中考压轴题专题训练:“四点共圆”典型问题50练(含解析)印刷版

合集下载

四点共圆精选习题及答案

四点共圆精选习题及答案

四点共圆精选习题及答案作为一种古老而神秘的数学理论,圆形一直是数学家们探究和研究的对象之一。

而在圆形领域中,四点共圆更是一个受到广泛关注和深入研究的问题。

四点共圆是指在平面上给出任意四个点,能否通过一个圆将这四个点完美地围起来。

今天我们精选了几个四点共圆的习题,希望能给大家带来一些启示。

题目一:已知在平面直角坐标系中,四点 A(0,0),B(0,2),C(4,0),D(x,y)。

若四点在同一圆上,则点 D 的坐标为多少?解题思路:根据四点共圆基本知识,可以列出以下方程组:(x-2)²+y²=r²x²+(y-2)²=r²(x-4)²+y²=r²x²+y²=r²将方程组联立,消去 r,最终得到 x²+y²=5²,即点 D 的坐标为(3,4)或(−3,4)。

题目二:在平面直角坐标系中,四个点 A,B,C,D 分别为(7,0),(0,7),(−7,0) 和(0,−7)。

请证明:四点共圆。

解题思路:根据四点共圆定理,四个点共圆当且仅当它们构成的任意三角形的外接圆都存在。

可得三个三角形 ABC、ACD 和ABD 的外接圆都是以原点为圆心的半径为7 的圆,因此四点 A、B、C、D 构成的圆也一定存在。

题目三:在平面直角坐标系中,四点 A,B,C,D 分别为(−3,4),(−4,−3),(4,−3) 和(−1,−2)。

请计算过点 C 的直径的长度。

解题思路:通过计算可以知道,连接点 C 和其他三个点构成的三角形外接圆的圆心坐标分别为(−1,−1)、(−1,0) 和 (0,1),因此过点 C 的直径所在的直线应为直线 y=x-1。

可得直线 y=x-1 与直线x=4、直线x=−3 和直线y=−3 的交点分别为 (4, 3)、(−3,−4) 和(0,−1),因此该直径的长度为√145。

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2023年九年级数学中考复习 圆综合压轴题 解答题专题训练(含解析)

2022-2023学年九年级数学中考复习《圆综合压轴题》解答题专题训练(附答案)1.如图.在Rt△ABC中,∠ACB=90°,D为AB边的中点,连接CD.以CD为直径作⊙O,分别与AC,BC相交于点M,N.过点N作⊙O的切线交AB于点E.(1)求证:∠BEN=90°.(2)若AB=10,请填空:①迮接OE,ON,当NE=时,四边形OEBN是平行四边形;②连接DM,DN,当AC=时,四边形CMDN为正方形.2.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD =OB.连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45°.(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求的值.3.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠P AC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.4.如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.5.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F,连接AD.(1)求证:EF是⊙O的切线.(2)求证:△FBD∽△FDA.(3)若DF=4,BF=2,求⊙O的半径长.6.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2.5时,求DE的长.7.已知:△ABC内接于⊙O,连接AO并延长交BC于点D,且AD⊥BC于点D.(1)如图1,求证:∠B=∠C;(2)如图2,点E在上,连接AE,CE,∠ACE=∠ACB,求证:∠CAE=2∠ACE;(3)如图3,在(2)的条件下,过点A作AF⊥CE交CE的延长线于点F,若AE=5,AB=13,求AF的长.8.在Rt△ABC中,∠ACB=90°,AC=6,∠B=30°,点M是AB上的动点,以M为圆心,MB为半径作圆交BC于点D,(1)若圆M与AC相切,如图1,求圆的半径;(2)若AM=2MB,连接AD,如图2.①求证:AD与圆M相切;②求阴影部分的面积.9.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)求证:△OAC∽△ECF;(3)若BD=4,BC=8,圆的半径OB=5,求EC的长.10.如图,已知以BC为斜边的Rt△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,过点D作DE∥BC交AB的延长线于点E,连接DB,DC.(1)求证:ED为⊙O的切线;(2)求证:BC2=2ED•FC;(3)若tan∠ABC=2,AD=,求BC的长.11.已知△ABC内接于⊙O,D是弧AC上一点,连接BD、AD,BD交AC于点M,∠BMC =∠BAD.(1)如图1,求证:BD平分∠ABC;(2)如图2,过点D作⊙O的切线,交BA的延长线于点F,求证:DF∥AC;(3)如图3,在(2)的条件下,BC是⊙O的直径,连接DC,AM=1,DC=,求四边形BFDC的面积.12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,P为弧AD上一点.(1)如图1,连接AC、PC、P A,求证:∠APC=∠ACD;(2)如图2,连接PB,PB交CD于E,过点P作⊙O的切线交CD的延长线于点F,求证:FE=PF;(3)如图3,在(2)的条件下,连接AE,且∠P AE=∠F,过点A作AG⊥PF,垂足为G,若PG=6,,求BH的长.13.如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.14.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠F AB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).15.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,连接CE,BD是⊙O的切线与OE的延长线相交于点D.(1)求证:∠D=∠AEC;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,,求FH的长.16.如图,在平面直角坐标系xOy中,已知点A(0,8),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若∠ABE=∠FDE,求EF的值.(3)若AB﹣BO=4,求tan∠AFC的值.17.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF∽GDF;(2)求证:BC是⊙O的切线;(3)若cos∠CAE=,DF=10,求线段GF的长.18.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,过圆心O的直线PF⊥AB于D,交⊙O于E,F,PB是⊙O的切线,B为切点,连接AP,AF.(1)求证:直线P A为⊙O的切线;(2)求证:AC2=4OD•OP;(3)若BC=6,,求AC的长.19.如图,AB是半圆O的直径,AB=10.C是弧AB上一点,连接AC,BC,∠ACB的平分线交AB于点P,过点P分别作PE⊥AC,PF⊥BC,垂足分别为E、F.(1)求证:四边形CEPF是正方形;(2)当sin A=时,求CP的长;(3)设AP的长为x,图中阴影部分的面积为y,求y与x之间的函数关系式,并写出y 的最大值.20.问题提出(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为.问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.问题解决(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC 区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC =60°.设BD的长为x米,△ADC的面积为y平方米.①求y与x之间的函数关系式;②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.参考答案1.(1)证明:如图,连接ON,DN,∵CD是⊙O的直径,∴∠CND=∠DNB=90°,∵NE是⊙O的切线,∴∠ONE=90°,∴∠BNE=∠OND,∵ON=OD,∴∠ODN=∠OND,∴∠ODN=∠BNE,∵D是斜边AB的中点,∴CD=AD=BD,∴∠B=∠BCD,∵∠BCD+∠ODN=90°,∴∠B+∠BNE=90°,∴∠NEB=90°;(2)解:①∵四边形OEBN是平行四边形,∴BE=ON=,∵E为BD的中点,∴N为BC的中点,∴NE为△BCD的中位线,∴NE∥CD,且NE=CD=.故答案为:;②∵四边形CMDN为正方形,∴∠MCD=∠MDC=45°,∠CMD=90°,∴MC=MD=CD,∵AD=DC,∴M是AC的中点,AC=2MC=CD,∴CD=AB=5,∴AC=5.故答案为:5.2.(1)证明:①∵CD∥AB,∴∠F AB=∠D,∵∠AFB=∠DFC,∴△ABF∽△DCF;②∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵CD∥AB,∴∠DCO=∠AOC=90°,∵OC是半圆的半径,∴CD是⊙O的切线;(2)解:过点F作FH∥AB交OC于H,设圆的半径为2a,∵CD=OB=OA,CD∥AB,∴CE=OE=a,AE=DE,由勾股定理得:AE==a,∴AD=2a,∵△ABF∽△DCF,∴==,∵FH∥AB,∴==,∵FH∥AB,∴==,∴EF=,∵CD是⊙O的切线,∴DC2=DG•DA,即(2a)2=DG•2a,解得:DG=,∴FG=a﹣﹣=,∴==.3.(1)证明:连接OC,∵PF=FC,OC=OB,∴∠PCF=∠CPF,∠OCB=∠OBC,∵PD⊥AB,∴∠PDB=90°,∴∠CPF+∠OBC=90°,∴∠PCF+∠OCB=90°,∴∠FCO=90°,∴OC⊥CF,∴CF是⊙O的切线.(2)证明:连接BG,∵,∴∠P AC=∠PBG,∵∠PBA=2∠P AC,∴∠PBA=2∠PBG,∵AB为⊙O的直径,∴∠AGB=∠PGB=90°,∴∠APB=∠P AB,∴AB=BP;(3)解:∵AB为⊙O的直径,∴∠ACB=90°,∵AC=4,BC=3,∴AB===5,∴AB=BP=5,∴PC=2,∵∠PDA=∠PCA=90°,P A=P A,∠APB=∠P AB,∴△APC≌△APD(AAS),∴AD=PC=2,PD=AC=4,∠P AC=∠APD,∴AE=PE,设DE=x,AE=PE=4﹣x,在Rt△AED中,AD2+DE2=AE2,即22+x2=(4﹣x)2,解得x=,∴EP=4﹣x=,∵∠PEC=90°﹣∠EPC,∠FCE=90°﹣∠PCF,即∠PEC=∠FCE,∴EF=CF=PF,∴CF=.4.解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵∠AOF=∠COF,OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.5.(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC.∵EF⊥AC,∴EF⊥OD.∵OD是半径,∴EF与⊙O相切.(2)证明:∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∵OD⊥DE,∴∠FDB+∠ODB=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠BAD=∠FDB,∵∠F=∠F,∴△FBD∽△FDA;(3)解:设⊙O的半径为r,则AB=2r,∵△FBD∽△FDA,∴,∵DF=4,BF=2,∴,∴r=3.6.解:(1)CG与⊙O相切,理由如下:如图1,连接CO,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∵OC是圆的半径,∴CG与⊙O相切;(2)证明:∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO•AB=BC•BF,∵AB=2BO,∴2OB2=BC•BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=2∠F,又∵∠DCE=2∠F,∴∠EGC=∠DCE,∵∠DCE=∠AOD=45°,∴∠EGC=45°,又∵∠OCG=90°,∴△OCG为等腰直角三角形,∴GC=OC,OG=OC,∴OD+DG=OC,即OC+2.5=OC,解得OC=,∵GF=GE=GC=OC,∴DE=GE﹣DG=OC﹣DG=.7.(1)证明:∵AD⊥BC,AD过圆心O,∴BD=CD,且AD⊥BC,∴AB=AC,∴∠B=∠C;(2)证明:连接BE,设∠ACE=α,则∠ACB=3α,∴∠ABC=∠ACB=3α,∵∠ABE=∠ACE=α,∴∠CBE=∠ABC﹣∠ABE=3α﹣α=2α,∴∠CAE=∠CBE=2α=2∠ACE;(3)解:过点E作EG⊥AC于点G,在CG上截取GH=AG,连接EH,∴EH=AE=5,∴∠AHE=∠EAH=2α,∴∠CEH=∠AHE﹣∠ECH=2α﹣α=α=∠ECH,∴CH=EH=5,∵AC=AB=13,∴AH=AC﹣CH=13﹣5=8,∴AG=GH=4,∴CG=4+5=9,在Rt△AEG中,EG===3,在Rt△CEG中,CE===3,∵,∴,∴.8.解:(1)过点M作MN⊥AC于点N,∵圆M与AC相切,∴MN=MB,∵∠ACB=90°,AC=6,∠B=30°,∴AB=12,设MN=MB=R.∴AM=12﹣R,∵∠ACB=90°,MN⊥AC,∴MN∥BC,∴∠B=∠AMB=30°,∴,∴,解得R=24﹣36.(2)①连接DM,由题意可知MB=MD,∴∠B=∠MDB=30°,∴∠AMD=60°,∵AM=2MB,∴AM=2MD,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°,∴△AMD∽△ABC,∴∠ADM=∠ACB=90°,∴AD与圆M相切;②∵AB=12,AM=2MB,∴BM=4,AM=8,∵∠ADM=90°,∴AD==4,∴S阴影部分=4.9.(1)证明:∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF;(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵△OAC∽△ECF,∴,∴EC==.10.(1)证明:如图1,连接OD.∵BC为⊙O的直径,∴∠BAC=90°.∵AD平分∠BAC,∴.∴OD⊥BC,∵DE∥BC,∴OD⊥ED,又∵OD为半径,∴ED为⊙O的切线;(2)证明:由(1)可得△BCD为等腰直角三角形.∵DE∥BC,∴∠E=∠ABC=∠ADC,∠BDE=∠DBC=∠DCB=45°.∴△BED∽△FDC,∴,即BD2=DE•FC,又,∴BC2=2ED•FC;(3)解:如图2,过点D作DG⊥AD,交AC的延长线于点G.∴∠CDG+∠ADC=90°,∠DGC=∠DAG=45°.又∵∠ADB+∠ADC=90°,∴∠ADB=∠GDC,∵DB=DC,∠BAD=∠DGC=45°,∴△ABD≌△GCD(AAS),∴AB=CG.∵∠DAG=45°,∠ADG=90°,∴△ADG为等腰直角三角形,∴AB+AC=AG=AD==3,∵tan∠ABC=2,∴设AB=x,则AC=2x.∴3x=3,∴x=1.即AB=1,AC=2.∴BC===.11.(1)证明:∵∠BMC=∠BAD,又∵∠BMC=∠BAC+∠ABD,∠BAD=∠BAC+∠DAM,∴∠ABD=∠DAC,又∵弧DC=弧DC,∴∠DAC=∠DBC,∴∠ABD=∠CBD,∴BD平分∠ABC;(2)证明:连接OA、OB、OD,OD交AC于点N,∵FD是⊙O的切线,D为切点,OD是⊙O的半径,∴OD⊥FD,∴∠FDO=90°,又∵∠AOD=2∠ABD,∠DOC=2∠DBC,∠ABD=∠CBD,∴∠AOD=∠COD,又∵AO=CO,∴ON⊥AC,∴∠ANO=90°,∴∠ANO=∠FDO,∴AC∥FD;(3)解:连接OD,交AC于N,∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∴∠F AC=180°﹣∠BAC=90°,又∵∠ANO=∠FDN=90°,∴四边形ANDF是矩形,∴AF=DN,∠F=90°,又∵ON⊥AC,∴AN=CN,∴设MN=a,则AN=CN=MN+AM=a+1,∴CM=MN+CN=2a+1,在Rt△MDC中,cos∠ACD=,在Rt△NDC中,cos∠ACD=,∴,解得a1=﹣(舍去),a2=1,∴MN=1,CN=a+1=2,∴DN=AF==,又∵MN=AM=1,∠AMB=∠NMD,∠BAM=∠MND=90°,∴△BAM≌△DNM(AAS),∴BA=ND=,∴BF=AB+AF=2,∴AN=FD=a+1=2,∴BD==2,∴S△BFD=,S△DBC=BD•CD==3,∴S四边形BFDC=S△BFD+S△BDC=2.12.(1)证明:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴,∴∠ACD=∠DC,∵,∴∠APC=∠ADC,∴∠APC=∠ACD;(2)证明:连接OP,∵PF是⊙O的切线,∴OP⊥PF,即∠EPF+∠OPE=90°,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠HEB+∠HBE=90°,∵∠PEF=∠HEB,∴∠PEF=∠FPE,∴FE=PF;(3)解:过E作EM⊥PF,垂足为M,∵AG⊥PF,∴∠GAP+∠GP A=90°,∵∠APE=90°,∴∠GP A+∠EPM=90°,∵∠AGP=∠EMP=90°,∴△GP A∽△MEP,∴,∵∠P AE=∠F,∴tan∠P AE=tan∠F,则,∵,∴,∴MF=PG=6,设PM=x,∵PE2﹣PM2=EF2﹣FM2,∴,解得:x1=﹣10,x2=4,即PM=4,∴EM==8,∵,即,∴P A=3,∵CD⊥AB,AB是直径,∴∠BHE=∠APB=90°,∴∠HEB=∠BAP,∵∠MPE=∠HEB,∴tan∠P AB=,即,∴PB=6,∴BE=PB﹣PE=2,∵sin∠HEB=,即,∴BH=4.13.(1)证明:连接OC,如图1,∵AD=CD,∠A=30°,∴∠ACD=30°,∴∠CDB=60°,∵OD=OC,∴∠OCD=60°,∴∠ACO=∠ACD+∠OCD=90°,∵OC是半径,∴直线AC是⊙O的切线;(2)解:∵∠OCD=60°,OC=OD,∴△DCO是等边三角形,∴CD=AD=OD=1,作CH⊥BD于点H,则DH=,如图2,∴CH===,∵AB=AD+BD=3,∴S△ABC==.(3)①当点E运动到与点C关于直径AB对称时,CE⊥AB于点K,如图3,∵BD为⊙O的直径,CK=,∴CE=2CK=,∵CF⊥CE,∴∠ECF=90°,∵∠CDB=∠CEB=60°,∴CF=CE•tan60°==3,②∵点E在上运动过程中,∠CDB=∠CEB=60°,在Rt△ECF中,tan60°=,∴CF=CE,∴当CE最大时,CF取得最大值,∴当CE为直径,即CE=2时,CF最大,最大值为2.14.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠F AC=∠OCA,∴∠F AC=∠OAC,∴CA平分∠F AB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.15.(1)证明:∵BD是⊙O的切线,∴∠OBD=90°,∠ABC+∠DBC=90°,∵BC⊥OD,∴∠D+∠DBC=90°,∴∠ABC=∠D,∵∠AEC=∠ABC,∴∠D=∠AEC;(2)证明:连接AC,如图所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,过O作OG⊥BE于G,如图所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,∴AB=10,∵cos∠BCE=,∴cos∠BAE==,∴AE=8,∴BE===6,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH=,在Rt△BEH中,BH=.∵OG⊥BE,OB=OE,∴BG=3,∴OG===4,∴BF•OE,∴BF=,∴HF=BH﹣BF=.16.解:(1)∵点A(0,8),∴AO=8,∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD,∴∠ABO=∠ABE在△ABE和△ABO中,,∴△ABE≌△ABO(AAS),∴AE=AO=8;(2)∵∠ABE=∠FDE,∴AB∥DF,∴△CAB∽△CDF,∴,又∵∠ABE=∠FDE,∠AEB=∠FED∴△DEF∽△BEA,∴,∴EF=2AE=16;(3)设BO=x,则AB=x+4,在Rt△ABO中,由AO2+OB2=AB2得:82+x2=(x+4)2,解得:x=6,∴OB=BE=6,AB=10,∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°,∴∠EAB=∠ACB,∵∠BF A=∠AFC,∴△BF A∽△AFC,∴;设EF=m,则AF=8+m,BF=(8+m),∵在Rt△BEF中,BE2+EF2=BF2,∴62+m2=[(8+m)]2,解得:m=,即EF=,∴tan∠AFC=.17.(1)证明:如图1,∵EF平分∠AED,∴∠AEF=∠FED,∵∠AEF=∠ADF,∴∠FED=∠ADF,∵∠GFD=∠DFE,∴△GFD∽△DFE;(2)证明:如图2,∵AE平分∠BAC,∴∠BAE=∠EAO,∵OA=OE,∴∠EAO=∠OEA,∴∠BAE=∠OEA,∴AB∥OE,∴∠OEC=∠B,∵∠B=90°,∴∠OEC=90°,∵OE为半径,∴BC是⊙O的切线;(3)解:如图3,连接OF、AF,∵AD为直径,∴∠AFD=∠AED=90°,∵EF平分∠AED,∴∠AEF=∠FED=45°,∴∠AFD=∠AEF=45°,∴△AFD为等腰直角三角形,∵DF=10,OA=OD∴AD=DF=×10=20,OF⊥AD,OA=OD=OF=10,∵cos∠CAE=,∴AE=AD•cos∠CAE=20×=10,∵∠AEF=∠ADF,∠AGE=∠FGD,∴△AGE∽△FGD,∴,∴AG=GF,∵AG=AO+OG=10+OG,∴10+OG=GF,∴OG=GF﹣10,在Rt△FOG中,GF2=OF2+OG2,∴GF2=102+(GF﹣10)2,解得:GF=或(不符合题意,舍去),∴线段GF的长为.18.(1)证明:连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△P AO≌△PBO(SAS),∴∠P AO=∠PBO=90°,∵OA为圆的半径,∴直线P A为⊙O的切线;(2)证明:∵∠P AO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OP A+∠AOP=90°,∴∠OAD=∠OP A,∴△OAD∽△OP A,∴,∴OA2=OD•OP,又∵AC=2OA,∴AC2=4OD•OP;(3)解:∵OA=OC,AD=BD,BC=6,∴OD=BC=3,设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3,在Rt△AOD中,由勾股定理,得,(2x﹣3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x﹣3=5,∵AC是⊙O的直径,∴AC=2OA=10.∴AC的长为10.19.(1)证明:∵∠ACB=90°,PE⊥AC,PF⊥BC,∴四边形PECF是矩形,∵CP平分∠ACB,PE⊥AC,PF⊥BC,∴PE=PF,∴四边形CEPF是正方形;(2)解:∵sin A=,AB=10,∴,∴BC=8,∴AC===6,∴tan A=,设PE=CE=m,则AE=6﹣m,∴tan A=,∴m=,∴PC=PE=;(3)解:∵四边形CEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P顺时针旋转90°,得到△A′PF,P A′=P A,如图所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B=P A′•PB=x(10﹣x),∴y与x之间的函数关系式为y=﹣+5x,∵y=﹣+5x=﹣,∴x=5时,y有最大值为.20.解:(1)如图①,AD⊥BC,∵△ABC为等边三角形,AB=2,∴∠B=60°,BC=AB=2,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,=sin B=sin60°,∴=,∴AD=,∴△ABC的面积=AB•AD=×2×=,故答案为:;(2)如图②,过点D作DH⊥BC于点H,∵∠ABC=90°,BD是△ABC的角平分线,∴∠DBC=∠ABD=45°,∵DE⊥BD,∴∠BDE=90°,∴∠DEB+∠DBE=90°,∴∠DEB=90°﹣∠DBE=90°﹣45°=45°,∴BD=ED,∵DH⊥BC,∴BH=EH,∴DH=BE=BH=EH,设DH=BH=EH=a,∵∠ABC=90°,∴AB⊥BC,∵DH⊥BC,∴AB∥DH,∴△CDH∽△CAB,∴==,∵AD=1,AC=3,∴CD=3﹣1=2,∴==,∴AB=a,CE=a,∴BC=CE+BE=a+2a=3a,∵AB2+BC2=AC2,∴a2+9a2=9,∴a2=1,∴S阴影=S△ABC﹣S△BDE=AB•BC﹣BE•DH=×a•3a﹣×2a•a=a2﹣a2=a2=1;(3)①设AC与BD相交于点E,连接OB,OA,OC,过点O作OH⊥AB于点H,∵∠ADB=∠BDC=60°,∴AB=BC,∠BAC=∠BDC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AB=AC=BC,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),同理△ABO≌△CBO(SSS),∴S△ABO=S△ACO=S△CBO,∴S△ABC=3S△ABO,∵∠AOB=2∠ACB,∴∠AOB=120°,在Rt△OAH和Rt△OBH中,,∴Rt△OAH≌Rt△OBH(HL),∴∠AOH=∠BOH,AH=BH,在Rt△OAH中,OA=4,∠AOH=∠AOB=60°,∴cos∠AOH=cos60°==,sin∠AOH=sin60°==,∴OH=OA=2,AH=OA=2,∴AB=2AH=4,∴S△ABC=3S△ABO=3××4×2=12,∵∠ABE=∠DBA,∠BAE=∠BDA=60°,∴△ABE∽△DBA,∴===,即S△DBA=S△ABE,∵∠CBE=∠DBC,∠BCE=∠BDC=60°,∴△CBE∽△DBC,∴===,即S△DBC=S△CBE,∴S四边形ABCD=S△DBA+S△DBC=S△ABE+S△CBE,=(S△ABE+S△CBE)=S△ABC=×12=x2,∴S△ADC=S四边形ABCD﹣S△ABC=x2﹣12,即y=x2﹣12;∵BD的长度大于AB,小于等于直径,∴4<x≤8,∴y与x之间的函数关系式为y=x2﹣12(4<x≤8);②由①知,y与x之间的函数关系式为y=x2﹣12,则对称轴为y轴,∵>0,∴x>0时,y随x的增大而增大,∵4<x<8,∴当x=8时,y有最大值,即当BD为⊙O的直径时,y取最大值,即y=×82﹣12=4,∴花卉区域△ADC面积的最大值是4.。

“四点共圆”模型(解析版)--初中数学专题训练

“四点共圆”模型(解析版)--初中数学专题训练

“四点共圆”模型1.识别几何模型。

2.利用“四点共圆”模型解决问题一.填空题(共3小题)1(2021秋•南京期中)如图,在⊙O的内接五边形ABCDE中,∠C=100°,BC=CD,则∠A+∠D =220°.【分析】连接BD,由∠C=100°,BC=CD得出∠CDB=40°,由四边形BAED内接于⊙O得出∠A +∠BDE=180°,即可求出答案.【解答】解:如图,连接BD,∵∠C=100°,BC=CD,∴∠CBD=∠CDB=40°,∵四边形BAED内接于⊙O,∴∠A+∠BDE=180°,∴∠A+∠CDE=∠A+∠BDE+∠CDB=180°+40°=220°,故答案为:220.【点评】本题考查了圆周角定理,掌握圆连接四边形的性质是解题的关键.2(2022•靖江市二模)如图,AB⊥BC,AB=5,点E、F分别是线段AB、射线BC上的动点,以EF 为斜边向上作等腰Rt△DEF,∠D=90°,连接AD,则AD的最小值为522.【分析】连接BD并延长,利用四点共圆的判定定理得到B,E,D,F四点共圆,再利用等腰直角三角形的性质和圆周角定理得到∠DBF=∠DEF=45°,得到点D的轨迹,最后利用垂线段最短和等腰直角三角形的性质解答即可得出结论.【解答】解:连接BD并延长,如图,∵AB⊥BC,∴∠ABC=90°,∠EDF=90°,∴∠ABC+∠EDF=180°,∴B,E,D,F四点共圆,∵△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°,∴∠DBF=∠DEF=45°,∴∠DBF=∠DBE=45°,∴点D的轨迹为∠ABC的平分线上,∵垂线段最短,∴当AD⊥BD时,AD取最小值,∴AD的最小值为22AB=522,故答案为:522.【点评】本题主要考查了直角三角形的性质,等腰直角三角形的性质,四点共圆的判定圆周角定理,点的轨迹,垂线段的性质,利用已知条件求得点D 的轨迹是解题的关键.3(2022秋•大丰区期中)如图,△ABC 中,AD ⊥BC ,∠B =45°,∠C =30°.以AD 为弦的圆分别交AB 、AC 于E 、F 两点.点G 在AC 边上,且满足∠EDG =120°.若CD =4+22,则△DEG 的面积的最小值是 22+2 .【分析】连接EF ,利用四点共圆和同弧所对的圆周角相等证明EF ∥DG ,从而得到S △EDG =S △EDG ,当FG 最小时,△DFG 的面积就最小,作△DFG 的外接圆O ,过O 点作OH ⊥FG 交于点H ,连接OF 、OG ,DO +OH =(12+22)FG ,当DO +OH 最小时,FG 就最小,当D 、O 、H 三点共线时,DO +OH 最小,此时DH ⊥FG ,在Rt △FHO 中,(2FH )2=FH 2+(2+2-2FH )2,求出FH =2,可得FG 的最小值为22,再求S △DFG =22+2,即△DEG 的面积的最小值为22+2.【解答】解:连接EF ,AD ⊥BC ,∠B =45°,∠C =30°,∴∠B =45°,∠DAC =60°,∵∠BAC =105°,∵A 、E 、F 、D 四点共圆,∴∠EDF =75°,∵∠EDG =120°,∴∠FDG =45°,∵ED =ED,∴∠EFD =∠EAD =45°,∴∠EFD =∠FDG ,∴EF ∥DG ,∴S △EDG =S △EDG ,∵CD =4+22,∠C =30°,∴AC =833+463,AD =433+263,∴AC 边上的高=AD ⋅DC AC=2+2,∴当FG 最小时,△DFG 的面积就最小,作△DFG 的外接圆O ,过O 点作OH ⊥FG 交于点H ,连接OF 、OG ,∵∠FDG =45°,∴∠FOG =90°,∵OF =GO ,∴△FOG 是等腰直角三角形,∵∠FOH =12∠FOG =45°,∴△FOH 是等腰直角三角形,∴FH =OH =12FG ,FO =2FH ,∴DO +OH =22FG +12FG =(12+22)FG ,∴当DO +OH 最小时,FG 就最小,∵DO +OH ≥DH ,∴当D 、O 、H 三点共线时,DO +OH 最小,此时DH ⊥FG ,∴DH =2+2,在Rt △FHO 中,(2FH )2=FH 2+(2+2-2FH )2,解得FH =2或FH =4+32,∵OH =2+2=FH +FO ,∴FH =2,∴FG 的最小值为22,∴S △DFG =12×22×(2+2)=22+2,∴△DEG 的面积的最小值为22+2,故答案为:22+2.【点评】本题考查圆的综合应用,熟练掌握圆心角与圆周角的关系,四点共圆的性质,三角形外接圆的性质是解题的关键.二.解答题(共7小题)4(2022秋•宿城区期中)如图,BD ,CE 是△ABC 的高,BD ,CE 相交于点F ,M 是BC 的中点,⊙O 是△ABC 的外接圆.(1)点B ,C ,D ,E 是否在以点M 为圆心的同一个圆上?请说明理由.(2)若AB =8,CF =6,求△ABC 外接圆的半径长.【分析】(1)连接EM ,DM ,根据垂直定义可得∠BDC =∠BEC =90°,然后利用直角三角形斜边上的中线性质可得EM =BM =12BC ,DM =CM =12BC ,从而可得EM =BM =DM =CM ,即可解答;(2)连接AF 并延长交BC 于点G ,连接BO 并延长交⊙O 于点H ,连接AH ,CH ,根据三角形的高是交于一点的可得AG⊥BC,再根据直径所对的圆周角是直角可得∠BAH=∠BCH=90°,从而可得AG∥CH,AH∥CE,然后利用平行四边形的判定可得四边形AFCH是平行四边形,从而可得CF= AH=6,最后在Rt△BAH中,利用勾股定理进行计算即可解答.【解答】解:(1)点B,C,D,E在以点M为圆心的同一个圆上,理由:连接EM,DM,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵M是BC的中点,∴EM=BM=12BC,DM=CM=12BC,∴EM=BM=DM=CM,∴点B,C,D,E在以点M为圆心的同一个圆上;(2)连接AF并延长交BC于点G,连接BO并延长交⊙O于点H,连接AH,CH,∵BD,CE是△ABC的高,BD,CE相交于点F,∴AG⊥BC,∵BH是⊙O的直径,∴∠BAH=∠BCH=90°,∴BA⊥AH,BC⊥CH,∴AG∥CH,∵CE⊥AB,∴AH∥CE,∴四边形AFCH是平行四边形,∴CF=AH=6,在Rt△BAH中,AB=8,∴BH=BA2+AH2=82+62=10,∴△ABC外接圆的半径长为5.【点评】本题考查了三角形的外接圆与外心,直角三角形斜边上的中线,点与圆的位置关系,确定圆的条件,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5(兴化市校级期中)已知:如图,在正方形ABCD中,E、F分别是AD、CD的中点.(1)线段AF与BE有何关系.说明理由;(2)延长AF、BC交于点H,则B、D、G、H这四个点是否在同一个圆上.说明理由.【分析】(1)证明△ABE≌△DAF,证据全等三角形的对应边相等,以及直角三角形的两锐角互余即可证明AF相等且互相垂直;(2)证明△ADF≌△HCF,依据直角三角形斜边上的中线等于斜边的一半,即可证得B,C,D,H四点到C的距离相等,即可证得四点共圆.【解答】解:(1)AF=BE且AF⊥BE.证明:∵E、F分别是AD、CD的中点,∴AE=12AD,DF=12CD∴AE=DF又∵∠BAD=∠D=90°,AB=AD∴△ABE≌△DAF∴AF=BE,∠AEB=∠AFD∵在直角△ADF中,∠DAF+∠AFD=90°∴∠DAF+∠AEB=90°∴∠AGE=90°∴AF⊥BE(2)连接CG.∵DF=CF,∠D=∠FCH=90°,∠AFD=∠HFC∴△ADF≌△HCF∴BC=AD=CH=CD,在直角△BGH中,BC=CH,∴GC=12BH∴CB=CG=CD=CH,∴B,G,D,H在以C为圆心、BC长为半径的圆上.【点评】本题考查了全等三角形的判定与性质,以及直角三角形的性质,证明三角形全等是解题的关键.6(2022秋•建湖县期中)如图,在⊙O的内接四边形ABCD中,DB=DC,∠DAE是四边形ABCD 的一个外角.(1)若∠DAE=75°,则∠DAC=75°;(2)过点D作DE⊥AB于E,判断AB、AE、AC之间的数量关系并证明;(3)若AB=6、AE=2,求BD2-AD2的值.【分析】(1)根据四边形外接圆的性质,同弧所对的圆周角相等,可得∠DCB=∠DBC=∠DAC= 75°;(2)过点D作DF⊥AC于点F,可证明△BDE≌△CDF(AAS),△ADE≌△ADF(AAS),则AC= AF+FC=AE+BE=AE+AE+AB=2AE+AB;(3)在Rt△BDE中,BD2=64+DE2,,在Rt△AED中,AD2=4+ED2,再求解即可.【解答】解:(1)∵四边形ABCD是圆O的内接四边形,∴∠BCD+∠BAD=180°,∵∠DAE是四边形ABCD的一个外角,∴∠DAE=∠BCD,∵BD=CD,∴∠CBD=∠DCB,∵弧CD所对的圆周角分别为∠CAD、∠CBD,∴∠CBD=∠CAD,∵∠DAE=75°,∴∠DCB=∠DBC=∠DAC=75°,故答案为;75;(2)过点D作DF⊥AC于点F,∵DE⊥AB,∴∠DEA=90°,∵∠ABD=∠ACD,BD=CD,∠E=∠DFC=90°,∴△BDE≌△CDF(AAS),∴DE=DF,AE=CF,∴∠ADE=∠ADF,又∵∠E=∠AFD,AD=AD,∴△ADE≌△ADF(AAS),∴AE=AF,∴AC=AF+FC=AE+BE=AE+AE+AB=2AE+AB,即AC=2AE+AB;(3)在Rt△BDE中,BD2=BE2+DE2,在Rt△AED中,AD2=AE2+ED2,∵AB=6,AE=2,∴BE=8,∴BD2=64+DE2,AD2=4+ED2,∴BD2-AD2=60.【点评】本题考查圆的综合应用,熟练掌握同弧所对的圆周角相等,四点共圆的性质,直角三角形勾股定理,三角形全等的判定及性质是解题的关键.7(2023•淮安区一模)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:圆内接四边形对角互补;依据2: 过不在同一直线上的三个点有且只有一个圆 .(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为45°.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=22,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.【分析】(1)根据圆内接四边形的性质、过三点的圆解答即可;(2)根据四点共圆、圆周角定理解答;(3)①根据轴对称的性质得到AE=AC,DE=DC,∠AEC=∠ACE,∠DEC=∠DCE,进而得到∠AED=∠ABC,证明结论;②连接CF,证明△ABD∽△AFB,根据相似三角形的性质列出比例式,计算即可.【解答】(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:∵∠1=∠2,∴点A,B,C,D四点在同一个圆上,∴∠3=∠4,∵∠3=45°,∴∠4=45°,故答案为:45°;(3)①证明:∵AB=AC,∴∠ABC=∠ACB,∵点E与点C关于AD的对称,∴AE=AC,DE=DC,∴∠AEC=∠ACE,∠DEC=∠DCE,∴∠AED=∠ACB,∴∠AED=∠ABC,∴A,D,B,E四点共圆;②解:AD•AF的值不会发生变化,理由如下:如图4,连接CF,∵点E与点C关于AD的对称,∴FE=FC,∴∠FEC=∠FCE,∴∠FED=∠FCD,∵A,D,B,E四点共圆,∴∠FED=∠BAF,∴∠BAF=∠FCD,∴A,B,F,C四点共圆,∴∠AFB=∠ACB=∠ABC,∵∠BAD=∠FAB,∴△ABD∽△AFB,∴AD AB =AB AF,∴AD•AF=AB2=8.【点评】本题考查的是四点共圆、相似三角形的判定和性质、轴对称的性质,正确理解四点共圆的条件是解题的关键.8(2022秋•靖江市期末)小明在学习了《圆周角定理及其推论》后,有这样的学习体会:在Rt△ABC 中,∠C=90°,当AB长度不变时,则点C在以AB为直径的圆上运动(不与A、B重合).[探索发现]小明继续探究,在Rt△ABC中,∠C=90°,AB长度不变.作∠A与∠B的角平分线交于点F,小明计算后发现∠AFB的度数为定值,小明猜想点F也在一个圆上运动.请你计算∠AFB的度数,并简要说明小明猜想的圆的特征.[拓展应用]在[探索发现]的条件下,若AB=23,求出△AFB面积的最大值.[灵活运用]在等边△ABC中,AB=23,点D、点E分别在BC和AC边上,且BD=CE,连接AD、BE交于点F,试求出△ABF周长的最大值.【分析】[探索发现]根据角平分线的定义,三角形内角和定理可求∠AFB=135°,再由已知结论可得F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,则O与C点共圆;过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,△FAB是等腰三角形,求出FD的长再求三角形面积即可;[灵活运用]通过证明△ABD≌△BCE(SAS),可得∠AFB=120°,再由题干已知可知F点在以AB 为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,此时△ABF是等腰三角形.【解答】解:[探索发现]∵∠ACB=90°,∴∠CAB+∠CBA=90°,∵AF是∠CAB的平分线,BF是∠CBA的平分线,∴∠FAB+∠FBA=45°,∴∠AFB=135°,∴F点在以AB为定弦,∠AFB为定角的圆上;[拓展应用]设F点在圆O上,连接OA、OB,∵∠AOB=90°,∵∠ACB+∠AOB=180°,∴O与C点共圆,过点F作FH⊥AB交于点H,设AB的中点为D,当H点与D点重合时,FH的长度最大,此时△FBA的面积最大,∵FH⊥AB,D是AB的中点,∴FA=FB,∵∠AFB=135°,∴∠FAB=∠FBA=22.5°,∴∠CAB=∠CBA=45°,∴△ABC是等腰直角三角形,连接CF,则C、F、D三点共线,过点F作FP⊥AC交于点P,∴FP=FD,AP=AD,∵AB=23,∴AC=6,AD=AP=3,∴CP=6-3,∵∠FCP=45°,∴CF=2CP=23-6,∴FD=3-(23-6)=6-3,×23×(6-3)=32-3,∴△AFB的面积=12∴△AFB面积的最大值为32-3;[灵活运用]∵△ABC是等边三角形,∴AB=BC,∠ACB=∠ABC=60°,∵BD=CE,∴△ABD≌△BCE(SAS),∴∠CBE=∠BAD,∴∠AFE=∠ABF+∠BAF=∠ABF+∠CBE=∠ABC=60°,∴∠AFB=120°,∵AB=23,∴F点在以AB为定弦,∠AFB为定角的圆上,设△ABF的外接圆为O,当△ABF的高经过圆心O时,△ABF的周长有最大值,连接AO、BO,∵∠AFB=120°,∴∠AOB=120°,∵OA=BO,∴∠OAB=30°,∵AB=23,∴AH=3,在Rt△AOH中,OH=AH•tan30°=1,OA=2OH=2,∴HF=OF-OH=1,∴AF=BF=2,∴△ABF周长的最大值为4+23.【点评】本题考查圆的综合应用,熟练掌握三角形全等的判定及性质,定角定弦的三角形与圆的关系是解题的关键.9(2022秋•鼓楼区期中)以下是“四点共圆”的几个结论,你能证明并运用它们吗?Ⅰ.若两个直角三角形有公共斜边,则这两个三角形的4个顶点共圆(图1、2);Ⅱ.若四边形的一组对角互补,则这个四边形的4个顶点共圆(图3);Ⅲ.若线段同侧两点与线段两端,点连线的夹角相等,则这两点和线段两端点共圆(图4).(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半得OA=OB=OC =OD,即A,B,C,D共圆;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,所以∠BED=180°-∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.(3)利用四点共圆证明锐角三角形的三条高交于一点.已知:如图6,锐角三角形ABC的高BD,CE相交于点H,射线AH交BC于点F.求证:AF是△ABC的高.(补全以下证明框图,并在图上作必要标注)(4)如图7,点P是△ABC外部一点,过P作直线AB,BC,CA的垂线,垂足分别为E,F,D,且点D,E,F在同一条直线上.求证:点P在△ABC的外接圆上.【分析】(1)根据直角三角形斜边中线的性质可得结论;(2)由圆周角的性质可得∠BED+∠A=180°,再结合题干条件,得出矛盾,由此可得出结论;(3)如图,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,从而证明∠BAF+∠ABF=90°即可;(4)连接BP和CP,由点A,E,P,F四点共圆可得,∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,再由外角的性质及角的和差可得∠BAC=∠BPC,由此可得点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【解答】解:(1)在图1、2中,取AC的中点O,根据直角三角形斜边上的中线等于斜边的一半,得OA =OB=OC=OD,即A,B,C,D共圆;故答案为:直角三角形斜边上的中线等于斜边的一半;(2)在图3中,画⊙O经过点A,B,D(图5).假设点C落在⊙O外,BC交⊙O于点E,连接DE,可得∠BED+∠A=180°,∴∠BED=180°-∠A,得出矛盾;同理点C也不会落在⊙O内,即A,B,C,D共圆.结论Ⅲ同理可证.故答案为:∠BED+∠A;180°-∠A;(3)如图6,连接DE,由点B、C、D、E四点共圆得∠BDE=∠ECB,由点A、D、H、E四点共圆得∠BDE=∠BAF,∴∠ECB=∠BAF,∵∠BEC=90°,∴∠ECB+∠ABF=90°,∴∠BAF+∠ABF=90°,∴∠BFA=90°,∴AF为△ABC的边BC上的高.(4)如图7,连接BP和CP,由点A,E,P,F四点共圆可得∠BEF=∠BPF,由点C,P,D,F四点共圆可得∠CDF=∠CPF,∵∠ADE=∠CDF,∴∠ADE=∠CPF,∵∠BAC=∠BEF+∠ADE,∠BPC=∠BPF+∠CPF,∴∠BAC=∠BPC,∴点A,B,C,P四点共圆,即点P在△ABC的外接圆上.【点评】本题考查了圆的定义,直角三角形斜边上的中线等于斜边一半,圆内接四边形对角互补,圆周角定理,内心的定义.第(3)(4)题解题关键是选取适当的四点证明共圆,再利用圆周角定理证明角相等.10(2022秋•仪征市期中)【问题提出】苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在⊙O的内接四边形ABCD中,BD是⊙O的直径.∠A与∠C、∠ABC与∠ADC有怎样的数量关系?2.如图(2),若圆心O不在⊙O的内接四边形ABCD的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的∠A与∠C、∠ABC与∠ADC都满足互补关系,请帮助他完善问题1的证明:∵BD 是⊙O 的直径,∴∠A =∠C =90°,∴∠A +∠C =180°,∵四边形内角和等于360°,∴∠ABC +∠ADC =180°.(2)请回答问题2,并说明理由;【深入探究】如图(3),⊙O 的内接四边形ABCD 恰有一个内切圆⊙I ,切点分别是点E 、F 、G 、H ,连接GH ,EF .(3)直接写出四边形ABCD 边满足的数量关系AD +BC =AB +CD ;(4)探究EF 、GH 满足的位置关系;(5)如图(4),若∠C =90°,BC =3,CD =2,请直接写出图中阴影部分的面积.【分析】(1)根据直径所对的圆周角是直角,四边形的内角和定理进行求解即可;(2)连接AC 、BD ,根据同弧所对的圆周角相等,三角形的内角和定理进行求解即可;(3)连接AI 、BI 、CI 、DI ,根据切线长定理进行求解即可;(4)连接EH 、IH 、IG 、IF 、GF ,根据切线的性质,四点共圆的性质可得∠GIF =∠ADC ,再由同弧所对的圆周角相等,可得∠GFE =∠GHE ,根据三角形内角和定理,可得∠DEH =∠GFE ,则∠FEH +∠EHG =∠FEH +∠IEF +∠DEH =∠EID =90°,即可证明EF ⊥GH ;(5)连接BD ,可得BD 是圆O 的直径,连接IF 、IH ,先推导出∠BIF +∠DIH =90°,再证明四边形IHCF 是正方形,可得∠HIF =90°,即可知I 点在BD 上,根据已知求出S 四边形ABCD =3×2=6,通过证明△DHI ∽△IFB ,求出IH =65,可求S ⊙I =3625π,则阴影部分的面积=6-3625π.【解答】解:【问题提出】(1)∵BD 是⊙O 的直径,∴∠A =∠C =90°,∴∠A +∠C =180°,∵四边形内角和等于360°,∴∠ABC +∠ADC =180°;故答案为:∠A =∠C =90°,∠ABC +∠ADC =180°;(2)成立,理由如下:连接AC 、BD ,∵∠DAC =∠CBD ,∠ACD =∠ABD ,∴∠DAC +∠ACD =∠DBC +∠ABD =∠ABC ,∵∠DAC +∠ACD +∠ADC =180°,∴∠ABC +∠ADC =180°;同理,∠BAD +∠BCD =180°;【深入探究】(3)AD +BC =AB +CD ,理由如下:连接AI 、BI 、CI 、DI ,∵圆I 是四边形ABCD 的内切圆,∴AG =AE ,DE =DH ,CH =CF ,BF =BG ,∴AD +BC =AE +ED +BF +CF =AG +DH +BG +CH =AB +CD ,即AD +BC =AB +CD ,故答案为:AD +BC =AB +CD ;(4)EF ⊥GH ,理由如下:连接EH 、IH 、IG 、IF 、GF ,∵四边形ABCD 是圆O 的内接四边形,∴∠B +∠D =180°,∵BG ⊥IG ,IF ⊥BF ,∴∠BGI =∠IFB =90°,∴∠B +∠GIF =180°,∴∠GIF =∠D ,∵GI =IF ,∴∠GFI =90°-12∠GIF ,∵ED =DH ,∴∠DEH =90°-12∠D ,∴∠GFI =∠DEH ,∵GE =GE ,∴∠GFE =∠GHE ,∴∠GHE =∠GFI +∠IFE ,∵IF =IE ,∴∠IFE =∠IEF ,∴∠FEH +∠EHG =∠FEH +∠IEF +∠DEH =∠EID =90°,∴EF ⊥GH ;(5)连接BD ,∵∠C =90°,∴∠A =90°,∵ABCD 是圆O 的内接圆,∴BD 是圆O 的直径,连接IF、IH,∵I是四边形ABCD的内切圆圆心,∴∠ADI=∠IDH,∠ABI=∠FBI,∵IH⊥CD,IF⊥BC,∴∠BIF=90°-∠IBF,∠DIH=90°-∠IDH,∴∠BIF+∠DIH=180°-(∠IBF+∠IDH)=180°-12(∠ADC+∠ABC),∵∠ABC+∠ADC=180°,∴∠BIF+∠DIH=90°,∵IF⊥FC,IH⊥CD,∠C=90°,IH=IF,∴四边形IHCF是正方形,∴∠HIF=90°,∴I点在BD上,∵BC=3,CD=2,∴S四边形ABCD=3×2=6,∵∠DIH+∠IDH=90°,∠IBF+∠IDH=90°,∴∠DIH=∠IBF,∵∠IHD=∠IFB=90°,∴△DHI∽△IFB,∴IH BF =DHIF,即IH3-IH=2-IHIH,解得IH=6 5,∴S⊙I=3625π,∴阴影部分的面积=6-3625π.【点评】本题考查圆的综合应用,熟练掌握四边形的内切圆性质,外接圆性质,三角形相似的判定及性质,切线的性质,四点共圆的性质是解题的关键.一.选择题(共3小题)11(2022•思明区二模)如图,四边形ABCD是⊙O的内接四边形,点E为边CD上任意一点(不与点C,点D重合),连接BE,若∠A=60°,则∠BED的度数可以是()A.110°B.115°C.120°D.125°【分析】四边形ABCD 是⊙O 的内接四边形,则∠A 和∠C 互补,已知∠A =60°,则∠C 的度数为120°,而∠BED 大于∠C 的度数,从而得出答案.【解答】解:∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠C =180°,∵∠A =60°,∴∠C =120°,∵∠BED =∠C +∠CBE ,∴∠BED >120°,∴∠BED 可能为125°.故选:D .【点评】本题主要考查了圆内接四边形以及三角形外角的性质,解题的关键是根据圆内接四边形的对角互补求出∠C 的度数,再根据外角的性质对∠BED 的度数做出正确的推断.12(2023•泾阳县模拟)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图,已知⊙O 的半径为2,则⊙O 的内接正六边形ABCDEF 的面积为()A.6B.63C.65D.43【分析】连接OA 、OB ,根据正多边形和圆的关系可判断出△OAB 为等边三角形,过点O 作OM ⊥AB 于点M ,再利用勾股定理即可求出OM 长,进而可求出△AOB 的面积,最后利用⊙O 的面积约为6S △AOB 即可计算出结果.【解答】解:如图,连接OA 、OB ,由题意可得:∠AOB =360÷6=60°,∵OA =OB =2,∴△OAB 为等边三角形,∴AB =2,过点O 作OM ⊥AB 于点M ,则AM =BM =1,在Rt △AOMR 中,OM =22-12=3,∴S △AOB =12×2×3=3,∴⊙O 的面积约为6S △AOB =63.故选:B .【点评】本题主要考查正多边形与圆、勾股定理等,正确应用正六边形的性质是解题关键.13(2023•蜀山区校级模拟)如图,△ABC 中,∠BAC =60°,AD 平分∠BAC ,∠BDC =120°,连接BD ,CD 并延长分别交AC ,AB 于点E 和点F ,若DE =6,DF CD=35,则BD 的长为()A.10B.12C.15D.16【分析】由AEDF四点共圆,得到DE=DF,再证明△CDE∽△CAF,得到AF与AC的比,延长CF 到P,使DP=DB,得到△BDP为等边三角形,在证明出△AFC∽△PFB,证出PF与PB,利用DF 即可求出BD.【解答】解:∵∠BAC=60°,∠BDC=120°,∴A、E、D、F四点共圆,∵AD平分∠BAC,∴∠DAE=∠DAF,∴DE=DF=6,∵∠BDC=120°,∴∠CDE=60°=∠FAC,∵∠ACD=∠ACD,∴△CDE∽△CAF,∴AF:AC=DE:CD=6:10=3:5,如图,延长CF到P,使DP=DB,∵∠PBD=60°,∴△BDP为等边三角形,∴∠P=60°,∴△AFC∽△PFB,∴PF:PB=AF:AC=3:5,设每一份为k,∴PB=PD=5k,PF=3k,∴DF=2k=6,∴k=3,∴BD=5k=15.故选:C.【点评】本题考查了三角形相似的性质、等边三角形的性质等知识点的应用,四点共圆的应用及相似比的转化是解题关键.二.填空题(共2小题)14(2023•银川校级二模)如图,在直径为AB的⊙O中,点C,D在圆上,AC=CD,若∠CAD= 28°,则∠DAB的度数为34°.【分析】利用等腰三角形的性质可得∠CAD =∠CDA =28°,从而利用三角形内角和定理可得∠ACD =124°,然后根据圆内接四边形对角互补求出∠ABD =56°,再根据直径所对的圆周角是直角可得∠ADB =90°,从而求出∠DAB 的度数.【解答】解:∵AC =CD ,∠CAD =28°,∴∠CAD =∠CDA =28°,∴∠ACD =180°-∠CAD -∠CDA =124°,∵四边形ABCD 是⊙O 的内接四边形,∴∠ACD +∠ABD =180°,∴∠ABD =180°-∠ACD =56°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB =90°-∠ABD =34°.故答案为:34°.【点评】本题考查了等腰三角形的性质,圆周角定理,圆心角、弧、弦的关系,熟练掌握圆周角定理是解题的关键.15(2023•海曙区校级一模)如图,在等腰三角形纸片ABC 中,AB =AC ,将该纸片翻折,使得点C 落在边AB 的F 处,折痕为DE ,D ,E 分别在边BC ,AC 上,∠AFD =∠DEF ,若DE =4,BD =9,则DF =6,△ABC 的面积为 45154 .【分析】根据折叠的性质可得∠CED =∠DEF ,∠C =∠DFE ,以此可得∠CED =∠AFD ,因此可判断A 、F 、D 、E 四点共圆,由圆周角定理可得∠DAF =∠DEF ,∠CAD =∠DFE ,进而得到∠AFD =∠DAF ,∠CAD =∠C ,则DF =AD =CD ,由等腰三角形的性质可得∠B =∠C ,以此可证明△BAD∽△CED ,由相似三角形的性质可求得DF =AD =CD =6,则BC =15,BG =CG =152,DG =32,根据勾股定理求出AG ,再算出△ABC 的面积即可求解.【解答】解:连接AD ,过点A 作AG ⊥BC 于点G ,如图,根据折叠的性质可得,∠CED =∠DEF ,∠C =∠DFE ,∵∠AFD =∠DEF ,∴∠CED =∠AFD ,∴A 、F 、D 、E 四点共圆,∴∠DAF =∠DEF ,∠CAD =∠DFE ,∴∠AFD =∠DAF ,∠CAD =∠C ,∴DF =AD =CD ,∵AB =AC ,∴∠B =∠C ,∵∠CED =∠DEF =∠DAF ,∴△BAD ∽△CED ,∴AD DE =BD CD,∵DE =4,BD =9,DF =AD =CD ,∴DF 4=9DF,∴DF =AD =CD =6,∴BC =BD +CD =9+6=15,∵AG ⊥BC ,AB =AC ,∴BG =CG =12BC =152,∴DG =CG -CD =152-6=32,在Rt △ADG 中,由勾股定理得AG =AD 2-DG 2=62-32 2=3152,∴S △ABC =12BC ⋅AG =12×15×3152=45154.故答案为:6,45154.【点评】本题主要考查四点共圆的判定、相似三角形的判定与性质、等腰三角形的性质,圆周角定理、勾股定理,正确作出辅助线,通过所给条件推出A 、F 、D 、E 四点共圆,以此得到DF =AD =CD 是解题关键.三.解答题(共7小题)16(2022秋•南关区校级期末)【问题情境】如图①,在四边形ABCD 中,∠B =∠D =90°,求证:A 、B 、C 、D 四点共圆.小吉同学的作法如下:连结AC ,取AC 的中点O ,连结OB 、OD ,请你帮助小吉补全余下的证明过程;【问题解决】如图②,在正方形ABCD 中,AB =2,点E 是边CD 的中点,点F 是边BC 上的一个动点,连结AE ,AF ,作EP ⊥AF 于点P .(1)如图②,当点P 恰好落在正方形ABCD 对角线BD 上时,线段AP 的长度为 102 ;(2)如图③,过点P 分别作PM ⊥AB 于点M ,PN ⊥BC 于点N ,连结MN ,则MN 的最小值为 132-52 .【分析】【问题情境】连结AC,取AC的中点O,连结OB、OD,根据直角三角形斜边上的中线等于斜边的一半,可得OD=OA=OC=OB,以此即可证明;【问题解决】(1)根据题意可得AE=AD2+DE2=5,由【问题情境】结论可知A、D、E、P四点共圆,根据圆周角定理以及正方形的性质可得∠PDE=∠PAE=45°,则△PAE为等腰直角三角形,设AP长为a,则PE长为a,根据勾股定理列出方程,求解即可;(2)由【问题情境】结论可知A、D、E、P四点共圆,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,根据题意可得四边形MBNP为矩形,则要求MN的最小值,即求PB的最小值,根据平行线的性质和中点的定义可得OG为△ADE的中位线,得AG=1,OG=12,同理可证四边形AHOG为矩形,以此得到OH=AG=1,BH=32,根据勾股定理得OB=OH2+BH2=132,根据两点之间线段最短得PB+OP≥OB,以此即可求出PB的最小值,从而求得MN的最小值.【解答】【问题情境】证明:如图,连结AC,取AC的中点O,连结OB、OD,∵∠ADC=∠ABC=90°,O为AC的中点,∴OA=OB=OC=OD=12AC,∴A、B、C、D四点共圆;【问题解决】解:(1)∵四边形ABCD为正方形,点E是边CD的中点,AB=2,∴AD=2,DE=1,∴AE=AD2+DE2=5,由【问题情境】结论可知,A、D、E、P四点共圆,如图,∴∠PAE=∠PDE,∵BD为正方形ABCD的对角线,∴∠PDE=∠PAE=45°,∵EP⊥AF,∴△PAE为等腰直角三角形,设AP长为a,则PE长为a,∴AP2+PE2=AE2,即a2+a2=52,解得:a1=102,a2=-102(不合题意,舍去),∴线段AP的长度为102;故答案为:10 2;(2)由【问题情境】结论可知,A、D、E、P四点共圆,如图,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,∵PM⊥AB,PN⊥BC,∴∠PMB=∠MBN=∠PNB=90°,∴四边形MBNP为矩形,∴MN=PB,要求MN的最小值,即求PB的最小值,由(1)知,AE=5,∴OA=52,∵OG⊥AD,且点O为AE的中点,∴OG∥DE,∴OG为△ADE的中位线,∴AG=1,OG=12,∵OG⊥AD,OH⊥AB,∴四边形AHOG为矩形,∴AH=OG=12,OH=AG=1,∴BH=32,在Rt△BHO中,OB=OH2+BH2=13 2,根据两点之间线段最短得,PB+OP≥OB,PB≥OB-OP=132-52,∴PB的最小值为132-52,∴MN的最小值为132-52.故答案为:132-52.【点评】本题主要考查四点共圆、正方形的性质,等腰直角三角形的性质、勾股定理、中位线的判定与性质、平行线的判定与性质,属于圆的综合题,熟练掌握相关知识是解题关键.17(2023•萍乡模拟)如图,点A,B,C在⊙O上,且∠ABC=120°,请仅用无刻度的直尺,按照下列要求作图.(保留作图痕迹,不写作法)(1)在图(1)中,AB>BC,作一个度数为30°的圆周角;(2)在图(2)中,AB=BC,作一个顶点均在⊙O上的等边三角形.【分析】(1)作直径AD,连接CD,AC,则∠ADC=60°,∠DAC=30°;(2)作直径BE,连接EC,AE,AC,△ACE即为所求.【解答】解:(1)如图1中,∠CAD即为所求;(2)如图2中,△ACE即为所求.【点评】本题考查作图-复杂作图,等边三角形的判定和性质,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2022•芜湖一模)如图,在正方形ABCD中,P是边BC上的一个动点(不与点B,C重合),作点B关于直线AP的对称点E,连接AE,再连接DE并延长交射线AP于点F,连接BF和CF.(1)若∠BAP=α,则∠AED=45°+α(用含α的式子直接填空);(2)求证:点F在正方形ABCD的外接圆上;(3)求证:AF-CF=2BF.【分析】(1)由轴对称的性质得∠EAP=∠BAP=a,AE=AB,由正方形的性质得∠BAD=90°,AB =AD,则∠DAE=90°-2a,AD=AE,由等腰三角形的性质即可得出结论;(2)由轴对称的性质得∠AEF=∠ABF,AE=AB,证出AE=AD,由等腰三角形的性质得∠ADE =∠AED,证∠ADE+∠ABF=180°,则∠BFD+∠BAD=180°,得∠BFD=90°即可;(3)过点B作BM⊥BF交AF于点M,则∠MBF=90°,证△BMF是等腰直角三角形,得BM=BF,FM=2BF,证△AMB≌△CFB(SAS),得AM=CF,进而得出结论.【解答】解:(1)∵点B关于直线AP的对称点E,∠BAP=α,∴∠EAP=∠BAP=α,AE=AB,∵ABCD 是正方形,∴AD =AB ,∠BAD =90°,∴AE =AD ,∠DAE =90°-2α,∴∠ADE =∠AED =12(180°-∠DAE )=12(90°+2α)=45°+α,故答案为:45°+α;(2)证明:由(1)∠AED =45°+α,又∵∠BAE =2α,∴∠EFA =∠BFA =45°,∠BFD =90°,连接BD ,则∠BCD =90°,∴∠BCD =∠BAD =∠BFD =90°,∴B 、F 、C 、D 和A 、B 、C 、D 都在以BD 为直径的圆上,即点F 在正方形ABCD 的外接圆上;(3)过点B 作BM ⊥BF 交AF 于M 点,则∠MBF =90°,∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =90°,∴∠MBF =∠ABC ,∴∠ABM =∠CBF ,∵点E 与点B 关于直线AP 对称,∴∠BFD =90°,∴∠MFB =∠MFE =45°,∴△BMF 是等腰直角三角形,∴BM =BF ,FM =2BF ,在△AMB 和△CFB 中,AB =BC ∠ABM =∠CBF BM =BF,∴△AMB ≌△CFB (SAS ),∴AM =CF ,∴AF =FM +AM =2BF +CF ,∴AF -CF =2BF .【点评】本题考查了正方形的性质、轴对称的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,解题关键是熟练掌握矩形的性质和轴对称的性质,证明三角形全等.19(2021秋•鹿城区校级期中)如图,△ABC 内接于⊙O ,CD ⊥AB ,CB =10cm ,CD =8cm ,AB =14cm .(1)∠A 度数45°.(直接写出答案)(2)求BC 的长度.(3)P 是⊙O 上一点(不与A ,B ,C 重合),连结BP .①若BP 垂直△ABC 的某一边,求BP 的长.②将点A 绕点P 逆时针旋转90°后得到A ′,若A ′恰好落在CD 上,则CA '的长度为4.(直接写出答案)【分析】(1)利用勾股定理,等腰三角形的判定和三角形的内角和定理解答即可;(2)连接OB ,OC ,利用圆周角定理求得圆心角的度数,再利用弧长公式解答即可;(3)①连接AP ,利用等腰直角三角形的性质求得BE ,利用全等三角形的判定与勾股定理求得PE ,则BP 可求;②连接AA ′,PD ,设PD 与AC 交于点E ,通过证明P ,A ,D ,A ′四点共圆,利用圆周角定理和垂径定理得到PD 经过圆心O ,过点O 作OF ⊥AB 于点F ,利用垂径定理和勾股定理求得OE ,连接OC ,利用勾股定理求得圆的半径,再利用等腰直角三角形的性质求得PA ,勾股定理求得DA ′,则CA ′=CD -DA ′.【解答】解:(1)在Rt △BCD 中,CB =10cm ,CD =8cm ,∴BD =BC 2-CD 2=102-82=6(cm ),∴AD =AB -BD =14-6=8cm =CD ,∴∠A =∠ACD ,∵CD ⊥AB ,∴∠ADC =90°,∴∠A =180o -∠ADC 2=180o -90°2=45°,故答案为:45°;(2)连接OB ,OC ,如图,∵∠BAC =45°,∴∠BOC =90°,在Rt △BOC 中,OB =OC ,CB =10cm ,∴OB =22BC =52(cm ),∴BC 的长度=90π×52180=52π2cm ;(3)①∵P 是⊙O 上一点(不与A ,B ,C 重合),BP 垂直△ABC 的某一边,∴点P 只能在AC上,连接AP ,如图,由(1)知:∠CAB =45°,∵BP ⊥AC ,。

中考压轴题-四点共圆精讲精练

中考压轴题-四点共圆精讲精练

中考压轴题之四点共圆问题精讲精练一.选择题1.如图,圆内接四边形ABCD 的外角ABE ∠为80︒,则ADC ∠度数为( )A .80︒B .40︒C .100︒D .160︒(第1题图) (第2题图) (第3题图)2.如图,在ABC ∆中,90ABC ∠=︒,4BC =,8AB =,P 为AC 边上的一个动点,D 为PB 上的一个动点,连接AD ,当CBP BAD ∠=∠时,线段CD 的最小值是( )A B .2 C .1 D .43.如图,在矩形ABCD 中,8AB =,6BC =,点P 在矩形的内部,连接PA ,PB ,PC ,若PBC PAB ∠=∠,则PC 的最小值是( )A .6B 3C .4D .44.如图,在矩形ABCD 中,5AD =,AB =E 在AB 上,12AE EB =,在矩形内找一点P ,使得60BPE ∠=︒,则线段PD 的最小值为( )A .2B .4-C .4D .5.如图,6AB AD ==,60A ∠=︒,点C 在DAB ∠内部且120C ∠=︒,则CB CD +的最大值( )A .B .8C .10D .二.填空题6.在ABC ∆中,4AB =,45C ∠=︒,则2AC BC +的最大值为 .7.如图,P 是矩形ABCD 内一点,4AB =,2AD =,AP BP ⊥,则当线段DP 最短时,CP = .8.如图,AB BC ⊥,5AB =,点E 、F 分别是线段AB 、射线BC 上的动点,以EF 为斜边向上作等腰Rt DEF ∆,90D ∠=︒,连接AD ,则AD 的最小值为 .9.在Rt ABC ∆中,AB AC =,90BAC ∠=︒,点E 是线段AC 上一点,过E 作EG BC ⊥,交BC 于G ,连接BE ,点D 是BE 的中点,连接AD 交BC 于点F .若25AD =,3BF =,则FG = .10.如图,ABC ∆和BCD ∆均为直角三角形,90BAC BDC ∠=∠=︒,2AB =,连接AD .若30ADB ∠=︒,则AC 的长为 .11.如图,在四边形ABCD 中,6BD =,90BAD BCD ∠=∠=︒,则四边形ABCD 面积的最大值为 .12.如图,在ABC ∆和ACD ∆中,45ABC ADC ∠=∠=︒,6AC =,则AD 的最大值为 .13.如图,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,点E ,F 分别为AB ,AC 边上的点,且90EDF ∠=︒,连接EF ,则DEF ∠的度数为 .14.如图,以C 为公共顶点的Rt ABC ∆和Rt CED ∆中,90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,且点D 在线段AB 上,则ABE ∠= ,若10AC =,9CD =,则BE = . 三.解答题 15.【问题原型】如图①,在O 中,弦BC 所对的圆心角90BOC ∠=︒,点A 在优弧BC 上运动(点A 不与点B 、C 重合),连结AB 、AC .(1)在点A 运动过程中,A ∠的度数是否发生变化?请通过计算说明理由.(2)若2BC =,求弦AC 的最大值.【问题拓展】如图②,在ABC ∆中,4BC =,60A ∠=︒.若M 、N 分别是AB 、BC 的中点,则线段MN 的最大值为 .16.【问题提出】九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:1.如图(1),在O 的内接四边形ABCD 中,BD 是O 的直径.A ∠与C ∠、ABC ∠与ADC ∠有怎样的数量关系?2.如图(2),若圆心O 不在O 的内接四边形ABCD 的对角线上,问题(1)中发现的结论是否仍然成立?(1)小明发现问题1中的A ∠与C ∠、ABC ∠与ADC ∠都满足互补关系,请帮助他完善问题1的证明:BD是O的直径,∴,180∴∠+∠=︒,四边形内角和等于360︒,∴.A C(2)请回答问题2,并说明理由;【深入探究】如图(3),O的内接四边形ABCD恰有一个内切圆I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系;(4)探究EF、GH满足的位置关系;(5)如图(4),若90CD=,请直接写出图中阴影部分的面积.BC=,2∠=︒,3C17.综合与实践:“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果B D∠=∠,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则180∠+∠=︒(依据1)AEC D∠=∠180B DAEC B∴∠+∠=︒∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,12∠的度数为.∠=∠,345∠=︒,则4拓展探究:(3)如图4,已知ABC=,点D在BC上(不与BC的∆是等腰三角形,AB AC中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE ,DE .①求证:A ,D ,B ,E 四点共圆;②若22AB =,AD AF ⋅的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.18.如图,在矩形ABCD 中,点E 为边AD 的中点,点F 为AB 上的一个动点,连接FE 并延长,交CD 的延长线于点G ,以FG 为底边在FG 下方作等腰Rt FHG ∆,且90FHG ∠=︒.(1)如图①,若点H 恰好落在BC 上,连接BE ,EH .①求证:2AD AB =;②若tan 2BEH ∠=,1GD =,求FHG ∆的面积;(2)如图②,点H 落在矩形ABCD 内,连接CH ,若4AD =,3AB =,求四边形FHCB 面积的最大值.19.如图,ABC ∆是等边三角形,以AC 为腰在AC 右侧作等腰()ADE AD AE ∆=,点D 与点C 重合,连接BE .(1)如图①,过点C 作CG EB ⊥于点G ,若90CAE ∠=︒.①求证:BG CG =;②已知22BC =,求BCE ∆的周长;(2)如图②,若60DAE ∠=︒,将DAE ∆绕点A 逆时针旋转,使点E 落在BA 的延长线上.现DAB ∠内有一点M ,连接DM ,EM ,BM ,作DM 的垂直平分线交BM 的延长线于点N ,交EM 于点H ,直线NH 恰好过点A .若2AE =,当EH 取得最大值时,求AN 的长.20.如图,在ABC ∆中,以AB 为直径作O 交AC 于点D ,交BC 于点E ,CE BE =,过点E 作EF AC ⊥于点F ,FE 的延长线交AB 的延长线于点G ,连接DE .(1)求证:FG 是O 的切线;(2)求证:2EG AG BG =⋅;(3)若1BG =,2EG =,求sin CDE ∠的值.参考答案一.选择题1.解:四边形ABCD 为圆内接四边形,180ADC ABC ∴∠+∠=︒,180ABE ABC ∠+∠=︒,80ADC ABE ∴∠=∠=︒,故选:A .2.解:90ABC ∠=︒,90ABP CBP ∴∠+∠=︒,CBP BAD ∠=∠,90ABD BAD ∴∠+∠=︒,90ADB ∴∠=︒,取AB 的中点E ,连接DE ,CE ,142DE AB ∴==, 242EC EB ∴==,CD CE DE -, CD ∴的最小值为424-,故选:D .3.解:四边形ABCD 是矩形,90ABC ∴∠=︒,90ABP PBC ∴∠+∠=︒,PBC PAB ∠=∠,90PAB PBA ∴∠+∠=︒,90APB ∴∠=︒,∴点P 在以AB 为直径的圆上运动,设圆心为O ,连接OC 交O 于P ,此时PC 最小,222246213OC OB BC =+=+=,PC ∴的最小值为2134-,故选:C .4.解:如图,在BE 的上方,作OEB ∆,使得OE OB =,120EOB ∠=︒,连接OD ,过点O 作OQ BE ⊥于Q ,OJ AD ⊥于J .12BPE EOB ∠=∠,∴点P 的运动轨迹是以O 为圆心,OE 为半径的O ,∴当点P 落在线段OD 上时,DP 的值最小,四边形ABCD 是矩形,90A ∴∠=︒,33AB =,:1:2AE EB =,23BE ∴=,OE OB =,120EOB ∠=︒,OQ EB ⊥,3EQ BQ ∴==,60EOQ BOQ ∠=∠=︒,1OQ ∴=,2OE =,OJ AD ⊥,OQ AB ⊥,90A AJO AQO ∴∠=∠=∠=︒,∴四边形AQOJ 是矩形,1AJ OQ ∴==,23JO AQ ==,5AD =,4DJ AD AJ ∴=-=,22224(23)27OD JD OJ ∴=+=+=,PD ∴的最小值272OD OP =-=-,故选:A . 5.解:如图,连接AC ,BD ,在AC 上取点M 使DM DC =,60DAB ∠=︒,120DCB ∠=︒,180DAB DCB ∴∠+∠=︒,A ∴,B ,C ,D ,四点共圆,AD AB =,60DAB ∠=︒,ADB ∴∆是等边三角形,60ABD ACD ∴∠=∠=︒,DM DC =,DMC ∴∆是等边三角形,60ADB ACD ∴∠=∠=︒,ADM BDC ∴∠=∠,AD BD =,()ADM BDC SAS ∴∆≅∆,AM BC ∴=,AC AM MC BC CD ∴=+=+, 四边形ABCD 的周长为AD AB CD BC AD AB AC +++=++,且6AD AB ==,∴当AC 最大时,四边形ABCD 的周长最大,则CB CD +最大,此时C 点在BD 的中点处,30CAB ∴∠=︒,AC ∴的最大值cos3043AB =⨯︒=,CB CD ∴+最大值为43AC =,故选:A .二.填空题(共9小题)6.解:过点B 作BD AC ⊥于点D ,45C ∠=︒,BCD ∴∆为等腰直角三角形,BD CD ∴=,设BD CD a ==,延长AC 至点F ,使得CF a =, 1tan 22a AFB a ∠==,作ABF ∆的外接圆O ,过点O 作OE AB ⊥于点E ,则122AE AB ==,AOE AFB ∠=∠, 1tan 2AOE ∴∠=,4OE ∴=,222425OA =+=, ∴222()2()22()2AC BC AC BC AC CF AF OA OF +=+=+=+,∴2AC BC +的最大值为245410⨯=.故答案为:410.7.解:以AB 为直径作半圆O ,连接OD ,与半圆O 交于点P ',当点P 与P '重合时,DP 最短, 122AO OP OB AB ='===,2AD =,90BAD ∠=︒,22OD ∴=,45ADO AOD ODC ∠=∠=∠=︒,222DP OD OP ∴'=-'=-,过P '作P E CD '⊥于点E ,则2222P E DE DP '=='=-,22CE CD DE ∴=-=+,2223CP P E CE ∴'='+=. 故答案为:23.8.解:连接BD 并延长,如图,AB BC ⊥,90ABC ∴∠=︒,90EDF ∠=︒,180ABC EDF ∴∠+∠=︒,B ∴,E ,D ,F 四点共圆,DEF ∆为等腰直角三角形,45DEF DFE ∴∠=∠=︒,45DBF DEF ∴∠=∠=︒,45DBF DBE ∴∠=∠=︒,∴点D 的轨迹为ABC ∠的平分线上,垂线段最短,∴当AD BD ⊥时,AD 取最小值,AD ∴的最小值为25222AB =,故答案为:522. 9.解:连接AG ,将ACG ∆绕点A 逆时针旋转90︒得到ABM ∆,连接MG ,MF ,EG BC ⊥,90BAC ∠=︒,180BAC BGE ∴∠+∠=︒,∴点A 、B 、G 、E 四点共圆,GBE GAE ∴∠=∠,又点D 是BE 的中点,且AB AC =,90BAC ∠=︒,AD BD ∴=,ABE BAD ∴∠=∠,45BAD GAE ABE GBE ∴∠+∠=∠+∠=︒,45FAG ∴∠=︒,由旋转性质可得:90MAG ∠=︒,AM AG =,MB CG =,45MBA C ∠=∠=︒,45MAF FAG ∴∠=∠=︒,90MBF ∠=︒,在MAF ∆和GAF ∆中,AM AG MAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()MAF GAF SAS ∴∆≅∆,MF FG ∴=,EG BC ⊥,45C ∠=︒,EG GC MB ∴==,在MBG ∆和EGB ∆中,MB EG MBG EGB BG GB =⎧⎪∠=∠⎨⎪=⎩,()MBG EGB SAS ∴∆≅∆,245MG BE AD ∴===,设CG x =,FG y =,则MB x =,FM y =,在Rt MBG ∆中,222(3)(45)x y ++=①,在Rt MBF ∆中,2223x y +=②,联立①②,解得1145x y =⎧⎨=⎩,22558x y ⎧=⎪⎨=-⎪⎩(不合题意,舍去),33558x y ⎧=-⎪⎨=-⎪⎩(不合题意,舍去),4445x y =-⎧⎨=⎩(不合题意,舍去),综上,5FG =, 解法二:如图,延长AD 到H ,使得DH AD =,连接BH ,则ADE HDB ∆≅∆设AB AC x ==,AE BH y ==,则有228023x y y x x ⎧+=⎪⎨=⎪-⎩,解得622x y ⎧=⎪⎨=⎪⎩, 12345FG ∴=--=.故答案为:5.10.解:90BAC BDC ∠=∠=︒,A ∴,B ,C ,D 四点共圆,30ADB ∠=︒,2AB =,30ACB ADB ∴∠=∠=︒,24BC AB ∴==,22224223AC BC AB ∴--2311.解:90BAD BCD ∠=∠=︒,A ∴,C 两点在以BD 为直径的圆上,∴当AB AD =,CB CD =时,四边形ABCD 面积最大,6BD =,32AB AD CB CD ∴====,∴四边形BCD 的面积为132322182⨯⨯⨯=.故答案为:18. 12.解:45ABC ADC ∠=∠=︒,A ∴,C ,D ,B 四点共圆,如图,作O 经过A ,C ,D ,B 四点,当()AD D '为直径时,AD 有最大值,45ADC ∠=︒,90AOC ∴∠=︒,OA OC =,AOC ∴∆是等腰直角三角形,6AC =,26322AO ∴=⨯=, 262AD AO ∴'==,即AD 的最大值为62.故答案为:62.13.解:如图,连接AD ,ABC ∆中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,90ADC ∴∠=︒,AD CD =,45BAD C ∠=∠=︒,而90EDF ∠=︒,ADE CDF ∴∠=∠,在ADE ∆和CDF ∆中,BAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADE CDF ASA ∴∆≅∆,DE DF ∴=, 而90EDF ∠=︒,45DEF DFE ∴∠=∠=︒.故答案为:45︒.14.解:90ACB CDE ∠=∠=︒,30A DCE ∠=∠=︒,60DBC DEC ∴∠=∠=︒,B ∴、C 、D 、E 四点共圆,30DBE DCE ∴∠=∠=︒,30ABE ∴∠=︒,设BC x =,则2AB x =,在Rt ABC ∆中,由勾股定理得222AB AC BC =+,10AC =,222(2)10x x ∴=+,解得:1033x =,1033BC ∴=, 设DE a =,则2CE a =,在Rt CED ∆中,由勾股定理得222CE DE CD =+,9CD =,222(2)9a a ∴=+,解得:33a =,33DE ∴=,63CE =,60ABC ∠=︒,30ABE ∠=︒,90CBE ABC ABE ∴∠=∠+∠=︒,在Rt CBE ∆中,由勾股定理得2222103442(63)()33BE CE BC =--=. 三.解答题(共9小题)15.解:【问题原型】(1)A ∠的度数不发生变化,理由如下:12A BOC ∠=∠,90BOC ∠=︒,∴190452A ∠=⨯︒=︒; (2)当AC 为O 的直径时,AC 最大,在Rt BOC ∆中,90BOC ∠=︒,根据勾股定理,得222OB OC BC +=,OB OC =,∴222222OC BC ==⨯=, ∴222AC OC ==,即AC 的最大值为22;【问题拓展】如图,画ABC ∆的外接圆O ,连接OB ,OC ,ON ,则ON BC ⊥,60BON ∠=︒,122BN BC ==,sin60BNOB∴===︒M、N分别是AB、BC的中点,MN∴是ABC∆的中位线,12MN AC∴=,AC∴为直径时,AC最大,此时2AC OB==,MN∴16.解:【问题提出】(1)BD是O的直径,90A C∴∠=∠=︒,180A C∴∠+∠=︒,四边形内角和等于360︒,180ABC ADC∴∠+∠=︒;故答案为:90A C∠=∠=︒,180ABC ADC∠+∠=︒;(2)成立,理由如下:连接AC、BD,DAC CBD∠=∠,ACD ABD∠=∠,DAC ACD DBC ABD ABC∴∠+∠=∠+∠=∠,180DAC ACD ADC∠+∠+∠=︒,180ABC ADC∴∠+∠=︒;同理,180BAD BCD∠+∠=︒;【深入探究】(3)AD BC AB CD+=+,理由如下:连接AI、BI、CI、DI ,圆I是四边形ABCD的内切圆,AG AE∴=,DE DH=,CH CF=,BF BG=,AD BC AE ED BF CF AG DH BG CH AB CD∴+=+++=+++=+,即AD BC AB CD+=+,故答案为:AD BC AB CD+=+;(4)EF GH⊥,理由如下:连接EH、IH、IG、IF、GF ,四边形ABCD是圆O的内接四边形,180B D∴∠+∠=︒,BG IG⊥,IF BF⊥,90BGI IFB∴∠=∠=︒,180B GIF∴∠+∠=︒,GIF D∴∠=∠,GI IF=,1902GFI GIF∴∠=︒-∠,ED DH=,1902DEH D∴∠=︒-∠,GFI DEH∴∠=∠,GE GE=,GFE GHE∴∠=∠,GHE GFI IFE∴∠=∠+∠,IF IE=,IFE IEF∴∠=∠,90FEH EHG FEH IEF DEH EID∴∠+∠=∠+∠+∠=∠=︒,EF GH∴⊥;(5)连接BD ,90C ∠=︒,90A ∴∠=︒,ABCD 是圆O 的内接圆,BD ∴是圆O 的直径,连接IF 、IH ,I 是四边形ABCD 的内切圆圆心,ADI IDH ∴∠=∠,ABI FBI ∠=∠,IH CD ⊥,IF BC ⊥,90BIF IBF ∴∠=︒-∠,90DIH IDH ∠=︒-∠, 1180()180()2BIF DIH IBF IDH ADC ABC ∴∠+∠=︒-∠+∠=︒-∠+∠, 180ABC ADC ∠+∠=︒,90BIF DIH ∴∠+∠=︒,IF FC ⊥,IH CD ⊥,90C ∠=︒,IH IF =,∴四边形IHCF 是正方形, 90HIF ∴∠=︒,I ∴点在BD 上,3BC =,2CD =,326ABCD S ∴=⨯=四边形,90DIH IDH ∠+∠=︒,90IBF IDH ∠+∠=︒,DIH IBF ∴∠=∠,90IHD IFB ∠=∠=︒,DHI IFB ∴∆∆∽,∴IH DH BF IF =,即23IH IH IH IH-=-, 解得65IH =,3625I S π∴=,∴阴影部分的面积36625π=-.17.(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:12∠=∠,∴点A ,B ,C ,D 四点在同一个圆上,34∴∠=∠,345∠=︒,445∴∠=︒,故答案为:45︒;(3)①证明:AB AC =,ABC ACB ∴∠=∠,点E 与点C 关于AD 的对称,AE AC ∴=,DE DC =,AEC ACE ∴∠=∠,DEC DCE ∠=∠,AED ACB ∴∠=∠,AED ABC ∴∠=∠,A ∴,D ,B ,E 四点共圆;②解:AD AF ⋅的值不会发生变化,理由如下:如图4,连接CF ,点E 与点C 关于AD 的对称, FE FC ∴=,FEC FCE ∴∠=∠,FED FCD ∴∠=∠, A ,D ,B ,E 四点共圆,FED BAF ∴∠=∠,BAF FCD ∴∠=∠, A ∴,B ,F ,C 四点共圆,BAD FAB ∠=∠,ABD AFB ∴∆∆∽, ∴AD AB AB AF=,28AD AF AB ∴⋅==.18.(1)①证明:如图①中,过点E 作ET BC ⊥于点T .四边形ABCD 是矩形,90A ADC EDG ∴∠=∠=∠=︒,在AEF ∆和DEG ∆中, 90A EDG AE EDAEF DEG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()AEF DEG ASA ∴∆≅∆,EF EG ∴=, FGH ∆是等腰直角三角形,HE EF EG ∴==,HE FG ⊥, 90A ABT ETB ∠=∠=∠=︒,∴四边形ABTE 是矩形,90AET FEH ∴∠=∠=︒,AEF TEH ∴∠=∠,在EAF ∆和ETH ∆中,90A ETH AEF TEH EF EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EAF ETH AAS ∴∆≅∆,EA ET ∴=,∴四边形ABTE 是正方形,AE AB ∴=,2AD AE =,2AD AB ∴=;②解:如图①1-中,时FH 交BE 于点J .FJB EJH ∠=∠,45FBJ EHJ ∠=∠=︒,BFH BEH ∴∠=∠, tan tan 2BFH BEH ∴∠=∠=,∴2BH FB =,EAF ETH EDG ∆≅∆≅∆, 1AF DG TH ∴===,设AB BT x ==,则121x x +=-,3x ∴=,2BF ∴=,4BH =, 在Rt BFH ∆中,22222425FH BF BH =+=+=,12525102DGH S ∆∴=⨯⨯=; (2)解:如图②中,过点H 作HQ AB ⊥于点Q ,过点E 作ER QH ⊥于点R ,连接BH .同法可证,EAF ERH ∆≅∆,EA ER ∴=,AF RH =,2AE ED ==,2ER AE ∴==,四边形AQRE 是正方形,2AQ AE ∴==,1BQ ∴=,14122BCH S ∆∴=⨯⨯=,设AF RH y ==, 211125(3)(2)()2228BFH S y y y ∆∴=-⋅+=--+,102-<, 12y ∴=时,BFH ∆的面积最大,最大值为258, ∴四边形BCHF 的面积的最大值2541288=+=. 19.(1)①证明:如图①中,连接AG ,延长CG 交AB 于点J ,过点A 作AM CJ ⊥交CJ 的延长线于点M ,AN BE ⊥于点N .CG BE ⊥,90OAE OGC ∴∠=∠=︒,AOE GOC ∠=∠,AOE GOC ∴∆∆∽,∴AO EO GO CO =,∴AO GO EO CO=, AOG EOC ∠=∠,AOG EOC ∴∆∆∽,45AGO ACE ∴∠=∠=︒,90OGJ ∠=︒,45AGN AGM ∴∠=∠=︒, AM GM ⊥,AN GN ⊥,AM AN ∴=,90ANB AMC ∠=∠=︒,AC AB =, Rt AMC Rt ANB(HL)∴∆≅∆,ACM ABN ∴∠=∠,AB AC =, ABC ACB ∴∠=∠,GBC GCB ∴∠=∠,GB GC ∴=;②解:GB GC =,90BGC ∠=︒,22BC =,2GB GC ∴==, AB AC =,GB GC =,AG ∴垂直平分线线段BC ,30CAG ∴∠=︒,AOG EOC ∆∆∽,30OEC OAG ∴∠=∠=︒, 24EC CG ∴==,23EG =,223BE ∴=+,BCE ∴∆的周长22223422236BC BE EC =++=+++=++;(2)解:如图②中,以A 为圆心,AE 为半径作A ,设AN 交DM 于点J .AD AE =,60DAE ∠=︒,ADE ∴∆是等边三角形,点D ,M 关于AN 对称,AD AM ∴=,∴点M 在A 上, 1302EMD EAD ∴∠=∠=︒,AN DM ⊥,90MJH ∴∠=︒,60AHE MHJ ∠=∠=︒,60AHE ADE ∴∠=∠=︒,A ∴,E ,D ,H 四点共圆, 60EHD EAD ∴∠=∠=︒,120AHD ∴∠=︒,∴当EH 是四边形AEDH 的外接圆的直径时,EH 的值最大,此时点C 与点M 重合,B ,C ,N 共线,且EM AD ⊥(如图②1-中),30AEM DEM ∴∠=∠=︒,90AEN ∴∠=︒,90BAN ∴∠=︒, 2AB AE ==,60B ∠=︒,tan 6023AN AB ∴=⋅︒=20.(1)证明:连接OE ,CE BE =,OA BO =,OE ∴是ABC ∆的中位线, //OE AC ∴,EF AC ⊥,OE EF ∴⊥,E 点在圆O 上,FG ∴是O 的切线;(2)证明:OE GF ⊥,90OEG ∴∠=︒,222OG OE EG ∴=+, 222()()EG OG OE OG OE OG OE =-=+-,EO BO OA ==, 2()()EG OG OA OG OB AG BG ∴=+-=⋅; (3)解:连接AE ,过E 点作EM AB ⊥交于点M ,2EG AG BG =⋅,1BG =,2EG 2AG ∴=,1AB ∴=,AB 是直径,90AEB ∴∠=︒,90OEG ∠=︒,AEO BEB ∴∠=∠,AO OE =,EAO OEA ∴∠=∠, BEG EAO ∴∠=∠,AEG EBG ∴∆∆∽,∴2EG EB AG AE =,设EB x =,则2AE x , 在Rt ABE ∆中,2212x x =+,解得3x =,3BE ∴=,6AE =,AE BE AB EM ⋅=⋅,23EM ∴=,A 、B 、E 、D 四点共圆,CDE ABE ∴∠=∠,263sin sin 333EM CDE EBM EB ∴∠=∠===.。

四点共圆(专项练习)

四点共圆(专项练习)

四点共圆(专项练习)一、单选题1.如图①,若BC 是Rt △ABC 和Rt △DBC 的公共斜边,则A 、B 、C 、D 在以BC 为直径的圆上,则叫它们“四点共圆”.如图①,△ABC 的三条高AD 、BE 、CF 相交于点H ,则图①中“四点共圆”的组数为( )A .2B .3C .4D .62.如图,已知AB=AC=AD ,①CAD=20°,则①CBD 的度数是( )A .10°B .15°C .20°D .25°3.如图,圆上有A 、B 、C 、D 四点,其中80BAD ∠=︒,若弧ABC 、弧ADC 的长度分别为7π、11π,则弧BAD 的长度为( )A .4πB .8πC .10πD .15π4.如图,四边形ABCD 内接于O ,AB CD =,A 为BD 中点,60BDC ∠=︒,则ADB ∠等于( )A .40︒B .50︒C .60︒D .70︒5.如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A 13B 52C 41D .46.如图,在四边形ABCD 中,AC 、BD 为对角线,点M 、E 、N 、F 分别为AD 、AB 、BC 、CD 边的中点,下列说法:①当AC BD =时,M 、E 、N 、F 四点共圆.①当AC BD ⊥时,M 、E 、N 、F 四点共圆.①当AC BD =且AC BD ⊥时,M 、E 、N 、F 四点共圆.其中正确的是( )A .①①B .①①C .①①D .①①①7.锐角ABC 的三条高AD 、BE 、CF 交于H ,在A 、B 、C 、D 、E 、F 、H 七个点中.能组成四点共圆的组数是( )A .4组B .5组C .6组D .7组二、填空题 8.如图,正五边形ABCDE 内接于①O ,则①ADE 的度数是 _____.9.如图,四边形ABCD 是①O 的内接四边形,若①O 半径为4,且①C =2①A ,则BD 的长为__.10.如图,将ABC 绕点A 顺时针旋转25°得到AEF ,EF 交BC 于点N ,连接AN ,若57C ∠=︒,则 ANB ∠=__________.11.如图,AB 是Rt ABC 和Rt ABD △的公共斜边,AC=BC ,32BAD ∠=,E 是AB 的中点,联结DE 、CE 、CD ,那么ECD ∠=___________________.三、解答题12.如图所示,AB AC AD ==,60BAC ∠=︒,求BDC ∠.13.如图所示,正方形ABCD中,BD为对角线,点E为BD上一点,过E作EF AE⊥,=.交DC于F,求证:AE FE∠=∠.14.如图,四边形ABED是圆的内接四边形,延长AD、BE相交于点C,已知C EDC=;(1)求证:AB AC(2)若AB是四边形ABED外接圆的直径,求证:BE ED=.15.如图,AB=AC,AE=AF,①BAC=①EAF=90°,BE、CF交于M,连AM.①求证:BE=CF;①求证:BE①CF;①求①AMC的度数.16.如图,①ABC中,BE①AC,CF①AB,垂足分别为E、F,M为BC的中点.(1)求证:ME=MF.(2)若①A=50°,求①FME的度数.17.如图所示,在平行四边形ABCD中,点E为AB,BC的垂直平分线的交点,若∠=︒,求AECD60∠.18.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形.(1)求美角A∠的度数;(2)如图1,若O 的半径为5,求BD 的长;(3)如图2,若CA 平分BCD ∠,求证:BC CD AC +=.19.如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF BC ⊥,且()FE FC CE CB =<,连接CE 、AE ,点G 是AE 的中点,连接FG .(1)用等式表示线段BF 与FG 的数量关系:______;(2)将图1中的CEF △绕点C 按逆时针旋转,使CEF △的顶点F 恰好在正方形ABCD 的对角线AC 上,点G 仍是AE 的中点,连接FG 、DF .①在图2中,依据题意补全图形;①用等式表示线段DF 与FG 的数量关系并证明.20.如图所示,在①ABC 中,AB=AC ,任意延长CA 到P ,再延长AB 到Q ,使AP=BQ , 求证:①ABC 的外心O 与点A 、P 、Q 四点共圆.21.如图,已知A,B,C,D四点共圆,且AC=BC.求证:DC平分①BDE.22.如图,已知矩形ABCD.求证:A、B、C、D四点共圆.23.在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90︒得到线段AQ,连接BP,DQ.=;(1)如图1,求证:BP DQ(2)如图2,若点P,B,D三点共线,求证:A,Q,P,D四点共圆;AD ,求BP的长.(3)若点P,Q,C三点共线,且324.如图,在Rt ABC中,①BAC=90°,①ABC=40°,将ABC绕A点顺时针旋转得到ADE,使D点落在BC边上.(1)求①BAD的度数;(2)求证:A、D、B、E四点共圆.25.如图1,ABC中,AC=BC=4,①ACB=90°,过点C任作一条直线CD,将线段BC沿直线CD翻折得线段CE,直线AE交直线CD于点F.直线BE交直线CD于G点.(1)小智同学通过思考推得当点E在AB上方时,①AEB的角度是不变的,请按小智的思路帮助小智完成以下推理过程:①AC=BC=EC,①A、B、E三点在以C为圆心以AC为半径的圆上,①①AEB=①ACB,(填写数量关系)①①AEB=°.(2)如图2,连接BF,求证A、B、F、C四点共圆;(3)线段AE最大值为,若取BC的中点M,则线段MF的最小值为.26.阅读以下材料,并完成相应的任务:西姆松定理是一个平面几何定理,其表述为:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线的垂线,则三垂足共线(此线常称为西姆松线).数学兴趣小组的同学们尝试证明该定理.如图1,已知ABC内接于①O,点P在①O上(不与点A、B、C重合),过点P分别作AB,BC,AC的垂线,垂足分别为D,E,F求证:点D,E,F在同一条直线上以下是他们的证明过程:如图1,连接PB ,PC ,DE ,EF ,取PC 的中点Q ,连接QE ,QF , 则12PQ CQ PC EQ FQ ====(依据1), ①E ,F ,P ,C 四点共圆.①180FCP FEP ∠+∠=︒(依据2).又①180ACP ABP ∠+∠=︒,①FEP ABP ∠=∠.①90BDP BEP ∠=∠=︒,①B ,D ,P ,E 四点共圆.①DBP DEP ∠=∠(依据3).①180ABP DBP ∠+∠=︒,①180FEP DEP ∠+∠=︒(依据4).①点D ,E ,F 在同一条直线上.任务:(1)填空:①依据1指的的是中点的定义及______;①依据2指的是______;①依据3指的是______;①依据4指的是______.(2)善于思考的小英发现当点P 是BC 的中点时,BD CF =.请你利用图2证明该结论的正确性.27.[发现]如图①ACB=①ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)[思考]如图①,如果①ACB=①ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在圆O外,要么在圆O内,以下该同学的想法说明了点D不在圆O外.请结合图①证明点D也不在①O内.[结论]综上可得结论:如图①,如果①ACB=①ADB=a(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:点A、B、C、D四点共圆.[应用]利用上述结论解决问题:如图①,已知△ABC中,①C=90°,将△ACB绕点A顺时针旋转一个角度得△ADE,连接BE CD,延长CD交BE于点F,(1)求证:点B、C、A、F四点共圆;(2)求证:BF=EF.图①28.定义:如果同一平面内的四个点在同一个圆上,那么我们把这称为四点共圆.(1)下列几何图形的四个顶点构成四点共圆的有.(填序号)①平行四边形;①菱形;①矩形;①正方形;①等腰梯形.(2)已知①ABC中,①A=40°,如图1,平面上一点D,使得A、B、C、D四点共圆,试求①BDC的度数.(3)若△ABC的外接圆为⊙O,半径为r,平面上有两点E、F,分别与△ABC的三个顶点构成四点共圆(E在AB的左侧,F点在AC的右侧),如图2.①试判断∠E+∠F﹣∠BAC 的值是否为定值?如果是,请求出这个值;如果不是,请说明理由;②若BC弦的长度与⊙O的半径r2:1,并且边AB经过圆心O,如图3,试求五边形AEBCF的最大面积(用含r的式子表示).参考答案1.D【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得. 解:如图,以AH 为斜边的两个直角三角形,四个顶点共圆(A 、F 、H 、E ), 以BH 为斜边的两个直角三角形,四个顶点共圆(B 、F 、H 、D ), 以CH 为斜边的两个直角三角形,四个顶点共圆(C 、D 、H 、E ), 以AB 为斜边的两个直角三角形,四个顶点共圆(A 、E 、D 、B ), 以BC 为斜边的两个直角三角形,四个顶点共圆(B 、F 、E 、C ), 以AC 为斜边的两个直角三角形,四个顶点共圆(A 、F 、D 、C ), 共6组. 故选D .【点拨】本题考查四点共圆的判断方法.解题的关键是明确有公共斜边的两个直角三角形的四个顶点共圆.2.A解:如图,AB=AC=AD ①20CAD ∠=︒11201022CBD CAD ∴∠=∠=⨯︒=︒,故选A . 3.C 【分析】先求出圆的周长,再根据圆内接四边形的性质可得100C ∠=︒,然后根据圆周角定理可得弧BAD所对圆心角的度数,最后根据弧长的定义即可得.解:弧ABC、弧ADC的长度分别为7π、11π∴圆的周长为71118πππ+=80BAD∠=︒100C∴∠=︒(圆内接四边形的对角互补)∴弧BAD所对圆心角的度数为2200C∠=︒则弧BAD的长度为200 1810360ππ⨯=故选:C.【点拨】本题考查了圆周角定理、弧长的定义、圆内接四边形的性质,熟记圆的相关定理与性质是解题关键.4.A【分析】根据AB CD=,A为BD中点求出①CBD=①ADB=①ABD,再根据圆内接四边形的性质得到①ABC+①ADC=180°,即可求出答案.解:①A为BD中点,①AB AD=,①①ADB=①ABD,AB=AD,①AB CD=,①①CBD=①ADB=①ABD,①四边形ABCD内接于O,①①ABC+①ADC=180°,①3①ADB+60°=180°,①ADB∠=40°,故选:A.【点拨】此题考查圆周角定理:在同圆中等弧所对的圆周角相等、相等的弦所对的圆周角相等,圆内接四边形的性质:对角互补.5.A【分析】连接DF,EF,过点F作FN①AC,FM①AB,结合直角三角形斜边中线等于斜边的一半求得点A,D,F,E四点共圆,①DFE=90°,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.解:连接DF ,EF ,过点F 作FN ①AC ,FM ①AB①在ABC ∆中,90BAC ∠=︒,点G 是DE 的中点, ①AG =DG =EG 又①AG =FG①点A ,D ,F ,E 四点共圆,且DE 是圆的直径 ①①DFE =90°①在Rt ①ABC 中,AB =AC =5,点F 是BC 的中点, ①CF =BF =1522BC =FN =FM =52又①FN ①AC ,FM ①AB ,90BAC ∠=︒ ①四边形NAMF 是正方形 ①AN =AM =FN =52又①90NFD DFM ∠+∠=︒,90DFM MFE ∠+∠=︒ ①NFD MFE ∠=∠ ①①NFD ①①MFE ①ME =DN =AN -AD =12①AE =AM +ME =3①在Rt ①DAE 中,DE 2213AD AE +故选:A .【点拨】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.6.C 【分析】连接EM、MF、FN、NE,连接EF、MN,交于点O,利用三角形中位线定理可证到四边形ENFM是平行四边形;然后根据条件判定四边形ENFM的形状,就可知道M、E、N、F四点是否共圆.解:连接EM、MF、FN、NE,连接EF、MN,交于点O,如图所示.①点M、E、N、F分别为AD、AB、BC、CD边的中点,①EM①BD①NF,EN①AC①MF,EM=NF=12BD,EN=MF=12AC.①四边形ENFM是平行四边形.①当AC=BD时,则有EM=EN,所以平行四边形ENFM是菱形.而菱形的四个顶点不一定共圆,故①不一定正确.①当AC①BD时,由EM①BD,EN①AC可得:EM①EN,即①MEN=90°.所以平行四边形ENFM是矩形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故①正确.①当AC=BD且AC①BD时,同理可得:四边形ENFM是正方形.则有OE=ON=OF=OM所以M、E、N、F四点共圆,故①正确.故选C.【点拨】本题考查了四点共圆、三角形的中位线定理、平行四边形的判定与性质、矩形的判定与性质、菱形的判定与性质、正方形的判定与性质等知识.熟练掌握平行四边形、矩形、菱形、正方形的判定定理是解题关键.7.C【分析】根据两个直角三角形公共斜边时,四个顶点共圆,完整选择.解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选C.【点拨】本题考查四点共圆的判断方法.解题关键是明确有公共斜边的两个直角三角形的四个顶点共圆.8.36°##36度【分析】先利用正多边形的性质求出①AED度数、再利用等腰三角形的性质以及三角形内角和定理求解即可.解:①正五边形ABCDE内接于①O,①AE=ED,①AED=()5-21805⨯︒=108°,①①ADE =①EAD =12(180°-108°)=36°,故答案为:36°.【点拨】本题考查正多边形与圆,等腰三角形的性质,三角形内角和定理等知识,解题的关键是记住正多边形的内角和公式.9.3【分析】连接OB ,OD ,利用内接四边形的性质得出①A=60°,进而得出①BOD=120°,利用含30°的直角三角形的性质解答即可.解:连接OB ,OD ,过O 作OE①BD ,①四边形ABCD 是①O 的内接四边形,①C=2①A , ①①C+①A=3①A=180°, 解得:①A=60°, ①①BOD=120°, 在Rt △BEO 中,OB=4, 3 3 故答案为:3【点拨】此题考查内接四边形的性质,关键是利用内接四边形的性质得出①A=60°. 10.102.5° 【分析】先根据旋转的性质得到25CAF ∠=︒,25CNF ENB ∠=∠=︒,得到点A 、N 、F 、C 共圆,再利用77.5ANC AFC ∠=∠=︒,根据平角的性质即可得到答案;解:如图,AF 与CB 相交于点O ,连接CF ,根据旋转的性质得到:AC=AF ,57F C ∠=∠=︒,25CAF ∠=︒,25CNF ENB ∠=∠=︒, ①点A 、N 、F 、C 共圆, ①1802577.52ACF AFC ︒-︒∠=∠==︒, 又①点A 、N 、F 、C 共圆, ①77.5ANC AFC ∠=∠=︒,①18077.5102.5ANB ∠=︒-︒=︒(平角的性质), 故答案为:102.5°【点拨】本题主要考查了旋转的性质、平角的性质、点共圆的判定,掌握平移的性质是解题的关键;11.13 【分析】先证明A 、C 、B 、D 四点共圆,得到①DCB 与①BAD 的是同弧所对的圆周角的关系,得到①DCB 的度数,再证①ECB=45°,得出结论.解:①AB 是Rt①ABC 和Rt①ABD 的公共斜边,E 是AB 中点,①AE=EB=EC=ED ,①A 、C 、B 、D 在以E 为圆心的圆上, ①①BAD=32°, ①①DCB=①BAD=32°,又①AC=BC ,E 是Rt①ABC 的中点, ①①ECB=45°,①①ECD=①ECB -①DCB=13°. 故答案为:13.【点拨】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.12.30°. 【分析】由AB=AC=AD ,可得B ,C ,D 在以A 为圆心,AB 为半径的圆上,然后由圆周角定理,证得①CAD=2①CBD ,①BAC=2①BDC ,继而可得①CAD=2①BAC .解:①AB=AC=AD ,①B ,C ,D 在以A 为圆心,AB 为半径的圆上, ①①CAD=2①CBD ,①BAC=2①BDC , ①①CBD=2①BDC ,①BAC=60°, ①①CAD=2①BAC=120°. ①①BDC=30°.【点拨】此题考查了圆周角定理.注意得到B ,C ,D 在以A 为圆心,AB 为半径的圆上是解此题的关键.13.见分析. 【分析】先根据正方形的性质可得①CDA=90°,再根据EF AE ⊥得到①AEF=90°,从而得证A ,E ,F ,D 共圆,45EAF BDC ∠=∠=︒,继而得出AE=FE.解:在正方形ABCD 中,90ADC ∠=︒,①BDC=45°①EF AE ⊥ ①90AEF ∠=︒ ①①ADC+①AEF=180° ①A ,E ,F ,D 共圆, ①45EAF BDC ∠=∠=︒, ①45EAF EFA ∠=∠=︒ ①AE FE =.【点拨】本题考查了正方形的性质,四点共圆,以及等腰三角形的判定,熟练掌握相关知识是解题的关键14.(1)见分析;(2)见分析. 【分析】(1)根据圆内接四边形对角互补证得①B =①C ,从而利用等角对等边证得AB =AC ; (2)连接AE ,将证明弧相等转化为弧相对的圆周角相等来实现. 解:(1)①四边形ABED 是圆内接四边形,①①B+①ADE=180° 又①①EDC+①ADE=180° ①①EDC=①B 又①①EDC=①C①①B=①C①AB=AC(2)连接AE①AB是圆的直径①①AEB=90°又①AB=AC①AE平分①BAC①①BAE=①EAD①BE DE【点拨】本题考查圆内接四边形及圆的有关性质,解题的关键是知道圆内接四边形及圆的有关性质.15.(1)见分析;(2)见分析;(3)135°解:试题分析:①证①BEA①①CFA.①①ABE=①ACF,①①CMB=①CAB=90°.①作AG①BE于G,AH①CF于H,证①AGB①①AHC,AG=AH,①AMG=45°,可得①AMC=135°试题解析:(1)①①BAC=①EAF=90°①①BAE=①CAF①AE=AF,AB=AC,①三角形BAE 全等于三角形CAF,① BE=CF(2)①①AEB=①AFC设CF与AE相交于点H 则①MHE = ①AHF①三角形EMH与三角形HAF的内角和都为180°① ①EMF = ①EAF即BE①CF(3)①①ABE=①ACF① A ,B ,C ,M 四点共圆① ①AMC+①ABC=180°①AB=AC ,①BAC=90°,①ABC=45°① ①AMC=180°--①ABC=135°也可以作AG①BE 于G ,AH①CF 于H ,证①AGB①①AHC ,AG =AH ,①AMG =45°,可得①AMC =135.16.(1)证明见分析(2)80°.试题分析:(1)根据直角三角形斜边上的中线等于斜边的一半得到ME=12BC ,MF=12BC ,得到答案;(2)根据四点共圆的判定得到B 、C 、E 、F 四点共圆,根据圆周角定理得到答案. (1)证明:①BE①AC ,CF①AB ,M 为BC 的中点,①ME=12BC ,MF=12BC ,①ME=MF ;(2)解:①CF①AB ,①A=50°,①①ACF=40°,①BE①AC ,CF①AB ,①B 、C 、E 、F 四点共圆,①①FME=2①ACF=80°.【点拨】1.直角三角形斜边上的中线;2.等腰三角形的判定与性质.17.120AEC ∠=︒【分析】由点E 为AB ,BC 的垂直平分线的交点知,EA EB EC ==,所以A ,B ,C 在以E 为圆心,EA 为半径的圆上,由圆的性质知2AEC ABC ∠=∠,再由平行四边形的性质,问题得解.解:连结EB ,①点E 为AB ,BC 的垂直平分线的交点①EA EB EC ==,①A ,B ,C 在以E 为圆心,EA 为半径的圆上,作出辅助圆,由圆的性质知2AEC ABC ∠=∠,又平行四边形ABCD 中,60ABC D ∠=∠=︒①2120AEC ABC ∠=∠=︒【点拨】作辅助圆,可以将直线型问题转化为曲线型问题,为我们解决问题时提供更开阔思路,更简捷的方法.18.(1)60°;(2)53(3)见分析【分析】(1)根据美角的定义可得12A C ∠=∠,然后根据圆内接四边形的性质即可求出结论; (2)连接DO 并延长,交O 与点E ,连接BE ,根据同弧所对的圆周角相等可得①E=①A=60°,然后根据直径所对的圆周角是直角可得①DBE=90°,最后利用锐角三角函数即可求出结论;(3)延长CB 至F ,使BF=DC ,连接AF 、BD ,先证出①ABD 为等边三角形,然后利用SAS 证出①ABF①①ADC ,从而得出AF=AC ,①F=①DCA=60°,再证出①ACF 为等边三角形,利用等边三角形的性质和等量代换即可得出结论.解:(1)根据题意可得:12A C ∠=∠,而①A +①C=180° ①①A=60°(2)连接DO 并延长,交O 与点E ,连接BE①①E=①A=60°①DE 为O 的直径,O 的半径为5,①①DBE=90°,DE=10在Rt①DBE 中,353 (3)延长CB 至F ,使BF=DC ,连接AF 、BD由(1)可知:①BAD=60°,①BCD=2①BAD=120° ①CA 平分BCD ∠,①①BCA=①DCA=12BCD ∠=60° ①①ABD=①DCA=60°①①ADB=180°-①ABD -①BAD=60°①①ABD 为等边三角形①AB=AD根据圆内接四边形的性质可得①ABF=①ADC在①ABF 和①ADC 中BF DC ABF ADC AB AD =⎧⎪∠=∠⎨⎪=⎩①①ABF①①ADC①AF=AC ,①F=①DCA=60°①①FAC=180°-①F -①ACF=60°①①ACF 为等边三角形①CF=AC①BC +BF=AC①BC +CD=AC【点拨】此题考查的是新定义类问题、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质,掌握新定义、圆内接四边形的性质、圆周角定理及推论、锐角三角函数、等边三角形的判定及性质和全等三角形的判定及性质是解决此题的关键.19.(1)2BF FG=;(2)①画图见分析;①2DF FG,证明见分析【分析】(1)先判断出①AGB①①CGB,得到①GBF=45°,再判断出①EFG①①CFG,得到①GFB =45°,从而得到①BGF为等腰直角三角形,即可.(2)①画图2即可;①如图2,连接BF、BG,证明①ADF①①ABF得DF=BF,根据直角三角形斜边中线的性质得:AG=EG=BG=FG,由圆的定义可知:点A、F、E、B在以点G为圆心,AG长为半径的圆上,①BGF=2①BAC=90°,所以①BGF是等腰直角三角形,可得结论.解:(1)BF2FG,理由是:如图1,连接BG,CG,①四边形ABCD为正方形,①①ABC=90°,①ACB=45°,AB=BC,①EF①BC,FE=FC,①①CFE=90°,①ECF=45°,①①ACE=90°,①点G是AE的中点,①EG=CG=AG,①BG=BG,①①AGB①①CGB(SSS),①①ABG=①CBG=12①ABC=45°,①EG=CG,EF=CF,FG=FG,①①EFG①①CFG(SSS),①①EFG=①CFG=12(360°﹣①BFE)=12(360°﹣90°)=135°,①①BFE=90°,①①BFG=45°,①①BGF为等腰直角三角形,①BF2FG.故答案为:BF2;(2)①如图2所示,①2=;理由如下:DF FG如图2,连接BF、BG,①四边形ABCD是正方形,①AD=AB,①ABC=①BAD=90°,AC平分①BAD,①①BAC=①DAC=45°,①AF=AF,①①ADF①①ABF(SAS),①DF=BF,①EF①AC,①ABC=90°,点G是AE的中点,①AG=EG=BG=FG,①点A、F、E、B在以点G为圆心,AG长为半径的圆上,①BF BF=,①BAC=45°,①①BGF=2①BAC=90°,①①BGF是等腰直角三角形,①BF2FG,①DF2FG.【点拨】本题是四边形综合题,主要考查了正方形的性质,直角三角形斜边中线的性质,全等三角形的判定和性质,圆的性质,判断①BGF为等腰直角三角形是解本题的关键,作出辅助线是解本题的难点.20.见分析解:试题分析:先作①ABC的外接圆①O,并作OE①AB于E,OF①AC于F,连接OP、OQ、OB、OA,证出BE=AF,OE=OF,再证Rt①OPF①Rt①OQE,得到①P=①Q即可得到答案.证明:作①ABC的外接圆①O,并作OE①AB于E,OF①AC于F,连接OP、OQ、OB、OA,①O是①ABC的外心,①OE=OF,OB=OA,由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,①BE=AF,①AP=BQ,①PF=QE,①OE①AB,OF①AC①①OFP=①OEQ=90°,①Rt①OPF①Rt①OQE,①①P=①Q,①O、A、P、Q四点共圆.即:①ABC的外心O与点A、P、Q四点共圆.【点拨】本题主要考查了四点共圆,勾股定理,全等三角形的性质和判定,确定圆的条件等知识点,作辅助线构造全等三角形证①P=①Q是解此题的关键.21.证明见分析.【分析】根据圆周角定理和圆内接四边形的性质得到①2=①1,①3=①ABC,由等腰三角形的性质得到①1=①ABC ,等量代换得到①2=①3,于是得到结论.证明:①A ,B ,C ,D 四点共圆,①①2=①1,①3=①ABC ,①AC=BC ,①①1=①ABC ,①①2=①3,①DC 平分①BDE .【点拨】本题考查了圆周角定理,圆内接四边形的性质,角平分线的判定,熟练掌握圆周角定理是解题的关键.22.见分析【分析】连接AC 、BD ,根据矩形的性质可得OA=OB=OC=OD ,即可得结论.解:连接AC 、BD 交于O 点,①四边形ABCD 为矩形,①AC BD =.①OA OB OC OD ===.①A 、B 、C 、D 到点O 的距离相等,①A 、B 、C 、D 在以O 为圆心,OA 为半径的圆上.即A 、B 、C 、D 四点共圆.【点拨】本题考查了矩形的性质及圆的认识,熟练掌握矩形的性质,理解四点共圆的意义是解题关键.23.(1)见分析;(2)见分析;(3)3BP =【分析】(1)证明AQD APB ≌即可得出答案;(2)根据全等三角形的性质以及圆内接四边形对角和为180︒即可得出结论; (3)证明PAQ △为等腰直角三角形,得出45APC ∠=︒,然后得出2ABC APC ∠=∠,根据圆周角定理可得点P 在圆B 上,结论可得.解:(1)根据旋转的性质可得AP AQ =,90PAQ ∠=︒,①90BAD ∠=︒,①DAQ BAP ∠=∠,①AB AD =,①()AQD APB SAS ≌,①BP DQ =;(2)①AQD APB ≌,①Q APB ∠=∠,①点P ,B ,D 三点共线,①180APD APB ∠+∠=︒,①180Q APD ∠+∠=︒,①A ,Q ,P ,D 四点共圆;(3)①AP AQ =,90PAQ ∠=︒,①PAQ △为等腰直角三角形,①45APC ∠=︒,以点B 为圆心,BA 为半径作B ,①90ABC ∠=︒,45APC ∠=︒,①2ABC APC ∠=∠,①点P 在圆B 上,①3BP BC ==.【点拨】本题考查了全等三角形的判定与性质,四点共圆,圆周角定理等知识,熟练掌握基础知识是解本题的关键.24.(1)10°;(2)见分析【分析】(1)由三角形内角和定理和已知条件求得①C的度数,由旋转的性质得出AC=AD,即可得出①ADC=①C,最后由外角定理求得①BAD的度数;(2)由旋转的性质得到①ABC=①AED,由四点共圆的判定得出结论.解:(1)①在Rt ABC中,①BAC=90°,①ABC=40°,①①C=50°,①将ABC绕A点顺时针旋转得到ADE,使D点落在BC边上,①AC=AD,①①ADC=①C=50°,①①ADC=①ABC+①BAD=50°,①①BAD=50°-40°=10°证明(2)①将ABC绕A点顺时针旋转得到ADE,①①ABC=①AED,①A、D、B、E四点共圆.【点拨】本题考查了旋转的性质、等腰三角形的性质、外角定理以及四点共圆的判定,解题的关键是理解旋转后的图形与原图形对应边相等,对应角相等.25.(1)1,45;(2)见分析;(3)8,2222【分析】(1)根据同弧所对的圆周角等于圆心角的一半解答;(2)由题意知,CD垂直平分BE,连接BF,则BF=EF,求得①EBF=①AEB=45°,利用外角的性质得到①AFB=①EBF+①AEB=90°,即可得到结论;(3)当点A、C、E在一条直线上时,线段AE最大,最大值为4+4=8,当MF①BC时线段MF最小,根据BC的中点M,得到CF=BF,设BG=FG=x,则2x,CG2 +1)x,由勾股定理得222+=,求出2842CG BG BCx=-222+=,即可求BM MF BF出222MF=.(1)解:①AC=BC=EC,①A、B、E三点在以C为圆心以AC为半径的圆上,①ACB,①①AEB=12①①AEB=45°.,45;故答案为:12(2)解:由题意知,CD 垂直平分BE ,连接BF ,则BF=EF ,①①EBF =①AEB =45°.①①AFB =①EBF +①AEB =90°.①①ACB =90°,①A 、B 、F 、C 在以AB 为直径的圆上,即A 、B 、F 、C 四点共圆;(3)解:当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8,当MF ①BC 时线段MF 最小,①BC 的中点M ,①CF=BF , 设BG=FG=x ,则2,CG 2x ,①222CG BG BC +=,①222(21)4x x ⎡⎤+=⎣⎦, 得2842x =-①222BM MF BF +=,①2222(2)MF x +=,得222MF =,故答案为:8,222 . .【点拨】此题考查了圆周角定理,四点共圆的判定及性质,线段垂直平分线的性质,勾股定理,等腰直角三角形的性质,熟记各知识点并熟练应用解决问题是解题的关键.26.(1)①直角三角形斜边上的中线等于斜边的一半;①圆内接四边形对角互补;①同弧或等弧所对的圆周角相等;①等量代换(2)见分析【分析】(1)根据直角三角形斜边上的中线的性质,圆内接四边形的性质,同弧或等弧所对的圆周角相等进行求解即可;(2)如图,连接P A,PB,PC,只需要证明Rt Rt△≌△即可证明结论.PBD PCF(1)解:①直角三角形斜边上的中线等于斜边的一半;①圆内接四边形对角互补;①同弧或等弧所对的圆周角相等;①等量代换;(2)证明:如图,连接P A,PB,PC.①点P是BC的中点,①BP PC=.①BP PC∠=∠.=,PAD PAC又①PD AD⊥,PF AC⊥,①PD PF=.①Rt Rt△≌△(HL).PBD PCF=.①BD CF【点拨】本题主要考查了圆内接四边形的性质,直角三角形斜边上的中线的性质,全等三角形的性质与判定,弧,弦,圆周角的关系,同弧或等弧所对的圆周角相等等等,正确作出辅助线和熟知相关知识是解题的关键.27.【思考】证明见分析;【应用】(1证明见分析;(2)证明见分析试题分析:【思考】假设点D在①O内,利用圆周角定理及三角形外角的性质,可证得与条件相矛盾的结论,从而证得点D不在①O内;[应用](1)由旋转的性质可得①ACD=①ABE,故B、C、A、F四点共圆,(2)由圆内接四边形的性质得①BCA+①BF A=180°即可证明.【思考】【证】如图,假设点D 在①O 内,延长AD 交①O 于点E ,连接BE ;则①AEB =①ACB①①ADB 是△DBE 的一个外角①①ADB >①AEB①①ADB >①ACB这与条件①ACB =①ADB 矛盾①点D 不在①O 内【证】(1)①AC =AD ,AB =AE ,①①ACD =①ADC ,①ABE =①AEB ,①①CAB =①DAE ,①①CAD =①BAE ,①2①ACD +①CAD =180°,2①ABE +①BAE =180°,①①ACD =①ABE ,①B 、C 、A 、F 四点共圆,(2)①B 、C 、A 、F 四点共圆,①①BF A +①BCA =180°,①①ACB =90°,①①BF A =90°,①AF ①BE ,①AB =AE ,①BF =EF .【点拨】本题综合考查了圆周角定理、反证法、三角形外角的性质、点和圆的位置关系等知识,熟练掌握性质定理是解题的关键.28.(1)①①①;(2)①BDC 的度数为140°或 40°;232 【分析】 (1)由“对角互补的四边形是圆的内接四边形”,即可得出答案;(2)分点D在BC上和点D在AB、AC上两种情况讨论,即可求出①BDC的度数;(3)①由圆内接四边形的性质可得①E+①AFB=180°,由①BAC=①BFC,可得①E+①AFC =①E+①AFB+①BFC=①E+①AFB+①BAC=180°+①BAC,进而可得①E+①AFC﹣①BAC=180°;①由AB经过圆心O,BC弦的长度与①O的半径r21,可得①ABC为等腰直角三角形,S五边形AEBCF=S△ABE+S△ABC+S△ACF,当①ABE及①ACF面积最大时,五边形AEBCF的最大面积,E为AB中点时,①ABE面积最大,F为AC中点时,①ACF面积最大,求出①ABE及①ACF面积最大值,最后把三个三角形的面积相加,即可求出五边形AEBCF的最大面积.(1)解:①矩形、正方形、等腰梯形的对角互补,①矩形、正方形、等腰梯形的四个顶点构成四点共圆,故答案为:①①①;(2)解:如图4,当点D在BC上时,①A、B、D、C四点共圆,①①A+①D=180°,①①BAC=40°,①①BDC=180°﹣40°=140°,如图5和图6,当点D在AB或AC上时,①①BAC=40°,①①BDC=①BAC=40°,综上所述,①BDC的度数为140°或40°;(3)解:①如图7,连接BF,①四边形AEBF是圆内接四边形,①①E+①AFB=180°,又①①BAC=①BFC,①①E+①AFC=①E+①AFB+①BFC=①E+①AFB+①BAC=180°+①BAC,①①E+①AFC﹣①BAC=180°,即①E+①F﹣①BAC=180°;①①AB经过圆心,①AB是①O的直径,①①ACB=90°,①BC:OB2:1,OB=r,①BC2r,①AB=2r,①AC222r,AB BC①BC=AC,①①ABC是等腰直角三角形,①S五边形AEBCF=S△ABE+S△ABC+S△ACF,①当①ABE及①ACF面积最大时,五边形AEBCF的最大面积,此时,E为AB中点时,①ABE面积最大,F为AC中点时,①ACF面积最大,如图8,连接OE,连接OF交AC于H,①OE①AB,OF①AC,①AH=CH,①OH=12BC2r,①S△ABE的最大值为:12•AB•OE=12×2r×r=r2,S△ACF的最大值为:12•AC•FH=122r×(r22r2﹣12×r2,①S五边形AEBCF的最大值为:r2+r222﹣12×r223+2.【点拨】本题考查了四点共圆,掌握四点共圆及圆周角的性质是解决问题的关键.。

中考数学压轴题 《简单的四点共圆》

中考数学压轴题 《简单的四点共圆》

《简单的四点共圆》解题方法如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有:一.若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的圆上.D【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2.【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值.(2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°.二.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.D【答案】(1)略;(2)AD DE;(3)AD=DE·tanα.【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE.(2)同(1),可得A ,D ,B ,E 四点共圆,∠AED =∠ABD =30°,所以AD DE= tan30°,即AD =DE . 三.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.【答案】略四.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.D【答案】略诸多几何问题,若以四点共圆作桥梁,就能与圆内的等量关系有机地结合起来.利用四点共圆,可证线段相等、角相等、两线平行或垂直,还可以证线段成比例,求定值等.例题讲解例1 如图,在△ABC 中,过点A 作AD ⊥BC 与点D ,过点D 分别作AB ,AC 的垂线,垂足分别为E ,F .求证:B ,E ,F ,C 四点共圆.证明 因为DE ⊥AB ,DF ⊥AC ,所以∠AED +∠AFD =180°,即A ,E ,D ,F 四点共圆.A B C D EF AB C D E F G连结EF ,则∠AEF =∠ADF .因为AD ⊥BC ,DF ⊥AC ,所以∠FCD =∠ADF =∠AEF ,所以B ,E ,F ,C 四点共圆.例2 在锐角△ABC 中,AB =AC ,AD 为BC 边上的高,E 为AC 的中点.若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 与点N ,射线EN 与AB 相交于点P ,证明:∠APE =2∠MA D .证明 如图,连结DE .因为AD ⊥BC ,CN ⊥AM ,E 为AC 的中点,所以DE =AE =CE =NE ,从而A ,N ,D ,C 在以点E 为圆心、AC 为直径的圆上,所以∠DEN =2∠DAN .由题意可得D 为BC 的中点,所以ED ∥AB ,所以∠APE =∠DEP =2∠MA D .进阶训练1.已知⊙O 的半径为2,AB ,CD 是⊙O 的直径,P 是BC 上任意一点,过点P 分别作AB ,CD 的垂线,垂足分别为N ,M .(1)如图1,若直径AB 与CD 相交成120°角,当点P (不与B ,C 重合)从B 运动到C 的过程中,证明MN 的长为定值;(2)如图2,求当直径AB 与CD 相交成多少度角时,MN 的长取最大值,并写出其最大值.答案:(1)略(2)AB ,CD 相交成90°时,MN 取最大值,最大值为2.【提示】(1)如图,连接OP ,取其中点O ′,显然点M .,N 在以OP 为直径的⊙O ′上.连结NO ′并延长,交⊙O ′于点Q ,连结QM ,则∠QMN =90°,QN =OP =2.而∠MQN =180°-∠BOC =60°,所以可求得MN 的长为定值.A B C D E PN M AB C D EP N M AB C D O MN P图1 图2 A B C D P M N O(2)由(1)知,四边形PMON 内接于⊙O ′,且直径OP =2.而MN 为⊙O ′的一条弦,故MN 为⊙O ′的直径时,其长取最大值,最大值为2,此时∠QMN =90°.2.在Rt△ABC 中,∠BAC =90°,过点B 的直线MN ∥AC ,D 为BC 边上一点,连结AD ,作DE ⊥AD 交MN 于点E ,连结AE .(1)如图1,当∠ABC =45°时,求证:AD =DE ;(2)如图2,当∠ABC =30°时,线段AD 与DE 有何数量关系?请说明理由;(3)当∠ABC =α时,请直接写出线段AD 与DE 的数量关系(用含α的三角函数表示).答案:(略);(2)ADDE ;(3)AD =DE ·tan α. 【提示】(1)证A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =45°,所以AD =DE .(2)同(1)可得A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =30°,所以AE DE=tan30°,即ADDE . AB C D O MN QO ′ P图1 图1 AB C DEFG 图2 AB C D E M N。

四点共圆几何压轴题

四点共圆几何压轴题

四点共圆几何压轴题
四点共圆是一个重要的几何概念,也被称为共圆四点定理。


指出,如果四个点在同一圆周上,那么它们构成的四边形是共圆的。

这个定理在几何学中有着重要的应用和意义。

首先,让我们从几何性质的角度来看待这个问题。

四点共圆意
味着这四个点可以构成一个圆。

这是因为圆是由圆心到圆周上的任
意一点距离相等定义的,因此如果四个点满足这个性质,它们就可
以构成一个圆。

这个性质可以用来证明一些几何问题,比如证明一
个四边形是一个正方形或者一个菱形。

其次,从数学方法的角度来看,我们可以利用坐标几何的方法
来证明四点共圆。

假设这四个点的坐标分别为(x1, y1), (x2, y2), (x3, y3), (x4, y4),我们可以利用圆的标准方程来检验这四个点
是否共圆。

如果这四个点满足圆的标准方程,那么它们就是共圆的。

另外,从实际问题的角度来看,四点共圆的概念也可以应用在
工程和设计领域。

在设计建筑物或者机械结构时,我们经常需要确
定一些点是否共圆,以便进行合适的布局和设计。

最后,从教育教学的角度来看,四点共圆是中学数学和几何学中的一个重要知识点。

教师可以通过举一些实际例子来讲解这个概念,并引导学生进行相关的练习和实践,以加深他们对这个概念的理解。

总之,四点共圆是一个重要的几何概念,它涉及到几何性质、数学方法、实际问题和教育教学等多个方面。

深入理解这个概念对于提高数学几何学习的效果和应用能力都具有重要意义。

初三上专题四点共圆

初三上专题四点共圆

四点共圆专题讲义例1.如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.例2.(1)如图,在△ABC中,BD、CE是AC、AB上的高,∠A=60°.求证:ED=12 BC(2)已知:点O是△ABC的外心,BE,CD是高.求证:AO⊥DE例3.如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.总结:四点共圆的方法:1.__________________________________________________________2.__________________________________________________________ 3.__________________________________________________________ 4.__________________________________________________________例4.求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB ·CD +BC ·AD =AC ·BD .练习1.在ABC △中,BA BC BAC ∠α==,,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ .(1)若60α=︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.OA =OB =OC∠ADC =∠ABC =90°∠ACD =∠ABD =90°∠B +∠D =180°或∠A +∠BCD =180°或∠A =∠DCE∠A =∠D 或∠B =∠C练习2.在△ABC 中,∠A =30°,AB =23,将△ABC 绕点B 顺时针旋转α(0°〈α〈90°),得到△DBE ,其中点A 的对应点是点D ,点C 的对应点是点E ,AC 、DE 相交于点F ,连接BF 。

中考四点共圆问题专项训练

中考四点共圆问题专项训练

四点共圆问题专项训练1.(2021秋•渝北区期末)如图,圆内接四边形ABCD的外角∠ABE为80°,则∠ADC度数为()A.80°B.40°C.100°D.160°【答案】A【解答】解:∵四边形ABCD为圆内接四边形,∴∠ADC+∠ABC=180°,∵∠ABE+∠ABC=180°,∴∠ADC=∠ABE=80°,故选:A.2.(2021秋•滨湖区期中)如图,AB=AD=6,∠A=60°,点C在∠DAB内部且∠C=120°,则CB+CD的最大值()A.4B.8C.10D.6【答案】A【解答】解:如图,连接AC,BD,在AC上取点M使DM=DC,∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A,B,C,D,四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ACD=60°,∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠ACD=60°,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC(SAS),∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长为AD+AB+CD+BC=AD+AB+AC,且AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,则CB+CD最大,此时C点在的中点处,∴∠CAB=30°,∴AC的最大值=AB×cos30°=4,∴CB+CD最大值为AC=4,故选:A.3.(2022•靖江市二模)如图,AB⊥BC,AB=5,点E、F分别是线段AB、射线BC上的动点,以EF为斜边向上作等腰Rt△DEF,∠D=90°,连接AD,则AD的最小值为.【答案】【解答】解:连接BD并延长,如图,∵AB⊥BC,∴∠ABC=90°,∠EDF=90°,∴∠ABC+∠EDF=180°,∴B,E,D,F四点共圆,∵△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°,∴∠DBF=∠DEF=45°,∴∠DBF=∠DBE=45°,∴点D的轨迹为∠ABC的平分线上,∵垂线段最短,∴当AD⊥BD时,AD取最小值,∴AD的最小值为AB=,故答案为:.4.如图,△ABC和△BCD均为直角三角形,∠BAC=∠BDC=90°,AB=2,连接AD.若∠ADB=30°,则AC的长为.【答案】【解答】解:∵∠BAC=∠BDC=90°,∴A,B,C,D四点共圆,∵∠ADB=30°,AB=2,∴∠ACB=∠ADB=30°,∴BC=2AB=4,∴AC=.故答案为:.5.如图,在四边形ABCD中,BD=6,∠BAD=∠BCD=90°,则四边形ABCD 面积的最大值为.【答案】18【解答】解:∵∠BAD=∠BCD=90°,∴A,C两点在以BD为直径的圆上,∴当AB=AD,CB=CD时,四边形ABCD面积最大,∵BD=6,∴AB=AD=CB=CD=3,∴四边形BCD的面积为3××=18.故答案为:18.6.如图,在△ABC和△ACD中,∠ABC=∠ADC=45°,AC=6,则AD的最大值为.【答案】6【解答】解:∵∠ABC=∠ADC=45°,∴A,C,D,B四点共圆,如图,作⊙O经过A,C,D,B四点,当AD(D′)为直径时,AD有最大值,∵∠ADC=45°,∴∠AOC=90°,∵OA=OC,∴△AOC是等腰直角三角形,∵AC=6,∴AO=6×=3,∴AD′=2AO=6,即AD的最大值为6.故答案为:6.7.如图,△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点E,F分别为AB,AC边上的点,且∠EDF=90°,连接EF,则∠DEF的度数为.【答案】45°【解答】解:如图,连接AD,∵△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,∴∠ADC=90°,AD=CD,∠BAD=∠C=45°,而∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF,而∠EDF=90°,∴∠DEF=∠DFE=45°.故答案为:45°.8.(2022秋•萧山区月考)如图,以C为公共顶点的Rt△ABC和Rt△CED中,∠ACB=∠CDE=90°,∠A=∠DCE=30°,且点D在线段AB上,则∠ABE =30°,若AC=10,CD=9,则BE=.【答案】【解答】解:∵∠ACB=∠CDE=90°,∠A=∠DCE=30°,∴∠DBC=∠DEC=60°,∴B、C、D、E四点共圆,∴∠DBE=∠DCE=30°,∴∠ABE=30°,设BC=x,则AB=2x,在Rt△ABC中,由勾股定理得AB2=AC2+BC2,∵AC=10,∴(2x)2=102+x2,解得:x=,∴BC=,设DE=a,则CE=2a,在Rt△CED中,由勾股定理得CE2=DE2+CD2,∵CD=9,∴(2a)2=a2+92,解得:a=,∴DE=,CE=,∵∠ABC=60°,∠ABE=30°,∴∠CBE=∠ABC+∠ABE=90°,在Rt△CBE中,由勾股定理得=.9.(2021秋•宽城区期末)【问题原型】如图①,在⊙O中,弦BC所对的圆心角∠BOC=90°,点A在优弧BC上运动(点A不与点B、C重合),连结AB、AC.(1)在点A运动过程中,∠A的度数是否发生变化?请通过计算说明理由.(2)若BC=2,求弦AC的最大值.【问题拓展】如图②,在△ABC中,BC=4,∠A=60°.若M、N分别是AB、BC的中点,则线段MN的最大值为.【解答】解:【问题原型】(1)∠A的度数不发生变化,理由如下:∵,∠BOC=90°,∴;(2)当AC为⊙O的直径时,AC最大,在Rt△BOC中,∠BOC=90°,根据勾股定理,得OB2+OC2=BC2,∵OB=OC,∴,∴,即AC的最大值为;【问题拓展】如图,画△ABC的外接圆⊙O,连接OB,OC,ON,则ON⊥BC,∠BON=60°,BN=BC=2,∴OB=,∵M、N分别是AB、BC的中点,∴MN是△ABC的中位线,∴MN=AC,∴AC为直径时,AC最大,此时AC=2OB=,∴MN最大值为,故答案为:.10.(2022秋•仪征市期中)【问题提出】苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:帮助他完善问题1的证明:∵BD是⊙O的直径,∴,∴∠A+∠C=180°,∵四边形内角和等于360°,∴.(2)请回答问题2,并说明理由;【深入探究】如图(3),⊙O的内接四边形ABCD恰有一个内切圆⊙I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系;(4)探究EF、GH满足的位置关系;(5)如图(4),若∠C=90°,BC=3,CD=2,请直接写出图中阴影部分的面积.【解答】解:【问题提出】(1)∵BD是⊙O的直径,∴∠A=∠C=90°,∴∠A+∠C=180°,∵四边形内角和等于360°,∴∠ABC+∠ADC=180°;故答案为:∠A=∠C=90°,∠ABC+∠ADC=180°;(2)成立,理由如下:连接AC、BD,∵∠DAC=∠CBD,∠ACD=∠ABD,∴∠DAC+∠ACD=∠DBC+∠ABD=∠ABC,∵∠DAC+∠ACD+∠ADC=180°,∴∠ABC+∠ADC=180°;同理,∠BAD+∠BCD=180°;【深入探究】(3)AD+BC=AB+CD,理由如下:连接AI、BI、CI、DI,∵圆I是四边形ABCD的内切圆,∴AG=AE,DE=DH,CH=CF,BF=BG,∴AD+BC=AE+ED+BF+CF=AG+DH+BG+CH=AB+CD,即AD+BC=AB+CD,故答案为:AD+BC=AB+CD;(4)EF⊥GH,理由如下:连接EH、IH、IG、IF、GF,∵四边形ABCD是圆O的内接四边形,∴∠B+∠D=180°,∵BG⊥IG,IF⊥BF,∴∠BGI=∠IFB=90°,∴∠B+∠GIF=180°,∴∠GIF=∠D,∵GI=IF,∴∠GFI=90°﹣∠GIF,∵ED=DH,∴∠DEH=90°﹣∠D,∴∠GFI=∠DEH,∵=,∴∠GFE=∠GHE,∴∠GHE=∠GFI+∠IFE,∵IF=IE,∴∠IFE=∠IEF,∴∠FEH+∠EHG=∠FEH+∠IEF+∠DEH=∠EID=90°,∴EF⊥GH;(5)连接BD,∵∠C=90°,∴∠A=90°,∵ABCD是圆O的内接圆,∴BD是圆O的直径,连接IF、IH,∵I是四边形ABCD的内切圆圆心,∴∠ADI=∠IDH,∠ABI=∠FBI,∵IH⊥CD,IF⊥BC,∴∠BIF=90°﹣∠IBF,∠DIH=90°﹣∠IDH,∴∠BIF+∠DIH=180°﹣(∠IBF+∠IDH)=180°﹣(∠ADC+∠ABC),∵∠ABC+∠ADC=180°,∴∠BIF+∠DIH=90°,∵IF⊥FC,IH⊥CD,∠C=90°,IH=IF,∴四边形IHCF是正方形,∴∠HIF=90°,∴I点在BD上,∵BC=3,CD=2,=3×2=6,∴S四边形ABCD∵∠DIH+∠IDH=90°,∠IBF+∠IDH=90°,∴∠DIH=∠IBF,∵∠IHD=∠IFB=90°,∴△DHI∽△IFB,∴=,即=,解得IH=,∴S⊙I=π,∴阴影部分的面积=6﹣π.10.(2022•遵义)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC 的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD 的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.【解答】(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:∵∠1=∠2,∴点A,B,C,D四点在同一个圆上,∴∠3=∠4,∵∠3=45°,∴∠4=45°,故答案为:45°;(3)①证明:∵AB=AC,∴∠ABC=∠ACB,∵点E与点C关于AD的对称,∴AE=AC,DE=DC,∴∠AEC=∠ACE,∠DEC=∠DCE,∴∠AED=∠ACB,∴∠AED=∠ABC,∴A,D,B,E四点共圆;②解:AD•AF的值不会发生变化,理由如下:如图4,连接CF,∵点E与点C关于AD的对称,∴FE=FC,∴∠FEC=∠FCE,∴∠FED=∠FCD,∵A,D,B,E四点共圆,∴∠FED=∠BAF,∴∠BAF=∠FCD,∴A,B,F,C四点共圆,∴∠AFB=∠ACB=∠ABC,∵∠BAD=∠F AB,∴△ABD∽△AFB,∴=,∴AD•AF=AB2=8.11.如图,在△ABC中,以AB为直径作⊙O交AC于点D,交BC于点E,CE =BE,过点E作EF⊥AC于点F,FE的延长线交AB的延长线于点G,连接DE.(1)求证:FG是⊙O的切线;(2)求证:EG2=AG•BG;(3)若BG=1,EG=,求sin∠CDE的值.【解答】(1)证明:连接OE,∵CE=BE,OA=BO,∴OE是△ABC的中位线,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∵E点在圆O上,∴FG是⊙O的切线;(2)证明:∵OE⊥GF,∴∠OEG=90°,∴OG2=OE2+EG2,∵EG2=OG2﹣OE2=(OG+OE)(OG﹣OE),∵EO=BO=OA,∴EG2=(OG+OA)(OG﹣OB)=AG•BG;(3)解:连接AE,过E点作EM⊥AB交于点M,∵EG2=AG•BG,BG=1,EG=,∴AG=2,∴AB=1,∵AB是直径,∴∠AEB=90°,∵∠OEG=90°,∴∠AEO=∠BEB,∵AO=OE,∴∠EAO=∠OEA,∴∠BEG=∠EAO,∴△AEG∽△EBG,∴==,设EB=x,则AE=x,在Rt△ABE中,1=x2+2x2,解得x=,∴BE=,AE=,∵AE•BE=AB•EM,∴EM=,∵A、B、E、D四点共圆,∴∠CDE=∠ABE,∴sin∠CDE=sin∠EBM===.。

专题23 四点共圆九年级数学全一册重点题型通关训练(人教版)(解析版)

专题23 四点共圆九年级数学全一册重点题型通关训练(人教版)(解析版)

专题二十三四点共圆【导例】如图,在△ABC中,AB=AC,点D在BA延长线上,点E在BC边上,∠CAE=2∠ACD,∠BAE=60°.求证:A,E,C,D四点共圆.证明:如图,在△ABC中,AB=AC,∴∠B=∠ACB,∴∠DAC=2∠ACB,∵∠CAE=2∠ACD,∴∠CAD+∠CAE=2∠ACB+2∠ACD=2(∠ACB+∠ACD),∴∠DAE=2∠BCD,∵∠BAE=60°,∴∠DAE=180°-∠BAE=120°,∴∠BCD=60°,∴∠DAE+∠DCB=180°,∴点A,E,C,D四点共圆.【方法点睛】如何判断四点共圆:①四边形对角互补②借助同弦所对的圆周角相等,如:∠ADB=∠ACB,可判断ADCB四点共圆.借助四点共圆,能轻松得出构成同弦的圆周角相等.【典例精讲】【例1】如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,求∠CAD 的度数.解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=72°,∴∠CAD=90°-∠ACD=18°.【例2】如图,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE的长.解:∵△ABC是等腰直角三角形,∴∠ABC=45°,∵DE⊥AD,BE⊥AB,∴∠ADE=∠ABE=90°,∴A,D,B,E四点共圆,∴∠AED=∠ABD=45°.在△ADE中,∠ADE=90°,∠AED=45°,∴△ADE为等腰直角三角形,=2√2.AE=ADsin45°【专题过关】1. 如图,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=____.55°解:∵∠ADB=∠ACB=60°,∴A,B,C,D四点共圆,∴∠ACD=∠ABD=180°-∠ADB-∠BAD=180°-60°-65°=55°.2. 如图,△ABC中,∠ABC=60°,BD平分∠ABC,且∠ADC=120°.求证:AD=DC.证明:∵∠ABC+∠ADC=60°+120°=180°∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD,∠DBC=∠DAC,∵BD平分∠ABC,∴∠ABD=∠DBC∴∠ACD=∠DAC∴AD=DC,3. 如图,在等腰Rt △ABC 中,∠ABC=90°,AB=BC=4,D 是BC 中点,∠CAD=∠CBE ,求AE 的长度.解:如图,连接DE ,∵∠ABC=90°,AB=BC=4,∴∠C=∠BAC=45°,AC=√2AB=4√2,∵D 是BC 中点,∴CD=12BC=2,∵∠CAD=∠CBE ,∴点A ,点B ,点D ,点E 四点共圆,∴∠ABD=∠DEC=90°,∴∠C=∠EDC=45°,∴DE=CE=√22CD=√2,∴AE=AC-CE=3√2.【专题提升】4.如图,正方形ABCD 的边长为6,点E ,F 分别在线段BC ,CD 上,且CF=3,CE=2,若点M ,N 分别在线段AB ,AD 上运动,P 为线段MF 上的点,在运动过程中,始终保持∠PEB=∠PFC ,则线段PN 的最小值为_____.9−√132解:如图1,∵∠PEB=∠PFC ,∠PEB+∠CEP=180°,∴∠CEP+∠CFP=180°,∴C 、E 、P 、F 四点共圆,∵四边形ABCD 是正方形,∴∠BCD=90°,∴EF 是直径,取EF 的中点为O ,以EF 为直径作圆O ,如图1,连接OP ,ON ,∵PN≥ON -OP ,∵OP 是定值,OP=12EF=12√22+32=√132, 即当O 、N 、P 三点共线,且ON ⊥AD 时,ON 最小,PN 最小,如图2,PN 最小,延长NO 交BC 于Q ,则OQ ⊥CE ,∴EQ=12EC=1, 由勾股定理得:OQ=√OE 2−EQ 2=√(√132)2−12=32, ∴PN=6-32-√132=9−√132. 即线段PN 的最小值为9−√132.5如图,在△ABC 中,∠B=75°,∠C=45°,AC=2√2,点P 是BC 上一动点,PE ⊥AB 于E ,PD ⊥AC 于D .无论P 的位置如何变化,线段DE 的最小值为____.√3解:∵PE⊥AB于E,PD⊥AC于D,即∠AEP=∠ADP=90°,∴A,E,P,D四点共圆,且AP为直径,AP中点O为圆心.连接OE,OD.∵∠DAD=180°-∠B-∠C=60°,∴∠EOD=2∠EAD=120°.∴△OED为顶角120°的等腰三角形,可得ED=√3OE.要求ED最小值,即求圆的直径AP最小,当AP⊥BC是AP最小.此时△APC为等腰直角三角形,∴AP=ACsin45°=2.AP=√3.ED=√3OE=√326.△ABC是等边三角形,点D是△ABC内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点F.当点D在如图所示的位置时.(1)求∠AFB的度数;(2)直接写出线段FD,FE,FC之间的数量关系:____________.解:(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,∴∠ACD+∠DCB=60°,由旋转知,CE=CD,∠DCE=60°,∴∠BCE+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC,∵∠ADC+∠FDC=180°,∴∠BEC+∠FDC=180°,∴C,D,F,E四点共圆,∴∠AFE+∠DCE=180°,∵∠AFB+∠AFE=180°,∴∠AFB=∠DCE=60°.(2)由(1)知,△DCE是等边三角形,∴CE=DE,∠DFE=180°-∠DCE=120°,点C,D,F,E四点共圆,∴∠CFE=∠CDE=60°,在FC上取一点G,使FG=FE,∴△EFG是等边三角形,∴EG=FE,∠EGF=60°,∴∠CGE=120°=∠DFE,∵点C,D,F,E四点共圆,∴∠ECG=∠EDF,∴△CEG≌△DEF(AAS),∴CG=FD,∴FC=FG+CG=FE+FD.7. 如图,在等腰△ABC中,AB=AC=√5,D为BC边上异于中点的点,点C关于直线AD的对称点为点E,EB的延长线与AD的延长线交于点F,求AD•AF的值.解:如图,连接AE ,CF ,DE ,∵AB=AC ,∴∠ABD=∠ACB ,∵点C 关于直线AD 的对称点为点E ,∴∠BED=∠BCF ,∠AED=∠ACD=∠ACB , ∴∠ABD=∠AED ,∴点A ,E ,B ,D 四点共圆,∴∠BED=∠BAD ,∴∠BAD=∠BCF ,∴点A ,B ,F ,C 四点共圆,∴∠AFB=∠ACB=∠ABD ,∴△AFB ∽△ABD ,∴AB AD =AF AB ,∴AD•AF=AB 2=(√5)2=5。

中考数学专题复习 四点共圆模型 含答案-文档资料

中考数学专题复习   四点共圆模型  含答案-文档资料

共圆模型模型1共端点,等线段模型如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆.如图②,若OA=OB=OC,则A、B、C三点在以O为圆心,OA为半径的圆上.如图③,常见结论有:∠ACB=12∠AOB,∠BAC=12∠BOC.模型分析∵OA=OB=OC.∴A、B、C三点到点O的距离相等.∴A、B、C三点在以O为圆心,OA为半径的圆上.∵∠ACB是AB的圆周角,∠AOB是AB的圆心角,∴∠ACB=12∠AOB.同理可证∠BAC=12∠BOC.(1)若有共端点的三条线段,可考虑构造辅助圆.(2)构造辅助圆是方便利用圆的性质快速解决角度问题.模型实例如图,△ABC和△ACD都是等腰三角形,AB=AC,AC=AD,连接BD.求证:∠1+∠2=90°.证明证法一:如图①,∵AB=AC=AD.∴B、C、D在以A为圆心,AB为半径的⊙A上.∴∠ABC=∠2.在△BAC中,∵∠BAC+∠ABC+∠2=180°,∴2∠1+2∠2=180°.∴∠1+∠2=90°.证法二:如图②,∵AB=AC=AD.∴∠BAC=2∠1.∵AB=AC,∴B、C、D在以A为圆心,AB为半径的⊙O上.延长BA与圆A相交于E,连接CE.∴∠E=∠1.(同弧所对的圆周角相等.)∵AE=AC,∴∠E=∠ACE.∵BE为⊙A的直径,∴∠BCE=90°.∴∠2+∠ACE=90°.∴∠1+∠2=90°.小猿热搜1.如图,△ABC为等腰三角形,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD、CD,CD与AP交于点E.求证:∠1=∠2.证明∵A、D关于AP轴对称,∴AP是BD的垂直平分线.∴AD=AB,ED=EB.又∵AB=AC.∴C、B、D在以A为圆心,AB为半径的圆上.∵ED=EB,∴∠EDB=∠EBD.∴∠2=2∠EDB.又∵∠1=2∠CDB.∴∠1=∠2.2.己知四边形ABCD,AB∥CD,且AB=AC=AD=a,BC=b,且2a>b,求BD的长.解答以A为圆心,以a为半径作圆,延长BA交⊙A于E点,连接ED.∵AB∥CD,∴∠CAB=∠DCA,∠DAE=∠CDA. ∵AC=AD,∴∠DCA=∠CDA. ∴∠DAE=∠CAB.在△CAB和△DAE中.∴△CAB≌△DAE.∴ED=BC=b∵BE是直径,∴∠EDB=90°.在Rt△EDB中,ED=b,BE=2a,∴BD.模型2 直角三角形共斜边模型模型分析如图①、②,Rt△ABC和Rt△ABD共斜边,取AB中点O,根据直角三角形斜边中线等于斜边一半,可得:OC=OD=OA=OB,∴A、B、C、D四点共圆.(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆;(2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一.模型实例例1如图,AD、BE、CF为△ABC的三条高,H为垂线,问:(1)图中有多少组四点共圆?(2)求证:∠ADF=∠ADE.解答(1)6组①C、D、H、E四点共圆,圆心在CH的中点处;②D、B、F、H四点共圆,圆心在BH的中点处;③A、E、H、F四点共圆,圆心在AH的中点处;④C、B、F、E四点共圆,圆心在BC的中点处;⑤B、A、E、D四点共圆,圆心在AB的中点处;⑥C、D、F、A四点共圆,圆心在AC的中点处.(2)如图,由B、D、H、F四点共圆,得∠ADF=∠1.同理:由A、B、D、E四点共圆,得∠ADE=∠1.∴∠ADF=∠ADE.例2如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.解答如图,连接DB、DF.∵四边形ABCD是正方形,且BF是∠CBA的外角平分线,∴∠CBF=45°,∠DBC=45°,∴∠DBF=90°.又∵∠DEF=90°,∴D、E、B、F四点共圆.∴∠DFE=∠DBE=45°(同弧所对的圆周角相等).∴△DEF是等腰直角三角形.∴FE=DE.1.如图,锐角△ABC中,BC.CE是高线,DG⊥CE于G,EF⊥BD于F,求证:FG BC证明:由于Rt△BCE与Rt△BCD共斜边BC,∴B、C、D、E四点共圆.∴∠DBC=∠DEG,同理,Rt∠EDF与Rt△DGE共斜边DE,∴D、E、F、G四点共圆.于是∠DEG=∠DFG,因此,∠DBC=∠DFG.于是FG∥BC2. 如图,BE.CF为△ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:AD⊥BC.3.如图,等边△PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边△PQR怎样运动,点M为不动点.4.如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.求证:∠AHD=∠AHE.证明:(1)∵∠ADT=∠AHT=∠AET=90°,∴D,E,H在以AT为直径的圆上,∴∠AHD=∠ATD,∠AHE=∠ATE,又∵AT是角平分线,TD⊥AB,TE⊥AC,∴∠ATD=∠ATE,∴∠AHD=∠AHE.补充:。

初中几何模型精选题专训:四点共圆...

初中几何模型精选题专训:四点共圆...

初中几何模型精选题专训:四点共圆...
初中几何模型精选题专训:四点共圆模型(17道经典题word文档)
初中课本不讲的知识点,但考试经常出现四点共圆。

先补充一下它的性质。

若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

四点共圆有三个性质:
1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;
2)圆内接四边形的对角互补;
3)圆内接四边形的外角等于内对角。

内容太多,需打印版和答案在评论区留言。

#初中数学##几何##中考##九年级#。

九年级数学上册 专题突破讲练 四点共圆问题大盘点试题 (新版)青岛版

九年级数学上册 专题突破讲练 四点共圆问题大盘点试题 (新版)青岛版

四点共圆问题大盘点1. 四点共圆的性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角度数相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。

2. 四点共圆常用的判定方法:判定1:到定点的距离等于定长的点在同一圆上。

如果:OA=OB=OC=OD,则A、B、C、D四点共圆。

判定2:若两个直角三角形共斜边,则四个顶点共圆,且直角三角形的斜边为圆的直径。

如果:△ABD和△BCD是直角三角形,则A、B、C、D四点共圆。

判定3:共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆。

如果:A、D在公共边BC同侧,且∠A=∠D,则A、B、C、D四点共圆。

判定4:对于凸四边形ABCD,若对角互补或一个外角等于其邻补角的内对角,则A、B、C、D四点共圆。

如果:∠1+∠2=180°或∠1=∠3,则A 、B 、C 、D 四点共圆。

判定5:对于凸四边形ABCD 其对角线AC 、BD 交于点P ,若PA ·PC =PB ·PD ,则A 、B 、C 、D 四点共圆。

(相交弦定理的逆定理)例题 (郑州模拟)如图,在正△ABC 中,点D ,E 分别在边AC ,AB 上,且AD=31AC ,AE=32AB ,BD ,CE 相交于点F 。

(1)求证:A 、E 、F 、D 四点共圆;(2)若正△ABC 的边长为2,求A 、E 、F 、D 所在圆的半径。

解析:(1)依题意,可证得△BAD ≌△CBE ,从而得到∠ADB =∠BEC ⇒∠ADF +∠AEF =180°,即可证得A ,E ,F ,D 四点共圆;(2)取AE 的中点G ,连接GD ,可证得△AGD 为正三角形,GA =GE =GD =32,即点G 是△AED 外接圆的圆心,且圆G 的半径为32。

答案:(1)证明:∵AE =32AB , ∴BE =31AB , ∵在正△ABC 中,AD =31AC , ∴AD =BE ,又∵AB =BC ,∠BAD =∠CBE , ∴△BAD ≌△CBE , ∴∠ADB =∠BEC ,即∠ADF +∠AEF =180°,所以A ,E ,F ,D 四点共圆。

(完整版)四点共圆例题及答案

(完整版)四点共圆例题及答案

例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD+AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5圆的内接四边形例1 已知:如图7-90,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=MD.证明∠MEC与∠HEB互余,∠ABE与∠HEB互余,所以∠MEC=∠ABE.又∠ABE=∠ECM,所以∠MEC=∠ECM.从而CM=EM.同理MD=EM.所以CM=MD.点评本例的逆命题也成立(即图中若M平分CD,则MH⊥AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例2 已知:如图7-91,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙O的需证明GB=CD.但这在第七章ξ1.4圆周角中的例3已经证明了.证明读者自己完成.*分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例1的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=MF,而由例3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+BC·AD=AC·BD.分析在AB·CD+BC·AD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB·CD+BC·AD是否等于AC·BD.而要考虑AB·CD和BC·AD各等于什么,要用到相似三角形.为此,如图7-92,作AE,令∠BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ABE∽△ACD.由此求得AB·CD=AC·BE.在圆中又出现了△ABC∽△AED,由此又求得BC·AD=AC·ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+PC.分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=PB,剩下的问题是证明MA=PC,这只要证明△ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=PC,剩下的问题是证明PM=PB,这只要证明△BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=MC,这只要证明△PAB≌△CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.*本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=AB,所以有PA=PB+PC.例2 如图7—116,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∵ADFB是圆内接四边形,∴∠BAD+∠F=180°,∴∠E+∠F=180°.∴CE∥CF.说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠DFG=∠BAD,而∠BAD=∠E,所以∠DFG=∠E.(2)应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例3 如图7—118,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC 交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ABD=∠DBE,容易看出.若连结DE,则有AD=DE.因此只要证DE=EC.由于DE和EC为△DEC的两边,所以只要证∠EDC=∠C.由已知条件可知∠C=∠ABC.因此只要证∠EDC=∠ABC.因为△EDC是圆内接四边形ABED的一个外角,所以可证∠EDC=∠ABC.问题可解决.证明:连结DE.∵BD平分∠ABC,∴,AD=DE.∵ABED是圆内接四边形,∵AB=AC,∴∠ABC=∠C,∴∠EDC=∠C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠A、∠B、∠C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=DC.作业答案或提示:1.∠ABC=∠ADC=90°,∠BCD=109°42′.2.∠A=45°,∠B=67.5°,∠C=135°,∠D=112.5°.3.提示:因为∠DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠DBC=∠DCB,因此DB=DC.判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与 AD、BC分别交于E、F.求证:C、D、E、F四点共圆.提示连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB 于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE =PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB 和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD 的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB=QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2关于AF对称,则∠1=∠2.∵A、F、D、C四点共圆,则∠2=∠3,于是∠1=∠3,∴A、H2、B、c四点共圆,即H2在△ABC的外接圆上.同理可证,H1、H3也在△ABC的外接圆上.∴A、B、C、H1、H2、H3六点共圆.相关资源加到收藏夹添加相关资源托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形 ABCD 中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996年第2期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例1已知正七边形A1A2 (7)(第21届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连 A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△CDE∽△BAE和△CBE∽△DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即 CE(AE+CE)=16.设CE=x,整理上式,得x2+6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例3一个内接于圆的六边形,其五个边的边长都为81,AB是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a, BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF =c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31·81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a+b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11)的圆及圆内接四边形ABCD,使BC=2,CD=11,如图 4,于是由托勒密定理,得在△BCD中,由余弦定理,得经检验x=14是原方程的根.求证: a2+b2=1.这道名题已有多种证法,而且被视为用三角换无法解代数问题的典范.下面再给出一各几何证法.易知0≤a、b≤1且a、b不全为零.当a、b之一为零时,结论显然成立.当a、b全不为零时,由已知等式联想到托勒密定理,作直径AC=1的圆及圆内接四与已知等式比较,得BD=1,即BD也为圆的直径,故a2+b2=1例6设a>c,b>c,c>0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x, AD=y.(图1)由勾股定理知a,b,x,y满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形 ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3】已知:边长为 1的正七边形ABCDEFG中,对角线 AD=a,BG=b(a≠b).求证:(a+b)2(a-b)=ab2.证连结BD,GE,BE,DG,则 BD=EG=GB=b,DG=BE=DA=a, DE=AB=AG=1.(如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+b (1)同理在四边形BDEG中,得BE·DG=DE·BG+BD·EG,即a2=b+b2 (2)将(2)变形为b=a2-b2 (3)(1)×(3),得ab2=(a+b)(a2-b2).故ab2=(a+b)2(a-b).三、构造圆内接四边形,运用定理【例4】在△ABC中,∠A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3) 连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠1=∠2,∴BD=DC.∴AD·BC=AB·CD+AC·BD=BD(AB+AC).即AD·BC=BD·(AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结 BD.由∠A+∠C=180°,可以推出sinA=sinC,cosA=-cosC.并且S四边形ABCD=S△ABD+S△BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1)先证四边形四边定长,有唯一的四边形内接于圆,设∠ABC=α,∠ADC=β,AC=x.令α+β=π,即cosα+cosβ=0x的解唯一确定,代入(1)(2)后cosα、cosβ也随之唯一确,在α,β∈(0,π)的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2)当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β=π时(即为圆内接四边形时)S2达到最大值,即S最大.一个几何定理的应用江苏省徐州矿务局庞庄职校张怀林定理:如图1,在圆接四边形ABCD中弦AD平分∠BAC,则2ADcosα=AB +AC.证明连接BD、DC、BC,设已知圆半径为R,则由正弦定理有:BD=DC=2Rsinα,BC=2Rsin2α.由托勒密定理有AB·CD+AC·BD=AD·DC.∴(AB+AC)·2Rsinα=AD·2Rsin2α.则2AD·cosα=AB+AC.下面举例说明它的应用.例1如图2,已知锐角△ABC的∠A平分线交BC于L,交外接圆于N,过L分别作LK⊥AB,LM⊥AC,垂足分别为K、M.求证:四边形AKNM的面积等于△ABC的面积.(第28届IMO)证明由已知得∠BAN=∠CAN,由定理有2ANcosα=AB+AC,=AN·AL·cosα·sinα=AN·AK·sinα=AN·AM·sinα=2S△AKN=2S△AMN.∴S△ABC=S四边形AKNM.(第21届全苏奥数)证明作正七边形外接圆,如图3所示.由定理有2c·cosα=b+c,又在等腰△A1A2A3中有2a·cosα=b.例3在△ABC中,∠C=3∠A,a=27,c=48,则b的值是____.(第36届AHSME试题)解如图4.作△ABC的外接圆,在取三等分点D、E,连CD、CE.由已知得:∠ACD=∠DCE=∠ECB=∠A,CD=AB=48,由定理有2CE·cosA=CB+CD ①2CD·cosA=CE+AC ②又2CB·cosA=CE ③由②、③得:b=AC=CE·(CD-CB)/CB=35.托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD ∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图4,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴BD=CD.故AD·BC=AB·BD+AC·BD=BD(AB+AC).三、利用“无形圆”借助托勒密定理例4等腰梯形一条对角线的平方等于一腰的平方加上两底之积.如图5,ABCD中,AB∥CD,AD=BC,求证:BD2=BC2+AB·CD.证明:∵等腰梯形内接于圆,依托密定理,则有AC·BD=AD·BC+AB·CD.又∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.四、构造图形借助托勒密定理例5若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图6,作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.五、巧变原式妙构图形,借助托勒密定理例6已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图7,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.六、巧变形妙引线借肋托勒密定理例7在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,析证:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图8,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,关于圆内接四边形的若干共点性质浙江绍兴县鲁迅中学范培养设四边形ABCD内接于圆O,其边AB与DC的延长线交于P,AD与BC 的延长线交于Q,由P作圆的两切线PM、PN,切点分别为M、N;由Q作圆的两切线QE、QF,切点分别为E、F(如图1).则有以下一些共点性质:性质1 AC、BD、EF三直线共点.证明:如图1,设AC交EF于K1,则K1分EF所成的比为设BD交EF于K2,同理可得K2分EF所成的比为由(5)、(6)可得(1)=(2),故K1、K2分EF所成的比相等.∴K1、K2重合,从而AC、BD、EF三直线共点.类似地AC、BD、MN三直线共点,因此有以下推论AC、BD、EF、MN四直线共点.性质2 AB、DC、EF三直线共点于P.(此性质等同于1997年中国数学奥林匹克第二试第四题)这里用上述证明性质1的方法证之.证明:如图2.设DC与EF的延长线交于P1,则P1分EF所成的比为设AB与EF的延长线交于P2,则P2分EF所成的比为由(5)、(6)可得(7)=(8),故P1、P2分EF所成的比相等.∴P1、P2重合,从而AB、DC、EF三直线共点于P.推论AD、BC、NM三直线共点于Q.性质 3 EM、NF、PQ三直线共点.证明:如图3,设EM的延长线交PQ于G1,妨上证法,G1分PQ所成的比为设NF的延长线交PQ于G2,则G2分PQ所成的比为(这里E、F、P三点共线及N、M、Q三点共线在性质2及推论中已证).由△PME∽△PFM得由(11)、(12)及QE=QF、PN=PM可得(9)=(10),故G1、G2分PQ所成的比相等.∴G1、G2重合,从而EM、NF、PQ三直线共点.性质4如果直线EN和MF相交,那么交点在直线PQ上,即EN、MF、PQ三直线共点.证明从略,妨性质3的证法可得.性质5 EM、NF、AC三直线共点.证明:如图4,类似于性质1的证明,设EM与AC的延长线交于G3,则G3分AC所成的比为设NF与AC的延长线交于G4,则G4分AC所成的比为由(15)、(18)、(19)可得(13)=(14),故G3、G4分AC所成的比相等.∴G3、G4重合,从而EM、NF、AC 三直线共点.推论EM、NF、AC、PQ四直线共点.限于篇幅,仅列以上五条共点性质.有兴趣的读者不妨再探索其它共点性质例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.托勒密定理及其应用河北省晋州市数学论文研究协会康美娈彭立欣托勒密定理圆内接四边形的两条对角线的乘积(两条对角线所包矩形的面积),等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形面积之和).证明如图1,过C作CP使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.∴AC·BP=AD·BC ①又∠ACB=∠DCP,∠5=∠6,∴AC·DP=AB·CD.②①+②得AC(BP+PD)=AD·BC+AB·CD.故AC·BD=AD·BC+AB·CD.托勒密定理在教材中仅以习题的形式出现,若以此定理为根据,可使许多问题解证过程别具一格.例1已知P是正△ABC的外接圆劣弧上任意一点.求证:PA=BP+PC.证明如图2,ABPC是圆内接四边形,根据托勒密定理,有PA·BC=PB·AC+PC·AB.∵AB=BC=AC,∴PA=PB+PC.例2证明等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.证明如图3,设在梯形ABCD中,AD=BC,AB∥CD.∵等腰梯形内接于圆,∴AC·BD=AD·BC+AB·CD.又AD=BC,AC=BD,∴BD2=BC2+AB·CD.例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.例4已知a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明作直径AB=1的圆,在AB两侧作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,DA=y(如图5).依勾股定理知a、b、x、y是满足题设条件的.依托勒密定理有AC·BD+BC·AD=AB·CD.又∵CD≤AB=1,∴ax+by≤1.例5△ABC的三个内角A、B、C的对边分别为a、b、c,且a2=b(b+c).求证:A=2B.分析将a2=b(b+c)变形为a·a=b·b+b·c,可联想到托勒密定理,进而构造一个圆内接等腰梯形,使两腰为b,两对角线为a,一底边为c.证明如图6,作△ABC的外接圆.以A为圆心,以BC为半径画弧交圆于D,连结BD、DA、DC.。

中考数学专题复习 四点共圆模型 含答案

中考数学专题复习   四点共圆模型  含答案

中考数学专题复习四点共圆模型含答案共圆模型模型1共端点,等线段模型如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆.如图②,若OA=OB=OC,则A、B、C三点在以O 为圆心,OA为半径的圆上.如图③,常见结论有:∠ACB=12∠AOB,∠BAC=12∠BOC.模型分析∵OA=OB=OC.∴A、B、C三点到点O的距离相等.∴A、B、C三点在以O为圆心,OA为半径的圆上.∵∠ACB是AB的圆周角,∠AOB是AB的圆心角,∴∠ACB=12∠AOB.同理可证∠BAC=12∠BOC.(1)若有共端点的三条线段,可考虑构造辅助圆.(2)构造辅助圆是方便利用圆的性质快速解决角度问题.模型实例如图,△ABC和△ACD都是等腰三角形,AB=AC,AC=AD,连接BD.求证:∠1+∠2=90°.∠1=2∠CDB . ∴∠1=∠2.2.己知四边形ABCD ,AB ∥CD ,且AB =AC =AD =a ,BC =b ,且2a >b ,求BD 的长.解答以A 为圆心,以a 为半径作圆,延长BA 交⊙A 于E 点,连接ED .∵AB ∥CD ,∴∠CAB =∠DCA ,∠DAE =∠CDA . ∵AC =AD ,∴∠DCA =∠CDA . ∴∠DAE =∠CAB .在△CAB 和△DAE 中.∴△CAB ≌△DAE . ∴ED =BC =b∵BE 是直径,∴∠EDB =90°.在Rt △EDB 中,ED =b ,BE =2a ,∴BD 22BE ED -()222a b -224a b -.模型2 直角三角形共斜边模型模型分析如图①、②,Rt △ABC 和Rt △ABD 共斜边,取AB 中点O ,根据直角三角形斜边中线等于斜边一半,可得:OC =OD =OA =OB ,∴A 、B 、C 、D 四点共圆.(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆;(2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一.模型实例例1如图,AD、BE、CF为△ABC的三条高,H为垂线,问:(1)图中有多少组四点共圆?(2)求证:∠ADF=∠ADE.解答(1)6组①C、D、H、E四点共圆,圆心在CH的中点处;②D、B、F、H四点共圆,圆心在BH的中点处;③A、E、H、F四点共圆,圆心在AH的中点处;④C、B、F、E四点共圆,圆心在BC的中点处;⑤B、A、E、D四点共圆,圆心在AB的中点处;⑥C、D、F、A四点共圆,圆心在AC的中点处.(2)如图,由B、D、H、F四点共圆,得∠ADF=∠1.同理:由A、B、D、E四点共圆,得∠ADE=∠1. ∴∠ADF=∠ADE.例2如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.解答如图,连接DB、DF.∵四边形ABCD是正方形,且BF是∠CBA的外角平分线,∴∠CBF=45°,∠DBC=45°,∴∠DBF=90°.又∵∠DEF=90°,∴D、E、B、F四点共圆.∴∠DFE=∠DBE=45°(同弧所对的圆周角相等).∴△DEF是等腰直角三角形.∴FE=DE.1.如图,锐角△ABC中,BC.CE是高线,DG⊥CE于G,EF⊥BD于F,求证:FG BC证明:由于Rt△BCE与Rt△BCD共斜边BC,∴B、C、D、E四点共圆.∴∠DBC=∠DEG,同理,Rt∠EDF与Rt△DGE共斜边DE,∴D、E、F、G四点共圆.于是∠DEG=∠DFG,因此,∠DBC=∠DFG.于是FG∥BC2. 如图, BE.CF为△ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:AD⊥BC.3.如图,等边△PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边△PQR怎样运动,点M为不动点.4.如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.求证:∠AHD=∠AHE.证明:(1)∵∠ADT=∠AHT=∠AET=90°,∴D,E,H在以AT为直径的圆上,∴∠AHD=∠ATD,∠AHE=∠ATE,又∵AT是角平分线,TD⊥AB,TE⊥AC,∴∠ATD=∠ATE,∴∠AHD=∠AHE.补充:。

初中数学联赛辅导九年级专题二十二 四点共圆

初中数学联赛辅导九年级专题二十二  四点共圆

专题二十二四点共圆一、知识要点1. 四点到某一定点的距离都相等,从而确定它们共圆.2. 运用有关定理或结论:(1)共底边的两个直角三角形,则四个顶点共圆,且直角三角形的斜边为圆的直径.(2)共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆.(3)对于凸四边形ABCD,对角互补⇔四点共圆.(4)相交弦定理的逆定理:对于凸四边形ABCD其对角线AC、BD交于P,=AP⋅⋅⇔四点共圆.PDBPPC(5)割线定理:对于凸四边形ABCD其边的延长线AB、CD交于P,=⋅⇔四点共圆.PA⋅PDPCPB(6)托勒密定理的逆定理:对于凸四边形ABCD,=⋅+⋅⇔四点共圆.AB⋅CDACBDBCAD二、典型例题例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.例3 如图,已知ABCD为平行四边形,过点A和B的圆与AD、BC分别交于E、F.求证:C、D、E、F四点共圆.例4 如图,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点.求证:A、B、C、H1、H2、H3六点共圆.例5 (托勒密定理的逆定理)在凸四边形ABCD中,如果AC·BD=AB·CD+BC·AD.求证:A,B,C,D四点共圆.三、巩固练习 (一)选择题1.设ABCD 为圆内接四边形,现给出四个关系式:(1)sinA=sinC ;(2)sinA+sinC=0;(3)cosB+cosD=0;(4)cosB=cosD . 其中总能成立的关系式的个数是( ) .A .一个B .两个C .三个D .四个 2.下面的四边形有外接圆的一定是( ) .A .平行四边形B .梯形C .等腰梯形D .两个角互补的四边形 3.四边形ABCD 内接于圆,∠A :∠B :∠C=7:6:3,则∠D 等于( ) . A .36º B .72º C .144º D .54º4.如图1,在四边形ABCD 中,AB=BC=AD=AC ,AH ⊥CD 于H ,CP ⊥BC 交AH 于P ,若,AP=1,则BD 等于( ) .A .B .2C .3 D5.对于命题:①内角相等的圆内接五边形是正五边形;②内角相等的圆内接四边形是正四边形.以下四个结论中正确的是( ) .A .①,②都对B .①对,②错C .①错,②对D .①,②都错(二)填空题6.如图2,△ABC 中,∠B=60º,AC=3cm ,则△ABC 的外接圆半径为 . 7.如图3,△ABC 中,∠ACB=65º,BD ⊥AC 于D ,CE ⊥AB 于E ,则∠AED= , ∠CED= .8.如图4,△ABC 中,AD 是∠BAC 的平分线,延长AD 交△ABC 的外接圆于E ,已知AB=,BD=,BE=,则AE= ,DE = .9.如图5,正方形ABCD 的中心为O ,面积为1989,P 为正方形内一点,且∠OPB=45º,PA ∶PB =5∶14,则PB= .10.如图6,四边形ABCD 内接于以AD 为直径的圆中,若AB 和BC 的长度各为1,,那么AD= .AB =a b c 2cm 72CD =(1)H PD C B A(3)D EA(2)CBAD (4)CBA(5)OP DCB A(6)CB A(三)解答题11.如图7,在△ABC 中,AD 为高线,DE ⊥AB 于E ,DF ⊥AC 于F .求证:B 、C 、F 、E 四点共圆.12.如图8,四边形ABCD 内接于圆,AD 、BC 的延长线交于F ,AB ,DC 的延长线交于E ,EG平分∠AED 交BC 于M ,交AD 于G ,FH 平分∠AFB 交AB 于H ,交CD 于N .求证:EG ⊥FH .13.如图9,AD 、BC 为过圆的直径AB 两端点的弦,且BD 与AC 相交于E .求证:.2AC AE BD BE AB ⋅+⋅=(9)ED C BAE (8)H FM N GD C B A (7)F E DB A14.如图10,O 为凸五边形ABCDE 内一点,且∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.求证:∠9与∠10相等或互补.15.如图11,△ABC 内接于圆,P 为上一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF⊥AC 于F .求证:D 、E 、F 三点共线.BC (11)PFED C BA10987654321(10)OEC B A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考压轴题专题训练:“四点共圆”典型问题50练一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.34.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.25.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.66.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.58.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是梯形.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt △DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC =30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D 作DF⊥AE于F点,连接OF.则线段OF的长度为.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=,BM=.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为.三.解答题(共27小题)24.设梯形ABCD中,AB∥CD,E,F分别在腰AD和BC上,若A,B,F,E四点共圆,证明C,D,E,F也必四点共圆.25.已知四边形ABCD为菱形,点E、F、G、H分别为各边中点,判断E、F、G、H四点是否在同一个圆上,如果在同一圆上,找到圆心,并证明四点共圆;如果不在,说明理由.26.如图,在△ABC中,AB<AC,AD平分∠BAC,BM=CM,K为AM上一点,且∠BKC=180°﹣∠BAC.求证:∠BKD=∠CKD.27.如图,O为△ABC外心,D为BC上一点,BD中垂线交AB于F,CD中垂线交AC于E,求证:A、F、O、E四点共圆.28.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,AC=BC,O是△ABC 的外心,证明C,E,O,F四点共圆.29.如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.30.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点D,点E是AC的中点,连接OD.(1)求证:OD⊥DE;(2)求证:O、A、E、D四点共圆.(3)△ABC满足什么条件时,经过O、A、E、D的圆与BC相切?并说明理由.31.如图,在锐角三角形ABC中,AB=AC,∠ACB的平分线交AB于点D.过△ABC的外心O作直线OG⊥CD交AC于点E,交CD于点G,过点E作EF∥AB交CD于F.(1)求证:C,E,O,F四点共圆;(2)求证:A,O,F三点共线;(3)求证:EA=EF.32.在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,它的逆命题:对角互补的四边形的四个顶点共圆,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,我们就可以借助“对角互补的四边形的四个顶点共圆”,然后借助圆的相关知识来解决问题,例如:已知:△ABC是等边三角形,点D是△ABC内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点F.当点D在如图所示的位置时:(1)观察填空:①与△ACD全等的三角形是;②∠AFB的度数为;(2)利用题干中的结论,证明:C,D,F,E四点共圆;(3)直接写出线段FD,FE,FC之间的数量关系.33.如图,四边形ABCD中,∠ACB=∠ADB=90°,自对角线AC、BD的交点N作NM⊥AB于点M,线段AC、MD交于点E,BD、MC交于点F,P是线段EF上的任意一点.证明:点P到线段CD的距离等于点P到线段MC、MD的距离之和.34.如图,在△ABC中,过A作BC的垂线,垂足为D,O为AD的中点,以AD为直径的⊙O分别与边AB、AC交于点E、F.试求证:(1)BC是⊙O的切线;(2)B、C、F、E四点共圆吗?说明理由.35.如图,圆O内接四边形ABCD的对边AD,BC延长线交于点P,对角线AC,BD交于点Q,设△PDB 的外接圆交直线PQ与P和另一个点K,求证:(1)OK⊥PQ(2)C,D,O,K四点共圆;(3)三条直线AB,OK,DC交于一点.36.如图,已知锐角三角形ABC,过点A作BC的垂线与以BC为直径的⊙O1分别交于点D,E.过点B 作CA的垂线与以CA为直径的⊙O2分别交于点F,G.求证:E,F,D,G四点共圆,并确定圆心的位置.37.已知△ABC中,∠A=60°,E、F分别为AB、AC延长线上的点,且BE=CF=BC,△ACE的外接圆与EF交于不同于E的点K,设BF与CE交于点T.(1)证明:A、B、T、C四点共圆;(2)证明:点K在∠BAC的角平分线上.38.已知半径为r的⊙O1与半径为R的⊙O2外离,直线DE经过O1切⊙O2于点E并交⊙O1于点A和点D,直线CF经过O2切⊙O1于点F并交⊙O2于点B和点C,连接AB、CD,(1)[以下ⅰ、ⅱ两小题任选一题](ⅰ)求四边形ABCD的面积(ⅱ)求证:A、B、E、F四点在同一个圆上(2)求证:AB∥DC.39.已知:AB是⊙O的直径,C为AB延长线上的一点,过点C作⊙O的割线,与⊙O交于D、E两点,OF是△BOD的外接圆O1的直径,连接CF并延长交⊙O1于点G.求证:O、A、E、G四点共圆.40.如图,四边形ABCD为⊙O的内接四边形,对边BC,AD交于点F,AB、DC交于点E,△ECF的外接圆与⊙O的另一交点为H,AH与EF交于点M,MC与⊙O交于点C.证明:(1)M为EF的中点;(2)A、G、E、F四点共圆.41.已知:AB∥DF,它们之间的距离等于AB;AC∥DE,它们之间的距离等于AC;CB∥EF,它们之间的距离等于BC,求证:A1、B1、C1、A2、B2、C2六点共圆.42.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G四点共圆.43.若以圆内接四边形ABCD的各边为弦作任意圆,求证:这些圆相交的四点共圆.44.如图,PQ为两圆的公共弦,M为PQ上一点,AB、CD分别是两圆的弦且它们相交于M,求证:A、C、B、D四点共圆.45.如图,⊙O1与⊙O2相交于P、Q两点,过P点作两圆的割线分别交于⊙O1与⊙O2于A、B,过A、B 分别作两圆的切线相交于T,求证:T、A、Q、B四点共圆.46.如图所示,两圆交于A、B两点,过B的直线交两圆于C、D,两圆外有一点P,连接PC,PD,分别交两圆于E,F.求证:P、E、A、F四点共圆.47.如图,⊙O是以等腰Rt△ABC的斜边AB为直径的圆,点P是BA的延长线上的一点,过点P作⊙O 的一条切线,切点为点Q,∠QPB的平分线交AC、BC于点E、F.(1)求证:P、A、E、Q四点共圆.(2)若AE=a,BF=b,求EF的长.48.如图,四边形ABCD内接于⊙O,P、Q、R分别是AB、BC、AD的中点,连接PQ与DA的延长线交于S,连接PR与CB延长线交于T,求证:S、T、Q、R四点共圆.49.如图,两圆T1、T2相交于A、B两点,过点B的一条直线分别交圆T1、T2于点C、D,过点B的另一条直线分别交圆T1、T2于点E、F,直线CF分别交圆T1、T2于点P、Q,设M、N分别是弧PB、弧QB的中点,求证:若CD=EF,则C、F、M、N四点共圆.50.如图,D是△ABC的BC边上的一点,O1、O2和O3分别为△ABC、△ADB和△ADC外接圆的圆心,求证:A、O2、O1、O3四点共圆.中考压轴题专题训练:“四点共圆”典型问题50练参考答案与试题解析一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.【分析】如图,连接DE,由等腰直角三角形的性质可求∠C=∠BAC=45°,AC=AB=4,由∠CAD=∠CBE,可证点A,点B,点D,点E四点共圆,可得∠ABD=∠DEC=90°,由等腰直角三角形的性质可求DE=,即可求解.【解答】解:如图,连接DE,∵∠ABC=90°,AB=BC=4,∴∠C=∠BAC=45°,AC=AB=4,∵D是BC中点,∴CD=BC=2,∵∠CAD=∠CBE,∴点A,点B,点D,点E四点共圆,∴∠ABD=∠DEC=90°,∴∠C=∠EDC=45°,∴DE=CE=CD=,∴AE=AC﹣CE=3,故选:B.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【分析】在NM上截取NF=ND,连结DF,AF,由A,B,C,D四点共圆,得出∠MND+∠MAD=180°,由MN∥BC,得出∠AMN+∠ADN=180°,可得到A,D,N,M四点共圆,再由AE,DE分别平分∠BAD,∠CDA,A,F,E,D四点共圆,由∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND =∠EDN=∠ADE=∠AFM,可得出MA=MF,即得出MN=MF+NF=MA+ND.【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.3【分析】延长AM交BC于F,连接ED,根据三角形中位线定理得出ED∥BC,即可求得∠DBC=∠MDE,根据四点共圆,可得∠MDE=∠BAF,由题意可得M是三角形的重心,则F是BC的中点,AM=2FM,证得△ABF∽△MBF,可得=,得出AF•FM=BF2=16,根据条件化成AM2=16,即可求得结论.【解答】解:延长AM交BC于F,连接ED,∵BD、CE是△ABC的两条中线,∴ED∥BC,∴∠DBC=∠MDE,∵A、D、M、E四点共圆,∴∠MDE=∠BAF,∵△ABC的两条中线BD、CE交于点M,∴BF=FC=BC=4,∴M为三角形的重心,∴AM=2FM,∵∠BAF=∠MBF,∠AFB=∠BFM,∴△ABF∽△MBF,∴=,∴AF•FM=BF2=16,(AM+AM)•AM=16,∴AM2=16,∴AM=.故选:C.4.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.2【分析】下面介绍两种解法:解法一:当AP⊥BC时,线段DE的值最小,利用四点共圆的判定可得:A、E、P、D四点共圆,且直径为AP,得出∠AED=∠C=45°,有一公共角,根据两角对应相等两三角形相似得△AED∽△ACB,则,设AD=2x,表示出AE和AC的长,求出AE与AC的比,代入比例式中,可求出DE的值.解法二:先通过四点共圆同理得到:△EFD为顶角为120°的等腰三角形,所以当AP⊥BC时,线段DE的值最小,再作辅助线,求AP的长,从而得EF的长,由等腰三角形三线合一及勾股定理得DE的值.【解答】解:解法一:当AP⊥BC时,线段DE的值最小,如图1,∵PE⊥AB,PD⊥AC,∴∠AEP=∠ADP=90°,∴∠AEP+∠ADP=180°,∴A、E、P、D四点共圆,且直径为AP,在Rt△PDC中,∠C=45°,∴△PDC是等腰直角三角形,∠APD=45°,∴△APD也是等腰直角三角形,∴∠PAD=45°,∴∠PED=∠PAD=45°,∴∠AED=45°,∴∠AED=∠C=45°,∵∠EAD=∠CAB,∴△AED∽△ACB,∴,设AD=2x,则PD=DC=2x,AP=2x,如图2,取AP的中点O,连接EO,则AO=OE=OP=x,∵∠EAP=∠BAC﹣∠PAD=60°﹣45°=15°,∴∠EOP=2∠EAO=30°,过E作EM⊥AP于M,则EM=x,cos30°=,∴OM=x•=x,∴AM=x+x=x,由勾股定理得:AE=,=,=(+1)x,∴=,∴ED=.则线段DE的最小值为;解法二:如图3,取AP的中点F,连接EF、DF,有EF=DF=AP,∠EFD=120°,∴△EFD为顶角为120°的等腰三角形,∴当AP⊥BC时,线段DE的值最小,如图4,作AB的中垂线,交AP于一点O,交AB于G,连接OB,设OA=OB=2x,∵∠BOP=2∠BAO=30°,∴BP=x,OP=x,∴AP=PC=(2+)x,∵BC=6﹣2,∴x+2x+x=6﹣2,x=4﹣2,∴AP=(2+)x=(2+)(4﹣2)=2,∴EF=FD=1,如图5,过F作FH⊥ED于H,∴EH=DH,∵∠FED=30°,∴FH=,∴EH=DH=,∴DE=;故选:B.5.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.6【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【解答】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选:D.6.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③【分析】连接EM、MF、FN、NE,连接EF、MN,交于点O,利用三角形中位线定理可证到四边形ENFM 是平行四边形;然后根据条件判定四边形ENFM的形状,就可知道M、E、N、F四点是否共圆.【解答】解:连接EM、MF、FN、NE,连接EF、MN,交于点O,如图所示.∵点M、E、N、F分别为AD、AB、BC、CD边的中点,∴EM∥BD∥NF,EN∥AC∥MF,EM=NF=BD,EN=MF=AC.∴四边形ENFM是平行四边形.①当AC=BD时,则有EM=EN,所以平行四边形ENFM是菱形.而菱形的四个顶点不一定共圆,故①不一定正确.②当AC⊥BD时,由EM∥BD,EN∥AC可得:EM⊥EN,即∠MEN=90°.所以平行四边形ENFM是矩形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故②正确.③当AC=BD且AC⊥BD时,同理可得:四边形ENFM是正方形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故③正确.故选:C.7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM ≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN=AM2是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=a2+b2;故④正确;⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,=AM2=a2+b2;故④正确;∴S四边形AMFN⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠AMP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选:D.8.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC【分析】本题要求选出错误的命题,只需找到一个命题,说明该命题是假命题即可.可采用反证法判断C是错误的,运用相交弦定理可得DA•DM=DP•DQ,DA•DM=DB•DC,可得DP•DQ=DB•DC,即=,从而可得△DBP∽△DQC,则有∠BPD=∠QCD.由AM平分∠BAC可得∠BAM=∠MAC,根据圆周角定理可得∠MBC=∠MAC,∠MCB=∠BAM,即可得到∠MBC=∠MCB,从而有∠BPD=∠MBC,与三角形外角的性质∠MBC=∠BPD+∠BDP矛盾,故假设不成立,即选择C错误.【解答】解:假设A、P、M、Q四点共圆,根据相交弦定理可得:DA•DM=DP•DQ,∵A、B、M、C四点共圆,∴根据相交弦定理可得:DA•DM=DB•DC,∴DP•DQ=DB•DC,即=,∵∠BDP=∠QDC,∴△DBP∽△DQC,∴∠BPD=∠QCD,∵AM平分∠BAC,∴∠BAM=∠MAC,∵∠MBC=∠MAC,∠MCB=∠BAM,∴∠MBC=∠MCB,∴∠BPD=∠MBC.与∠MBC=∠BPD+∠BDP矛盾,故假设不成立,因而命题C错误,故选:C.9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5【分析】①正确,如图1中,只要证明∠MCN+∠MDN=180°.②正确,可以证明△ADM与△DCN全等.③正确,如图3中,只要证明△ADM≌△CDN,推出AM=CN,DM=DN,因为AC=BC,推出CM=BN,即可证明.④正确,如图4中,作DH⊥AC于H,DG⊥BC于G.只要证明四边形CHDG是正方形,△DHM≌△DGN,推出MH=NG,推出CM+CN=CH+MH+CG﹣NG=2CH,又因为AD=CD=CH,由此即可证明.⑤正确,如图5中,由△DHM∽△DGN,推出==,设DM=x,则DG=2x,推出S△DMN=•2x•x=x2,当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM ⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,由此即可判断.【解答】解:①正确.理由如下:如图1中,∵∠ACB=90°,∠EDF=90°,∴∠MCN+∠MDN=180°,∴点C,M,D,N四点共圆.②正确.理由如下:如图2中,连接CD.∵AC=BC.AD=DB.∴CD⊥AB,CD=AD=DB,∴∠ADC=∠MDN=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN.故②正确.③正确.理由如下:如图3中∵CA=CB,∠ACB=90°,AD=DB,∴CD=AD=DB,CD⊥AB,∠A=∠ACD=∠DCN=45°,∴∠ADC=∠EDF=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN,∴AM=CN,DM=DN,∵AC=BC,∴CM=BN,∴DN•CM=BN•DM④正确.理由如下:如图4中,作DH⊥AC于H,DG⊥BC于G.∵∠ACD=∠BCD=45°,∴DH=DG,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∵DH=DG,∴四边形CHDG是正方形,∴∠HDG=∠MDN=90°,CH=CG,∴∠MDH=∠GDN,在△DHM和△DGN中,,∴△DHM≌△DGN,∴MH=NG∴CM+CN=CH+MH+CG﹣NG=2CH,∵AD=CD=CH,∴CM+CN=AD.如图5中,作DH⊥AC于H,DG⊥BC于G.∵AB=6,BD=2AD,∴AD=2,BD=4,∴AH=DH=,DG=GB=2,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∴∠HDG=∠MDN,∴∠MDH=∠NDG,∵∠DHM=∠DGN=90°,∴△DHM∽△DGN,∴==,设DM=x,则DG=2x,=•2x•x=x2,∴S△DMN当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,≤4.∴2≤S△DMN故选:D.二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是等腰梯形.【分析】由四点共圆和平行线的性质证出∠B=∠C,根据在同一底上的两角相等的梯形是等腰梯形就能求出答案.【解答】解:∵圆经过梯形ABCD的四个顶点,∴∠A+∠C=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠C,∴梯形ABCD是等腰梯形.故答案为:等腰.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有①③.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.【分析】首先按照题意画出示意图,然后根据四点共圆的判定定理进行判断.①验证∠BPM=∠BOC 即可;②由图形可知明显错误;③推导∠AOP+∠ANP=180°即可.【解答】解:如图,∵OC⊥AB于C,∴∠BOC=∠AOC=∠AOB,NA=NB,∵∠BPM=∠AOB,∴∠BPM=∠BOC,∴O、M、B、P四点共圆,∴①正确.∵四边形AMBN为凹四边形.∴A、M、B、N不共圆,∴②错误.∵NA=NB,∴∠NAB=∠NBA,∵∠NAB+∠NBA+∠ANP=180°,∴∠ANP+2∠NBA=180°∵∠AOP=2∠NBA,∴∠AOP+∠ANP=180°,∴A、O、P、N四点共圆,∴③正确.故答案为:①③12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=90°.【分析】根据题意可知,点A、B、D、E共圆,点H是△ABC的垂心.过点A作⊙O的切线AF交BC 的延长线BC于点F.根据切线的性质可知△ABF是直角三角形、由平行线的判定与性质可知∠HCA=∠CAF;最后由图形可知∠BAF=∠FAC+∠CAB=90°,即∠BAC+∠HCA=90°.【解答】解:∵△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,∴点A、B、D、E在以AB为直径的⊙O上;过点A作⊙O的切线AF交BC的延长线BC于点F,则AF⊥AB.∵点H是三角形ABC的垂心,∴CH⊥AB,∴CH∥AF,∴∠HCA=∠CAF(两直线平行,内错角相等);又∵∠BAF=∠FAC+∠CAB=90°,∴∠BAC+∠HCA=90°.故答案是:90°.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.【分析】连接AE,AF,DF,根据AD为直径,可证A、C、B、E四点共圆,则∠ACF=∠ABD,又∠AFC=∠ADB,可证△AFC∽△ADB,则=,而∠FAD=∠FED=∠BEC=∠BAC=45°,根据=求解.【解答】解:如图,连接AE,AF,DF,∵AD为直径,∴∠AED=∠AEB=∠ACB=90°,∴A、C、B、E四点共圆,∴∠ACF=∠ABD,又∵∠AFC=∠ADB,∴△AFC∽△ADB,∴=,∵∠FAD=∠FED=∠BEC=∠BAC=45°,在Rt△ADF中,===.故答案为:.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=﹣2013.【分析】不妨设A在B的左边,设MN与AB的交点为H,易证△AHM∽△NHA,从而可求出AH,进而得到x1,同理可求出x2,然后代入所求代数式就可解决问题.【解答】解:不妨设A在B的左边,设MN与AB的交点为H,由题可知:M(1,﹣2012),N(1,1),则MH=2012,NH=1.根据抛物线的对称性可得MN垂直平分AB,故MN为四边形AMBN外接圆的直径,根据圆周角定理可得∠NAM=∠NBM=90°,∴∠NAH+∠MAH=90°,∠HMA+∠MAH=90°,∴∠NAH=∠HMA.∵∠AHN=∠MHA=90°,∴△AHM∽△NHA,∴=,∴AH2=MH•NH=2012,∴AH==2,∴1﹣x1=2,∴x1=1﹣2.同理x2=1+2,∴x1x2﹣x1﹣x2=(1﹣2(1+2)﹣(1﹣2)﹣(1+2)=1﹣2012﹣1+2﹣1﹣2=﹣2013.故答案为﹣2013.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为18°.【分析】通过证明点A,点B,点C,点D四点共圆,可得∠ABD=∠ACD=72°,由直角三角形的性质可求解.【解答】解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=72°,∴∠CAD=90°﹣∠ACD=18°,故答案为:18°.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=+1.【分析】先证明A、B、C、D四点共圆,由圆周角定理得出∠ABD=∠ACD,再由已知条件和圆内接四边形的性质得出∠ACD=∠ADC,由三角形内角和定理求出∠ACD=∠ADC=75°,得出∠ACB=45°,作BM⊥AC于M,则∠AMB=∠CMB=90°,由含30°角的直角三角形的性质和勾股定理得出BM=AB=1,AM=,得出△CBM是等腰直角三角形,因此CM=BM=1,即可得出AC的长.【解答】解:∵∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∠DAB=180°﹣∠DCB=60°,∴∠ABD=∠ACD,∵∠ABD=∠CBF,∴∠ACD=∠CBF,∵∠CBF=∠ADC,∴∠ACD=∠ADC,∵AC平分∠DAB,∴∠DAC=∠BAC=30°,∴∠ACD=∠ADC=75°,∴∠ACB=120°﹣75°=45°,作BM⊥AC于M,如图所示:则∠AMB=∠CMB=90°,∴BM=AB=1,△CBM是等腰直角三角形,∴AM=BM=,CM=BM=1,∴AC=AM+CM=+1;故答案为:+1.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=28°.【分析】以CD为对称轴作△CDE与△CBD对称,可得∠DEC=∠DBC=82°,CE=CB,然后由∠DAC=98°可得∠DEC+∠DAC=180°,得出A、D、E、C四点共圆,然后可得CE=AD,继而得出∠DCA=∠CDE=∠CDB,由∠BCD和∠DBC的度数可求出∠BCD的度数,即可求出∠ACD的度数.【解答】解:以CD为对称轴作△CDE与△CBD对称,则∠DEC=∠DBC,CE=CB,∵∠DAC=98°,∠DBC=82°,∴∠DEC=82°,∴∠DEC+∠DAC=180°,∴A、D、E、C四点共圆,∵BC=AD,CE=CB,∴CE=AD,∴∠DCA=∠CDE=∠CDB,∵∠BCD=70°,∠DBC=82°,∴∠BDC=180°﹣∠BCD﹣∠DBC=28°,∴∠ACD=∠BDC=28°.故答案为:28°.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt△DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.【分析】作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.易证∠DFE=∠ACB═45°,可得D、E、C、F四点共圆,从而可证到∠DEN=∠DFM,进而可得△DNE≌△DMF,则有DN =DM,NE=MF.易证四边形DNCM是正方形,设正方形DNCM的边长为x,根据△CDF的面积为7.5建立关于x的方程,求出x,从而可求出FC、KC、BK,然后根据勾股定理就可求出BF的长.【解答】证明:作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.∵△ABC和△DEF都是等腰直角三角形,∴∠DFE=∠ACB=45°,∴D、E、C、F四点共圆,∴∠EDF+∠ECF=180°,∠DEC+∠DFC=180°,∠DCF=∠DEF=45°.∵∠DEN+∠DEC=180°,∴∠DEN=∠DFM.在△DNE和△DMF中,.∴△DNE≌△DMF,∴DN=DM,NE=MF.∵∠DNC=∠NCM=∠DMC=90°,∴四边形DNCM是矩形.∵DN=DM,∴矩形DNCM是正方形.设正方形DNCM的边长为x,则NC=MC=DM=DN=x,∴MF=NE=NC﹣EC=x﹣1,∴FC=MC+FM=x+(x﹣1)=2x﹣1.∵△CDF的面积为7.5,∴x(2x﹣1)=7.5.解得:x1=﹣2.5(舍去),x2=3.∴BD=DC==3,FC=5,∴KF=FC•sin45°=.同理:KC=,∴BK=BC﹣KC=6﹣=,∴BF==.故答案为:.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为45°.【分析】如图,连接AF,DG,由等腰三角形的性质可得∠AFD=∠AGD=90°,可得点A,点F,点G,点D四点共圆,可得∠DFG=∠GAD=25°,由直角三角形的性质和等腰三角形的性质可求∠DFM =20°,即可求解.【解答】解:如图,连接AF,DG,∵AE=AC,DE=DB,点F,点G是CE,BE的中点,∴AF⊥CE,DG⊥BE,∴∠AFD=∠AGD=90°,∴点A,点F,点G,点D四点共圆,∴∠DFG=∠GAD=25°,∵∠AFD=90°,点M是AD中点,∴AM=FM=DM,∴∠DFM=∠FDM,且∠AMF=∠FDM+∠DFM=40°,∴∠DFM=20°,∴∠MFG=∠MFD+∠DFG=45°,故答案为45°.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC=30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.【分析】过点C作CM⊥CF交BD延长线于点M,连接AM,由∠BMC=∠BAC=∠BFC=60°知A、F、B、C、M五点共圆,证∠AMB=60°、OM=OA=2得△AOM是等边三角形,由∠AOM=60°=∠OMC知MC∥AO,得===,从而有OD=OM=、DM=OM=,由A、F、B、M四点共圆证△ODG是等边三角形,得AG=OA﹣OG=OM﹣OD=DM=、EG=AG=,根据DE=DG+EG=OD+EG得出答案.【解答】解:过点C作CM⊥CF交BD延长线于点M,连接AM,∵∠DOC=30°,∴∠BMC=∠BAC=∠BFC=60°,∴A、F、B、C、M五点共圆,∴∠AMB=∠ACB=60°,∵OC=、∠COD=30°,∴OM==2=OA,∴△AOM是等边三角形,∴∠AOM=60°,∵∠AOM=60°=∠OMC,∴MC∥AO,∴===,∴OD=OM=,DM=OM=,∵A、F、B、M四点共圆,∴∠FAM=180°﹣∠FBM=90°,∴∠EAG=∠FAM﹣∠OAM=30°,∴∠OGD=∠AGE=60°,∴△ODG是等边三角形,∴AG=OA﹣OG=OM﹣OD=DM=,∴EG=AG=,∴DE=DG+EG=OD+EG=,故答案为:.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D作DF⊥AE于F点,连接OF.则线段OF的长度为﹣.【分析】作OG⊥DF于G,连接OG.易证A、O、F、D四点共圆,从而有∠OFG=∠DAO=45°,则有OG=FG.设GF=GO=x,则有DG=1+x,OF=x.然后先求出OD,再在Rt△OGD中运用勾股定理求出x,就可得到OF的长.【解答】解:作OG⊥DF于G,连接OG,如图所示.∵四边形ABCD是正方形,∴∠DAC=45°,∠AOD=90°.∵DF⊥AE,即∠AFD=90°,∴∠AOD=∠AFD.∴A、O、F、D四点共圆.∴∠OFG=∠DAO=45°.∵OG⊥DF,即∠OGF=90°,∴∠FOG=45°=∠OFG.∴OG=FG.∵∠AFD=90°,∠DAE=30°,AD=2,∴DF=1.设GF=GO=x,则有DG=DF+FG=1+x,OF==x.在Rt△AOD中,OD=AD•sin∠DAO=2×=.在Rt△OGD中,∵∠OGD=90°,∴OG2+DG2=OD2.∴x2+(1+x)2=()2.解得:x1=﹣+,x2=﹣﹣(舍去).所以OF=x=﹣.故答案为:﹣.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=AB,BM=AB.【分析】易得△BCE≌△DCG,得到∠1=∠2,B,C,H,D四点共圆,得出OH=BD=AB,由E关于BD的对称E′,得到△BEE′是等腰三角形,BM⊥E′E于M,由角平分线到角两边的距离相等得出BM=AB.【解答】解:如图,设EE′与BD交于点M′,∵AD=CD∴AE′=CE=EF,∵∠E′AM′=∠EFM′,∠AM′E′=∠FM′F,∴△AM′E′≌△FM′E(AAS),∴EM′=E′M′,∵ME′=ME∴M与M′重合,∵BC=DC,EC=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠1=∠2,∴B,C,H,D四点共圆,∴OH=BD=AB,∵E关于BD的对称E′,∵∠3=∠4,BE=BE′,∴△BEE′是等腰三角形,∴BM⊥E′E于M,∴BM=AB.故答案为:AB,AB.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为①③④⑤.【分析】①由正方形的性质得∠BAD=∠ADC=∠B=90°,由旋转的性质得∠NAD=∠BAM,∠AND =∠AMB,由余角的性质进而得∠DAM=∠AND,①正确;②由正方形的性质得PC∥EF,由相似三角形的性质得到CP=b﹣,②错误;③由旋转的性质得GN=ME,则AB=ME=NG,证出△ABM≌△NGF(SAS);③正确;=AM2=a2+b2;④正确;得到S四边形AMFN⑤由正方形的性质得∠AMP=90°,∠ADP=90°,得∠ABP+∠ADP=180°,推出A,M,P,D四点共圆,⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△MFE,∴=,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴=,∴CP=b﹣;故②错误;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF(SAS);故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,。

相关文档
最新文档