医学影像设备概述PPT

合集下载

医学影像设备学第4章 数字X线设备ppt课件

医学影像设备学第4章 数字X线设备ppt课件

数字图像硬件框图
第四节 数字减影血管造影设备
二、影响图像质量的因素
1.成像方式 (1)脉冲方式:采用间歇X线脉冲来形成掩模像和 造影像,每秒摄取数帧影像,脉冲持续时间一般大 于视频信号一帧的时间。由于曝光X线脉冲的脉宽较 大(例如100ms左右)它主要用于脑血管、颈动脉 、肝动脉、四肢动脉等活动较缓慢的部位。
第二节 计算机X线摄影设备
四、读取装置
(一)结构 1.暗盒型读取装置:将IP置入常规X线摄影暗盒类似
的盒内,它可替代常规摄影暗盒在任何X线机上使 用。 2.无暗盒型读取装置:IP在X线曝光后直接被传送到 激光扫描和潜影消除处理,供重复使用。
第二节 计算机X线摄影设备
(二)读取装置原理:
第二节 计算机X线摄影设备来自第二节 计算机X线摄影设备
5.天然辐射的影响 来自建筑物上固定装置、天然放射性元素、宇宙射 线、IP板上微量放射性元素。 IP不仅对X线敏感,对其他电磁波也敏感,如紫外 线、γ射线、α射线β射线及电子线等。 长期存放会产生小黑斑。 使用前必须激光擦除。
第二节 计算机X线摄影设备
(四)使用注意事项 1.选用较大得IP来记录X线影像,大大减少胶片尺寸 的选择次数。 2.IP再次使用时,最好重作一次光照射,以消除潜 影。 3.由于IP的荧光物质对X线得敏感度高,要求很好的 屏蔽。
目录
一、基本结构 二、 影响图像质量的因素 三、对X线机的要求 四、X线管及探测器支撑装置 五、导管床 六、高压注射器 七、数字系统 八、DSA系统的特殊功能 九、图像质量参数及检测 十、日常维护与保养
第四节 数字减影血管造影设备 一、基本结构
❖不含对比剂的影像称为掩模像(mask image) 或蒙片,注入对比剂后得到的影像称为造影像或 充盈像。

医学影像学概论PPT

医学影像学概论PPT

透视(fluroscopy)
观察载体---荧光屏 适用部位:机体天然对比较好的部位或
能给予对比剂的部位,如胸部、颈椎等 作用:观察器官动态,例如心脏大血管、
消化道蠕动等。 优点:简便易行,经济,结果快 缺点:不能显示细微病变,密度较大的
部位显示不清楚,无永久记录,不能前 后比较,病人所受辐照量较大
放射防护的必要性
牛津大学和英国癌症研究中心的科学家 在对15个国家的统计数据进行分析后发 现:英国每年诊断出的癌症病例中有 0.6%是由X射线检查所致。
在X射线和CT检查更为普遍的日本,每 年新增癌症病例中有3.2%是由X光及CT 检查造成的。
特殊人群的防护
对性成熟及发育期的妇女作腹部照射:
透视的图像特点
与X胶片图像相反,透视的图像 组织密度越高,图像越黑 组织密度越低,图像越白
透视的图像
照相 --X线摄影
(Radiography)
X线摄影
胶片片盒
胶片及读片灯箱
X线摄影(Radiology)
观察载体:胶片 步骤:胶片曝光--显影--定影--水洗--晾干(或烤干) 原理:X线可使胶片溴化银感光,产生潜影,经显影、
从辐射诱癌和其他因素导致死亡概率来看: 吸烟 每万人死亡概率为12, 肾脏和肝脏CT检查 每万人死亡概率为12, 泌尿X射线摄影 每万人死亡概率为2, 腰椎X射线摄影 每万人死亡概率为0.2, 胸部X射线摄影 每万人死亡概率为0.02。
防护方法
1.X线机及机房的设计:须考虑到防护措施 2.安排检查:患者应避免短期内反复多次检查及不必 要的复查。尽量减少透视,提提倡高千伏HKV摄影。 3.检查中:患者与X线球管须保持一事实上的距离,一 般不少于35cm。(患者距X线球管愈近,接受放射量 愈大。) 4.球管窗口下须加一定厚度的铝片,减少穿刺力弱的 长波X线,因为这些X线被患者完全吸收,而对荧光屏 或胶片都无作用。

《医学影像技术学》PPT课件

《医学影像技术学》PPT课件
中的表现差异。
鉴别诊断思路与方法
病史与临床表现
影像学表现
强调病史和临床表现对鉴别诊断的重要性, 包括患者的年龄、性别、症状、体征等信息。
分析不同病变在影像学上的表现特征,包括 病变的部位、形态、大小、密度、信号等信 息。
实验室检查
诊断性治疗
介绍实验室检查在鉴别诊断中的应用,如血 液检查、尿液检查、生化检查等结果对诊断 的提示作用。
X线成像设备与技术
01
02
03
04
X线机的基本构造与工作原理
X线成像的原理与过程
X线检查技术及其临床应用
X线防护与安全措施
CT成像设备与技术
CT机的基本构造与工作原理 CT检查技术及其临床应用
CT成像的原理与过程 CT图像后处理技术
MRI成像设备与技术
01
MRI机的基本构造与工作原理
02
MRI成像的原理与过程
X线检查方法
包括透视、摄影、造影检 查等。
X线检查应用
广泛应用于骨骼系统、呼 吸系统、消化系统、泌尿 系统等部位的检查。
CT检查方法及应用
01 02
CT成像原理
利用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该 层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字 转换器转为数字,输入计算机处理。
循环Байду номын сангаас统疾病
超声心动图、心血管造影等技术可观察心 脏和大血管的结构和功能,对心脏病、血
管病变的诊断和治疗有重要意义。
消化系统疾病
通过X线钡餐造影、CT、MRI等技术,可 以检测食管、胃、肠等消化器官的病变, 为消化道疾病的诊断和治疗提供帮助。
在治疗效果评估中的价值

医学影像设备学概论

医学影像设备学概论
医学影像设备学 教学课件
第一章 医学影像设备学概论
第一节 医学影像设备的发展简史 第二节 医学影像设备的分类
第一节 医学影像设备的发展简史
一常规X线机 1. 1895年11月8日,德国物理学家伦琴
(Withelm Conrad Roentgen,1845~1923)发现X 线。 2. 1896年,德国西门子公司研制出世界上第一 只X线管。 3.20世纪10~20年代,出现了常规X线机。 X线管、高压变压器和相关的仪器、设备以及人工 对比剂的不断开发利用,尤其是体层装置、影像增 强器、连续摄影、快速换片机、高压注射器、电视、 电影和录像记录系统的应用 到20世纪60年代中、末期,已形成了较完整的学科 体系,称为影像设备学。
综上所述,多种类型的医学影像诊断设备 与医学影像治疗设备相结合,共同构成了现 代医学影像设备体系。
纪 )
10~40 年代
50 年代
(1917 年)
(1951 年)
发射 US
闪烁扫描
成功
(10~20 年代) (1954 年)
X 线机
影像增强器
(1930 年) 增感屏
(1932 年) 电子显微镜 (透射) (1938 年) 旋转阳极 X 线管 (1942 年) A超
近30年来,CT设备的更新速度极快,扫描时 间由最初的几分钟向亚秒级发展,图像快速 重建时间最快的已达0.75s(512×512矩阵), 空间分辨力也提高到0.1mm。
北京协和医院引进西门子公司 64层螺旋CT
最高分辨 率、 最快扫描、 最低辐射、 最大信息 量 全身血管 及脏器无 创性检查
平板探测器CT设备目前尚在开发阶段,一旦 技术成熟,从机器设计、信息模式、成像速 度、射线剂量到运行成本都会有根本性的改 变,将会引起CT设备的又一次革命。

医学影像学ppt课件

医学影像学ppt课件

医学影像学检查方法及原理
X线检查
超声成像
利用X射线的穿透性,对人体不同组织进行 成像,主要用于骨骼系统疾病的诊断。
利用超声波在人体组织中的反射和传播特 性进行成像,广泛应用于腹部、妇产、心 血管等领域的检查。
CT检查
MRI检查
采用X线旋转扫描和计算机处理技术,获得 人体横断面图像,具有高分辨率和三维重 建能力。
07
医学影像学在临床应用案 例分析
神经系统疾病案例分析
脑梗塞
通过CT和MRI影像表现,分析脑梗塞的部位、范围和程度,结合临 床表现进行综合诊断。
脑出血
介绍脑出血的CT和MRI表现,包括出血部位、出血量及周围脑组织 水肿情况等,探讨影像学在脑出血诊断中的应用价值。
脑肿瘤
通过病例分析,展示脑肿瘤的影像学特征,包括肿瘤的位置、大小、 形态及与周围脑组织的关系等,为临床诊断和治疗提供依据。
医学影像学ppt课件
目录
• 医学影像学概述 • 放射学基础知识 • X线检查技术 • 超声诊断技术 • 核磁共振成像技术 • 计算机断层扫描技术 • 医学影像学在临床应用案例分析
01
医学影像学概述
定义与发展历程
定义
医学影像学是运用影像学技术对 人体进行疾病诊断和治疗的一门 医学科学。
发展历程
从早期的X线检查到现代的数字化 成像技术,医学影像学经历了漫 长的发展历程,技术水平不断提 高,应用范围日益广泛。
泌尿生殖系统疾病案例分析
01
肾结石
通过X线、超声和CT等影像学手段,分析肾结石的位置、大小、形态及
密度等特征,为临床诊断和治疗提供依据。
02
肾癌
结合病例分析,介绍肾癌的影像学特征及诊断方法,包括超声、CT、

医学影像ppt课件大全最新版

医学影像ppt课件大全最新版

02
医学影像技术快速发展
CT、MRI、超声等技术的相继问世和广泛应用。
03
医学影像技术不断创新
PET、SPECT、光学成像等技术的涌现和发展。
医学影像技术分类及应用领域
CT成像技术
应用于全身各部位的检查,尤 其对于颅内病变有很高的诊断 价值。
超声成像技术
应用于腹部、妇产、心血管等 部位的检查,具有实时、无创 、便携等优点。
X线检查
01
02
03
X线成像原理
利用X射线的穿透性,使 人体组织在荧光屏上或胶 片上形成影像。
X线检查类型
包括普通X线检查、计算 机X线摄影(CR)、数字 X线摄影(DR)等。
X线检查应用
广泛应用于骨骼系统、呼 吸系统、消化系统等疾病 的诊断。
CT检查
01 02
CT成像原理
利用X射线束对人体某部一定厚度的层面进行扫描,由探测器接收透过 该层面的X射线,转变为可见光后,由光电转换变为电信号,再经模拟/ 数字转换器转为数字,输入计算机处理。
消化系统疾病应用
肝癌
利用超声、CT、MRI等影像技术,可以实现肝癌的早期发现和准 确分期,为手术和介入治疗提供指导。
胰腺炎
通过CT、MRI等影像技术,可以准确诊断胰腺炎并评估其严重程度 和并发症情况,指导临床治疗和管理。
消化道肿瘤
利用内镜超声、CT、MRI等影像技术,可以实现消化道肿瘤的早期 发现和准确分期,为手术和放化疗提供指导。
04 医学影像技术在临床应用
神经系统疾病应用
脑肿瘤
通过CT、MRI等影像技术,可以清晰显示肿瘤的位置、大小、形态 及与周围组织的关系,为手术提供精确的导航。
脑血管疾病

医学影像设备学概论PPT课件

医学影像设备学概论PPT课件

.
25
(五)热成像设备
所有物体都会发出红外线能量。物体越热,其分子就愈加活 跃,它所发出来的红外线能量也就越多。
热成像设备通过测量体表的红外信号和体内的微波信号 实现人体成像。红外辐射能量与温度有关,因此又可以说, 热成像就是利用温度信息成像。
举例:1.“慧眼HW-05人体温度红外热图像仪”
在华中科技大学研制成功。可在1秒钟的瞬间,立即显示人 体热图像和最高体表温度,温度分辨率可达到0.06℃,甚至 牙痛等局部发热的症状也能显像。
只X线管。 3.20世纪10~20年代,出现了常规X线机。 X线管、高压变压器和相关的仪器、设备以及人工对
比剂的不断开发利用,尤其是体层装置、影像增强 器、连续摄影、快速换片机、高压注射器、电视、 电影和录像记录系统的应用 到20世纪60年代中、末期,已形成了较完整的像仪开发出了一种非血糖值测量的对糖尿病 人代谢功能进行评估的新方法,该方法可以在健康人体检中 应用,筛选出糖尿病发病的高危险人群,从而可以进行糖尿 病发病的早期预报,这是目前用其他方法还不能实现的 。
.
26
医用热成像设备一般包括红外成像、 红外照相、红外摄像和光机扫描成像等。
通过调节磁场,用电子方式确定的,因此能
完全自由地按照要求选择层面;②MRI对软
组织的对比度比X-CT优越,能非常清楚地显
示脑灰质与白质;③MR信号含有较丰富的有
关受检体生理、生化特性的信息,而X-CT只
能提供密度测量值;④MRI无电离辐射。目
前,尚未见到MR对人. 体危害的报道。
21
MRI的缺点:①成像时间较长;②植入 金属的病人,特别是植入心脏起搏器的病人, 不能进行MRI检查;③设备购置与运行的费 用较高。

《医学影像学课件》- PPT高清完整版

《医学影像学课件》- PPT高清完整版
《医学影像学课件》- PPT高清 完整版
探索医学影像学的世界,介绍各种影像技术、影像学地图的制作与解析,以 及现代医学影像学的创新发展趋势。
医学影像学概述
初步了解医学影像学的定义、应用领域以及影像学在临床医学中的重要作用。
放射学基础知识
介绍医学影像学中的基本放射学概念和原理,了解X射线和其他放射线的特点。
探索腹部影像学地图的制作和解析,包括腹部超声和腹部CT的应用。来自骨科影像学地图制作与分析
学习骨科影像学地图的制作和解析方法,包括骨骼X射线和骨骼CT的应用。
泌尿生殖系统影像学地图制作 与分析
了解泌尿生殖系统影像学地图的制作和解析方法,包括腹部超声和腹部CT的 应用。
影像学检查方法介绍
探索不同影像学检查方法,如X射线、CT扫描、MRI等,以及它们在临床医学 中的应用。
脑部影像学地图制作与分析
学习如何制作和解析脑部影像学地图,包括头部CT和头部MRI的应用。
胸部影像学地图制作与分析
了解胸部影像学地图的制作和解析方法,包括胸部X射线和胸部CT的应用。
腹部影像学地图制作与分析

医学影像设备管理课件

医学影像设备管理课件
人工智能技术在医学影像领域的应 用越来越广泛,能够辅助医生进行 疾病诊断和治疗方案的制定。
医学影像设备的市场发展趋势
市场规模持续扩大
随着人们健康意识的提高和医疗保健投入的增加,医学影像设 备市场的规模正在不断扩大。
国产设备占比逐渐提高
随着技术的不断进步,国产医学影像设备的市场占有率正在逐渐 提高,打破了进口设备的垄断地位。
辐射安全的管理与监督
建立辐射安全管理制度
制定辐射安全管理制度和操作规程 ,明确各级人员的职责和义务。
定期检查和监测
对辐射设备和工作场所进行定期检 查和监测,确保其符合国家有关标 准和规定。
培训和教育
对工作人员进行辐射安全培训和教 育,提高其对辐射安全的意识和技 能。
事故报告和处理
建立事故报告和处理制度,及时报 告和处理辐射事故,避免事态扩大 和造成不必要的损失。
个患者的受照剂量和潜在照射危险都在控制之下。
辐射防护的措施和方法
屏蔽防护
距离防护
使用重金属材料对电离辐射进行屏蔽,以减 少或避免人员受到辐射。
增加与辐射源的距离,以减少所受的辐在辐射源周围进行工作时,尽量减少工作时 间,以减少所受的辐射剂量。
为工作人员提供防护服、防护眼镜、防护手 套等个人防护用品,以减少辐射对人体的伤 害。
数据处理
对收集到的数据进行处理和分析,提取有 用的信息。
数据存储
将处理后的数据存储在可靠的数据库或系 统中,以便后续查询和分析。
数据报告
定期生成质控数据报告,向上级主管部门 汇报设备的性能状况和使用情况等。
05
医学影像设备的应用与发展趋势
医学影像设备在临床诊断中的应用
X线成像设备
X线成像设备是医学影像诊断中最基础的设备,能 够清晰地显示出骨骼和部分软组织结构。

《医学影像技术》ppt课件

《医学影像技术》ppt课件

超声检查方法与技巧
检查前准备
了解患者病情,选择合适的探头和检查模式,调节仪器参 数等。
检查方法
患者取合适体位,充分暴露检查部位,涂耦合剂,轻放探 头,避免过度加压或滑动。
检查技巧
掌握不同部位和病变的扫查方法和技巧,如纵切、横切、 斜切等;注意探头方向和角度的调整;观察病变的形态、 大小、边界、内部回声等特征。
多模态融合
将不同模态的医学影像数据进行融合,提高诊断的准确性和效率 。
智能化辅助诊断
利用人工智能技术对医学影像数据进行自动分析和诊断,提高诊 断的准确性和效率。
医学影像技术前沿动态
光声成像技术
结合光学成像和超声成像的优点,实现高分辨率、深层组织成像 。
超高分辨率显微成像技术
利用超高分辨率显微成像技术对细胞和组织进行精细观察和分析。
科研与教学
医学影像技术为医学研究 和教学提供了重要的手段 和工具。
医学影像技术分类及应用领域
X射线成像
包括普通X射线、CR、DR等, 广泛应用于骨骼系统、呼吸系 统、消化系统等领域的检查。
超声成像
包括B超、彩超、三维超声等, 主要应用于腹部、妇产、心血 管等领域的检查。
核磁共振成像
包括MRI、fMRI等,对软组织 分辨率高,广泛应用于神经系 统、肌肉骨骼系统等领域的检 查。
MRI检查方法与技巧
1 2
检查前准备
核对患者信息,询问病史及过敏史,去除金属物 品,向患者解释检查过程及注意事项。
检查方法
根据检查部位选择合适的线圈和扫描序列,设置 相关参数,进行预扫描和正式扫描。
3
扫描技巧
针对不同部位和病变选择合适的扫描体位和角度 ,优化扫描序列和参数,提高图像质量和诊断准 确性。

医学影像设备介绍PPT

医学影像设备介绍PPT
量和安全性。
数据采集与存储
按照操作规程采集医学影像数 据,并确保数据准确、完整地
存储。
医学影像设备的日常维护与保养
清洁与除尘
定期对设备表面进行清洁,去 除灰尘和污垢,保持设备整洁

部件更换与维修
及时更换磨损或损坏的部件, 定期进行设备维修和保养。
校准与调整
定期对设备进行校准和调整, 确保设备性能稳定、准确。
一次性用品的使用
对于与患者直接接触的部 件,应使用一次性用品, 以降低交叉感染的风险。
医学影像设备的环保要求与废弃物处理
节能环保设计
医学影像设备应采用节能环保设 计,降低能耗和减少对环境的影
响。
废弃物分类处理
对于设备运行过程中产生的废弃 物,应按照相关规定进行分类处 理,避免对环境和人体造成危害

辐射屏蔽措施
在设备周围设置适当的辐射屏蔽措 施,如铅玻璃、铅板等,以降低辐 射对周围环境和人员的危害。
医学影像设备的生物安全性
生物安全性能要求
医学影像设备应具备生物 安全性能,确保在检查过 程中不会对患者的身体造 成额外的伤害或感染。
清洁与消毒
设备表面应易于清洁和消 毒,以减少细菌、病毒等 微生物的传播数字成像的转变,数字化 技术提高了图像质量和设备性能,推动了医学影像设备的快 速发展。
发展趋势
随着科技的不断进步,医学影像设备正朝着智能化、多功能 化、高分辨率和低辐射方向发展。人工智能和机器学习技术 在医学影像分析中的应用也越来越广泛,有助于提高诊断准 确性和效率。
MRI设备利用强磁场和高频电 磁波,使人体组织中的氢原子 发生共振,再通过计算机处理 后形成图像。
MRI设备主要用于脑部、脊髓 、关节等软组织的检查,具有 无辐射、分辨率高的优点。

医学影像设备概述PPT课件

医学影像设备概述PPT课件

xx
精选ppt课件最新
13
迪沃图
CR与DR
• DR(Digital Radiography)
– 数字放射照相术:X线照射到薄膜晶体管屏后,直接将X线的光信 号转换为电信号。
• CR(Computed Radiography)
– 计算机放射照相术:稀土元素制成的晶体板吸收照射到板上的X 线的光信号,通过激光扫描读出板上的潜影后,通过光电转换变 为电信号。
MRI片
xx
精选ppt课件最新
31
迪沃图
核医学成像
• ECT:
• 核医学发射型计算机断层。 SPECT -单光
子发射型计算机体层,引入一种放射性微 量物质(如131I)进入被检 器官,其释放 出r射线,在体外进行扫描探测建立层面图 像。
xx
精选ppt课件最新
32
迪沃图
ECT
xx
精选ppt课件最新
石、积水,膀胱、前列腺病变,某些炎症、畸形等;
• 脊柱、四肢:骨折,外伤,骨质增生,椎间盘病变,椎管狭窄,肿瘤,结核
等;
• 骨骼、血管三维重建成像;各部位的MPR、MIP成像等; • CTA(CT血管成像):大动脉炎,动脉硬化闭塞症,主动脉瘤及夹层等; • 甲状腺疾病:甲状腺腺瘤、甲状腺腺癌等; • 其他:眼科及眼眶肿瘤,外伤;副鼻窦炎、鼻息肉、肿瘤、囊肿、外伤等。
33
迪沃图
ECT图像
xx
精选ppt课件最新
34
迪沃图
PET
• 处于核素显像技术前沿的一种新技术,被认为是“在核医学史上奠定
了一个划时代的里程碑”。
• 用C、N、O等参与人体的生理生化过程元素,引入体内产生正电子,
体外探测建立的图像。

《医学影像设备学》课件——第二章 X线发生装置

《医学影像设备学》课件——第二章 X线发生装置
玻璃壳
焦点小、功率大
与固定阳极X线管 相比的结构区别 金属陶瓷X线管、 软X线管 三极X线管
X线管的规格 与特性
组合机头
规格参数 特性曲线
构造参数、电参数
阳极特性曲线 灯丝加热特性曲线
第二章
第二节 X线管装置
一、固定阳极X线管
固定阳极 X 线管主要由阳极、阴极和玻璃壳三部分组成。
固定式X线机结构
第二章
第二章
X线发生装置
第二章
X线发生 装置
第二章 X线发生装置
概述 X线管装置
高压发生 装置
控制装置
固定阳极X线管 旋转阳极X线管
特殊X线管 X线管管套 X线管的规格与特性
供电与防电击保护 曝光控制原理
管电流与管电压的调节 X线管的规格与特性
高压变压器 灯丝变压器 高压整流器 高压交换闸 变压器油 高压传输部件
第二节 X线管装置
一、固定阳极X线管
(一)阳极 主要作用是:
①接受高速电子撞击而产生 X 线; ②将阳极热量辐射或传导出管外; ③吸收二次电子和散乱射线。 阳极结构:由阳极头、阳极柄、阳极罩三部分组成。
固定阳极 X 线管阳极结构
第二章
第二节 X线管装置
一、固定阳极X线管
1.阳极头 组成:钨靶和铜体 作用:承受电子撞击,产生X线。
的参数。 例如:阳极倾角、灯丝尺寸、焦点大小、外形尺寸、重量、管
壁的滤过当量、冷却和绝缘方式、旋转阳极 X 线管的阳极转速、最 大允许工作温度等。
第二章
第二节 X线管装置
五、X线管的规格与特性
三极 X 线管的控制原理
第二章
第二节 X线管装置
四、X线管管套
现代X线管管套均具有防电击、防散射、油浸式的特点

医学影像ppt课件

医学影像ppt课件

03
CT设备性能指标
主要包括空间分辨率、密度分辨率、扫描时间、图像重建速度等。
常见CT检查方法举例
平扫
是指不用造影增强或造影的普通扫描,是CT的常规检查。
增强扫描
用人工的方法从静脉将造影剂注入体内并进行CT扫描,可以发现平扫未发现的病灶,主 要用于鉴别病变为血管性或非血管性,明确纵膈病变与心脏大血管的关系,了解病变的血 供情况以帮助鉴别良、恶性病变等。
核医学影像在临床诊断中应用价值
早期诊断
核医学影像技术能够在疾病早期发现异常,如肿瘤的早期发现和定位,有助于患者早期治疗和预后改善。
准确评估
核医学影像技术能够准确评估疾病的严重程度和治疗效果,如心肌灌注显像能够评估心肌缺血的程度和范围 ,有助于指导临床治疗方案的选择。
预后预测
核医学影像技术还能够预测疾病的预后和转归情况,如PET检查能够预测肿瘤患者的生存期和复发风险,有 助于患者的管理和随访。同时,核医学影像技术还可以用于药物研发和临床试验中,评估新药的安全性和有 效性。
常用于肿瘤等疾病的诊断。
功能成像
03
包括弥散加权成像、灌注成像、波谱成像等,可提供更多关于
病变的信息,有助于疾病的早期诊断和鉴别诊断。
MRI检查在临床诊断中应用价值
01
02
03
04
中枢神经系统疾病
MRI是中枢神经系统疾病的首 选影像学检查方法,如脑梗死
、脑出血、脑肿瘤等。
脊柱及关节疾病
MRI可清晰显示脊柱及关节的 解剖结构和病变,如椎间盘突 出、脊柱肿瘤、关节炎等。
实时动态观察,便于了解病变情况;
超声诊断在临床应用中的优缺点
价格相对较低,易于普及; 可与其他影像技术相互补充,提高诊断准确性。

医学影像设备概述

医学影像设备概述

超声波设备
01
02
04
超声波手术设备:用于 辅助手术,如引导穿刺、 切除肿瘤等
03
超声波成像仪:用于生 成人体内部器官和组织 的图像
超声波治疗仪:用于治 疗疾病,如肿瘤、结石 等
超声波诊断仪:用于检 查人体内部器官和组织
核磁共振设备
01
原理:利用核磁共振现象产生图像
02
特点:无辐射,对人体无伤害
03
应用:主要用于神经系统、肌肉骨骼系统、心血管系统等疾病的诊断
04
优势:图像清晰,分辨率高,能ຫໍສະໝຸດ 提供丰富的诊断信息技术进步
数字化:从模拟信号到数字信号的转变,提高了图 像质量和诊断准确性
计算机辅助诊断:利用人工智能技术辅助医生进行 诊断,提高诊断效率和准确性
3D成像:从2D图像到3D图像的转变,提高了诊 断准确性和手术规划能力
疾病治疗:通过影像设备检查,指导治疗方 案的制定和实施
疾病预后:通过影像设备检查,评估疾病的 预后和康复情况
医学研究
01
疾病诊断:通过影像设备对疾病进行诊断,提高诊断准确性
02
疾病治疗:利用影像设备进行手术规划、导航和实时监控,提高手术成功率
03
药物研发:通过影像设备研究药物作用机理,优化药物研发过程
超声成像: 1950年代出 现,无辐射, 适用于胎儿、 心脏等检查
核医学成像: 利用放射性 同位素进行 成像,适用 于肿瘤等疾 病诊断
混合成像技 术:将多种 成像技术相 结合,提高 诊断准确性 和效率
01
02
03
04
05
06
智能化发展趋势
人工智能技术的应用:深度学习、计算机视觉等技术 在医学影像设备中的应用,提高诊断准确性和效率

《医学影像技术PPT课件》

《医学影像技术PPT课件》
MRI成像特点
多参数、多序列、多方位成像,软组 织分辨率高,无电离辐射,可重复性 强。
常见MRI检查方法介绍
01
02
03
常规MRI检查
包括T1加权、T2加权、质 子密度加权等多种序列, 用于观察组织形态、结构、 信号特点等。
功能MRI检查
包括弥散加权成像 (DWI)、灌注加权成像 (PWI)、磁共振波谱分 析(MRS)等,用于评估 组织功能状态。
缺点
辐射剂量较高,对人体有一定损害;对软组织分辨率较低,难 以显示细微结构。
03
CATALOGUE
CT检查技术
CT成像原理及特点
CT成像原理
利用X射线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面 的X射线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器转 为数字,输入计算机处理。
D型超声
多普勒超声,利用多普勒效应检 测血流速度和方向,常用于心血
管疾病的诊断。
Hale Waihona Puke 超声诊断优缺点分析优点
实时动态成像,可观察脏器运动状态;无创无辐射,安全性高;价格相对较低,易于普及;便于床旁检查, 适用于急诊和重症患者。
缺点
对气体和骨骼的显示效果不佳;受操作者经验和技术水平影响较大;对于某些复杂疾病的诊断准确性有待 提高。
《医学影像技术 PPT课件》
目 录
• 医学影像技术概述 • X线检查技术 • CT检查技术 • MRI检查技术 • 超声诊断技术 • 核医学诊断技术 • 医学影像技术新发展动态与趋势
01
CATALOGUE
医学影像技术概述
定义与发展历程
定义
医学影像技术是利用各种物理学原理, 通过特定的成像设备获取人体内部组 织、器官的结构和功能信息,以图像 形式表达出来的技术。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MRS
• 生物体磁共振波谱分析(magnetic resonance spectroscopy,MRS)具有研 究机体物质代谢的功能和潜力,今后如能 实现MRI设备与MRS结合的临床应用,将 会引起医学诊断学上一个新的突破。
布洛赫 (Felix Bloch)
帕塞尔 (Edward Purcell)
CT
• 1972年,英国工程师汉斯菲尔德 (G.N.Hounsfield)首次研制成功世界上第 一台用于颅脑的X线计算机体层摄影(x-ray computed tomography,X-CT)设备,简 称为X-CT设备,或CT设备。
CT发展大事记
• 1972 发明CT第一代EMI Mark I,2个平行 探测器,1次2层
X线的发展
• 1896年,德国西门子公司研制出世界上 第一只X线管。20世纪10~20年代,出现 了常规X线机。其后,由于X线管、变压 器和相关的仪器、设备以及人工对比剂的 不断开发利用,尤其是体层装置、影像增 强器、连续摄影、快速换片机、高压注射 器、电视、电影和录像记录系统的应用, 到20世纪60年代中、末期,已形成了较 完整的学科体系,称为影像设备学。
超声和放射性核素设备与技 术
• 20世纪50年代和60年代,超声成像(USG)设备 和核医学设备相继出现,当时在医学上的应用往 往各成系统。1972年X-CT设备的开发,使医学影 像设备进入了一个以计算机和体层成像相结合、 以图像重建为基础的新阶段。70年代末80年代初, 超声CT(UCT)、放射性核素CT和数字X线机逐 步兴起,并应用于临床。尽管这些设备的成像参 数、诊断原理和检查方法各不相同,但其结果都 是形成某种影像,并依此进行诊断。
此PPT下载后可任意修改编辑增删页面
医学影像设备概述
有医术,有医道。术可暂行一时,道则流芳千古。
友情提示
感谢您不吸烟
手机调成静音
欢迎随时提问
第一章 医学影像设备学概论
• 第一节 医学影像设备的发展简史 • 第二节 医学影像设备的分类
第一节 医学影像设备的发展史
• 1895年11月8日,德国物理学家伦琴 (Withelm Conrad Roentgen,1845~1923) 在做真空管高压放电实验时,发现了一种 肉眼看不见、但具有很强的穿透本领、能 使某些物质发出荧光和使胶片感光的新型 射线,即X射线,简称为X线。
• 计算机X线摄影(CR)是20世纪80年代开 发的数字式成像设备。
• CR具有减少曝光量和宽容度大等优点,更 重要的是可作为数字化图像纳入图像存储 与传输系统(PACS)。
• 20世纪90年代中期,随着X线实时高分辨力 平板型探测器(FPD)的发明,数字X线成 像(DR)设备逐步兴起,并逐步推广。
DR
• 直接数字化X射线摄影系统(digital ray DR)是 利用电子技术将X线信息的其它载体转变为电子 载体,X线照射人体后不直接作用于胶片,被探 测器(Detector)接收并转换为数字化信号,获 得X线衰减值(attenuation value)的数字矩阵, 经计算机处理,重建成图像。数字图像数据可利 用计算机进行进一步处理、显示、传输和存储, 分辨率比普通X线照片高,诊断信息丰富,并且 能够更有效地使用诊断信息,提高信息利用率及 X线摄影检查的诊断价值。
(一)X线设备
• X线设备包括常规X线设备和X线CT设备。 • X线设备通过测量穿透人体的X线来实现人
体成像。X线成像反映的是人体组织的密度 变化,显示的是脏器的形态,而对脏器功 能和动态方面的检测较差。此类设备主要 有常规X线机、数字X线机和X-CT设备等。
CR
• 计算机X线摄影(CR)是将X线摄照的影像 信息记录在影像板(image plate,IP)上, 这种可重复使用的IP影像板,替代了胶片, 不需要冲印,因此也称为干板。干板经激 光读取装置读取,由计算机精确计算处理 后,即可得到高清数字图像,最后经数字/ 模拟转换器转换,在荧屏上显示出灰阶图 像,有利于观察不同的组织结构。使用CR, 避免了胶片影像冲印带来的环境污染,干 板的重复使用降低了成本,数字影像大大 提高了图像的清晰度。
DSA、CR、DR、PACS
• 数字减影血管造影DSA由美国的威斯康星 大学的Mistretta组和亚利桑纳大学的 Nadelman组首先研制成功,于1980年11 月在芝加哥召开的北美放射学会上公布于 世。
• DSA具有微创、实时成像、对比分辨力高、 安全、简便等特点,目前,正向快速旋转 三维成像实时减影方向发展,从而扩大了 血管造影的应用范围。
第二节 医学影像设备的分类
• 现代医学影像设备可分为两大类,即医学 影像诊断设备和医学影像治疗设备。
一、诊断用设备
• 按照影像信息的载体来区分,现代医学影 像诊断设备主要有以下几种类型:
• ①X线设备(含X-CT设备); • ②MRI设备; • ③超声设备; • ④核医学设备; • ⑤热成像设备; • ⑥光学成像设备(医用内镜)。
• 1985 滑环技术,1秒扫描 • 1989 螺旋CT • 1991 CT twim(2排探测器) • 1995 亚秒扫描 • 1998 多层CT,0.5秒扫描
CT
第一代 第二代 第三代 第四代 第五代
每方位的人体断 面扫描时间(秒)
1
10.5约Fra bibliotek.25小于 0.0004
做圆周扫描所需 的时间(秒)
四维彩超
介入放射学
• 介入放射学自20世纪60年代兴起,于70年 代中期逐步应用于临床,近年来尤以介入 治疗进展迅速。90年代倍受人们青睐的立 体定向放射外科学设备,由于它可以不作 开颅手术而治疗一些脑疾患,很受欢迎, 全世界都在积极开发和应用这种高新设备。 介入放射学设备与立体定向放射外科学设 备,都是通过医学影像设备来引导或定位 的,所以也属于医学影像设备的范畴。
约为 200
约为18
5
约为1
0.01
左图:肺部的X光影像(不能分辨深度) 右图:肺部的CT断层影像(能分辨深度)
MRI
• 1946年——美国加州大学Bloch和麻省哈佛大学 Purcell发现核磁共振现象,并用于化学分析。
• 20世纪80年代初磁共振成像(magnetic resonance imaging,MRI)设备,简称为MRI设 备用于临床。它是一种新的非电离辐射式医学成 像设备。它的密度分辨力高,通过调整梯度磁场 的方向和方式,可直接摄取横、冠、矢状层面和 斜位等不同体位的体层图像,这是优于CT设备的 特点之一。迄今,MRI设备已广泛用于全身各系 统,其中以中枢神经、心血管系统、肢体关节和 盆腔等效果最好。
相关文档
最新文档