史上最全的数列通项公式的求法15种72303

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最全的数列通项公式的求法

数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。

◆一、直接法

根据数列的特征,使用作差法等直接写出通项公式。 例1. 根据下列数列的前几项,说出数列的通项公式: 1、1.3.7.15.31……… 2、1,2,5,8,12………

3、2121

2,1,,,,3253

………

4、1,-1,1,-1………

5、1、0、1、0………

◆二、公式法

①利用等差数列或等比数列的定义求通项

②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-21

11n S S n S a n n

n 求解.

(注意:求完后一定要考虑合并通项)

例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式.

②已知数列{}n a 的前n 项和n S 满足21n

S n n =+-,求数列{}n a 的通项公式.

③ 已知等比数列{}n a 的首项11=a ,公比10<

{}n b 的通项公式。

③解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴

q a a a a b b n n n n n n =++=+++++2

13

21,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b , ∴ )1()1(1+=⋅+=-q q q q q b n n n

◆三、归纳猜想法

如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项

公式,然后再用数学归纳法证明之。也可以猜想出规律,然后正面证明。

例3.(2002年北京春季高考)已知点的序列*),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…

(1) 写出n x 与21,--n n x x 之间的关系式(3≥n )。

(2) 设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明。 (3) 略

解析:(1)∵ n A 是线段32--n n A A 的中点, ∴)3(2

2

1≥+=--n x x x n n n (2)a a x x a =-=-=0121,

2122322x x x x x a -+=

-==a x x 21

)(2112-=--,

3233432

x x x x x a -+=

-==a x x 41

)(2123=--,

猜想*)()

2

1

(1

N n a a n n ∈-=-,下面用数学归纳法证明

01 当n=1时,a a =1显然成立;

02 假设n=k 时命题成立,即*)()2

1

(1N k a a k k ∈-=-

则n=k+1时,k k k k k k x x x x x a -+=-=++++21121=k k k a x x 21

)(211-=--+

=a a k k )2

1

()2

1)(21(1

-=---

∴ 当n=k+1时命题也成立, ∴ 命题对任意*

N n ∈都成立。

变式:(2006,全国II,理,22,本小题满分12分)

设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,… (Ⅰ)求a 1,a 2; (Ⅱ){a n }的通项公式

◆四、累加(乘)法

对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。

例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 解析:由n a a n n +=+1得n a a n n =-+1,所以

11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,

将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n

,又31=a

所以 n a =32

)

1(+-n n 例5.

在数列{}n a 中,11=a ,n n n a a 21=+(*

N n ∈),求通项n a 。

解析:由已知

n n n a a 21=+,112--=n n n a a ,2212---=n n n a a ,…,21

2=a a

,又11=a , 所以n a =1-n n a a ⋅⋅--21n n a a …

1

2a a 1a ⋅=⋅-12n ⋅-2

2n …12⋅⋅=2)

1(2-n n

◆五、取倒(对)数法

a 、r

n n pa a =+1这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解

b 、数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以

,11-n n a a 先求出.,1

n n

a a 再求得 c 、)

()()(1n h a n g a n f a n n

n +=

+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。

例6..设数列}{n a 满足,21=a ),N (3

1∈+=

+n a a a n n

n 求.n a 解:原条件变形为.311n n n n a a a a =⋅+⋅++两边同乘以

,11+⋅n n a a 得1

1

131+=

⋅+n n a a . ∵11321

1,211)2113

-+=+∴+=+n n n n a a a ( ∴.1

322

1

-⨯=

-n n a 例7 、 设正项数列{}n a 满足11=a ,2

12-=n n a a (n ≥2).求数列{}n a 的通项公式.

解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a

n b , 则12-=n n b b {}n b 是以2为公比的等比数列,11log 1

21=+=b .

11221--=⨯=n n n b ,122

1log -=+n a n

,12log 12-=-n a n , ∴1

21

2--=n n a

变式:

1.已知数列{a n }满足:a 1=

32,且a n =n 1

n 13na n 2n N 2a n 1

*≥∈--(,)+-

(1) 求数列{a n }的通项公式;

(2) 证明:对于一切正整数n ,不等式a 1∙a 2∙……a n <2∙n ! 2、若数列的递推公式为1111

3,

2()n n

a n a a +==-∈ ,则求这个数列的通项公式。

相关文档
最新文档