莱斯利Leslie种群模型

合集下载

数学模型在《线性代数》教学中的应用实例(一)

数学模型在《线性代数》教学中的应用实例(一)

数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵数 学 模 型:生态学:海龟种群统计数据该模型在高等数学教学应用的目的:1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。

2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。

培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。

3. 巩固矩阵的概念和计算。

生态学:海龟种群统计数据管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。

一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。

该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。

举例来说,可以用一个四阶段的模型来分析海龟种群的动态。

如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是111i i d i i id i s p s s -⎛⎫-= ⎪-⎝⎭种群可以存活且在次年进入下一阶段的比例是()11i i d i i i d is s q s-=-如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵123412233400000p e e e q p L q p q p ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭那么L 可以用来预测未来几年每阶段的种群数。

上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。

根据前面表格数据,我们模型的莱斯利矩阵是0127790.670.73940000.000600000.810.8077L ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后每阶段的种群数可以如下计算1000127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(这里的计算进行了四舍五入)。

莱斯利Leslie种群模型

莱斯利Leslie种群模型
t A t 1 , t 1,2,, k 由此,有 1 A 0 ,
2 A1 A2 0 , 3 A 2 A 0 ,
3
()

t A t 1 At 0 .
4
§4.5 应 用(一) ———————————————————— 由此可预测该地区t年后的环境污染水平和经济发 — 展水平.下面作进一步地讨论:
水平与经济发展水平, 则经济发展与环境污染 的增长 模型为 xt 3xt 1 yt 1 yt 2 xt 1 2 yt 1
(t 1,2,, k )
3
§4.5 应 用(一) ———————————————————— 令 — xt t y t 则上述关系的矩阵形式为
1
§4.5 应 用(一) ———————————————————— 设x0 , y0分别为改地区目前的环 水 — 境污染水平与经济发展
平, x1 , y1分别为改地区若干年后 的环境污染水平与经济 发展水平, 且有如下关系: x1 3 x0 y 0 y1 2 x0 2 y 0
0不是特征值, 不能类似分析 . 但是 0可以由 1,2唯一线性表出为
0 31 22
由(*)及特征值与特征向量的性质
8
§4.5 应 用(一) ———————————————————— t t t At 0 At (31 2— ) 3 A 2 A 2 2 1
10
§4.5 应 用(一) ———————————————————— 4.5.2莱斯利(— Leslie)种群模型
莱斯利种群模型研究动物种群中雌性动物的年龄分 布与数量增长之间的关系.
设某动物种群中雌性动物的最大生存年龄为L(单位: 年),将区间[0,L]作n等分得n个年龄组

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

L e s l i e矩阵模型预测人口4.1Leslie矩阵模型的基本概念4.1.1参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:——在时间周期k第i个年龄段的人数注:这里的;一定存在整数n 使得表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数:1)——在时间周期k第i年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)——在时间周期k第i年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率4.1.2Leslie矩阵1.转移过程在一个时间周期内里的人数转移到里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k kx i x i d i i n--+=-=(4-1)下面来讨论的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k的第个i年龄段的女性人数为1()2kx i,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k kix i b i x i--==∑(4-2) 2.人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)0001(1)0k k k kkk kkkb b b n b ndx xdd n--------⎛⎫-⎪⎪-⎪=⨯⎪-⎪⎪⎪--⎝⎭(4-3) 其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭1111(0)(1)()k k k k x x x x n ----⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k kk x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

leslie模型matlab程序

leslie模型matlab程序

leslie模型matlab程序Leslie 模型是一种用于描述种群动态变化的数学模型,特别被广泛应用于生态学和人口学领域。

本文将介绍如何使用 MATLAB 编程实现 Leslie 模型,并提供一个完整的 MATLAB 程序。

Leslie 模型是由生物学家 Patrick Leslie 在 1945 年提出的,它利用年龄结构矩阵来描述一个种群中不同年龄段的个体数量。

该模型假设种群的年龄结构在各个时间段内保持不变,并且个体之间的交互仅通过生育和死亡来实现。

在 Leslie 模型中,种群的每个年龄段都有一个特定的存活率和生育率。

假设一个种群的年龄段从 0 到 k,种群的存活率可以用一个长度为 k+1 的向量 s 表示,其中 s(i) 表示年龄段 i 的存活率。

种群的生育率可以用一个长度为 k 的向量 b 表示,其中 b(i) 表示年龄段 i 的生育率。

为了计算种群在下一个时间段的年龄结构,我们需要将当前时间段的年龄结构向量乘以一个称为 Leslie 矩阵的矩阵 A。

Leslie 矩阵的第一行是生育率向量 b,其余行是存活率向量 s,只是向上移动了一格。

因此,Leslie 矩阵的维度为(k+1)×k。

现在我们将以 MATLAB 编程实现 Leslie 模型。

首先,我们需要确定种群的年龄段数目和初始年龄结构向量。

这里假设种群的年龄段从 0 到 9,初始年龄结构向量为一个10×1 的列向量,每个元素都为 100。

```matlabk = 9; % 年龄段数目x0 = zeros(k+1, 1); % 初始年龄结构向量x0(1) = 100; % 年龄 0 的个体数量为 100```接下来,我们需要定义存活率向量和生育率向量。

对于这里的示例,我们假设存活率向量是一个长度为 10 的向量,并且每个年龄段的存活率都为 0.8。

生育率向量是一个长度为 9 的向量,并且每个年龄段的生育率都为 2。

莱斯利模型

莱斯利模型

表示每一个女性在第i年龄组期间生育儿女的平均数。
表示第i年龄组的女性可望活到第(i+1)年龄组的分数。
显然 ai 0(i 1, 2,, n),0 b 1(i 1, 2,, n 1). 不允许任何bi等于0, 否则就没有一个没有女性会活到超过第i年龄组。
同样,至少有一个 a i 是正的,这样就保证有n个女儿出生了。与正的 对应的年龄组称为生育年龄组。
1)如果 1 3)如果 1
1 ,总体最终是增长的; 1 ,总体整体是不变的。
2)如果 1 1 ,总体整体是减少的;
1 1 的情形有特殊意义,因为它决定了一个具有零增长的总体。
对于任何初始年龄分布,总体趋于一个是特征向量的某个倍数
由(5.6)和(5.7)式可看出,当且仅当
a1 a2b1 a3b1b2 ... anb1b2 ...bn1 1
t0 0, t1 N / n, t2 2N / n, , tk kN / n, .
这样,在时刻 tk 1 时于第(i+1)组中的所有女性在时刻是均在第i组中。
在两次连续的观察时间之间的出生和死亡过程,用下述人口学参数来描述:
ai (i 1, 2,, n)
b(i 1, 2,, n 1)
此等式两边除以
1k ,就得出
0 P 1 X (0) . (n / 1 ) k 0
(5.9)

k 1
1

k 1
X (k )
由于1 是严格主特征值,所以
| i / 1 | 1(i 2,3,, n), 当 k (i / 1 )k 0(i 2,3,, n), 这样就得到
aiBiblioteka 记xi(i ) 是在时刻个 年龄组中的女性数目,则称

莱斯利矩阵科学家LesliePH于1945年引进一种数学方法利用某一

莱斯利矩阵科学家LesliePH于1945年引进一种数学方法利用某一

莱斯利矩阵科学家Leslie PH.于1945年引进一种数学方法,利用某一初始时刻种群的年龄结构现状,动态地预测种群年龄结构及数量随时间的演变过程,目录1 莱斯利(Leslie)矩阵模型2 佛坪大熊猫种群动态发展趋势3 计算结果与分析1 莱斯利(Leslie)矩阵模型简介如下:依种群个体的生理特征,将其最大寿命年龄等距分成m个年龄组,然后讨论不同时间种群按年龄的分布,故时间也离散化为t=0,1,2,…其间隔与年龄组的间隔时间相同.t=0对应于初始时刻.设开始时(t=0)第i个年龄组内的个体数为ni(0),i=1,2,…,m.则向量N∼(0)=[n1(0),n2(0),…,nm(0)]T称为初始年龄结构向量.第i年龄组的生殖率为fi(≥0)i=1,2,…,m;生存率为Si(>0),i=1,2,…,m-1.则相临两个时段间,各年龄组个体数ni有如下的迭代关系:注1 fi中已扣除了在时段t内出生,但活不到t+1时段的新生个体.注2 通常在两性生殖的种群中,只计雌体数.作矩阵2 佛坪大熊猫种群动态发展趋势利用莱斯利模型,对佛坪自然保护区内大熊猫种群的发展变化作出预测分析.2.1 佛坪大熊猫种群现状佛坪自然保护区位于秦岭中段南坡,北纬32°32′~33°43′,东经107°40′~107°55′,最高海拔2904m,最低海拔1100m,总面积293km2.1974年以来,科学工作者多次对该区域内大熊猫的种群数量、年龄结构、分布等进行了大量观察研究,提供了如下数据[3].1990年该区域内观察到64只大熊猫,分布面积237/km2,密度为0.27/km2,年龄结构为未成年组 6岁以下 24只 37.5%成年组 6~15岁 31只 48.2%老年组 15岁以上 9只 14.3%2.2 等距年龄结构分析处理由于模型分析中要求等距年龄结构,现有的数据是不等距的,故需进行等距年龄结构分析处理.根据大熊猫的生长发育规律,其野外最大寿命年龄为26岁[2],按每3岁一个年龄段分成9个年龄组:0岁~2岁,3岁~5岁,…,24岁~26岁,分别记为第1,2,…,9年龄组.文[4]已据文[2]提供的大熊猫的有关生命数据,换算出大熊猫按三年段的等距年龄组的生殖率fi和生存率Si为表1.由于野外大熊猫的性别不易识别,调查数据往往无性别之分,大熊猫的雌雄比为1∶1[2],故上表为雌、雄合计的,而非一般的只考虑雌体.文[5]计算了大熊猫种群的稳定年龄结构向量为N∼(∞)=[101,41,37,33,27,15,8,4,1]t据此,可按比例将现有非等距年龄结构调整为等距年龄结构.0~5岁共24只属于第1、2年龄组.因0~2岁幼仔死亡率极高,加之9月以前的幼仔不能离窝,不可能见到它们的活动痕迹,故第一年龄组的个体数应增加,能被观察到的个体数量以三分之一计算[3].于是n13+n2=24;n1n2=10141,解得n1=33(只),n2=13(只).6岁至15岁31只,但分龄到14岁,尚多出1岁,故调出1只到下一组内,余下的30只仍按比例分配调整为n3=12只,n4=11只,n5=7只.16岁以上9只,调入一只后共10只,按比例分配调整为n6=4只,n7=3只,n8=2只,n9=1只.最后得到1990年(t=0)的初始年龄结构向量为N∼(0)=[33,13,12,11,7,4,3,2,1]’.莱斯利矩阵为3 计算结果与分析对t=1,2,…,10,11,按公式N∼(t)=MtN∼(0)的计算结果见表2.其中N∼(0)=[33,13,12,11,7,4,3,2,1]T表2 佛坪大熊猫种群发展趋势从计算结果可以看到,自1990年起的33年间,该种群数量共增加30.39只,为原来的1.353倍,增长率为35.3%.可见大熊猫的发展十分缓慢.不过,这一濒危动物尚能缓慢增长也算幸事了.为分析环境对大熊猫的影响,即因环境造成大熊猫个体的非正常的突发性死亡(如捕猎等).假设1990年内,第二、三、四、五年龄组分别有1只大熊猫非正常死亡,即按N∼(0)=[33,12,11,10,6,4,3,2,1]’计算,以后33年间该大熊猫种群按年龄结构的发展见表3由表2与表3对照表明,虽少量个体受损对种群的影响也是显著的,需经过近十年时间种群才能恢复到原有水平,而且对种群总量的影响还将长期持续下去,可见保护好大熊猫的生存环境,尽量杜绝和减少非正常死亡是十分重要的。

2第二章矩阵应用例子

2第二章矩阵应用例子

第二章 矩阵应用例子矩阵的概念是从大量各种各样的实际问题中抽象出来的,是最基本的数学概念之一.矩阵概念贯穿线性代数的各方面,许多问题的数量关系都可以通过矩阵来描述,因而矩阵是科学研究的一个非常重要的工具.它在自然科学、工程技术、经济管理等领域有着广泛的应用. 本章主要列举了矩阵在经济、统计、信息技术等方面的应用.例1 生产成本某工厂生产三种产品. 它的成本分为三类. 每一类成本中,给出生产单个产品时估计需要的量. 同时给出每季度生产每种产品数量的估计. 这些估计在表2-1和表2-2中给出. 该公司希望在股东会议上用一个表格展示出每一季度三类成本中的每一类成本的数量:原料费、工资和管理费.表2-1 生产单位产品的成本(美元)成 本 产 品A B C 原料费 工资管理费和其他0.10 0.30 0.10 0.30 0.40 0.200.15 0.25 0.15表2-2 每季度产量产 品 季 度夏季 秋季 冬季 春季 A B C4 000 2 0005 8004 500 2 600 6 2004 500 2 400 6 0004 000 2 200 6 000解 我们用矩阵的方法考虑这个问题. 这两个表格中的每一个均可表示为一个矩阵.0.100.300.150.300.400.250.100.200.15M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦及400045004500400020002600240022005800620060006000P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦如果我们构造乘积MP ,则MP 的第一列表示夏季的成本.原料费: (0.10)(4000)(0.30)(2000)(0.15)(5800)1870++= 工资: (0.30)(4000)(0.40)(2000)(0.25)(5800)3450++= 管理费和其他:(0.10)(4000)(0.20)(2000)(0.15)(5800)1670++=MP 的第二列表示秋季的成本.原料费: (0.10)(4500)(0.30)(2600)(0.15)(6200)2160++=工资: (0.30)(4500)(0.40)(2600)(0.25)(6200)3940++=管理费和其他:(0.10)(4500)(0.20)(2600)(0.15)(6200)1900++=MP 的第三列和第四列表示冬季和春季的成本.187021602070196034503940381035801670190018301740MP ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦MP 第一行的元素表示四个季度中每一季度原料的总成本. 第二和第三行的元素分别表示四个季度中每一季度工资和管理的成本. 每一类成本的年度总成本可由矩阵的每一行元素相加得到. 每一列元素相加,即可得到每一季度的总成本. 表2-3汇总了总成本.表2-3季 度夏季 秋季 冬季 春季 全年 原料费工资管理费和其他 总计1 870 3 450 1 670 6 9902 1603 940 1 900 8 0002 0703 810 1 830 7 7101 960 3 580 1 740 7 2808 060 14 780 7 140 29 980例2 生态学:海龟的种群统计学管理和保护很多野生物种依赖于我们模型化动态种群的能力. 一个经典的模型化方法是将物种的生命周期划分为几个阶段. 该模型假设每一阶段种群的大小仅依赖于雌性的数量,并且每一个雌性个体从一年到下一年存活的概率仅依赖于它在生命周期中的阶段,而并不依赖于个体的实际年龄. 例如,我们考虑一个4个阶段的模型来分析海龟的动态种群. 在每一个阶段,我们估计出1年中存活的概率,并用每年期望的产卵量近似给出繁殖能力的估计. 这些结果在表2-4中给出. 在每一阶段名称后的圆括号中给出该阶段近似的年龄.表2-4 海龟种群统计学的4个阶段阶段编号描述(年龄以年为单位) 年存活率 年产卵量 12 3 4卵、孵化期(<1)幼年和未成年期(1~21) 初始繁殖期(22) 成熟繁殖期(23~54)0.67 0.74 0.81 0.810 0 127 79若i d 表示第i 个阶段持续的时间,i s 为该阶段每年的存活率,那么在第i 阶段中,下一年仍然存活的比例将为111i i d i i id i s p s s -⎛⎫-= ⎪-⎝⎭(1) 而下一年转移到第1i +个阶段时,可以存活的比例应为(1)1i id i i i d i s s q s -=- (2) 若令i e 表示阶段(2,3,4)i i =1年中平均的产卵量,并构造矩阵123412233400000p e e e q p L q p q p ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(3) 则L 可以用于预测以后每阶段海龟的数量. 形如(3)的矩阵称为莱斯列(Leslie )矩阵,相应的种群模型通常称为莱斯利种群模型. 利用表1给出的数字,模型的莱斯利矩阵为0127790.670.73940000.000600000.810.8077L ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦假设初始时种群在各个阶段的数量分别为200 000,300 000,500和1 500. 若将这个初始种群数量表示为向量0x ,1年后各个阶段的种群数量可如下计算:1000127792000001820000.670.73940030000035582000.000600500180000.810.807715001617L ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x x (上述结果已经四舍五入到最近的整数了.)为求得2年后种群数量向量,再次乘以矩阵L .2210L L ==x x x一般地,k 年后种群数量可通过计算向量0k k L =x x 求得. 为观察长时间的趋势,我们计算102550,,x x x . 结果归纳在表2-5中. 这个模型预测,繁殖期的海龟数量将在50年后减少80%.表2-5 海龟种群预测阶段编号初始种群数量10年 25年 50年 1 2 3 4200 000 300 000500 1 500114 264 329 212214 1 06174 039 213 669139 68735 966 103 79568 334例3 密码问题在密码学中,称原来的消息为明文,经过伪装了的明文则成了密文,由明文变成密文的过程称为加密. 由密文变成明文的过程称为译密. 明文和密文之间的转换是通过密码实现的.在英文中,有一种对消息进行保密的措施,就是把消息中的英文字母用一个整数来表示,然后传送这组整数. 如~A Z 的26个英文字母与1~26的数字一一 对应.例如,发送“SEND MONEY ”这九个字母就可用[19,5,14,4,13,15,14,5,25]这九个数来表示. 显然5代表E ,13代表M ,…这种方法很容易被破译. 在一个很长的消息中,根据数字出现的频率,往往可以大体估计出它所代表的字母. 例如,出现频率特别高的数字很可能对应出现频率特别高的字母.我们可以用矩阵乘法对这个消息进一步加密. 假如A 是一个对应行列式等于1±的整数矩阵,则1A -的元素也必定是整数. 可以用这样一个矩阵对消息进行变换,而经过这样变换的消息是较难破译的. 为了说明问题,设100315,201⎛⎫ ⎪= ⎪ ⎪-⎝⎭A则11001315.201-⎛⎫ ⎪=-- ⎪ ⎪⎝⎭A把编了码的消息组成一个矩阵194145135,141525⎛⎫ ⎪= ⎪ ⎪⎝⎭B乘积10019414194143155135132100172.2011415252473⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭AB所以,发出去的消息为[19,132,24-,4,100,7,14,172,3-]. 这与原来的那组数字不大相同,例如,原来两个相同的数字5和14在变换后成为不同的数字,所以就难于按照其出现的频率来破译了. 而接收方只要将这个消息乘以1-A ,就可以恢复原来的消息.100194141941413151321001725135.2012473141525⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 要发送的信息可以按照两个或三个一组排序,如果是两个字母为一组,那么选二阶可逆矩阵,如果是三个字母为一组,则选三阶可逆矩阵. 在字母分组的过程中,如果最后一组字母缺码,则要用Z 或YZ 顶位.。

种群相互竞争模型

种群相互竞争模型

种群相互竞争模型种群相互竞争模型是一种描述不同物种之间相互作用的模型。

在这个模型中,物种之间存在着竞争关系,它们彼此争夺有限的资源,如食物、空间、水等。

这种竞争关系是一种自然选择,只有适应环境的物种才能生存下来。

本文将介绍种群相互竞争模型的基本概念和模型类型。

一、基本概念种群:指在一个生态系统中,属于同一物种的个体集合。

相互作用:指不同种群之间在一个生态系统中进行的各种生物和非生物之间的相互作用。

竞争:指不同物种之间为获得生存所需的资源而进行的相互斗争。

资源:指能够提供生存所需的物质和能量,如食物、水、空间等。

竞争系数:指物种之间通过竞争所占据的位置和利用资源的能力。

二、模型类型1. Lotka-Volterra 模型Lotka-Volterra 模型是经典的种群相互竞争模型,它假设两个物种之间的竞争是无限的。

该模型有两个方程,包括一个描述一种物种的增长率和一个描述两种物种之间的交互作用。

该模型的形式为:dN1/dt = r1N1 - a12N2N1dN2/dt = r2N2 - a21N1N2其中,N1 和 N2 分别是种群1和2的数量,r1和r2是它们的增长率,a12和a21 是它们之间的交互作用。

2. Gause 模型其中,Ntotal=N1+N2是两种物种的总数量,r1和r2分别是它们的增长率,K1和K2是种群1和2的最大容量。

c1和c2 是两个物种之间的竞争系数,它们表示在某个条件下,一个物种的存在要比另一个物种更具有竞争力。

3. Ricker模型Ricker模型是一种离散的种群相互竞争模型,它包含了两个方程,描述了一种物种的数量随时间变化的规律。

Ricker模型的形式为:Nt+1 = Nt*exp(r(1-Nt/K)-a*Nc)其中,Nt是种群数量,r是增长率,K是种群的最大容量,a是物种之间的竞争系数,Nc是与物种竞争的物种数。

dN/dt = rN/(1 + aN)总结:种群相互竞争模型是描述不同物种之间相互作用的模型,包括竞争、相互作用、竞争系数、资源等基本概念。

Leslie人口模型及例题详解

Leslie人口模型及例题详解

L e s l i e人口模型及例题详解The saying "the more diligent, the more luckier you are" really should be my charm in2006.Leslie 人口模型现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化;如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型;20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型;模型假设(1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化;假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化;2 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记第i 年龄组女性生育率为i b 注:所谓女性生育率指生女率,女性死亡率为i d ,记1,i i s d =-假设,i i b d 不随时间变化;3 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响;4 生育率仅与年龄段有关,存活率也仅与年龄段有关;建立模型与求解根据以上假设,可得到方程 )1(1+t n =∑=mi i i t n b 1)()()1(1t n s t n i i i =++ 1=i ,2.…,m -1 写成矩阵形式为其中,L =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000000121121m m m s s s b b b b 1 记)]0(,),0(),0([)0(21m n n n n = 2假设n 0和矩阵L 已经由统计资料给出,则为了讨论女性人口年龄结构的长远变化趋势,我们先给出如下两个条件:i s i > 0,i =1,2,…,m -1;ii b i 0≥,i =1,2,…,m ,且b i 不全为零;易见,对于人口模型,这两个条件是很容易满足的;在条件i 、ii 下,下面的结果是成立的: 定理1t1+tL 矩阵有唯一的单重的正的特征根0λλ=,且对应的一个特征向量为*n =1,s 1/0λ,s 1s 2/20λ,…,s 1s 2 …s m -1/10-m λT3 定理2若1λ是矩阵L 的任意一个特征根,则必有01λλ≤;定理3若L 第一行中至少有两个顺次的0,1>+i i b b ,则i 若1λ是矩阵L 的任意一个特征根,则必有01λλ<;ii t t t n 0/)(lim λ+∞>-=*cn , 4 其中c 是与n 0有关的常数;定理1至定理3的证明这里省去;由定理3的结论知道,当t 充分大时,有*)(0n c t n t λ≈ 5 定理4记121i i i b s s s β-=,q λ=1β/λ+2β/λ2+…+m β/m λ,则λ是L 的非零特征根的充分必要条件为q λ=1 6所以当时间充分大时,女性人口的年龄结构向量趋于稳定状态,即年龄结构趋于稳定形态,而各个年龄组的人口数近似地按λ-1的比例增长;由5式可得到如下结论:i 当λ>1时,人口数最终是递增的;ii 当λ<1时,人口数最终是递减的;iii 当λ=1时,人口数是稳定的;根据6式,如果λ=1,则有b 1 + b 2s 1 + b 3s 1s 2 + … + b m s 1 s 2…s m-1=1记R = b 1 + b 2s 1 + b 3s 1s 2 + … + b m s 1 s 2…s m-1 7R 称为净增长率,它的实际含义是每个妇女一生中所生女孩的平均数;当R >1时,人口递增;当R <1时,人口递减;Leslie 模型有着广泛应用,这里我们给出一个应用的例子,供大家参考;公园大象管理南非的一家大型自然公园放养了大约11000头大象,管理部门希望为大象创造一个健康的生存环境,将大象的总数控制在11000头左右;每年,公园的管理人员都要统计当年大象的总数;过去20年里,公园每年都要处理一些大象,以便保持大象总数维持在11000头左右,通常都是采用捕杀或者迁移的方法来实现;统计表明,每年约处理600-800头大象;近年来,公众强烈反对捕杀大象行为,而且即使是迁移少量的大象也是不允许的;但是一种新的给大象打避孕针的方法也被研制成功;一只成年母象打了避孕针后,两年内不再怀孕;公园有一些关于大象的资料,供建模参考:1几乎不再迁入或迁出大象;2目前性别比接近1:1,采取控制后,也希望维持这个比例;3初生象的性别比也是大约1:1,生双胎的比例为%4母象初次怀孕大约在10-12岁,一直到60岁大约每年怀胎一次,60岁后不再受孕,怀孕期为22个月;5避孕针可能引起大象每个月都发情,但不受孕,因为大象通常每年生育1次,所以按月循坏的方案是不足取的;6避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;7初生象存活到1岁的比例为70%-80%,此后,直至60岁前,存活率都比较均匀,大约在95%以上,大象一般只活到70岁;8公园里不存在捕杀行为,偷猎可以不考虑;公园管理部门有一份过去两年移出公园大象的粗略统计,不幸的是没有捕杀或公园大象的具体数据;你的任务是,构造一个模型,利用模型研究如何采用避孕措施控制公园大象的总数.同时需要完成以下任务:1 建立并利用模型推算2-60岁大象可能的存活率,以及目前的大象年龄结构;2估计每年需要避孕多少大象,才能保证大象总数控制在11000头左右,说明数据不确定性对你的结论的影响,评价一下年龄结构的变化以及对旅游的影响,你可能被要求观察30-60年;3假设每年可以移出50-300头大象,避孕大象数可以减少多少,评价如何根据经济效益平衡两种方案;4有一些反对观点认为,假如出现疾病或者失控的偷猎,使大象总数突然大幅度下降,即使停止避孕,也会对大象群的恢复存在不良影响,研究并回答这个问题;5公园公管理部门正在构造模型,特别希望批驳那些以缺乏完整数据为由而嘲笑利用模型指导决策的观点.希望你的模型包括一份技术报告能给公园管理部门提一些建议,提高公园管理部门的信心,除此之外,你的报告,还应该包括一个详细的技术流程最多3页回答公共关心的问题;6假如非洲其它公园对你的模型感兴趣,有意利用你的模型,请为公园大象数在300-25000头规模的公园提供一份避孕计划,顺便考虑一下存活率稍有不同或者可以有迁移的情况.附过去两年的迁出数据年龄 0 1 2 3 4 5 6 7 8 9总量1 103 77 71 70 68 61 58 51 52 51母象1 50 36 41 29 31 30 28 24 22 29总量2 98 74 69 61 60 54 52 59 58 57母象2 57 34 33 29 34 28 27 31 25 25年龄 10 11 12 13 14 15 16 17 18 19总量1 51 50 51 48 47 49 48 47 43 42母象1 27 27 26 27 26 25 28 27 19 25总量2 60 63 64 60 63 59 52 55 49 50母象2 26 36 38 30 33 34 24 30 21 30年龄 20 21 22 23 24 25 26 27 28 29总量1 42 37 39 41 42 43 45 48 49 47母象1 18 16 19 24 17 25 21 26 29 27总量2 53 57 65 53 56 50 53 49 43 40母象2 29 27 40 23 29 24 21 26 24 16年龄 30 31 32 33 3 4 35 36 37 38 39总量1 46 42 44 44 46 49 47 48 46 41母象1 24 22 20 22 24 24 23 25 21 24总量2 38 35 37 33 20 33 30 29 29 26母象2 17 16 18 18 15 18 12 17 16 13年龄 40 41 42 43 4 4 45 46 47 48 49总量1 41 42 43 38 34 34 33 30 35 26母象1 24 19 26 20 20 15 16 13 20 11总量2 10 24 25 22 21 22 11 21 21 19母象2 6 11 14 10 10 12 8 11 12 9年龄 50 51 52 53 54 55 56 57 58 59总量1 21 18 14 5 9 7 6 0 4 4母象1 10 9 8 4 4 4 3 0 3 2总量2 15 5 10 9 7 6 5 4 7 0母象2 6 4 5 4 4 2 3 2 4 0年龄 60 61 62 63 64 65 66 67 68 69 70总量1 4 3 2 2 1 3 0 2 1 0 2母象1 2 1 1 1 0 3 0 0 1 0 2总量2 2 3 0 2 0 2 0 1 0 0 0母象2 2 1 0 0 0 1 0 1 0 0 0假设与分析1大象性别比接近1:1,初生象的性别比也是大约1:1,采取控制后,也希望维持这个比例;2过去两年迁出的大象是随机抽样,其结构反映了象群总体的年龄结构;3 避孕是随机的,母象是否避孕是不可识别的,假设各个年龄的母象是等比例避孕的,比例系数为k,仅通过调节k 来控制公园大象数量;4母象初次怀孕大约在10-12岁,简化假设大象初孕时间为11岁,当前状态下,成年象的成活率为s,生育母象率为r ,老年象的成活率是线性逐渐递减的,因此其成活率可表示为设初生象活到1岁的存活率为0s ;5避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;且无论打避孕针前母象是否怀孕,一旦打了避孕针,母象就被避孕或中止怀孕,平均每年有γ比例的母象处于避孕状态;每年母象的避孕率为η,每年的避孕方案时瞬时完成的;6 假设大象的年龄结构是稳定的;数据处理与分析12-60岁大象的存活率与年龄结构母象生育率为r =1/+1+/2=头/年12岁的母象生育母象的生育率为r /6;由题设知道存活率)99.0,95.0(∈s ;以下是第一年迁移出0至70岁大象数据x1=103,77,71,70,68,61,58,51,52,51,51,50,51,48,47,49,48,47,43,42,42,37,39,41,42,43,45,48,49,47,46,42,44,44,46,49,47,48,46,41,41,42,43,38,34,34,33,30,35,26,21,18,14,5,9,7,6,0,4, 4, 4 ,3,2,2,1,3,0,2,1,0,2 ;以下是第二年迁移的0-70岁大象数据x2=98,74 69 61 60 54 52 59 58 57 60 63 64 60 63 59 52 55 49 50 53 57 65 53 56 50 53 49 43 40 38 35 37 33 20 33 30 29 29 26 10 24 25 22 21 22 11 21 21 19 15 5 10 9 7 6 5 4 7 0 2 3 0 2 0 2 0 1 0 0 0;x=x1+x2;x0=x/normx,1;以下是第一年迁移的0-59岁母象数据y1=50 36 41 29 31 30 28 24 22 29 27 27 26 27 26 25 28 27 19 25 18 16 19 24 17 25 21 26 29 27 24 22 20 22 24 24 23 25 21 24 24 19 26 20 20 15 16 13 20 11 10 9 8 4 4 4 3 0 3 2;以下是第二年迁移的0-59岁母象数据y2=57 34 33 29 34 28 27 31 25 25 26 36 38 30 33 34 24 30 21 30 29 27 40 23 29 24 21 26 24 16 17 16 18 18 15 18 12 17 16 13 6 11 14 10 10 12 8 11 12 9 6 4 5 4 4 2 3 2 4 0;考虑到有些数据较小及抽样的随机性,我们取两次抽样的平均值作为分析的基本数据;t1=x12:11;t2=x22:11;tt=t1+t2;tt1=tt1:9;tt2=tt2:10;tn=tt2./tt1;meantnans =t1=x112:21;t2=x212:21; tt=t1+t2; tt1=tt1:9;tt2=tt2:10;tn=tt2./tt1; meantnans =t1=x112:31;t2=x212:31; tt=t1+t2; tt1=tt1:19;tt2=tt2:20;tn=tt2./tt1; meantnans =t1=x112:41;t2=x212:41; tt=t1+t2; tt1=tt1:29;tt2=tt2:30;tn=tt2./tt1; meantnans =t1=x112:51;t2=x212:51; tt=t1+t2; tt1=tt1:39;tt2=tt2:40;tn=tt2./tt1; meantnans =t1=x112:60;t2=x212:60; tt=t1+t2;tt1=tt1:48;tt2=tt2:49;tn=tt2./tt1; meantnans =n1=zeros1,71;n11=1;n12=;for i=3:61n1i=n1i-1;endn1;for i=62:71n1i=n1611-i-61/10;endn1;N1=n112:50;xx=x12:50;xx=100xx/normxx,1;N1=100N1/normN1,1;t=1:39;plott,N1,t,xx;axis10,40,0,5;title'图1'通过以上分析大致可以得到,1-60岁大象的存活率约为;0-70岁年龄结构向量见图2; y0=100x0/normx0,1;a=0:70;bara,y0,'stacked';title'图2'下面我们取0120.75,0.98s s s ===;m1=zeros1,71;m11=1;m12=;for i=3:61m1i=m1i-1;endm1;for i=62:71m1i=m1611-i-61/10;endm1;m1=100m1/normm1,1;bara,m1,'stacked';title'图3 稳定的年龄结构'plota,m1,'r-',a,y0,'b-.';title'图4 年龄结构当前状态与稳定状态比较'polyfity0,m1,1ans =从所给的数据来看,象群的年龄结构还没有达到相对稳定的状态;根据以上数据,大体可以得到l=zeros71,71; l1,13=6;l2,1=;for i=14:61l1,i=;endl;for j=3:61lj,j-1=;end; l;for k=62:71lk,k-1=eigl;矩阵的唯一正特征值为;对于不同的存活率,得到的唯一正特征值为:下面我们估计每年处于避孕状态母象的比率γ;此时,女性生育率为0.1448(1)γ-;记由6式得解得1-1/^111/6+ans =即每年应该有%的母象处于避孕状态;为了保证有%的母象处于避孕状态,下面分析每年应该打避孕针母象的比例η;在假设3和假设5的前提下,如果每年打避孕针母象比例为η;母象可以分成3类:即当年被打避孕针而上一年没有被打避孕针或上一年被打避孕针而本年没有被打避孕针,比例为2(1)ηη-;连续两年被打避孕针2η;连续两年没有被打避孕针;只有最后一类母象具有生育能力;因此,只需要η满足方程1-sqrtans =ans =5500ans =+003解得 0.387η=,即每年大约需要给2127头母象打避孕针;在方案实施过程中,实际上根本不需要打这么多针,因为许多小象还是可以识别的;可以采取随机抽样的打针方式,对于抽到的小象只计数不打针,直至计满2127头母象,就算完成当年任务;采取打避孕针的方案对象群的年龄结构是由一些影响的,下面给出了打与不打避孕针情况下稳定的象群年龄结构与各你阿爸年龄段象群数的比较;m1=zeros1,71;m11=1;m12=;for i=3:61m1i=m1i-1;end; m1;for i=62:71m1i=m1611-i-61/10;end; m1;n1=zeros1,71;n11=1;n12=;for i=3:61n1i=n1i-1;end; n1;for i=62:71n1i=n1611-i-61/10;end;n1;subplot1,2,1a=0:70;plota,m1,'r-',a,n1,'b--';title'图5年龄结构比较';axis0,70,0,1;M1=5500m1/normm1,1;N1=5500n1/normn1,1;a=0:70;subplot1,2,2plota,M1,'r-',a,N1,'b--'title'图5各年龄段大象数比较图'axis-0,70,0,300通过以上两个图的比较,可以发现采取避孕措施,将使幼象、小象数减少,中老年象数增加;由于采取避孕措施,使得初生小象数减少,因此会不可避免地引起象群年龄结构的改变,下面分析,15年、30年、60年后的象群年龄结构;L=zeros71,71;L1,13=6;L2,1=;for i=14:61L1,i=;end; L;for j=3:61Lj,j-1=; end; L;for k=62:71Lk,k-1= end; L;eigL;n15=L^15x0';n30=L^15n15;n60=L^30n30;n15=100n15/normn15,1;n30=100n30/normn30,1;n60=100n60/normn60,1;M15=5500n15/normn15,1;M30=5500n30/normn30,1;M60=5500n60/normn60,1;bara,55y0title'图6a 避孕前种群量分布';axis0,70,0,250bara,M15title'图6b 避孕15年后种群量分布';axis0,70,0,250bara,M30title'图6c避孕30年后种群量分布';axis0,70,0,250M60=5500n60/normn60,1;bara,M60title'图6d 避孕前种群量分布';axis0,70,0,250n70=L^70x0';n70=100n70/norm n70,1;k1=100m1/normm1,1;图7给出了避孕前后年龄结构稳定状态的比较plot a,k 1,'r-',a,n70,'b-.';title'图7 避孕前后稳定的年龄结构';axis0,70,0,5数据不确定性对结果的影响分别取0120.7,0.8,0.95,0.99s s s ===1-1/^111/6+ans =1-sqrtans =1-1/^111/6+ans =1-sqrtans =每年需避孕的母象比例为%—% ;对于每年可以迁移50-300头大象及0120.75,0.98s s s ===,下面分析避孕方案的变化及最经济的方案;设增长率为p ,对于 0120.75,0.98s s s ===令当 1.01p =,每年的避孕率为%,每年迁出110头; 当 1.02p =,每年的避孕率为%,每年迁出220头; 当 1.025p =,每年的避孕率为%,迁出275头;1-1/^111/6+ans =1-sqrtans =p=;1-p ^12./^111/6+./p-./p.^49/./pans =1-sqrtans =p=;1-p.^12./^111/6+./p-./p^49/pans =1-sqrtans =p=;1-p.^12./^111/6+./p-./p^49/pans =1-sqrtans =进一步分析可以知道,对于 0120.75,0.98s s s ===,如果增长率为(1 1.0322,11000(p-1))p p ≤≤即每年移,令每年需要避孕的母象为5500'γ,每年需要迁移的大象数为11000(1)p -;从相关的文献中我们大致可以得到,设平均每迁移一头大象的成本约避孕一头大象费用的λ倍,由此得到增长率为p 时的总费用函数为记易见,1,0.3868, 1.01,0.346, 1.02,0.396p y p y p y ======clear ;p=1::;q =1-p.^12./^111/6+./p-./p.^49././pq =Columns 1 through 5Columns 6 through 10Columns 11 through 15Columns 16 through 17a =1-sqrt1-qa =Columns 1 through 5Columns 6 through 10Columns 11 through 15Columns 16 through 17y=a+15p-1y =Columns 1 through 5Columns 6 through 10Columns 11 through 15Columns 16 through 17。

Leslie模型

Leslie模型
在一定时期内它们基本上是一些常数事实上人们只能通过控制b决定本定理的条件通常能够得到满足故在j充分大时有nn即各年龄组的人口比例总会趋于稳定且nj11的充要条件为r1但并非每一个均能活到足够的年龄并生下r个女孩每一妇女可生子女数可定为某一略大于2的数称为临界生育率
关于建立人口增长模型,我们考虑了两条 主要思路: 一.以微分方程为主要手段: 二.以高等代数为主要手段:
p/ r + p/ t=- µ (r,t)p(r,t)
p(r,0)=p0(r) p(0,t)=f(t)
在社会比较安定的情况下,死亡 率大致与时间无关. μ (r,t)=μ (r) p(r,t)= p0(r-t)e f(t-r)e


r
r t
( s ) ds
0≤t≤r t>r

r
( s ) ds
n0 .
A属于1的特征向量N=
.
nk
解线性方程组 AN= 1N
1k/(P0P1…P k-1)
N=
1k-1(P1…P k-1)
1/P k-1 1
当且仅当1=1时,N j N,人口总量将趋于稳定 且各年龄人数在总人口数中所占的比例也将趋于 一个定值。
在1固定的情况下,N只和Pi有关。Pi为i组人的 存活率。在一定时期内,它们基本上是一些常数, 事实上人们只能通过控制b j的值来保证1=1。
目前我国人口中中年青人的比例很大,加上计 划生育降低出生率,必然造成若干年后社会人 口的严重老龄化,待这一代人越出m组后,又 会使人口迅速青年化而走向另一个极端。
为减少这种年龄结构上的振荡,人们又引入了一 个控制变量h(i,j),使bi(j)=h(i,j)
且 h(i,j)=1 h(i,j)称为女性的生育模式,用来调整育龄妇 女在不同年龄组内生育率的高低。为简便可通过 控制结婚年龄和两胎之间的年龄差来接近h(i,j)的 理想值。 于是Leslie模型可以如下形式上的改变: N j+1=[A(j)+B(j)]N j

leslie矩阵模型预测人口 原理

leslie矩阵模型预测人口 原理

【南京大学《leslie矩阵模型预测人口》原理分析】Leslie矩阵模型是人口学家Leslie在20世纪40年代提出的一种人口增长模型,用于预测和描述人口的变化规律。

本文将从深度和广度两个维度进行全面评估Leslie矩阵模型预测人口的原理,力求以简明易懂的方式探讨主题。

1. Leslie矩阵模型预测人口的原理Leslie矩阵模型是一种离散时间模型,它假设在单个时间段内,每位女性将生产一个特定数量的女婴,并且在一定芳龄后才能生育。

Leslie 矩阵通过矩阵运算来描述不同芳龄段的人口增长和转移过程,其基本原理可以用以下公式表示:\[ \begin{pmatrix} f_1 & f_2 & f_3 & \cdots & f_n \\ s_1 & 0 & 0 & \cdots & 0 \\ 0 & s_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & s_{n-1}\end{pmatrix} \times \begin{pmatrix} N_1 \\ N_2 \\ N_3 \\ \vdots \\ N_n \end{pmatrix} \]2. Leslie矩阵模型的深度分析Leslie矩阵模型将人口分为不同芳龄段,根据生育率和存活率来描述人口的增长和转移过程。

通过不断迭代计算Leslie矩阵的乘积,可以预测未来几个时间段内的人口数量分布情况。

值得一提的是,Leslie 矩阵模型基于一些基本的假设,如生育率和存活率不变、芳龄段划分合理等,因此在实际应用中要注意对模型参数的调整和修正,以提高预测准确度。

3. Leslie矩阵模型的广度探讨Leslie矩阵模型不仅可以用于预测人口的总量,还可以对不同芳龄段的人口数量进行预测,从而为政府部门的人口政策制定提供参考依据。

Leslie种群年龄结构的差分方程模型

Leslie种群年龄结构的差分方程模型

Leslie种群年龄结构的差分方程模型摘要本文对带年龄结构的单个生物种群的增长状况的问题建立了差分方程模型进行分析,用MATLAB做出其图像讨论这种昆虫各种周龄的昆虫数目在不同条件下的演变趋势。

针对问题一,用k时段2周后幼虫数量、2到4周虫的数量、4到6周虫数量之间的关系建立了差分方程模型一,利用MATLAB计算得出结果。

针对问题二,用MATLAB做出差分方程模型一在0-50时段的各种周龄的昆虫数目的演变趋势,分析年份足够长时的情况。

得出的结论:各周龄的昆虫比例没有一个稳定值,整个昆虫的数量在无限增长。

针对问题三,把差分方程模型一中的成活率改成原来的一半得到了差分方程模型二,用MATLAB做出图像进行分析。

得出结论:这种除虫剂的效果不明显。

关键词:Leslie矩阵,差分方程,MATLAB,除虫剂一 、问题重述已知一种昆虫每两周产卵一次,六周以后死亡(给除了变化过程的基本规律)。

孵化后的幼虫2周后成熟,平均产卵100个,四周龄的成虫平均产卵150个。

假设每个卵发育成2周龄成虫的概率为0.09,(称为成活率),2周龄成虫发育成4周龄成虫的概率为0.2。

(1) 假设开始时,0-2,2-4,4-6周龄的昆虫数目相同,计算2周、4周、6周后各种周龄的昆虫数目;(2) 讨论这种昆虫各种周龄的昆虫数目的演变趋势:各周龄的昆虫比例是否有一个稳定值?昆虫是无限地增长还是趋于灭亡?(3) 假设使用了除虫剂,已知使用了除虫剂后各周龄的成活率减半,问这种除虫剂是否有效?二、 问题分析本问题是要解决带年龄结构的单个生物种群的增长状况的问题,我们考虑用Leslie 矩阵模型进行分析。

问题一建立0-2,2-4,4-6周龄的昆虫数目之间的关系的模型,从而计算出结果;问题二用问题一的模型画出图像来分析各种周龄的昆虫数目的演变趋势;问题三只要把问题一的模型的成活率改成原来的一半建立新的模型,画出图像来分析昆虫数量的变化趋势,从而分析除虫剂的效果。

矩阵的特征值与特征向量分析及应用-毕业论文

矩阵的特征值与特征向量分析及应用-毕业论文

(此文档为word格式,下载后您可任意编辑修改!)矩阵的特征值与特征向量分析及应用毕业论文摘要特征值和特征向量是高等代数中的一个重要概念,为对角矩阵的学习奠定了基础.本文在特征值和特征向量定义的基础上进一步阐述了特征值和特征向量的关系.本文还研究矩阵的特征值和特征向量的求解方法.再列举了特征值和特征向量相关的性质.最后给出了阵的特征值与特征向量在生活中的运用,并应用于实例.关键词:矩阵特征值特征向量1AbstractEigenvalues and eigenvectors are important concepts of advanced algebrawhich laid the foundation for the diagonal matrix learning. This paper, on the basis of the definition of eigenvalues and eigenvectors, study the relationship of them. This also study the solution method of eigenvalues and eigenvectors. And then lists the related properties of eigenvalues and eigenvectors. Finally, use the matrixeigenvalues and eigenvectors in ordinary live, and application in real examples. Keywords: matrix ; eigenvalue ; eigenvector目录引言第一章、本征值和本征向量的关系1.1 本征值与本征向量的定义1.2 求解本征值与本征向量的方法探索第二章、矩阵的特征多项式和特征根2.1 矩阵的特征多项式和特征根的定义2.2 求解特征根和特征向量的方法2.3 线性变换的特征根与特征向量的求法第三章、特征值和特征向量在生活中的应用3.1 经济发展与环境污染的增长模型3.2 莱斯利(Leslie)种群模型四、结论引言矩阵是高等代数课程的一个基本概念,是研究高等代数的基本工具.。

具有反应扩散的Leslie两种群生物竞争模型的稳定性

具有反应扩散的Leslie两种群生物竞争模型的稳定性

l e r a i to d L a u o c o a t o n i ai t n me d a y p n vf t n l h d. z o h n n u i me Ke r s  ̄ a t n df s n boo ia c m ei o ; t i t y wo d :e ci u i ; il c l o p t n s b l r o i o g i t a i y
t—
d = (l l ) lV( tEf×( , A r—b' 一口l , u Z ,)  ̄ O ∞) …
= =

f∈Q×(, ) 。∞
() 1

0 , ) Q×( , ,( f Ea 0 ∞)
( 0 = , ( 0 =/, ,) 0/ ,) 3 ∈Q 3 0
维普资讯
第2 5卷 第 5期
20 07年 l O月
青 海 大 学 学 报 (自 然 科 学 版 ) Junl f i hi n e i ( a r c ne orao n a U i rt N t e i c) Q g v sy u S e
e tn , n e e h mo e e u e ma n b u d r o dt n i s de i p p r n e lc l y at g u d rt o g n o sN u n o ay c n io ti d i t s a e d t a m— i h n i s u nh a h o a s o i s bl a p t t i t d c a i n y s mp t t i t o d la o iv q i b i p n r p o e y a y oi s bl fte mo e tte p s ie e ul r m i t _ rv d b c a i y h h t i u o Be

leslie模型

leslie模型
7.4
按年龄分组的种群增长
• 不同年龄组的繁殖率和死亡率不同 • 以雌性个体数量为对象 • 建立差分方程模型,讨论稳定状况下种群的增长规律 建立差分方程模型,
假设与建模
• 种群按年龄大小等分为 个年龄组,记i=1,2,… , n 种群按年龄大小等分为n个年龄组 个年龄组, • 时间离散为时段,长度与年龄组区间相等,记k=1,2,… 时间离散为时段,长度与年龄组区间相等, • 第i 年龄组 雌性个体在 时段内的繁殖率为bi 年龄组1雌性个体在 时段内的繁殖率 雌性个体在1时段内的繁殖率为 • 第i 年龄组在 时段内的死亡率为 i, 存活率为si=1- di 年龄组在1时段内的死亡率为 存活率为 时段内的死亡率为d
假设 与 建模
b1 s 1 L= 0 b2 0
xi(k)~时段 第i 年龄组的种群数量 时段k第 时段 设至少1个 设至少 x1 ( k + 1) = ∑ bi xi ( k ) (设至少 个bi>0)
i =1 n
x i +1 ( k + 1) = s i x i ( k ), i = 1, 2 , ⋯ , n − 1
⋯ bn −1 0 ⋱ s2 ⋱ s n −1 0 bn 0 ⋮ 0
x ( k ) = [ x1 ( k ), x2 ( k ),⋯ xn ( k )]
~按年龄组的分布向量 按年龄组的分布向量
T
x ( k + 1) = Lx ( k )
x ( k ) = L x (0)
• 若L矩阵存在 i, bi+1>0, 则 λ k < λ 1 , k = 2 ,3, ⋯ , n 矩阵存在b 矩阵存在 x(k ) 是由b 且 lim 是由 决定的常数 = cx * , c是由 i, si, x(0)决定的常数 k k→∞ λ1 解 x ( k ) = Lk x ( 0 ) L对角化 L = P[ diag ( λ1 , ⋯ λ n )] P −1 对角化 释 k k k −1 P的第 列是 * 的第1列是 的第 列是x L = P [ diag ( λ1 , ⋯ λ n )] P

Leslie人口模型

Leslie人口模型
i r
i r i r i r i r i r i r
四、模型建立
• 种群按年龄大小等分为n个年龄组,记i=1,2,… , n • 时间离散为时段,长度与年龄组区间相等,记k=1,2,… • 第i 年龄组1雌性个体在1时段内的繁殖率为bi • 第i 年龄组在1时段内的死亡率为di, 存活率为si=1- di
பைடு நூலகம்
我们取一岁为一个年龄段,一年为一个时段。设 人口按年龄分组为0到n-1岁及大于等于n岁者(n 岁以上视为同一年龄段)共n+1个年龄段(这里 n为 90)。 设 p (t) d (t) b (t) h (t) k (t) v (t) f (t) 分别表示t到t+1年 第r个 年龄段总人口、人口 死亡率、人口出生率、女性生育模式、女性性别 比、净迁移人口、人口迁移率 (迁移人口比总人 口),R⑴ 为第古年城市化水平 (城 市人口比总人口 )。 为了分别考察城镇、农村人口的发展,以 上各 参数上标i为1时代表城镇,为 2是 代表农村,以 下各参数上标同此。
分别表示t到t1年第r个年龄段总人口人口死亡率人口出生率女性生育模式女性性别比净迁移人口人口迁移率迁移人口比总人口r为第古年城市化水平城市人口比总人口
Leslie人口模型
一、背景 中国是一个人口大国,人口问题始终是制约 我国发展的关键因素之一。根据已有数据, 运用数学建模的方法,对中国人口做出分析 和预测是一个重要问题。
• 二、问题分析
人口的变化受到众多方面因素的影响,因 此对人口的预测与控制也就十分复杂。很 多因素如出生、死亡、迁移、性别比、人 口素质、社会环境、生育政策等等。长期 预测需综合考虑各种因素的影响,在这里 我们主要介绍通过Leslie模型来分析人口增 长问题。

矩阵特征值的应用实例

矩阵特征值的应用实例

摘要: 在线性代数一书中我们学习了矩阵特征值的应用,我们研究了它的以下应用实例,第一是通过Fibonacci数列通项,莱斯利(Leslie)种群模型,第二是通过特征值在线性方程组的求解问题研究特征值在线性方程组中应用,还列举了特征值和特征向量相关的性质.关键词:Fibonacci数列,莱斯利(Leslie)种群模型,特征值,特征向量,基础解系,特征多项式,互逆变换英文题目Abstract:In the theory of matrix eigenvalue,we have learned it’sapplications .we will mainly probe into the applications of two of them. The first one is the application of eigenvalue in model by building the model of formula of term of the Fibonacci sequence and Leslie population model. The second one is the application of eigenvalue in differential equation by solving the problem of linear differential equations,and then lists the related properties of eigenvalues and eigenvectors.Key words: fibonacci sequence, Leslie population model, eigenvalue ,eigenvector, characteristic ,exchange polynomial正文: 1 引言矩阵特征值是线性代数的一个重要内容,在理论和实际应用上都起着非常重要的作用。

第二种是莱斯利矩阵模型。

第二种是莱斯利矩阵模型。

3.4 Leslie 矩阵模型本节将以种群为例,考虑种群的年龄结构,种群的数量主要由总量的固有增长率决定,但是不同年龄结构动物的繁殖率和死亡率有着明显的不同,为了更精确地预测种群的增长,在此讨论按年龄分组的种群增长预测模型,这个向量形式的差分方程是Leslie 在20世纪40年代用来描述女性人口变化规律的,虽然这个模型仅考虑女性人口的发展变化,但是一般男女人口的比例变化不大。

假设女性最大年龄为s 岁,分s 岁为n 个年龄区间:n i n is ns i t i ,,2,1,,)1( =⎥⎦⎤⎢⎣⎡-=∆年龄属于i t ∆的女性称为第i 组,设第i 组女性人口数目为),,2,1(n i x i =,称T n x x x x ),,,(21 =为女性人口年龄分布向量,考虑x 随k t 的变化情况,每隔ns年观察一次,不考虑同一时间间隔内的变化(即将时间离散化)。

设初始时间为0t ,nkst t k +=0时间的年龄分布向量为Tk n k k k x x x x ),,,()()(2)(1)( =,这里只考虑由生育、老化和死亡引起的人口演变,而不考虑迁移、战争、意外灾难等社会因素的影响。

设第i 组女性的生殖率(已扣除女婴的死亡率)为i a (第i 组每位女性在ns年中平均生育的女婴数,0≥i a ),存活率i b (第i 组女性在ns 年仍活着的人数与原来人数之比,10≤<i b ),死亡率i b -=1,假设i a ,i b 在同一时间间隔内保持不变,这个数据可由人口统计资料获得。

k t 时第一组女性的总数)(1k x 是1-k t 时各组女性(人数为n i x k i ,,2,1,)1( =-)所生育的女婴的总数,可以由下式表示:)1()1(22)1(11)(1---+++=k nn k k k x a x a x a x k t 时第1+i 组(1≥i )女性人数)(1k i x +是1-k t 时第i 组女性经ns 年存活下来的人数,可以由下式表示:1,,2,1,1)(1-==-+n i x b x k ii k i 用矩阵将上两式表示为:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------1131211121121321000000000k n k k k n n n k n k k k x x x x b b b a a a a x x x x记:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--00000000121121n n n b b b a a a a L,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=k n k k k k x x x x x 321)(,则有 )0()(x L xk k =称L 为Leslie矩阵,由上式可算出k t 时间各年龄组人口总数、人口增长率以及各年龄组人口占总人口的百分比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



t
xt yt
则上述关系的矩阵形式为
t At1, t 1,2, , k
由此,有
1 A0 ,
2 A1 A20 ,
3 A2 A30 ,
()
t At1 At0. 4
——————§—4—.5—应——用—(—一—)——————
由此可预测该地区t年后—的环境污染水平和经济发
展水平.下面作进一步地讨论:
经济发展与环境污染是当今世界亟待解决的两个突 出问题.为研究某地区的经济发展与环境污染之间的关 系,可建立如下数学模型:
1
——————§—4—.5—应——用—(—一—)——————
设x0, y0分别为改地区目前—的环境污染水平与经济发展水
平, x1, y1分别为改地区若干年后的环境污染水平与经济
发展水平, 且有如下关系:
环境污染也保持着同步恶化趋势.
则也是A 的属于特征值 的特征向量
k
k
一个性质:若是矩阵A的属于特征值的特征向量,
7
——————§—4—.5—应——用—(—一—)——————
Case2 0 2 12 —
y0 2 0,不讨论此种情况.
1
Case30 7
0不是特征值,不能类似分析. 但是0可以由1,2唯一线性表出为 0 31 22

x1(k )
X
(k)
x(k) 2
x(k) n
,
k 1,2,
13
向量—则.显—X(然k—)即,—为随—时着—§刻时—t4k间该—.5的动—应变物——化种—用,群—(该中—一动雌—物)性—种动—群物—的的—各年—年龄—龄分组布
中雌性动物的数目会发生变化. 易知,时刻tk该动物种群的第一个年龄组中雌性动物
——————§—4—.5—应——用—(—一—)——————
4.5.1 经济发展与—环境污染的增长模型 矩阵的特征值和特征向量理论在经济分析、生命 科学和环境保护等领域都有着广泛而重要的应 用.§4.5和§4.6两节就来介绍这方面的知识.
本节先来介绍下面的经济发展与环境污染的增长 模型.
[经济发展与环境污染的增长模型]
每个年龄组的长度为
L n
.
11
——————§—4—.5—应——用—(—一—)——————
设第i个年龄组
[i
1 n
L,
i n
L—] 的生育率(即每一雌性动物
平均生育的雌性幼体的数目)为ai,存活率(即第i个
年龄组中可存活到第i+1个年龄组的雌性动物的数目与
第i 个年龄组中雌性动物的总数之比)为bi .
由此可预测该地区年后的环境污染水平和经济发展 水平.
9
——————§—4—.5—应——用—(—一—)——————
— 2 因无实际意义而在Case 2中未作讨论,但在Case 3的讨论中仍起到了重要作用.
由经济发展与环境污染的增长模型易见,特征值 和特征向量理论在模型的分析和研究中获得了成功的 应用.
10
——————§—4—.5—应——用—(—一—)——————
4.5.2莱斯利(—Leslie)种群模型
莱斯利种群模型研究动物种群中雌性动物的年龄分 布与数量增长之间的关系.
设某动物种群中雌性动物的最大生存年龄为L(单位: 年),将区间[0,L]作n等分得n个年龄组
[i 1 L, i L], i 1,2, , n, nn
xy11
3x0 2x0
y0 2 y0

0
x0 y0
,1
x1 y1
A
3 2
12
则上述关系的矩阵形式为
1 A0.
此式反映了该地区当前和若干年后的环境污染水
平和经济发展水平之间的关系. 2
——————§—4—.5—应——用—(—一—)——————

0
x0 y0
11

则由上式得 3 11 4 1
1 A0 2 21 4 41 40
由此可预测该地区若干年后的环境污染水平和经济
发展水平. 一般地,若令xt , yt分别为该地区t年后的环境污染
水平与经济发展水平,则经济发展与环境污染的增长
模型为
xytt
3xt1 2xt1
yt 1 2 yt1
(t 1,2, , k)
3
——————§—4—.5—应——用—(—一—)——————
的数目等于在时段[tk-1,tk]内各年龄组中雌性动物生育的 雌性幼体的数目之和,即
x1(k )
x(k 1) 1
a1
x(k 1) 2
a2
xn(k1) an
a1x1(k1) a2 x2(k1) an xn(k1)
(2.1)
又tk时刻该动物种群的第i+1个年龄组中雌性动物的数 目等于tk-1 时刻第i个年龄组中雌性动物的存活量,即
x(k) i 1
x(k 1) i
bi
bi xi(k 1) ,
i 1,2, , n 1
(2.2)
14
§4.5 应 用(一) ———————————————————— 联立(2.1)和(2.2)—得
显然,1,2线性无关.
下面分三种情况分析:
Case 1 0 1 11
由(*)及特征值与特征向量的性质知,
t
At 0
At1
t 1
1
4t 11
6
——————§—4—.5—应——用—(—一—)——————


xt yt
4t
11

xt yt 4t
此式表明:在当前的环境污染水平和经济发展水平
的前提下,t 年后,当经济发展水平达到较高程度时,
由(*)及特征值与特征向量的性质
8
——————§—4—.5—应——用—(—一—)——————
t At 0 At (31 2—2 ) 3At1 2At2
3
t
112 2t2Fra bibliotek34t
11
2
1t
1 2
3 3
4 4
t t
2 4
,

xt yt
3 3
4 4
t t
2 4
,
xt 3 4t 2, yt 3 4t 4

x (0) 1
X (0)
x (0) 2
x (0) n
12
§4.5 应 用(一) ————————————————————
X (0) 即为初始时刻该动—物种群中雌性动物的年龄分
布向量.

tk
k n
L, k
1,2,
,
设在时刻tk该动物种群的第i个年龄组中雌性动物的
数目为 xi(k), i 1,2, , n
由矩阵A 的特征多项式
3 1
| E A |
( 4)( 1)
2 2
得A 的特征值为
1 4, 2 1
对1 4,解方程组 (4E A)X 0得特征向量 1 11
5
——————§—4—.5—应——用—(—一—)——————
对1 1,解方程组 (E —A) X 0得特征向量
2 12
相关文档
最新文档