史上最全的数列通项公式的求法15种72303
求数列通项公式方法大全
求数列通项公式的常用方法种类 1、 S n f (a n )解法:利用 a nS 1 Sn 1(n 1) 与 a n S nSn 1f (a n )f (a n 1) 消去 S n (n2) 或与S n( n 2)S n f (S n S n 1 ) (n2) 消去 a n 进行求解。
例 1 已知无量数列 a n 的前 n 项和为 S n ,而且 a n S n 1(n N * ) ,求 a n 的通项公式?nQ S n 1 a n , a n 1S n 1 S n a n a n 1 , a n 11a n ,又 a 11, a n1 .222变式 1. 已知数列 a n 中, a 11,前 n 项和 S n 与 a n 的关系是 S nn(2n 1)a n ,求 a n3变式 2. 已知数列 { a } 的前 n 项和为 S ,且知足 2S2ann 3 (nN *) .nnn求数列 { a n } 的通项公式变式 3. 已知数列 { a n } 的前 n 项和 S n (n 1)b n ,此中 {b n } 是首项为 1,公差为 2 的等差数列 . 求数列 {a n } 的通项公式;变式 4. 数列 a n 的前 n 项和为 S n , a 1 1, a n 12S n (n N * ) .求数列 a n 的通项 a n变式 5. 已知数列 { a } 的前 n 项和为 S ,且知足 2S2an n3 (n N * ) .nn n求数列 { a n } 的通项公式;变式 6. 已知在正整数数列 { a n } 中,前 n 项和 S n 知足 S n1 (a n2)281(1)求证: { a n } 是等差数列( 2)若 b n 2 a n30 ,求{ b n }的前 n 项和的最小值种类 2、an 1ka nb型(此中 k 、 b 为常数, kb0 , k1 )解:设 a n 1m k(a nm) ∴ a n 1 ka n km mb比较系数:kmmm1b ∴k{ a nb }a 1k b∴k 1 是等比数列,公比为 k,首项为1∴ ank b1 (a 1 k b1) k n 1∴ a n(a 1b ) k n 1 bk 1k1例 1 已知数列 a n 中, a 1 1, a n 2a n 1 1(n 2) , 求 a n 的通 公式 . 【分析】 : 利用 ( a nx) 2( a n1x) , a n2a n 1 x , 求得 x 1 ,a n 1 2( a n 1 1) ,a n 1 是首 a 1 1 2,公比 2的等比数列 , 即 a n 1 2 ? 2n 1 , a n1 2n ,a n2n1式 1. 已知数 { a n } 的 推关系 a n 12a n4 ,且 a 1 1 求通 a n3型 3、an 1a nf ( n)型,( f (n) 可求前 n 和),利用 a na 1 (a 2 a 1 ) (a na n 1) 求通 公式的方法称 累加法。
数列通项公式方法大全很经典
解:当n = 2k (k N+)时,
当 ,
综合得:
例:{an}为首项为a1,公差为d的等差数列,求
解:
∵
∴
(7)分类讨论
(8)归纳—猜想—证明
此方法是针对数列{ }的其中几项符号与另外的项不同,而求各项绝对值的和的问题,主要是要分段求.
此种方法是针对无法求出通项或无法根据通项求出各项之和的数列,先用不完全归纳法猜出 的表达式,然后用数学归纳法证明之.
特征根法:
(1) 时, = · + ·
(2) 时, =( + ·n)·
例5.数列{ }中, =2, =3,且2 = + (n∈N+,n≥2),求 .
[解] =2 -
∴ ∴
∴ =( + ·n)· = + ·n
∴ ∴
∴
6.“已知 ,求 ”型
方法: = - (注意 是否符合)
例6.设 为{ }的前n项和, = ( -1),求 (n∈N+)
所以数列 的通项公式为
评注:本题解题的关键是把递推关系 转化为 ,进而求出 ,即得数列 的通项公式。
变式:已知数列 满足 ,求 的通项公式。
(4)待定系数法
例4已知数列 满足 ,求数列 的通项公式。
解:设 ④
将 代入④式,得 ,等式两边消去 ,得 ,两边除以 ,得 代入④式得 ⑤
由 及⑤式得 ,则 ,则数列 是以 为首项,以2为公比的等比数列,则 ,故 。
设
将⑩式代入 式,得 ,两边消去 并整理,得 ,则
,故
代入 式,得
由 及 式,
得 ,
则 ,
所以数列 是以 为首项,以5为公比的等比数列,则 ,因此
数列通项公式的求法(最全)
非等差等比数列通 项公式的求法
构造法
构造法是一种常用 的数列通项公式求 法
构造法通过观察数 列的规律找出通项 公式
构造法需要一定的 数学基础和逻辑思 维能力
构造法可以应用于 非等差等比数列的 通项公式求法
数学归纳法
添加标题
定义:一种证明数学命题的方法通过证明一个命题对某个初始值成立并且假设对某个值 成立时可以推出对下一个值也成立从而证明命题对所有值都成立。
. 计算数列相邻项之间的差值得到差数列。 b. 观察差数列的规律寻找通项公式。 c. 验证通项公式的正确性。
适用范围:逐差法适用于等比数列、等差数列等有规律的数列。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
注意事项:在使用逐差法时需要注意差数列的规律避免遗漏或错误。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
步骤: . 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或 公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
. 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
应用:适用于求解非等差等比数列的通项公式 单击此处输入你的项正文文字是您思想的提炼,言简的阐述观点。
公式中的1表示首项d表示公差
公式法的适用范围:已知首项 和公差的等差数列
累加法
累加法原理:通过累加数列的前n项和得到通项公式 累加法公式:n=Sn-S(n-1)其中Sn为前n项和 累加法应用:适用于已知数列的前n项和求通项公式 累加法示例:例如已知数列{1,3,5,7,9}的前n项和为Sn=n^2则通项公式为n=2n-1
数列求通项公式方法大全
数列求通项公式方法大全数列是由一系列按特定规律排列的数字组成的序列。
求解数列的通项公式是找出数字之间的规律,从而可以用一个公式表示出数列中第N个数字与N的关系。
这样可以方便地计算数列中的任意项,而不需要逐个计算或列出所有的项。
以下是数列求通项公式的方法大全:1. 等差数列的通项公式:等差数列是指数列中相邻两项之间的差值保持恒定的数列。
根据等差数列的性质,可以得到通项公式为:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差,n表示项数。
2. 等比数列的通项公式:等比数列是指数列中相邻两项之间的比值保持恒定的数列。
根据等比数列的性质,可以得到通项公式为:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比,n表示项数。
3. 斐波那契数列的通项公式:斐波那契数列是指数列中每一项都等于前两项之和的数列。
斐波那契数列的通项公式为:an = (phi^n - (-phi)^(-n)) / sqrt(5)其中,phi = (1 + sqrt(5)) / 2,an表示第n项。
4. 幂次数列的通项公式:幂次数列是指数列中每一项都是某个常数的指数函数。
幂次数列的通项公式为:an = a1 * (b^(n - 1))其中,an表示第n项,a1表示首项,b表示底数,n表示项数。
请注意,以上是一些常见的数列类型和其通项公式。
但实际上,还存在其他更复杂的数列类型,可能需要使用其他方法求解通项公式。
另外,在某些特定的数列中,可能无法找到通项公式,只能通过递推关系计算每一项。
举例说明:以等差数列为例,假设有一个等差数列的首项为2,公差为3。
现在需要求解数列中第10项的值。
根据等差数列的通项公式,可以得到:a10 = 2 + (10 - 1) * 3= 2 + 27= 29在这个例子中,我们利用等差数列的通项公式直接计算出了第10项的值。
如果没有通项公式,我们可能需要逐个计算前10项,而通项公式可以极大地简化计算过程。
求数列通项公式的11种方法
求数列通项公式的11种方法数列通项公式是数学中一种重要的概念,它通过确定数列中任意一项的值来描述数列的规律。
它与算法不同,可在一定程度上减少计算量。
本文将介绍求数列通项公式的11种方法,帮助读者更好地理解数列通项公式的意义。
第一种方法是利用数列中已知项,来求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么数列的通项公式为a1+a2+ a3+ a4+a5,通过求和得出该数列的公式。
第二种方法是使用特征系数展开式求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用特征系数展开式求出该数列的通项公式:a1+2a2+3a3+4a4+5a5。
第三种方法是倒数展开式求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用倒数展开式求出该数列的通项公式:a1+a2/2+a3/3+a4/4+a5/5。
第四种方法是由观察法求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以通过观察发现,这是一个等比数列,则该数列的通项公式为a1qn-1,其中q为公比。
第五种方法是由增量法求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,增量法可以用来求出a2=a1+d1,a3=a2+d2,a4=a3+d3,a5=a4+d4,其中d1,d2,d3,d4为增量。
将这四式代入原式:a1+a2+a3+a4+a5,即可求出该数列的通项公式:a1+(n-1)(d1+d2+d3+d4)/2+nd5。
第六种方法是由公因式法求数列通项公式。
比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以将这五项分别除以共同的因子,求出最小因式,例如给定数列a1,a2,a3,a4,a5=2,4,8,16,32,其中32是最大因子,将其他四项都除以32,得到d1=1/2,d2=1/4,d3=1/8,d4=1/16,将d1,d2,d3,d4代入原式a1+a2+a3+a4+a5,即可求出该数列的公式。
数列求通项公式方法(大全)
求数列通项公式方法一、公式法(定义法)根据等差数列、等比数列的定义求通项( 、 ) 1、数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式;2、已知数列}{n a 满足211,211=-=+n n a a a ,求数列{}n a 的通项公式;3、已知数列}{n a 满足,21=a 且1152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通项公式;4、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
d a a n n =--1q b b n n =-1二、累加法适用于: )(1n f a a n n +=+,如221++=+n a a n n 、nn n a a 21+=+等若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑1、 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式;2、 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式;3、已知数列{}n a 满足nn a a a n n -+==+2111,21,求数列{}n a 的通项公式;三、累乘法适用于: n n a n f a )(1=+,即 若1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1111()n n k a a f k a +==⋅∏ 1、已知数列{}n a 满足n n n a n a ⨯⋅+=+5)1(21,31=a ,求数列{}n a 的通项公式。
求数列通项公式的13种方法
求数列通项公式的13种方法在数学中,数列是一组按照一定规律依次排列的数字集合。
求数列的通项公式是对该数列的每一项都能找到一个通用的公式来描述。
这篇文档将介绍13种求解数列通项公式的方法。
1. 模式观察法通过观察数列中数字的变化模式,尝试找出递推关系,并通过推测整理出数列的通项公式。
2. 公式转化法通过对数列进行一系列数学运算,如加减乘除、取幂次等,将数列转化成已知的常见数列,再推导出通项公式。
3. 递推法通过已知的前几项数值,推导出当前项和下一项之间的关系,进而获得数列的通项公式。
4. 二项展开法借助二项展开公式,将数列展开成多项式形式,从而得到数列的通项公式。
5. 求解差分方程法将数列转化为差分方程,通过求解差分方程得到数列的通项公式。
6. 系数法利用多项式系数之间的关系,通过观察系数之间的规律,推导出数列的通项公式。
7. 利用等差数列和等比数列性质对于满足等差数列或等比数列性质的部分数列,可以直接应用等差数列或等比数列的通项公式。
8. 利用级数展开对于部分数列,可以将其展开成级数形式,从而得到数列的通项公式。
9. 奇偶性分析法通过分析数列中数字的奇偶性规律,推导出数列的通项公式。
10. 利用生成函数通过构造数列的生成函数,将数列转化成幂级数形式,再求解得到数列的通项公式。
11. 递归关系法对于一些特殊的数列,可以通过递归关系推导出数列的通项公式。
12. 利用数学归纳法利用数学归纳法证明数列的通项公式的正确性。
13. 利用数值计算方法拟合通过计算机软件等数值计算方法,根据数列的前几项数值进行拟合,得到数列的通项公式。
以上是13种常用的求解数列通项公式的方法。
根据具体的数列情况和求解需要,选择合适的方法进行计算和推导。
> 注意:此文档中的内容仅供参考。
在确定数列的通项公式时,请务必进行独立决策,不要直接引用未经验证的内容。
---以上是对「求数列通项公式的13种方法」的介绍文档。
数列求通项的方法总结
数列求通项的方法总结数列是数学中的一个重要概念,它在代数、微积分、概率论等领域都有着广泛的应用。
在数列的研究中,求数列的通项公式是一个重要的问题,因为它可以帮助我们更好地理解数列的规律和性质,从而解决各种数学问题。
本文将总结数列求通项的方法,希望能够对大家有所帮助。
一、等差数列求通项公式。
对于等差数列$a_1, a_2, a_3, \cdots, a_n$,如果它的公差为$d$,首项为$a_1$,那么它的通项公式可以表示为,$a_n = a_1 + (n-1)d$。
这个公式可以通过数学归纳法来证明,也可以通过观察数列的规律来得到。
二、等比数列求通项公式。
对于等比数列$b_1, b_2, b_3, \cdots, b_n$,如果它的公比为$q$,首项为$b_1$,那么它的通项公式可以表示为,$b_n = b_1 \cdot q^{n-1}$。
这个公式也可以通过数学归纳法来证明,也可以通过观察数列的规律来得到。
三、常数数列求通项公式。
对于常数数列$c, c, c, \cdots, c$,它的通项公式非常简单,即为$c$。
因为它的每一项都是相等的,所以通项公式也就是它的首项。
四、其他数列求通项公式。
除了等差数列和等比数列之外,还有很多其他类型的数列,比如斐波那契数列、幂和数列、递推数列等等。
这些数列的通项公式可能会更加复杂,需要根据数列的特点和规律来进行推导和求解。
五、数列求通项的方法总结。
在实际应用中,我们通常会遇到各种各样的数列,求解它们的通项公式需要根据具体情况来进行分析和推导。
但总的来说,可以通过以下几种方法来求解数列的通项公式:1. 观察数列的规律,找出数列中相邻项之间的关系,从而推导出通项公式;2. 利用数学归纳法来证明数列的通项公式;3. 利用已知的数列类型的通项公式,对数列进行变形和组合,从而得到新的数列的通项公式;4. 利用数列的性质和特点,如等差数列的差分性质、等比数列的比值性质等,来求解数列的通项公式。
史上最全的数列通项公式的求法15种
史上最全的数列通项公式的求法15种一、等差数列(Arithmetic sequence)1.基本公式:一个等差数列的通项公式为:an = a1 + (n-1)d其中an代表数列的第n项,a1代表数列的首项,d代表数列的公差。
2.另一种形式:等差数列的通项公式还可以表示为:an = a + (n-1) * (a2-a1)/2其中an代表数列的第n项,a代表数列的首项,a1代表数列的第二项,a2代表数列的前两项。
二、等比数列(Geometric sequence)1.基本公式:一个等比数列的通项公式为:an = a1 * r^(n-1)其中an代表数列的第n项,a1代表数列的首项,r代表数列的公比。
2.另一种形式:等比数列的通项公式也可以表示为:an = a * q^n其中an代表数列的第n项,a代表数列的首项,q代表数列的公比。
三、斐波那契数列(Fibonacci sequence)1.基本公式:一个斐波那契数列的通项公式为:Fn=(φ^n-(1-φ)^n)/√5其中Fn代表数列的第n项,φ代表黄金分割比(约1.618)。
2.矩阵法:斐波那契数列的通项公式还可以通过矩阵的形式表示:Fn=(A^n*F0),其中An是一个特定的矩阵,F0是初始向量。
四、调和数列(Harmonic sequence)1.基本公式:一个调和数列的通项公式为:an = 1/n其中an代表数列的第n项。
五、多项式数列(Polynomial sequence)一个多项式数列的通项公式为:an = an-1 + an-2 + ... + an-m其中an代表数列的第n项,an-1为前一项,an-2为前两项,an-m为前m项。
六、余弦数列(Cosine sequence)1.基本公式:一个余弦数列的通项公式为:an = a + b * cos(cn)其中an代表数列的第n项,a、b为常数,c为常数。
2.幂函数法:余弦数列的通项公式还可以表示为:an = a + b * cos(nθ)其中an代表数列的第n项,a、b为常数,θ为角度。
数列通项公式求法大全
数列通项公式求法大全数列是一系列按照其中一种规律排列的数字。
在数学中,我们常常会遇到需要求数列的通项公式的问题。
通项公式是指能够通过一个公式直接计算数列中任意项的公式。
下面是一些常见的数列通项公式求法。
1.等差数列的通项公式:等差数列是指数列中相邻两项之间差值相等的数列。
设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式为an = a1 + (n-1) * d。
2.等比数列的通项公式:等比数列是指数列中相邻两项之间比值相等的数列。
设等比数列的首项为a1,公比为r,第n项为an,则等比数列的通项公式为an = a1 * r^(n-1)。
3.斐波那契数列的通项公式:4.差分法求通项公式:差分法是指通过数列的相邻两项之差的变化规律来推导数列的通项公式。
首先计算数列相邻两项之差的变化规律,如果差值存在规律,则可以推导出数列的通项公式。
5.递推法求通项公式:递推法是指通过已知数列中的几项来逐步推导出数列的通项公式。
首先根据已知项的值进行归纳总结,找出各项之间的规律,然后通过递推关系式来确定数列的通项公式。
6.数列的特殊方法求通项公式:有些特殊的数列,例如阶乘数列、多项式数列等,可以通过数列的特性分析来直接得到数列的通项公式。
这种方法需要观察数列的特殊性质,利用数学知识进行推导。
在实际应用中,数列通项公式的求解对于问题求解十分重要。
通过分析数列的规律,我们可以更加方便地计算数列中任意项的值,从而解决实际问题。
因此,熟练掌握数列通项公式的求法对于数学学习至关重要。
需要注意的是,数列通项公式的求法并不是一成不变的,不同的数列可能存在不同的求解方法。
在实际问题中,我们需要灵活运用各种方法,根据数列的特点选择合适的求解方法。
数列求通项公式方法大全
数列求通项公式方法大全数列是数学中经常使用的概念,它是由一系列按照特定规律排列的数字组成。
在数列中,每个数字被称为项,而数列求通项公式的方法则是为了找到这些数列中的规律,从而可以通过公式来表示数列中的任意一项。
本文将介绍一些常用的数列求通项公式的方法。
一、等差数列求通项公式等差数列是一种数列,其中任意两项之间的差值保持不变。
等差数列可以用通项公式来表示,通项公式如下:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差,n表示项数。
二、等比数列求通项公式等比数列是一种数列,其中任意两项之间的比值保持不变。
等比数列可以用通项公式来表示,通项公式如下:an = a1 * r^(n-1)其中,an表示第n项,a1表示首项,r表示公比,n表示项数。
三、费波纳契数列求通项公式费波纳契数列是一种特殊的数列,其规律是每一项都是前两项的和。
费波纳契数列可以用通项公式来表示,通项公式如下:an = (1/sqrt(5)) * (((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n)其中,an表示第n项。
四、算术几何平均数列求通项公式算术几何平均数列是一种结合了等差数列和等比数列的数列,其规律是每一项既满足等差数列的差值规律,又满足等比数列的比值规律。
算术几何平均数列可以用通项公式来表示,通项公式如下:an = (a1 * r^n - b1)/(r - 1)其中,an表示第n项,a1表示等差数列的首项,r表示等比数列的公比,b1表示几何数列的首项。
五、斐波那契-黄金分割数列求通项公式斐波那契-黄金分割数列是一种结合了费波纳契数列和黄金分割比例的数列,其规律是每一项与前一项的比值趋近于黄金分割比例(约为1.618)。
斐波那契-黄金分割数列可以用通项公式来表示,通项公式如下:an = a1 * Phi^n其中,an表示第n项,a1表示首项,Phi表示黄金分割比例(约为1.618)。
数列通项公式方法大全
数列通项公式方法大全数列是由一连串数字按照一定规律排列而成的序列。
数列通项公式则是用来表示数列中每一项与项数之间关系的公式。
在数学中,我们通过寻找数列的通项公式来推导和计算数列的各种性质,如数列的前n项和、数列的极限等。
本文将介绍数列通项公式的多种方法,包括等差数列、等比数列、二次数列等常见数列的通项公式推导方法。
1.等差数列通项公式:等差数列的通项公式可以通过观察数列的特点得到。
设等差数列的首项为a1,公差为d,第n项为an,则有以下通项公式:an = a1 + (n-1)d例如,数列1,3,5,7,9...是一个等差数列,其中首项a1=1,公差d=2,第n项an可以用通项公式an = 1 + 2(n-1)表示。
2.等比数列通项公式:等比数列的通项公式可以根据数列中每一项与前一项的比值相等推导得到。
设等比数列的首项为a1,公比为r,第n项为an,则有以下通项公式:an = a1 * r^(n-1)例如,数列2,4,8,16,32...是一个等比数列,其中首项a1=2,公比r=2,第n项an可以用通项公式an = 2 * 2^(n-1)表示。
3.二次数列通项公式:二次数列的通项公式可以通过观察数列的特点和二次方程的性质得到。
设二次数列的通项公式为an = an^2 + bn + c,则有以下通项公式:an = an^2 + bn + c例如,数列1,4,9,16,25...是一个二次数列,可以通过观察发现每一项等于其对应项的平方,即a1 = 1^2 = 1,a2 = 2^2 = 4,a3 =3^2 = 9、因此,该数列的通项公式为an = n^24.斐波那契数列通项公式:斐波那契数列是一个特殊的数列,在数列中,每一项都等于前两项的和。
设斐波那契数列的通项公式为f(n),则有以下通项公式:f(n)=f(n-1)+f(n-2)例如,斐波那契数列的前几项为1,1,2,3,5,8...,其中每一项都等于前两项的和。
(完整版)数列通项公式的求法(较全)
常见数列通项公式的求法公式:1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可.例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式.练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式.2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,()11n n a a f n --=-,()122n n a a f n ---=-,()322a a f -=,()211a a f -=,以上()1n -个等式累加得()()()()11+221n a a f n f n f f -=--+++ 1n a a ∴=+()()()()1+221f n f n f f --+++(3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和;③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n+==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.给递推公式()()1,n na f n n N a ++=∈中的n 依次取1,2,3,……,1n -,可得到下面1n -个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-例3、已知数列{}n a 满足11,2,31n n n na a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.4、 奇偶分析法(1) 对于形如()1n n a a f n ++=型的递推公式求通项公式①当()1n n a a d d ++=为常数时,则数列为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n ++=,()11n n a a f n -+=-两式相减,得到()()+111n n a a f n f n --=--,分奇偶项来求通项.例4、数列{}n a 满足111,4n n a a a +=+=,求{}n a 的通项公式.练习:数列{}n a 满足116,6n n a a a +=+=-,求{}n a 的通项公式.例5、数列{}n a 满足110,2n n a a a n +=+=,求{}n a 的通项公式.练习1: 数列{}n a 满足111,1n n a a a n +=-+=-,求{}n a 的通项公式.练习2:数列{}n a 满足112,31n n a a a n +=+=-,求{}n a 的通项公式.(2) 对于形如()1n n a a f n +⋅=型的递推公式求通项公式①当()1n n a a d d +⋅=为常数时,则数列为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n +⋅=,()11n n a a f n -⋅=-两式相除,得到()()+111n n f n a a f n -=-,分奇偶项来求通项.例6、已知数列{}n a 满足112,4n n a a a +=⋅=,求{}n a 的通项公式.练习:已知数列{}n a 满足112,23n n a a a +=⋅=-,求{}n a 的通项公式.例7、已知数列{}n a 满足1113,2nn n a a a +⎛⎫=⋅= ⎪⎝⎭,求{}n a 的通项公式.练习1: 数列{}n a 满足112,3nn n a a a +=⋅=,求{}n a 的通项公式.练习2:数列{}n a 满足111,2nn n a a a +=⋅=,求{}n a 的通项公式.5、 待定系数法(构造法)若给出条件直接求n a 较难,可通过整理变形等从中构造出一个等差或等比数列,从而根据等差或者等比数列的定义求出通项.常见的有:(1)()1,n n a pa q p q +=+为常数(){}1,n n n a t p a t a t +⇒+=++构造为等比数列.(2)()11111,n p n n nn n n naa a pa tpt p t pp +++++=+−−−−−−→=+两边同时除以为常数 (3)()()11111,,,1n pn n nn n n na a p a pa tq t p q t q q q +++++=+−−−−−−→=+两边同时除以为常数再参考类型(4)()1,,n n a pa qn r p q r +=++是常数⇒ ()()11n n a n p a n λμλμ++++=++ (5)21+n n n a pa qa ++=(){}2111t ,t n n n n n n a ta p a a a a ++++⇒-=--构造等比数列例8、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例9、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.练习1:已知数列{}n a 中,113,22nn n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例10、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .练习3:已知数列{}n a ()n N *∈的满足:111113,432,,7n n n a k a a n k k R --⎛⎫=-=-≥≠∈ ⎪⎝⎭(1)判断数列47n n a ⎧⎫-⎨⎬⎩⎭是否成等比数列;(2)求数列{}n a 的通项公式.例11、数列{}n a 中已知111,23n n a a a n +==+, 求{}n a 的通项公式.练习1:数列{}n a 中已知112,32n n a a a n +==-+, 求{}n a 的通项公式.练习2:数列{}n a 中已知2112,322n n a a a n n +==+-+, 求{}n a 的通项公式.例12、已知数列{}n a 中,()12125,2,2+33n n n a a a a a n --===≥,求求{}n a 的通项公式.练习1:已知数列{}n a 中,12+2+1211,2,+33n n n a a a a a ===,求求{}n a 的通项公式.练习2:在数列{}n a 中,11a =,235a =,2n a +=135n a ++23n a ,令1n n n b a a +=- 。
史上最全的数列通项公式的求法15种
史上最全的数列通项公式的求法15种数列是数学中很重要的一种数学对象,它是由一系列的数按照一定的顺序排列而成。
数列通项公式是数列中的每一项与项号之间的关系式,可以通过该公式来求出数列的任意一项。
下面将介绍15种常见的数列通项公式的求法。
1.等差数列:等差数列是一种公差为常数的数列,通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差。
2.等比数列:等比数列是一种比值为常数的数列,通项公式为an = a1 * r^(n - 1),其中a1为首项,r为公比。
3. 斐波那契数列:斐波那契数列是一种特殊的数列,每一项是其前两项之和,通项公式为an = an-1 + an-2,其中a1 = 1,a2 = 14. 平方数列:平方数列是由平方数所组成的数列,通项公式为an = n^25. 立方数列:立方数列是由立方数所组成的数列,通项公式为an = n^36.等差立方数列:等差立方数列是一种公差为常数的立方数列,通项公式为an = a1 + (n - 1)^3,其中a1为首项。
7.等比立方数列:等比立方数列是一种比值为常数的立方数列,通项公式为an = a1 * r^(n - 1)^3,其中a1为首项,r为公比。
8. 焦比数列:焦比数列是一种特殊的数列,每一项是其前一项的反数,通项公式为an = -1 / an-1,其中a1为首项。
9. 调和数列:调和数列是一种特殊的数列,每一项是其前一项的倒数与项号之和的倒数,通项公式为an = 1 / (1 / a1 + n - 1),其中a1为首项。
10. 初等数列:初等数列是一种特殊的数列,每一项是其前一项与项号之和的和,通项公式为an = an-1 + n,其中a1为首项。
11.等差等比数列:等差等比数列是一种既是等差数列又是等比数列的数列,通项公式为an = a1 * (1 + (n - 1)d),其中a1为首项,d为公差。
12. 菲波拿契数列:菲波拿契数列是一种特殊的数列,每一项是其前一项与项号之和的差,通项公式为an = an-1 - n,其中a1为首项。
(完整版)求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。
2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。
解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。
例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。
解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。
史上最全的数列通项公式的求法13种之欧阳道创编
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
一、直接法根据数列的特征,使用作差法等直接写出通项公式。
二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21nS n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
③解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b ,∴)1()1(1+=⋅+=-q q q q q b n n n三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
四、累加(乘)法 对于形如)(1n f a a n n +=+型或形如nn a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1. 根据下列数列的前几项,说出数列的通项公式: 1、1.3.7.15.31……… 2、1,2,5,8,12………3、21212,1,,,,3253………4、1,-1,1,-1………5、1、0、1、0………◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解.(注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21nS n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
③解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b , ∴ )1()1(1+=⋅+=-q q q q q b n n n◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
例3.(2002年北京春季高考)已知点的序列*),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…(1) 写出n x 与21,--n n x x 之间的关系式(3≥n )。
(2) 设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明。
(3) 略解析:(1)∵ n A 是线段32--n n A A 的中点, ∴)3(221≥+=--n x x x n n n (2)a a x x a =-=-=0121,2122322x x x x x a -+=-==a x x 21)(2112-=--,3233432x x x x x a -+=-==a x x 41)(2123=--,猜想*)()21(1N n a a n n ∈-=-,下面用数学归纳法证明01 当n=1时,a a =1显然成立;02 假设n=k 时命题成立,即*)()21(1N k a a k k ∈-=-则n=k+1时,k k k k k k x x x x x a -+=-=++++21121=k k k a x x 21)(211-=--+=a a k k )21()21)(21(1-=---∴ 当n=k+1时命题也成立, ∴ 命题对任意*N n ∈都成立。
变式:(2006,全国II,理,22,本小题满分12分)设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,… (Ⅰ)求a 1,a 2; (Ⅱ){a n }的通项公式◆四、累加(乘)法对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。
解析:由n a a n n +=+1得n a a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n,又31=a所以 n a =32)1(+-n n 例5.在数列{}n a 中,11=a ,n n n a a 21=+(*N n ∈),求通项n a 。
解析:由已知n n n a a 21=+,112--=n n n a a ,2212---=n n n a a ,…,212=a a,又11=a , 所以n a =1-n n a a ⋅⋅--21n n a a …12a a 1a ⋅=⋅-12n ⋅-22n …12⋅⋅=2)1(2-n n◆五、取倒(对)数法a 、rn n pa a =+1这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解b 、数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以,11-n n a a 先求出.,1n na a 再求得 c 、)()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。
例6..设数列}{n a 满足,21=a ),N (31∈+=+n a a a n nn 求.n a 解:原条件变形为.311n n n n a a a a =⋅+⋅++两边同乘以,11+⋅n n a a 得11131+=⋅+n n a a . ∵113211,211)2113-+=+∴+=+n n n n a a a ( ∴.13221-⨯=-n n a 例7 、 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b , 则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b .11221--=⨯=n n n b ,1221log -=+n a n,12log 12-=-n a n , ∴1212--=n n a变式:1.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-(1) 求数列{a n }的通项公式;(2) 证明:对于一切正整数n ,不等式a 1∙a 2∙……a n <2∙n ! 2、若数列的递推公式为11113,2()n na n a a +==-∈ ,则求这个数列的通项公式。
3、已知数列{n a }满足2,11≥=n a 时,n n n n a a a a 112--=-,求通项公式。
4、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。
5、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n .◆六、迭代法迭代法就是根据递推式,采用循环代入计算. 例8、(2003·高考·广东)设a 0为常数,且a n =3 n -1-2 a n -1(n 为正整数)证明对任意n≥1 ,a n = [ 3 n +(-1)n -1· 2 n ]+(-1)n · 2 na 0 证明:a n =3 n -1-2 a n -1=3 n -1-2(3 n -2-2 a n -2)=3 n -1-2· 3 n -2+2 2(3 n -3-2 a n -3)=3 n -1-2 ·3 n -2+2 2 ·3 n -3-2 3(3 n -4-2 a n -4) ……… ………=3 n -1-2·3 n -2+2 2·3 n –3 -…+(-1)n -1·2 n -1+(-1)n ·2 na 0(-1)n ·2 n a 0 前面的n 项组成首项为3 n -1,公比为-的等比数列,这n 项的和为:= [ 3 n +(-1)n -1·2 n]∴ a n = [ 3 n +(-1)n -1· 2 n ]+(-1)n · 2 na 0◆七、待定系数法:求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。
通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,该方法体现了数学中化未知为已知的化归思想,运用待定系数法变换递推式中的常数就是一种重要的转化方法。
1、通过分解常数,可转化为特殊数列{a n +k}的形式求解。
一般地,形如a 1+n =p a n +q(p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k=q ,即k=1-p q,从而得等比数列{a n +k}。
例9、数列{a n }满足a 1=1,a n =21a 1-n +1(n ≥2),求数列{a n }的通项公式。
解:由a n =21a 1-n +1(n ≥2)得a n -2=21(a 1-n -2),而a 1-2=1-2=-1,∴数列{ a n -2}是以21为公比,-1为首项的等比数列∴a n -2=-(21)1-n ∴a n =2-(21)1-n说明:通过对常数1的分解,进行适当组合,可得等比数列{ a n -2},从而达到解决问题的目的。
练习、1数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。
解:由0731=-++n n a a 得37311+-=+n n a a 设a )(311k a k n n +-=++,比较系数得373=--k k 解得47-=k∴{47-n a }是以31-为公比,以43471471-=-=-a 为首项的等比数列∴1)31(4347--⨯-=-n n a 1)31(4347--⨯-=⇒n n a2、已知数列{}n a 满足11=a ,且132n n a a +=+,求n a .解:设)(31t a t a n n +=++,则1231=⇒+=+t t a a n n ,⇒+=++)1(311n n a a {}1+n a 是 以)1(1+a 为首项,以3为公比的等比数列⇒⇒⋅=⋅+=+--111323)1(1n n n a a 1321-⋅=-n n a点评:求递推式形如q pa a n n +=+1(p 、q 为常数)的数列通项,可用迭代法或待定系数法构造新数列)1(11pqa p p q a n n -+=-++来求得,也可用“归纳—猜想—证明”法来求,这也是近年高考考得很多的一种题型.2、递推式为11+++=n n n q pa a (p 、q 为常数)时,可同除1+n q ,得111+⋅=++n nn n q a q p qa ,令nn n q a b =从而化归为q pa a n n +=+1(p 、q 为常数)型.、例10.已知数列{}n a 满足11=a ,123-+=n n n a a )2(≥n ,求n a .解:将123-+=n n n a a 两边同除n3,得n n n n a a 32131-+=⇒1133213--+=n n nn a a 设n n n a b 3=,则1321-+=n n b b .令)(321t b t b n n -=--⇒t b b n n 31321+=-⇒3=t .条件可化成)3(3231-=--n n b b ,数列{}3-n b 是以3833311-=-=-a b 为首项,32为公比的等比数列.1)32(383-⨯-=-n n b .因n n n a b 3=, )3)32(38(331+⨯-==∴-n n n n n b a ⇒2123++-=n n n a .3、形如b an pa a n n ++=+1)001(≠≠,a 、p 解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。