到个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•那么温度高的是冷库A.1.2 有理数1.2.1 有理数教学目标1.知识与技术①明白得有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.2.进程与方式经历本节的学习,培育学生树立分类讨论的观点和能正确地进行分类的能力.3.情感、态度与价值观通过联系与进展、对立与统一的试探方式对学生进行辩证唯物主义教育.教学重点难点重点:会把所给的各数填入它所在的数集的图里.难点:把握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流此刻,同窗们都已经明白除咱们小学里所学的数之外,还有另一种形式的数,即负数.大伙儿讨论一下,到目前为止,你已经熟悉了哪些类型的数.(二)合作交流,解读探讨学生列举:3,,-7,-9,-10,0,13,25,-356,,…议一议你能说说这些数的特点吗?学生回答,并彼此补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:咱们把所有的这些数统称为有理数.试一试你能对以上各类类型的数作出一张分类表吗?有理数⎧⎧⎪⎨⎩⎪⎨⎧⎪⎨⎪⎩⎩正整数整数零正分数分数负分数说明:以上分类,假设学生试探有困难,可加以引导:因为整数和分数统称为有理数,因此有理数可分为整数和分数两大类,那么整数又包括那些数?分数呢?做一做 以上按整数和分数来分,那可不能够按性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合. (三)应用迁移,巩固提高例1 把以下各数填入相应的集合内: 127,,0,2004,-85,,10%,,,-89正数集合 负数集合 整数集合 分数集合 【答案】正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...例2 以下是两位同窗的分类方式,你以为他们的分类的结果正确吗?什么缘故?有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】二者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数个个个个例4 若是用字母表示一个数,那a可能是什么样的数,必然为正数吗?与你的伙伴交流一下你的观点.【答案】不必然,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.同时,要求学生能用分类的思想对a全面熟悉.备选例题(2004·浙江温州)观看以下数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的明白得是_________.【点拨】找出各项数的特点是此题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】5 6(四)总结反思,拓展升华提问:今天你取得了哪些知识?由学生自己小结,然后教师总结:今天咱们学习了有理数的概念和两种分类的方式.咱们要能正确地判定一个数属于哪一类,要专门注意“0”的正确说法.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.-1250.48132.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗?(2)生活中,咱们也常常对事物进行分类,请你举例说明.【答案】(1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、青年、青年、中年、老年.3.下面两个圈别离表示负数集和分数集,你能说出两个图的重叠部份表示什么数的集合呢?分数集合负数集合答案负分数(五)课堂跟踪反馈夯实基础1.把以下各数填入相应的大括号内:-7,,12,-312,3,0,50%,(1)整数集合{-7,3,0}(2)分数集合{,12,-312,50%,}(3)负分数集合{-312,}(4)非负数集合{,12,3,0,50%}(5)有理数集合{-7,,12,-312,3,0,50%,}2.以下说法正确的选项是(D)A.整数确实是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±)千克,(25±•千克),(25±)千克的字样,从中任意两袋,它们质量相差最大的是千克.提升能力4.字母a能够表示数,在咱们此刻所学的范围内,你可否试着说明a能够表示什么样的数?【答案】a能够表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探讨6.应用创新题假设向东8米记作+8米,若是一个人从A地动身先走+12米,再走-15米,又走+18米,最后走-20米,你能判定那个人现在在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主若是计数.最先用来帮忙计数的工具是人类的四肢(手、脚、手指、脚趾)或身旁的小石头、贝壳、绳索等.中国有句古话叫“屈指可数”,说明人们经常使用手指来计算简单的数.在美国纽约的博物馆里,收藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳索.基普是前人用来计数和记事的.传奇公元前6世纪,•波斯国王在一次征战中曾命令一支军队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全数解完了才准撤退.在没有文字的我国古代,人们用在绳索上打结的方式来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.前人不仅用绳结计数,而且还利用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必需圈到栅栏里.如此,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;黄昏羊进栅栏时,进去一只就从罐子里拿出一块小石子.若是石子全数拿光了,就说明羊全数进圈了;若是罐子里还剩下石子,说明有羊丢失了,必需立刻寻觅.1.2.2 数轴教学目标1.知识与技术①把握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.进程与方式①使学生受到把实际问题抽象成数学问题的训练,慢慢形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方式.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又效劳于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观熟悉到理性熟悉,从而成立数轴概念.教与学互动设计(一)创设情境,导入新课课件展现在一条东西方向的马路上,有一个学校,学校东50m和西150m•处别离有一个书店和一个超市,学校西100m和160m处别离有一个邮局和医院,别离用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探讨师:对照大伙儿画的图,为了使表达更清楚,咱们把0•左右两边的数别离用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也确实是本节内容──数轴. 点拨 (1)引导学生学会画数轴. 第一步:画直线定原点第二步:规定从原点向右的方向为正(左侧为负方向) 第三步:选择适当的长度为单位长度(据情形而定)第四步:拿出教学温度计,由学生观看温度计的结构和数轴的结构是不是有一起的地方. 对照试探:原点相当于什么;正方向与什么一致;单位长度又是什么? (2)有了以上基础,咱们能够来试着概念数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,,-3,-72,0吗? 讨论 假设a 是一个正数,那么数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位? 小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都能够用数轴上的点表示___________•都在原点的左侧,______________都在原点的右边.(三)应用迁移,巩固提高例1 以下所画数轴对不对?若是不对,指犯错在哪里.①②-1021③④0⑤⑥0-3⑦【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,,-3,-73,0 【答案】EDC B A图中A点表示4,B点表示,C点表示-3,D点表示-73,E点表示0.例3 若是a是一个正数,那么数轴上表示数a的点在原点的什么位置上?•表示-a的点在原点的什么位置上呢?【提示】由数轴上数的特点不准取得,正数都在原点的右边,负数都在原点左侧.【答案】所有的有理数都能够在数轴上找个点与它对应,原点右边的点表示正数,原点左侧的点表示负数.【点评】数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 以下语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)个个个个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中能够含有0,•⑤中应该是所有的有理数都能够在数轴上找出对应的点,但并非是数轴上的点都表示有理数.例5 (1)与原点的距离为个单位的点有两个,它们别离表示有理数•和.(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位抵达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并依照数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】此题反映了数形结合的思想方式.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,假设那个数轴上随意画出一条长2000cm的线段AB,那么线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情形分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】此题表现了新课程标准的探讨和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要轻忽在原点的左右两边. 【答案】 ±3(四)总结反思,拓展升华数轴是超级重要的工具,它使数和直线上的点成立了对立关系.它揭露了数和形的内在联系,为咱们尔后进一步研究问题提供了新方式和新思想.大伙儿要把握数轴的三要素,正确画出数轴.提示大伙儿,所有的有理数都能够用数轴上的相关点来表示,但反过来并非成立,即数轴上的点并非都表示有理数. 一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:5M 4M 3M 2M 1(1)点M 4和M 2所表示的有理数是什么? (2)点M 3和M 5两点间的距离为多少?(3)如何将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)假设原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单位长度. (五)课堂跟踪反馈 夯实基础1.规定了 原点 、 正方向 、 单位长度的直线 叫数轴,所有的有理数都可从用 数轴 上的点来表示.2.P 从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,现在P 点所表示的数是 -3 . 3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C ) A .7 B .-3 C .7或-3 D .不能确信 4.在数轴上,原点及原点左侧的点所表示的数是(D ) A .正数 B .负数 C .不是负数 D .不是正数5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们别离 在原点的两边 . 提升能力6. 1 是最小的正整数, 0 是最小的非负数, 0 是最大的非正数. 7.与原点距离为个单位长度的点有 2 个,它们别离是 和 . 8.画一条数轴,并把以下数表示在数轴上:+2,-3,,0,,4,313【答案】 略开放探讨9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)以下四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.31.2.3 相反数教学目标1.知识与技能①借助数轴了解相反数的概念,明白互为相反数的位置关系.②给一个数,能求出它的相反数.2.进程与方式①训练学生利用数轴应用数形结合的方式解决问题.②培育学生自己归纳总结规律的能力.3.情感、态度与价值观①通过相反数的学习,渗透数形结合的思想.②感受事物之间对立、统一联系的辩证思想.教学重点难点重点:明白得相反数的意义.难点:明白得和把握双重符号简化的规律.教与学互动设计(一)创设情境,导入新课活动请一个学生到讲台前面对大伙儿,向前走5步,向后走5步.交流若是向前走为正,那向前走5步与向后走5步别离记作什么?(二)合作交流,解读探讨1.观看以下数:6和-6,223和-223,7和-7,57和-57,并把它们在数轴上标出.想一想(1)上述各对数之间有什么特点?(2)表示这两对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的数吗?观看像如此只有符号不同的两个数叫相反数.两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,•而且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.咱们把a的相反数记为-a,而且规定0的相反数确实是零.【总结】在正数前面添上一个“-”号,就取得那个正数的相反数,是一个负数;把负数前的“-”号去掉,就取得那个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数确实是原数的相反数.如-(+5)=•-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0•的相反数是0.(三)应用迁移,巩固提高例1 填空(1)是的相反数, 3 的相反数是-(+3),a的相反数是–a ,a-b的相反数是-(a-b),0的相反数是0 .(2)正数的相反数是负数,负数的相反数是正数,0 的相反数是它本身.例2 以下判定不正确的有(C)①互为相反数的两个数必然不相等;②互为相反数的数在数轴上的点必然在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.个个个个例3 化简以下各符号:(1)-[-(-2)] (2)+{-[-(+5)]}(3)-{-{-…-(-6)}…}(共n个负号)【答案】(1)-2 (2)5 (3)当n为偶数时,为6;当n为奇数时,为-6.【提示】化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.例4 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A•的距离为2,点B和点C各对应什么数?【答案】 C点表示2或6,那么相应的B点应表示-2或-6.【提示】画出数轴,结合数轴的特点来分析.【点评】经历观看数学活动,进展自己的指导能力.备选例题(2004·江西)如下图,数轴上的点A所表示的是实数a,那么点A到原点的距离是___________.a0【点拨】由数轴上的位置,不难明白a是一个负数,这是解决此题的前提.【答案】 -a(四)总结反思,拓展升华归纳①相反数的概念及表示方式.②相反数的代数意义和几何意义.③符号的化简.1.(1)王亮说:“一个数总比它的相反数大”.你以为正确吗?什么缘故?(2)假设数轴上表示一对相反数的两点之间的距离为,求这两个数.【答案】(1)不正确,如0的相反数仍是0,负数的相反数是正数.(2)其中的一个数到原点的距离为,因此这两个数是+和-.2.你假设a是不小于-1又不大于3的数,那么a的相反数是什么样的数呢?【提示】结合数轴进行观看比较.解:由题意知-1≤a≤,而-1,a,3的相反数别离是1,-a,-3.∴-a在1和-3之间故-3≤a≤1∴a的相反数是不小于-3又不大于1的数.【点评】在解决问题中,能进行简单的、有层次的试探.(五)课堂跟踪反馈夯实基础1.判定题(1)-3是相反数(×)(2)-7和7是相反数(∨)(3)-a的相反数是a,它们互为相反数(∨)(4)符号不同的两个数互为相反数(×)2.别离写出以下各数的相反数,并把它们在数轴上表示出来.1,-2,0,,,3【答案】相反数别离为:-1,2,0,,,-3,数轴表示略.3.假设一个数的相反数不是正数,那么那个数必然是(B)A.正数 B.正数或0 C.负数 D.负数或04.一个数比它的相反数小,那个数是(B)A.正数 B.负数 C.非负数 D.非正数。
数学:《有理数的相关概念》素材(人教版七年级上)
数学:《有理数的相关概念》素材(人教版七年级上)分宜三中张小英各位领导、各位评委老师:大家好!今天我说课的题目是人教版七年级上册第一章复习课第一课时复习的是《有理数的相关概念》。
下面我就教材、重点和难点、教法与学法, 教学过程这几方面向大家做简要介绍。
一、说教材:教材从具有相反意义的量引入负数,使学生自然的接受了有理数这个大家庭中的新成员,在此基础上引入了关于有理数的一些概念,如数轴、相反数、绝对值等等。
这部分内容是初等数学的重要基础,在初中数学、高中数学以及其它各门学科的学习中都有极其重要的地位。
根据上面的教材分析,我制定以下的目标:(一)知识目标:1、使学生体会到现实世界中具有相反意义的量的含义,并能用有理数表示。
2、使学生能用数轴上的点表示有理数,渗透数形结合的数学思想,并会比较有理数的大小。
3、使学生会求有理数的相反数和绝对值,并借助数轴理解相反数和绝对值的意义。
(二)能力目标:1、在有理数相关概念的复习中,学生经历观察、实验、猜想、归纳等数学活动,得出结论,并能有条理的阐述自己的观点。
2.体会数形之间的联系,初步学习用数形结合的方法分析问题、解决问题的能力。
(三)情感目标:1、培养学生乐于接触社会环境中的数学信息,并能够在数学活动中发挥积极作用。
2、通过学习,使学生能够体验数、符号是有效的描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
二、说教学重点、难点:本节课的教学重点是有理数相关概念的复习。
教学难点是对数轴概念的正确理解以及绝对值概念的灵活应用。
三、说教法:数学是一门培养人的思维、发展人的思维的重要学科,在教学中,我们要学生“知其然”,更要“知其所以然”,在处理教材上,我采用以下的方法:1、精心设计一个个的问题链,激发学生的求知欲,采用启发式问题教学法、探究式教学法。
2、教学形式上充分利用多媒体,优化课堂教学,从生活实际出发,激发学生学习的兴趣,提高课堂效率。
第一章 有理数教案-七年级上册数学人教版
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“有理数”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母的运算和推理得到的结论具有一般性.课标的内容要求:①理解负数的意义,会用正数和负数表示具体情境中具有相反意义的量;理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.①借助数轴理解相反数和绝对值的意义,初步体会数形结合的思想方法,掌握求有理数的相反数和绝对值的方法.教师应把握数与式的整体性,一方面,通过对有理数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表达;另一方面,通过代数式和代数式运算的教学,让学生进一步理解用字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第一章“有理数”,本章包括两个小节:1.1正数和负数;1.2有理数及其大小比较.数及其运算是中小学数学课程的核心内容.小学已经安排了自然数、正分数及其运算等学习内容.本单元借助生活实例引入负数.通过添加负数这一类“新数”,使数的范围扩张到有理数.引入负数是实际的需要,也是学习后续内容,特别是“数与代数”内容的需要,学生可以从中体会根据实际和数学的需要引入“新数”的好处.有理数的概念可以利用数轴来认识、理解;同时,利用数轴又可以把这些概念串在一起.数轴是数形结合思想的产物.引进数轴后,可以用数轴上的点直观地表示有理数,为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则做了准备.引入相反数的概念,一方面可以加深对相反意义的量的认识,另一方面可以为学习绝对值、有理数运算做准备.绝对值概念借助距离概念加以定义.在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定.这里,“方向”与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,绝对值概念可以促进对数轴概念的理解,同时也是学习数的大小比较、数的运算的基础.本单元重点是理解正负数、有理数和绝对值的相关概念;难点是在理解概念的基础上,养成良好的思维习惯.三、单元学情分析本单元内容是人教版教材数学七年级上册第一章有理数.学生在小学已经学习了自然数、正分数及其运算、用字母表示数的知识,这些都是学习本章的基础.实际上,小学学过的数及运算的知识,就是有理数及其运算的知识,数的范围限制在“正数和0”.因此,本单元内容的教学,首先要做好与以往算术知识和方法的衔接,在原有基础上自然引申出新的问题和思路.例如,对负数的认识,借助实际生活、生产中大量存在的“相反意义的量”,提出引入“新数”的需要,然后借助“大于0的数叫作正数”,自然引入“在正数前面加上符号‘-’(负号)的数叫作负数”.另外,本单元渗透了用字母表示数的知识,例如,用-a表示a的相反数;用字母表示求一个数的绝对值的结论;等等.这样,既使问题阐述得更简明、更深入,也使学过的数与代数的知识得到巩固、加强和提高.总之,加强与小学学过的数及运算的衔接,不仅有利于学生理解本单元知识,也有利于培养学生提出问题的能力.四、单元学习目标1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道|a|的含义(这里a表示有理数).五、单元学习内容及学习方法概览续表六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
新人教版七年级上册数学第1章有理数全章教案
第一章有理数§1.1正数和负数(一)教学目标:知识与技能:掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;培养学生观察、比较和概括的思维能力。
过程与方法:教法主要采用启发式教学学法引导学生自主探索去观察、交流、归纳.情感、态度、价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。
教学重点:实际需要产生正数与负数.教学难点:正确了解负数,能准确地举出具有相反意义的量的典型例.教学过程:(一)、提出问题在生产和生活中经常会遇见用数来表示问题,例如①天气预报20XX年11月某天北京的温度为-3—30C,它的确切含义是什么?②有三个队参加足球比赛,红队胜黄队(4∶1),蓝队胜红队(1∶0),黄队胜蓝队(1∶0),如何按净胜球排名?③某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?(二)、试一试章前图中表示温度、净胜球、加工允许误差时,用到了-3,3,2,-2,0,+0.5,-0.5等等.请同学们那些数是以前没有学过的数,有–3,-2,-0.5.实际意义是零下3度,净输2球,小于尺寸0.5mm.(三)、探索新数–3,-2,-0.5有什么特征?(学生回答)正数:以前学过的大于0的数(像1、2.5、133、48等的数叫正数)负数:在正数前面加上负号“-”的数.(像-1、-2.5,-13,-48的数叫负数,读作负1、负2.5、负13、负48.)有时正数前面也可以加上正号“+”,正号“+”可以省略,但负号“-”一定不可以省略.一个数前面的“+”“-”叫它的符号(性质符号).强调0既不是正数,也不是负数,它是中性数.师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。
新人教版七年级数学上册第1章有理数全章精品课件课件
活动三.知识巩固,课堂练习 补充习题
4.在商品销售中,利润计算公式是:利润=销售收入-销售 成本,小亮利用此公式计算爸爸经营的商店在某一天的利润 为-25元,请问:-25元的利润是什么意义?
Copyright 2004-2009 版权所有 盗版必究
活动四.阅读思考,知识应用 课本第6页.阅读与思考是正负数应用的很好例
类似的例子如:水位上升-3m,实际表示什么意思 呢?收人增加-10%,实际表示什么意思呢?等等.可帮 助学生理解掌握本课知识.
Copyright 2004-2009 版权所有 盗版必究
活动三.知识巩固,课堂练习 课本第4页小练习.
Copyright 2004-2009 版权所有 盗版必究
活动三.知识巩固,课堂练习 补充习题
1.测量一座公路桥的长度,各次测得的数据是:255米,270米, 265米,267米,258米. (1)求这五次测量的平均值; (2)如以求出的平均值为基准数,用正、负数表示出各次测量的 数值与平均值的差;
Copyright 2004-2009 版权所有 盗版必究
活动三.知识巩固,课堂练习 补充习题
Copyright 2004-2009 版权所有 盗版必究
那么当温度是零度时,我们应该怎样表示呢?(表示为 0℃),它是正数还是负数呢?由于零度既不是零上温度也不是 零下温度,所以,0既不是正数也不是负数. 问题2:引入负数后,数按照"两种相反意义的量"来分,可以分 成几类?
“数0既不是正数,也不是负数”也应看作是负数定义的一 部分.在引入负数后,0除了表示一个也没有以外,还是正数和 负数的分界.
2.甲、乙两人同时从A地出发,如果甲向南走50m记为+50m, 则乙向北走30m记为什么?这时甲、乙两人相距多少米?
人教新课标七年级数学上册第一章 有理数-资料
解:+7、4/3、988是正数,-9、-4.5
是负数
首页 上页 下页
为什么要引入负数
“月有阴晴圆缺,人有悲欢离合”,这是宋代 词人苏东坡写下的被人们广为传诵的佳句,其 中,阴与晴、悲与欢、离与合,都是自然世界、 人类生活中截然相反的状态的真实描绘,这些 矛盾的东西融为一体,营造出了和谐而真实的 氛围。
3.海拔+300米表示高于海平面300 米,则海拔-600米表示
知识回顾
5.你认为负数的引入有什么作用?
可以表示具有相反意义的量了.
6.向东走200米,记为+200,那么向西
走200米,记为
;向东走-200
米实际表示
说明:这是一个用正负数描述向指定方向变 化情况的例子, 通常向指定方向变化用正数 表示;向指定方向的相反方向变化用负数表 示。即负数表示向指定方向的相反方向变化。
娃哈哈饮料公司生产的一促瓶装饮料外包装上印有“600±30 (ml)”字样,请问±30(ml)是什么含义?质检局对该产 品抽查5瓶,容量分别是603ml、611ml、589m、l573ml、 627ml,问抽查产品的容量是否合格?
抽查的5瓶饮料均在600-30(ml)与600+ 30(ml)之间, 因此是合格的
度范围是多少?
第一课时
概念引入
这里出现了一种新数: -3 表示零下3摄氏度, -2 表示净输2球, -0.5 表示小于设计尺寸0.5mm
而: 3 表示零上3摄氏度, 2 表示净胜2球, +0.5 表示大于设计尺寸0.5mm
概念引入
我们把以前学过的数大于零叫做 正数。有时在正数前面也加上“+”(正)号。 如
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章教学参考资料
一、有理数的含义
整数和分数统称有理数,很多学生想知道“为什么将这些数取名‘有理数’” ?要回答这个问题并不难,只需要略微多了解一点数学的发展史就可以了.
“有理数”是一个外来词,是由英语rational number 翻译而来的.rational number 的准确含义是“能表示成两个整数的比的数”,即“凡是能表示成两个整数的比的数就是有理数”,或者说“凡能用分数的形式来表示的数就是有理数”,因此,rational number 相对准确地翻译可以是“比数”,可惜的是我们的先辈并没有把rational number 翻译为“比数”,而是按照rational 一词的另一意思“有理的”,把rational number 翻译成了“有理数”,而且这种称呼一直沿用到今.如果我们的老师能给学生一些类似的解释,相信学生不会再为这个名称而苦恼.
在小学的时候,我们的学生都能把“整数表示成分母是1的分数”,而且大多数学生也都能把有限小数和循环小数表示成分数的形式.这样,整数、分数、有限小数、循环小数都属于有理数.教科书中说“整数和分数统称有理数”,其中当然包括有限小数和无限循环小数.
例 把3, 0.2, 0.3&,0.231⋅⋅
,0.231&&,0.21341&&表示成分数.
思路分析:3=13, 0.2=15,0.3&=3193=, 0.231⋅⋅=23177999333=,0.231&&=229990
231-2=990,0.21341&&=213412199900-=10664995. 特别提醒:把循环小数化成分数是有规律可循的.下面我们用方程的思想,借助具体的例子来总结这个规律:
设 0.231⋅⋅
=x ……………①,现将左右两端同时乘以1000得
231. 231⋅⋅=1000 x ………②
于是,由②-①,得
231=1000 x- x
即 999x =231 故 x =
231999
, 约分,得 x =77333.
可见0.231⋅⋅转化成分数是231999
.于是在此基础上给出纯循环小数化为分数的一般方法就不困难了.请老师引导学生,尽量让学生自已从中归纳得出相应的一般方法来.
设0.231
y =&&,则有 10y =2.31&&……………①
1000y =231. 31&&………②
由②-①得
1000y -10 y =231-2
即 y=
229990
231-2=990. 可见0.231&&转化成分数是229990231-2=990,在此基础上给出混循环小数化为分数的一般方法是不困难的.请老师们引导学生自己去归纳.
二、任意两个有理数之和、差、积、商仍为有理数
证明:因有理数都可以表示成两个整数的比的形式,故不妨设n a m =
, l b k
=, 其中m ,n ,k ,l 均为整数,且(m ,n )=1,(k ,l )=1,于是n l nk ml a b m k mk
++=+=. 由于m ,n ,k ,l 均为整数,因此nk +ml 与mk 均为整数,故nk ml mk +必为有理数,故a b +为有理数
对于两个有理数之差、积、商仍为有理数,可以用类似方法证明,这里从略.
三、 任意两个有理数之间都存在着无穷多个有理数
证明:假设任意两个有理数a 、b ,设a <b ,它们之间仅有有限个有理数,不妨设仅有n 个有理数,这n 个有理数按从小到大的顺序排列依次是a <c 1<c 2<c 3<c 4<…<c n <b .
由于任意两个有理数之和与积仍是有理数,因此当c n 是有
理数,b 是有理数时,2n c b +也是有理数,而且a <c n <2
n c b +<b .
即在有理数a 与b 之间找到了另外一个不同于c 1<c 2<c 3<
c 4<…<c n 的第n +1个有理数2n c b +,而这正好与假设矛盾. 因此,任意两个有理数之间都存在着无穷多个有理数.
四、 按要求,数正方形
图
2
图1
1. 在图1中,所有正方形的个数是多少?
思路分析:要把图中的正方形数清楚,显然以边长的不同数值来分类进行统计要方便一些.
解:图1中,设边长最小的正方形的边长为1,则边长为1的正方形共有42
=16个;边长为2的正方形共有32=9个;边长为3的正方形共有22=4个;边长为4的正方形仅有12=1个.
于是图1中所有正方形,一共有12+22+32+42=30个.
2. 在图2中,以图中各点为顶点一共能画出多少个正方形?
思路分析:本题与第1题相比,略有不同.在本题中,除了第1题所涉及到的正方
等几种新的情形.
解:由1可知,边长为1的正方形共有42=16个;边长为2的正方形共有32=9个;边长为3的正方形共有22=4个;边长为4的正方形有12=1个.
的正方形共有32=9个,如图3
有2×22=8个,如图4
2个,如图5所示;边长为
的正方形1个,如图6所示.
故图2中所有满足条件的正方形一共有30+9+8+2+1=50个.
特别提醒:这里的两个问题从本质上说并不难,但是对初一的学生来说,要能够把其中所有的正方形都按要求一一数清楚,可不是一件容易的事.因此,老师需要引导学生按“类”去数每个图中可能有的正方形.这样做的目的在于逐渐渗透“分类讨论的数学思想”,为学生的后续学习作铺垫.
等数,可以根据学生的实际可能来处理,只要学生能认识它们是一些正方形的边长即可,不必在此向学生介绍这些无理图6
图5图3图
4
数.
五、关于“负负得正”乘法运算法则
“为什么负负得正”要从初等数学的角度给学生讲清楚,是一件非常不容易的事情.可以参考《中学数学教学参考》2005年第3期P3-P4的《“负负得正”的乘法法则可以证明吗?》一文,文中最后指出:“综上所述,笔者认为,‘负负得正’的乘法法则是数学中的一种规定(定义),它不能通过逻辑证明得出.然而,对这个法则的规定既有客观世界中的实际背景,又有数学内部需要和谐发展的思想背景.教学中适当地介绍这些背景,可以帮助学生认识乘法法则的由来与合理性,但是不能将这样做认为是证明了这个法则.”此外,如果能够参阅浙江大学出版社出版、沈钢编著的《高观点下的初等数学概念》一书的第一章、第二章的相关内容,也许你还能获得一些新观点.
我们认为这个问题对初一的学生来说,只要学生能够理解一些具体实例,并能认可“负负得正”即可,不必再做过多的讲解或过高的要求.下面引用一个有实际背景的例子,让学生体会一下“负负得正”的实际背景.
如果水位一直以每小时2cm的速度下降,现在的水位在水文标尺刻度的A处,试问3小时前水位在水文标尺刻度的什么位置?
为了区分水位变化的方向,我们可以规定水位上升为正,下降为负;为了区分时间,我们规定现在以后为正,现在以前为负.显然3小时以前水位在水文标尺刻度的A处上方6cm 处,于是有(-2)×(-3)=+6.
这虽然是一个“有实际背景的原型”,的确有助于学生理解“负负得正”的乘法法则,但绝对不能就此认为这是对“负负得正”的证明.因为数学中的证明不是个例的验证,是需要依据已有的公理、定理、定义等进行合乎逻辑的推证的.
六、“科学记数法”课题引入的设计
(一)快速记忆游戏
目的:激发学生对数字或数据的兴趣.
下面有几组数据,你能过目不忘吗?一闪而过之后,你能记住多少,请大家一起来试一试,看谁记得多!
中国国土面积有9 600 000平方公里;
中国人口约有1 300 000 000人;
光的速度约为30 0000 000米/秒;
太阳的半径约为69 600 000 000米;
世界的总人口约有6 100 000 000人;
银河系的直径为925 000 000 000 000 000公里.
(二)讨论怎样有效地读出以上各个数据,顺势引出新课—科学记数法.。