2018八年级数学下册第一章知识点总结北师大版
北师大版八年级数学(下)第一章 等腰三角形
1.1等腰三角形一、知识点梳理1.等腰三角形的性质定理:①等腰三角形的两底角相等(等边对等角)②等腰三角形的两腰相等(定义)③等腰三角形等角的平分线、底边上的中线及地边上的高线互相重合(三线合一)2.等边三角形的性质定理:①等边三角形的三条边都相等②等边三角形的三个内角都相等,并且每个角都等于60°3.等腰三角形的判定定理:①有两条边相等的三角形是等腰三角形(定义)②有两个角相等的三角形是等腰三角形(等角对等边)4.等边三角形的判定定理:①三条边都相等的三角形是等边三角形(定义)②三个角都相等的三角形是等边三角形③有一个角等于60°的等腰三角形是等边三角形5.反证法:证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法成为反证法。
6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
7.直角三角形斜边的中线等于斜边的一半8.作图要求:掌握尺规作图用两条已知线段做等腰三角形二、经典题型总结题型一:利用等腰三角形的性质求角题型二:利用等腰三角形的性质求线段长度题型三:用反证法证明简单证明题题型四:利用等腰三角形的判定定理进行证明题型五:动点与等腰三角形题型题型六:与等腰三角形相关的综合提升题三、解题技巧点睛1.在做等腰三角形类问题时可以随时“标图”,把相等的角或者相等的边用相同的小符号标注,便于我们清晰的读图。
2.若题目中需要证明两条线段相等,通常会想到:①两条线段所在的两个三角形“全等”②两条线短可以平移为某个“等腰三角形”的两个腰3.在图形中如果涉及到求边长问题,我们通常首先想到:根据欲求边构建直角三角形运用“勾股定理”4.在求角度的题目中,若思路不清晰,则本着两个计算原则去列式:①三角形内角和等于180°②三角形的外角等于与它不相邻的两个内角的和5.特别注意几个特殊角:75°、105°、120°、135°、150°,若图形题中出现了这几个特殊角并且涉及到求线段,则很有可能需要我们做辅助线把75°角分成45°角和30°角;而把105°角分成60°角和45°角;把120°角分成90°角和30°角或两个60°角;把135°角分成90°角和45°角;把150°角分成90°角和60°角。
北师大版八年级数学下册第一章复习提纲
八年级下第一章预习大纲一、全等三角形的判定及性质1、性质:全等三角形对应相等、对应相等;2、判定: 分别相等的两个三角形全等(SSS);分别相等的两个三角形全等(ASA);分别相等的两个三角形全等(SSS);相等的两个三角形全等(AAS);相等的两个直角三角形全等(HL);二、等腰三角形1、性质:等腰三角形的两个底角相等(即---—-—————-——-----)。
2、判定:有两个角相等的三角形是等腰三角形(即——-—-—--—--—————-—-—-—)3、推论:等腰三角形、、互相重合(即“”)4、等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于;等边三角形是轴对称图形,有条对称轴。
判定定理:(1)有一个角是60°的—-—--——-三角形是等边三角形;(2)三个角都--—--—---—的三角形是等边三角形。
三、直角三角形1、勾股定理及其逆定理定理:直角三角形的两条直角边的等于的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是2、含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半.3、直角三角形斜边的中线等于的一半。
四、线段的垂直平分线性质:垂直平分线上的点到的距离相等;判定:到一条线段两个端点距离相等的点在这条线段的。
三角形三边的垂直平分线的性质:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
五、角平分线性质:角平分线上的点到的距离相等;判定:在一个角内部,且到角两边的距离相等的点,在这个角的平分线上。
三角形角平分线的性质定理:性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
这个点叫内心.典型习题例1.如图,在△ABC中,∠C=90°,AC=14,BD平分∠ABC,交AC于D,AD∶DC=5∶2,则点D到AB的距离为()A.10 B.4 C.7 D.6例2.如图,△ABC中,AB=AC=BD,AD=DC,则∠BAC的度数为()A.120°B.108°C.100°D.135°例3.如图,△ABC中,∠B,∠C的角平分线相交于点O,过O作DE∥BC,若BD+CE=5,则DE等于()A .7B .6C .5D .4例4.如图,在△ABC 中,AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E. (1)若CD=5,求AC 的长。
北师大版八年级下册数学各章节知识梳理2018
八年级下册数学各章节知识梳理教学目标:经历探索、猜测过程能够运用公理和所学过的定理证明线段垂直平分线的性质定理和判定定理能够利用尺规作已知线段的垂直平分线重难点:重点是写出线段垂直平分线的性质定理的逆命题。
难点是两者的应用上的区别及各自的作用易错点:准确理解线段垂直平分线的性质定理,解题时要考虑全面,避免漏解整体分析【一】教学目标八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
优生不多,思想不够活跃,有少数学生不上进,思维跟不上。
要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
【二】教材分析本学期教学内容共计六章:《三角形的证明》、《一元一次不等式和一元一次不等式组》、《图形的平移与旋转》、《因式分解》、《分式与分式方程》、《平行四边形》。
《三角形的证明》:本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。
《一元一次不等式和一元一次不等式组》:本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。
《图形的平移与旋转》:本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。
《因式分解》:本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。
《分式与分式方程》:本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。
《平行四边形》:本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。
(完整版)北师大版八年级下册数学各章知识点总结
第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, c b c a >.(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, cb c a <2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为ab x ;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为ab x ;5. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a<b)第二章分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。
(完整版)北师大版八年级数学下册各章知识要点总结
北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1.有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2.反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线角平分线1、线段的垂直平分线。
北师大版八年级下册数学知识点总结整理
北师大版八年级下册数学知识点总结整理数学知识点的总结能理清思绪。
每学完一章都应将本章内容做一个框架图或在脑中过一遍,整顿出它们的关系,有利于数学成绩的提高。
对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区离开。
下面是为大家整理的有关北师大版八年级下册数学知识点总结,希望对你们有帮助!北师大版八年级下册数学知识点总结1第一章一元一次不等式和一元一次不等式组一、一般地,用符号(或),(或)连接的式子叫做不等式.能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集:一元一次不等式组各个不等式的解集的公共部分.等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变.)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质1、若ab,则a+cb+c;2、若ab,c0则acbc若c0,则ac不等式的其他性质:反射性:若ab,则bb,且bc,则ac三、解不等式的步骤:1、去分母;2、去括号;3、移项合并同类项;4、系数化为1.四、解不等式组的步骤:1、解出不等式的解集2、在同一数轴表示不等式的解集.五、列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.六、常考题型:1、求4x-67x-12的非负数解.2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间.第二章分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a22ab+b2=(ab)2二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形.三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法.第三章分式注:1对于任意一个分式,分母都不能为零.2分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.3分式的值为零含两层意思:分母不等于零;分子等于零.(中B0时,分式有意义;分式中,当B=0分式无意义;当A=0且B0时,分式的值为零.)常考知识点:1、分式的意义,分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.第四章相似图形一、定义表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项.如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成=,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则=k或AB=kCD.四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(goldensection),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中0.618.引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形.相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么.如果(b,d都不为0),那么ad=bc.2、合比性质:如果,那么.3、等比性质:如果==(b+d++n0),那么.4、更比性质:若那么.5、反比性质:若那么三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法:对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.七、位似图形上任意一对对应点到位似中心的距离之比等于位似比.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质.第五章数据的收集与处理(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.(2)总体:其中所要考察对象的全体称为总体.(3)个体:组成总体的每个考察对象称为个体(4)抽样调查:(samplinginvestigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本.(6)当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小.(7)我们称每个对象出现的次数为频数.而每个对象出现的次数与总次数的比值为频率.数据波动的统计量:极差:指一组数据中数据与最小数据的差.方差:是各个数据与平均数之差的平方的平均数.标准差:方差的算术平方根.识记其计算公式.一组数据的极差,方差或标准差越小,这组数据就越稳定.还要知平均数,众数,中位数的定义.刻画平均水平用:平均数,众数,中位数.刻画离散程度用:极差,方差,标准差.常考知识点:1、作频数分布表,作频数分布直方图.2、利用方差比较数据的稳定性.3、平均数,中位数,众数,极差,方差,标准差的求法.3、频率,样本的定义第六章证明一、对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.一般情况下:疑问句不是命题.图形的作法不是命题.每个命题都有条件(condition)和结论(conclusion)两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写成如果,那么的形式.其中如果引出的部分是条件,那么引出的部分是结论.要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例.二、三角形内角和定理:三角形三个内角的和等于180度.1、证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角.2、三角形的外角与它相邻的内角是互为补角.三、三角形的外角与它不相邻的内角关系是:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.四、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据.如果两条直线都和第三条直线平行,那么这两条直线也相互平行.30.所对的直角边是斜边的一半.斜边上的高是斜边的一半.常考知识点:1、三角形的内角和定理,及三角形外角定理.2两直线平行的性质及判定.命题及其条件和结论,真假命题的定义.北师大版八年级下册数学知识点总结2一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
2018八年级数学下册第一章知识点总结(北师大版)
2018八年级数学下册第一章知识点总结(北师大版)第一章三角形的证明、等腰三角形(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)直角三角形两个锐角之间的关系定理:直角三角形两个锐角互余。
逆定理:有两个锐角互余的三角形是直角三角形。
(3)含30度的直角三角形的边的定理定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。
(4)命题与逆命题命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(5)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
北师大版数学八年级下册:第一章复习(知识点+试题)
第一次课第一章三角形的证明知识点一:等腰三角形1、全等三角形的性质及判定全等三角形的性质:对应边相等,对应角相等。
判定三角形全等的四种方法:SSS, SAS, ASA, AAS.2、等腰三角形的性质定理:①等腰三角形,两底角相等(等边对等角)。
②等腰三角形,底边的高,顶角的角平分线,底边的中线重合。
( “三线合一”)③等腰三角形两底角的角平分线相等,两腰的中线相等,两腰的高相等。
(特殊线段相等)。
等腰三角形的判定定理:有两角相等的三角形是等腰三角形(等角对等边)。
知识点二:等边三角形1、等边三角形的性质定理:等边三角形,三条边相等,三个内角都相等,且都等于60°。
2、等边三角形的判定定理:①有一个角是60°的等腰三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
知识点三:反证法步骤:①假设:假设结论不成立;②推论:将假设当条件继续推论,得出与已知条件、公理、定义、定理相矛盾的结论;③假设不成立;④原命题成立。
知识点四:直角三角形1、直角三角形性质定理:①角的角度:直角三角形,两锐角互余。
②边的角度:勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。
2、直角三角形的判定定理:①角的角度:两锐角互余的三角形是直角三角形。
②边的角度:勾股定理的逆定理(在三角形中,若其中两边的平方等于第三边的平方,则此三角形是直角三角形。
)3、特殊的直角三角形:① 在直角三角形中,有一个角是30°,则它所对的直角边是斜边的一半。
② 在直角三角形中,若直角边是斜边的一半,那么直角边所对的角为30°。
4、“HL”定理:斜边和一条直角边分别相等的两个三角形全等。
(注意:此定理只是用于直角三角形中,用之前要强调两个三角形是直角三角。
)知识点五:垂直平分线(点到点)1、性质定理:垂直平分线上的点到这条线段两个端点的距离相等。
2、判定定理:到线段两个端点的距离相等的点在这条线段的垂直平分线上。
新北师大版八年级下册数学知识点总结第一章--三角形的证明
新北师大版八年级下册数学知识点总结第一章--三角形的证明1 / 2第一章 三角形的证明一、全等三角形的判定定理定理:三边分别相等的两个三角形全等.(SSS )定理:两边及其夹角分别相等的两个三角形全等.(SAS ) 定理:两角及其夹边分别相等的两个三角形全等.(ASA )定理:两角分别相等且其中一组等角的对边相等的两个三角形全 等.(AAS)定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL) 二、全等三角形的性质定理全等三角形对应边相等、对应角相等. 三、等腰三角形的性质定理 1.等腰三角形的两腰相等;2.等腰三角形的两底角相等.(等边对等角)3.等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.(等腰三角形的“三线合一”) 四、等腰三角形的判定定理1.(定义法)有两条边相等的三角形是等腰三角形;2.有两个角相等的三角形是等腰三角形(等角对等边);五、等边三角形的性质定理 1.等边三角形的三条边相等;2.等边三角形的三个内角都相等,并且每个角都等于60°;3. 等边三角形具有等腰三角形的一切性质; 六、等边三角形的判定定理1.(定义法)有三条边相等的三角形是等边三角形;2.三个角都相等的三角形是等边三角形.3.有一个角等于60°的等腰三角形是等边三角形. 七、反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法. 八、直角三角形的性质定理 1.直角三角形的两个锐角互余.2.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.3.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;4.(勾股定理)直角三角形两条直角边的平方和等于斜边的平方.年级 班级 姓名密 封 线 内 不 要 答 卷……………………………………………………装………………订…………………线…………………………………………………………新北师大版八年级下册数学知识点总结第一章--三角形的证明2 / 2九、直角三角形的判定定理1.有一个角是直角的三角形是直角三角形.2.有两个角互余的三角形是直角三角形.3. (勾股定理的逆定理)如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 十、线段垂直平分线1.线段垂直平分线的性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.三角形三条边的垂直平分线的性质:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.4.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于AB 的一半长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线. 十一、角平分线1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上.3.三角形三内角的平分线性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.4.如何用尺规作图法作出角平分线 十二、互逆命题和互逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.备注:1.一个命题一定有逆命题,但一个定理不一定有逆定理. 2.真命题的逆命题不一定是真命题,假命题的逆命题不一定是假命题. 3.互逆定理一定是互逆命题,但互逆命题不一定是互逆定理.。
优品课件之北师大版初二数学下册第1章知识点总结
北师大版初二数学下册第1章知识点总结北师大版初二数学下册第1章知识点总结一、等腰三角形1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;二、直角三角形1、有一个角为90°的三角形,叫做直角三角形。
直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:2、性质性质1:直角三角形两直角边的平方和等于斜边的平方性质2:在直角三角形中,两个锐角互余三、线段的垂直平分线(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
四、角平分线角平分线的性质:1.角平分线可以得到两个相等的角。
2.角平分线上的点到角两边的距离相等。
3.三角形的三条角平分线交于一点,称作三角形内心。
三角形的内心到三角形三边的距离相等。
4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。
涉及到的知识点:熟练掌握用尺规作图法作角平分线的要领,并会应用角平分线的定义、性质解决相关问题。
优品课件,意犹未尽,知识共享,共创未来!!!。
【强烈推荐】北师大版八年级数学下册各章知识要点总结
北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 五、线段的垂直平分线角平分线1、线段的垂直平分线。
新北师大版八年级数学下册各章知识要点总结[免费专享]
北师大版八年级数学下册各章知识重点总结第一章三角形的证明一、全等三角形判断定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及向来角边对应相等的两个直角三角形全等(HL)二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边平等角”)。
推论1:等腰三角形顶角的均分线均分底边而且垂直于底边,这就是说,等腰三角形的顶角均分线、底边上的中线、底边上的高相互重合。
(三线合一)推论 2:等边三角形的各角都相等,而且每一个角都等于60°。
等腰三角形是以底边的垂直均分线为对称轴的轴对称图形;三、等腰三角形的判断1.相关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角平等边”。
)推论 1:三个角都相等的三角形是等边三角形。
推论 2:有一个角等于60°的等腰三角形是等边三角形。
推论 3:在直角三角形中,假如一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2.反证法:先假定命题的结论不建立,而后推导出与定义、公义、已证定理或已知条件相矛盾的结果,从而证明命题的结论必定建立。
这类证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,假如一个锐角等于 30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判断假如三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互抗命题、互逆定理在两个命题中,假如一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互抗命题,此中一个命题称为另一个命题的抗命题.假如一个定理的抗命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,此中一个定理称为另一个定理的逆定理 .五、线段的垂直均分线角均分线1 、线段的垂直均分线。
北师大版八下数学第一章第1-3节
第一章 第1-3节 同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法一、考点突破(1)理解幂运算的四条法则。
(2)正确理解公式中字母的含义。
代表指数的字母现阶段只能是正整数,代表底数的字母可以是数,也可以是单项式,还可以是多项式。
中考预测:中考试题中对本讲内容的考查,大多是以选择、填空题的形式出现。
二、重难点提示重点:同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法的运算法则及正确运用。
难点:法则的灵活运用。
三、知识脉络图四、知识点拨1. 同底数幂的乘法法则:即:同底数幂相乘,底数________,指数_________. 运算条件:①同底数的幂 ②乘法运算 ③指数是正整数 注意区别:①23b a ⋅ 不是同底数的幂(相乘),不能应用公式 ②33a a + 是同底数的幂,但不是相乘,也不能用公式 ③33a a ⋅ 是同底数的幂,也是相乘,可以用公式 2. 幂的乘方法则:即:幂的乘方,底数_______,指数_______. 运算条件:①(幂的)乘方运算 ②指数是正整数 运算结果:①底数不变 ②指数相乘 3. 积的乘方法则:即:积的乘方等于每个因式乘方的积(可理解为“积的乘方=乘方的积”) 运算条件:①(积的)乘方运算 ②指数是正整数 运算结果:①每个因式乘方 ②所得的幂再相乘 4. 同底数幂的除法法则:)都是正整数,且,n m n m a a a a n m n m >≠=÷-,0(即:同底数幂相除,底数不变,指数相减运算条件:①同底数的幂 ②除法运算 ③底数不为“0” ④指数是正整数 ⑤被除数的底数大于除数的底数 运算结果:①底数不变 ②指数相减另外,我们知道一个(不等于0的)数除以它本身等于1,即)0(1≠=÷a a a 则根据除法的意义:1=÷mma a 而根据同底数幂的除法法则:)0(0≠==÷-a a aa a mm mm于是规定:即:任何不等于0的数的0次幂都是1[例题解析]:知识点1:同底数幂的运算例题1 计算下列各式,结果用幂的形式表示(1)54)(x x ⋅- (2)12)()(-++⋅+n n a b b a 例题2 下列等式中成立的是( )A. 426a a a =÷ B. 224)()(a a a -=-÷- C. 422)(a a a =÷-D. 235ab b a =÷知识点2:幂的乘方的运算例题3 计算下列各式,结果用幂的形式表示 (1)32])([y x +- (2)4532)()(a a -⋅知识点3:积的乘方的运算例题4 计算下列各式,结果用幂的形式表示(1)4)31(xy - (2)32])([ab - 知识点4:综合运用幂的运算法则例题5 计算(1)已知a x=4,b y=4,求yx +4(2)已知:7393=⨯n,求n 的值(3)求20122013)25.0()4(⨯-的值 (4)已知3=m a ,7=n a ,求nm a 23-例题6 计算101100)2(2-+例题7 若a x =3,b x =5,用含b a ,的代数式表示11x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018八年级数学下册第一章知识点总结
(北师大版)
2018八年级数学下册第一章知识点总结(北师大版)
第一章三角形的证明
1、等腰三角形
(1)三角形全等的性质及判定
全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、
(2)等腰三角形的判定、性质及推论
性质:等腰三角形的两个底角相等(等边对等角)
判定:有两个角相等的三角形是等腰三角形(等角对等边)
推论:等腰三角形顶角的平分线、底边上的中线、
底边上的高互相重合(即“三线合一”)
(3)等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个
角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30度,
那么它所对的直角边等于斜边的一半。
2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)直角三角形两个锐角之间的关系
定理:直角三角形两个锐角互余。
逆定理:有两个锐角互余的三角形是直角三角形。
(3)含30度的直角三角形的边的定理
定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。
(4)命题与逆命题
命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(5)直角三角形全等的判定定理
定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)
3、线段的垂直平分线
(1)线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点
的距离相等。
判定:到一条线段两个端点距离相等的点在这条线
段的垂直平分线上。
(2)三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一
点到三个顶点的距离相等。
(该点称为三角形的外心)(3)如何用尺规作图法作线段的垂直平分线
分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线
(1)角平分线的性质及判定定理
性质:角平分线上的点到这个角的两边的距离相等;
判定:在一个角的内部,且到角的两边的距离相等
的点,在这个角的平分线上。
(2)三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这
一点到三条边的距离相等。
(该点称为三角形的内心)。