铝及铝合金热处理工艺
2024铝合金t351热处理工艺(一)
2024铝合金t351热处理工艺(一)2024铝合金t351热处理工艺热处理工艺概述2024铝合金是一种高强度、耐腐蚀性好的铝合金,常用于制造飞行器零件。
T351是它的一种热处理状态,其性能优于T4、T6状态。
T351状态的2024铝合金具有较高的强度和韧性,在高温环境下耐腐蚀性也很好。
热处理过程要获得T351状态的2024铝合金,需要进行完全热处理。
这个过程包括:1.固溶处理。
铝合金在480℃以下均为固溶状态,需要将其加热到520℃左右保温2-4小时,使合金中的元素均匀分布。
2.水淬。
将加热后的铝合金迅速放入冷却水中,使其快速冷却。
这个过程是为了保证合金中的元素不发生分解反应,维持其强度和韧性。
3.人工时效。
水淬后的铝合金通常需要在100-120℃下人工时效4-8小时,使其性能达到最佳状态。
时效可以改变铝合金中硬质颗粒的大小和形状,以达到调整强度和韧性的目的。
热处理注意事项热处理环境要严格控制,保证热处理过程中铝合金的温度、时间、均匀性和冷却速率等参数的精度和一致性。
特别要注意的是:1.固溶处理时,温度过高或保温时间过长都会使铝合金产生过量析出物和过强晶粒长大现象,从而降低了合金的强度和韧性;2.水淬过程中,铝合金长时间呆在水中,会引起急冷脆性和变形;3.时效过程中,温度和时间的不足或过多都会影响合金的性能。
热处理效果T351状态的2024铝合金具有较高的强度和韧性,在高温环境下耐腐蚀性也很好。
经过热处理后,合金中的硬质颗粒大小和形状可通过时效控制调整,以获得最佳的强度、韧性和抗腐蚀能力。
因此,热处理工艺对于2024铝合金的性能提升至关重要。
以上是关于2024铝合金T351热处理工艺的介绍,希望能对您有所帮助。
适用范围T351热处理状态适用于2024铝合金的各种加工工艺,特别是那些需要高强度和抗腐蚀性的应用场合,如航空航天、车辆制造、机械制造等领域。
热处理后的表面处理热处理后的表面需要进一步进行处理,以保证表面质量和对铝合金的保护。
铝合金热处理的工艺
铝合金热处理的工艺铝合金热处理的工艺一、引言铝合金是一种重要的结构材料,具有良好的机械性能和耐腐蚀性能。
然而,由于铝合金的晶粒尺寸较大且存在内部应力,需要经过热处理来改善其性能。
本文将介绍铝合金热处理的工艺流程及其影响因素。
二、铝合金热处理工艺流程1. 固溶处理(Solution Treatment)固溶处理是将铝合金加热至固溶温度,使其内部元素达到均匀分布并形成固溶体溶解。
该过程可以消除晶界和析出物,并增加材料的塑性和韧性。
2. 淬火(Quenching)在固溶处理后,需要快速冷却以保持固溶体中元素的均匀分布。
淬火可以通过水、油或气体等介质进行。
选择不同的淬火介质将影响材料的硬度和强度。
3. 时效处理(Aging)时效处理是通过再次加热铝合金至较低温度,并在一定时间内保持稳定温度进行。
该过程有助于形成强化相,提高材料的强度和硬度。
三、影响铝合金热处理的因素1. 合金成分不同的铝合金具有不同的成分,其中包括主要元素和合金元素。
这些元素的含量和比例将直接影响到热处理工艺的选择和效果。
2. 加热温度加热温度是固溶处理和时效处理中最重要的参数之一。
过高或过低的温度都可能导致材料性能下降。
选择适当的加热温度非常关键。
3. 冷却速率冷却速率对铝合金的组织结构和性能有很大影响。
快速冷却可以产生细小均匀的晶粒,从而提高材料的强度。
但是,过快或过慢的冷却速率都可能导致不良效果。
4. 时效时间时效时间是指在时效处理中保持稳定温度进行的时间。
较长的时效时间可以使强化相更充分地析出,从而提高材料性能。
然而,过长时间也会导致晶粒长大和析出物过多。
四、铝合金热处理工艺优化1. 确定合适的热处理工艺参数根据铝合金的成分和性能要求,选择合适的加热温度、冷却速率和时效时间。
通过试验和实践,优化工艺参数以获得最佳的材料性能。
2. 控制加热和冷却过程在加热和冷却过程中,需要控制温度和时间,以确保材料达到所需的固溶度和组织结构。
同时,要注意避免过高或过低的温度对材料造成不利影响。
铝合金热处理工艺
铝合金热处理工艺作者:中国铝板带箔信息中心日期:2006-12-16点击数:2843.1铝合金热处理原理铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。
3.1.1铝合金热处理特点众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。
然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。
但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。
淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。
时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。
3.1.2铝合金时效强化原理铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。
目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。
铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。
这些在过饱和固溶体内的空位大多与溶质原子结合在一起。
由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。
硬化区的大小和数量取决于淬火温度与淬火冷却速度。
淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。
淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。
沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。
沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。
铝合金热处理方法汇总
铝合⾦热处理⽅法汇总
1、退⽕热处理
退⽕处理的作⽤是消除铸件的铸造应⼒和机械加⼯引起的内应⼒,稳定加⼯件的外形尺⼨,并使Al-Si系合⾦的部分Si结晶球状化,改善合⾦的塑性。
2、淬⽕
淬⽕是把铝合⾦铸件加热到较⾼的温度,保温2h以上,使合⾦内的可溶相充分溶解。
然后,急速淬⼊⽔中,使铸件急冷,使强化组合在合⾦中得到最⼤限度的溶解并固定保存到室温,这种过程叫淬⽕,也叫固溶处理或冷处理。
3、时效处理
时效处理,⼜称为低温回⽕,是把经过淬⽕的铝合⾦铸件加热到某个温度,保温⼀定时间出炉冷却直⾄室温,使经过饱和的固溶体分解,让合⾦基体组织稳定的⼯艺过程。
时效处理⼜分⾃然时效和⼈⼯时效两⼤类。
⾃然时效是指强化在室温下进⾏的时效。
⼈⼯时效⼜分为不完全⼈⼯时效、完全⼈⼯时效、过时效3种。
4、循环处理
把铝合⾦铸件冷却到零下某个温度并保温⼀定时间,再把铸件加热到350摄⽒度以下,使合⾦中度固溶体点阵反复收缩和膨胀,并使各相的晶粒发⽣少量位移,以使这些固溶体结晶点阵内的原⼦偏聚区和⾦属间化合物的质点处于更加稳定的状态,达到提⾼产品零件尺⼨,体积更稳定的⽬的,这种反复加热冷却的热处理⼯艺叫循环处理。
这种处理适合使⽤中要求精密、尺⼨很稳定的零件,⼀般铸件不做这种处理。
青岛丰东热处理专业提供热处理服务,可为客户提供化学热处理(渗碳、渗氮、碳氮共渗)、真空热处理、等离⼦热处理(离⼦渗氮)、常规热处理(含深冷处理)等四⼤领域的热处理加⼯服务。
欢迎新⽼客户来电咨询,我们将竭诚为您服务。
铝合金热处理技术-铝合金热处理T6热处理T5热处理T4热处理T7
鋁合金熱處理技術熱處理的定義很廣,凡是人為控制之加熱與冷卻過程,用以改善材料之結構與性質者皆屬於熱處理,所以鑄錠在加工前成形中,或加工後以及鑄件所施之加熱及冷卻過程都叫熱處理,亦包含下式的處理:(1)浸熱(Soaking),均質化處理(homogenizing)預熱—使鑄塊組織均質化而長時間加熱處理。
(2)再熱(reheating)熱間加工,而加熱處理。
(3)Annealing退火-軟化材料。
(4)Solution heat treatment)溶體化處理,quenching淬火,回火(artificial aging 或temper)—提高材料強度(5)Stabilizing treatment安定化處理鋁合金分為兩大類:(1)Heat treatable alloy(2)Non-heat treatable熱處理鋁合金為2XXX,6XXX,7XXX或2XX.X,3XX.X,7XX.X,其區分是熱處理鋁合金如施以適當熱處理其內部結構發生一種相變化,產生細緻析出物,藉此種析出物,強化材料。
這種現象叫析出硬化或時效硬化。
(Heat treatable alloy =precipitation-hardenable alloy)非熱處理合金則無析出硬化現象(但也會有析出物),故其強化作用通常借助一般的方法,如因溶體強化,加強化細晶強化。
(1)鋁合金之特性首先我們先討論鋁及其合金的特性來說明鋁及鋁合金為何大量的被運用。
(a)輕~2.7Mg/m,差不多是同體積銅或鋼的1/3重量。
(b)防腐蝕能力強。
(c)可反射輻射能—可見光、輻射熱、電磁波。
(d)導電及導熱能力強,且又是非鐵磁性。
(e)non-sparking(f)無毒性(g)外觀及表面易處理(h)機械性質良好(i)存量多鋁合金的代號甚多,例如:A.A(Aluminum,Association)Al coa:(Alumunum Company of America),JIS,DIN,BS等等,在我們僅說明 A.A.代號及J.I.S 代號:A.A.代號用四位數字表示1XXX 純鋁系 99.00%以上2XXX Al-Cu3XXX Al-Mn4XXX Al-Si5XXX Al-Mg6XXX Al-Mg-Si7XXX Al-Zn8XXX 前代號以外之系統9XXX 備用J.I.S代號 A2P1A-代表鋁2-表示大區別 1.鋁 2.耐蝕鋁合金 3.高力鋁合金 4.耐熱鋁合金P-表示形狀 P板 R條 E圓板 PC合板 RC合條 T管B棒 W線 S擠壓形材 V卯釘材 F鍛造品H箔 TW熔接管 BC導體1-表示種類特1 特2分別用S.O(2)鋁合金之析出硬化當金屬所受襪力超過其降伏強度時,即發生塑性變形,從內部微結構的觀點來看,變形最主要是由差排(dislocation)再受外力下,開始移動而造成。
铝及铝合金的热处理
铝及铝合金的热处理退火及淬火时效是铝合金的基本热处理形式。
退火是一种软化处理。
其目的是使合金在成分及组织上趋于均匀和稳定,消除加工硬化,恢复合金的塑性。
淬火时效则属强化热处理,目的是提高合金的强度,主要应用于可热处理强化的铝合金。
第一节 退火根据生产需求的不同,铝合金退火分铸锭均匀化退火、坯料退火、中间退火及成品退火几种形式。
一、铸锭均匀化退火铸锭在快速冷凝及非平衡结晶条件,必然存在成分及组织上的不均匀,同时也存在很大的内应力。
为了改变这种状况,提高铸锭的热加工工艺性,一般需进行均匀化退火。
为促使原子扩散,均匀化退火应选择较高的退火温度,但不得超过合金中低熔点共晶熔点,一般均匀化退火温度低于该熔点5~40℃,退火时间多在12~24h之间。
二、坯料退火坯料退火是指压力加工过程中第一次冷变形前的退火。
目的是为了使坯料得到平衡组织和具有最大的塑性变形能力。
例如,铝合金热轧板坯的轧制终了温度为280~330℃,在室温快速冷却后,加工硬化现象不能完全消除。
特别是热处理强化的铝合金,在快冷后,再结晶过程未能结束,过饱和固溶体也未及彻底分解,仍保留一部分加工硬化和淬火效应。
不经退火直接进行冷轧是有困难的,因此需进行坯料退火。
对于非热处理强化的铝合金,如LF3,退火温度为370~470℃,保温1.5~2.5H后空冷,用于冷拉伸管加工的坯料、退火温度应适当高一些,可选上限温度。
对于可热处理强化的铝合金,如LY11及LY12,坯料退火温度为390~450℃,保温1~3H,随后在炉中以不大于30℃/h的速度冷却到270℃以下再出炉空冷。
三、中间退火中间退火是指冷变形工序之间的退火,其目的是为了消除加工硬化,以利于继续冷加工变形。
一般来说,经过坯料退火后的材料,在承受45~85%的冷变形后,如不进行中间退火而继续冷加工将会发生困难。
中间退火的工艺制度基本上与坯料退火相同。
根据对冷变形程度的要求,中间退火可分为完全退火(总变形量ε≈60~70%),简单退火(ε≤50%)和轻微退火(ε≈30~40%)三种。
铝合金热处理工艺【详解】
铝合金的热处理工艺内容来源网络,由“XX机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D 打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在XX机械展.铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。
铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。
一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。
因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。
二、热处理方法1、退火处理退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si 系合金的部分Si结晶球状化,改善合金的塑性。
其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。
铝合金热处理工艺【详解】
铝合金的热处理工艺内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。
前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。
因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。
铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。
一、热处理的目的铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。
因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。
二、热处理方法1、退火处理退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si 系合金的部分Si结晶球状化,改善合金的塑性。
其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。
铝及铝合金热处理工艺及产品状态表示法
铝及铝合金热处理工艺与产品状态表示法―――刘静安教授 06年11月1、铝及铝合金热处理工艺1.1 铝及铝合金热处理的作用将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。
1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1)图1 铝及铝合金热处理分类1.2.2 铝及铝合金热处理基本作用原理(1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。
通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。
①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。
②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。
③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再结晶状态下的软化组织,具有最好的塑性和较低的强度。
(2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。
但此时材料塑性较高,可进行冷加工或矫直工序。
①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。
②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。
2024铝合金t351热处理工艺
2024铝合金t351热处理工艺
2024 铝合金 T351 是一种高强度、高硬度的铝合金,常用于制造飞机、汽车、船舶等制造业中的零件。
为了获得最佳的性能,通常会进行热处理工艺来强化铝合金。
以下是 2024 铝合金 T351 热处理工艺:
1. 预热:将铝合金工件加热至高温并保持一段时间,以消除加工应力和均匀化合金元素。
通常预热温度为 500-600°C,时间根据工件大小和形状而定,一般在 10-30 分钟之间。
2. 淬火:将预热后的铝合金工件迅速加热至高温 (一般大于850°C),并在水中或油中快速冷却,以获得镜面硬度和高强度。
淬火后,铝合金工件需要在空气中冷却并室温存放。
3. 回火:将淬火后的铝合金工件加热至高温,一般大于 300°C,并在空气中冷却,以消除淬火应力和提高韧性。
回火后,铝合金工件需要室温存放。
4. 电镀:热处理后的铝合金工件可以进行电镀,以获得更好的表面质量和性能。
常见的电镀工艺包括锌合金电镀、铝合金电镀等。
需要注意的是,不同的热处理工艺会影响 2024 铝合金 T351 的性能和质量,因此需要根据具体需求选择适合的热处理工艺。
同时,热处理工艺需要严格控制温度、时间、冷却方式等参数,以确保铝合金工件达到所需的性能和质量。
铝及铝合金热处理工艺与产品状态表示法
440
T6 T6511 T6,T62 T76 T6510,T6511
7178
465
24
(3)美国常用变形铝合金的退火制度,见表3
表3:常用铝合金退火制度
合金 1119、1180、 1070、1170、 1060、1050、 EC、1100、 1200 2011、2014、 2017、2018 2024、2025、 2117、2218 2618 3003、3004 4032 4043 5005、5050 5052 5056、5083、 5086、5154、 5205、5252、 5254、5454、 5456、5457、 5652 退火制 度℃*h 合金 退火制度℃*h
表6 HXX细分状态代号与加工硬化程度
细分状态代号 HX1 加工硬化程度 抗拉强度极限为O与HX2状态的中间值
HX2 HX3 HX4 HX5 HX6 HX7 HX8 HX9
抗拉强度极限为O与HX4状态的中间值 抗拉强度极限为HX2与HX4状态的中间值 抗拉强度极限为O与HX8状态的中间值 抗拉强度极限为HX4与HX6状态的中间值 抗拉强度极限为HX4与HX8状态的中间值 抗拉强度极限为HX6与HX8状态的中间值 硬状态 超硬状态,最小抗拉强度极限值超HX8状态至少 10MPa
铝合金的热处理工艺研究
铝合金的热处理工艺研究铝合金是一种重要的材料,广泛应用于航空航天、汽车、建筑、电子等领域。
在使用过程中,铝合金需要经过热处理,以提高其机械性能和耐腐蚀性能。
本文将探讨铝合金的热处理工艺研究。
1、铝合金的热处理原理铝合金的热处理是指在一定的温度下,通过控制时间和冷却速率,使铝合金的组织和性能发生改变的过程。
铝合金的热处理可以分为时效处理和退火处理两类。
1.1 时效处理时效处理是铝合金常用的热处理方法。
主要是控制时效温度和时效时间以使合金中的强化相(如析出硬化相)达到最大化,提高其强度、硬度和抗蠕变性能。
时效处理一般分为固溶处理和时效处理两个步骤。
1.2 退火处理退火处理是铝合金中常用的另一种热处理方法。
主要是对合金进行加热、保温和冷却处理,以消除残余应力和改善组织性能。
退火处理可以分为全退火和部分退火两种方式。
2、铝合金热处理工艺参数的研究热处理工艺参数是指在热处理过程中需要控制的各种因素,包括加热温度、保温时间、冷却速率等。
这些参数的选择直接影响了铝合金的组织和性能,因此对这些参数的研究十分重要。
2.1 加热温度的研究加热温度是热处理过程中十分关键的参数之一。
铝合金的加热温度需要控制在一定范围内,以避免出现过热或过低温度的情况。
为了对加热温度的影响进行研究,可以通过改变加热温度,观察铝合金的宏观形态和显微结构变化,以及性能指标的变化情况。
2.2 保温时间的研究保温时间是指在加热后合金需要经过的一段时间,在这段时间内,合金温度恒定,以使析出物(如硬化相)达到最大。
保温时间的长短直接影响了铝合金的显微组织和性能,因此需要对保温时间进行研究。
2.3 冷却速率的研究冷却速率是指在铝合金热处理过程中,合金的冷却速度。
通过控制冷却速率,可以有效地影响铝合金显微组织的形成和强化相含量的分布。
因此,对铝合金的冷却速率进行研究也十分重要。
3、铝合金热处理的应用铝合金的热处理广泛应用于各个领域,包括航空航天、汽车、建筑、电子等。
铝合金的热处理工艺
铝的热处理工艺铝的热处理:利用溶体化处理、时效硬化处理可以调整铝合金的强度、成型性以及其他一些性质。
一般利用溶体化处理+淬火处理+时效硬化处理来进行。
溶体化处理(固溶化热处理)/ Solution Treatment:对合金来说,一般温度越高,加入基本金属中的合金元素越容易溶化。
与此相应,加热到合金固有的温度后进行急速冷却的话,低温下应该析出的合金元素会呈现固溶(溶化)状态。
非铁金属(主要是铝合金)中叫溶体化处理,不锈钢中叫做固溶化热处理。
时效硬化/ Age Hardening:经过固溶化热处理后的合金,本来在低温下就可以析出的合金元素通过急速冷却后析出不久又变为了强行溶化的状态,不稳定。
这是随着时间的流逝,物品为变回原来稳定的状态而产生的析出。
这种析出的结晶不易滑动且较硬。
这个叫做“时效硬化”或者“析出硬化”。
在时效硬化中有常温时效硬化和人工时效硬化,后者叫做“析出硬化处理”。
常温时效硬化:在常温中自然通过时效硬化。
析出时效硬化:温度定在100~200℃中进行加热。
铝的调质记号:经过冷间加工、溶体化处理、时效硬化处理、退火等可以调整铝合金的强度、成型性以及其他的性质。
通过此类操作达到所定性质的过程叫调质,调质的种类叫质别。
基本记号:F:刚造出来的产品O:退火后的产品H:加工硬化后的产品W:溶体化处理后的产品T:指利用热处理达到F、O、H以外的稳定的质别的产品T1:从高温加工至冷却后,通过自然时效硬化的产品T2:从高温加工至冷却后,进行冷间加工,然后通过自然时效硬化的产品T3:溶体化处理后,进行冷间加工,然后通过自然时效硬化的产品T4:溶体化处理后,通过自然时效硬化的产品T5:从高温加工至冷却后,通过人工时效硬化的产品T6:溶体化处理后,通过人工时效硬化的产品T7:溶体化处理后,通过稳定化处理的产品T8:溶体化处理后,进行冷间加工,然后通过人工时效硬化的产品T9:溶体化处理后,通过人工时效硬化,然后再进行冷间加工的产品T10:从高温加工到冷却后,进行冷间加工,然后通过人工时效硬化的产品T6处理(热处理工艺的温度变化曲线):此处仅仅例举常用的T6处理,其他处理工艺的温度变化曲线可以类推。
铝及铝合金的热处理退火处理
铝及铝合金的热处理退火处理
铝及铝合金的热处理退火处理
目的:
展伸用材料包括压延用材料,挤压用材料及锻造用材料,通常其制造程序为:
熔铸→热加工→冷加工→材料成品
在热加工或冷加工的过程中,材料发生加工硬化的情况,使强度变大或导致加工硬化的情况,使强度变大或导致加工性减低。
为消除这些加工硬化,于冷加工前,中或后所施的热处理即为退火处理,其目的在使材料具有使用上所需要的程度。
分类:
由于退火条件的不同而分:
1、部分退火:
仅消除部份加工硬化,处理温度在再结晶温度以下,实际温度则视强度而定,强度愈高则处理温度较低。
2、完全退火:
处理温度在材料的再结晶温度或稍高使材料发生再结晶而完全消除加工硬化,亦使强度达到最低的状态。
退火处里就时机而分:
1、中间退火:
再冷加工开始之前或冷加工过程中,所加的退火处理,通常为完全退火,其目的在恢复其加工性,使接下去的加功能较顺利,及控制其组织状态,俾能适合于最终成品的要求。
2、最终退火:
主要目的再调整成品最后的强度水平亦即调整炼度。
-1/1-。
铝及铝合金热处理工艺讲解学习
铝及铝合金热处理工艺1. 铝及铝合金热处理工艺1.1 铝及铝合金热处理的作用将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。
1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1)图1 铝及铝合金热处理分类1.2.2 铝及铝合金热处理基本作用原理(1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。
通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。
①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。
②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。
③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再结晶状态下的软化组织,具有最好的塑性和较低的强度。
(2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。
但此时材料塑性较高,可进行冷加工或矫直工序。
①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。
②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。
铝合金加工制品的热加工制备与热处理工艺
鋁合金加工制品的热加工制备与热处理工艺一、引言随着工业化进程的快速发展,铝合金作为高性能材料,受到了广泛的关注和应用。
其中,铝合金加工制品作为铝合金应用的重要一环,其在现代化工、制造业、航空航天和交通运输等领域占有重要地位。
热加工制备和热处理技术是铝合金加工制品生产过程中不可或缺的环节,本文将重点讨论铝合金加工制品的热加工制备和热处理工艺。
二、铝合金加工制品的热加工制备技术铝合金加工制品的热加工制备技术是指将铝合金加工制品在高温下进行成形加工的过程。
热加工制备技术的主要形式有挤压、锻造、轧制和铸造等。
1.挤压技术挤压是一种将铝棒或铝管材通过挤压机中的模具,在高温下进行挤压变形的加工方法,挤压制品的截面形状多为实心或中空形状,具有加工精度高、内部组织致密等优点,因此在航空、航天等领域得到广泛应用。
2.锻造技术锻造是铝合金加工制品加工过程中最常用的热加工方法之一,其主要原理是通过高温下对铝棒或铝板等进行压制或拉伸,改变其形状和机械性能。
锻造加工制品的晶粒细化,强度和硬度都较高,适用范围广泛,如汽车、工程机械、高速列车等。
3.轧制技术轧制是把铝制品在高温下通过辊压加工,从而改变其厚度、宽度和长度的过程。
轧制加工制品晶粒细致,所以强度高、塑性好、表面质量高,广泛应用于家电、电子等领域。
4.铸造技术铸造是将铝液铸入模具中,在高温下进行固化自然冷却的加工方法,其制品具有形状多样、尺寸精度高等特点。
铸造加工制品广泛使用于土木工程、交通运输、建筑等领域,并逐渐进军高端装备制造。
三、铝合金加工制品的热处理工艺铝合金加工制品的热处理工艺是指将制品在高温条件下进行一定时间的加热、保温和冷却处理,从而改善其组织性能和机械性能。
目前,热处理工艺已经成为铝合金加工制品生产过程中非常重要的环节,其主要分为固溶处理和时效处理两个阶段。
1.固溶处理固溶处理是指铝合金加工制品在高温下加热一定时间后,以快速冷却的方式使晶粒重新重新排列组织,从而达到提高其强度和塑性的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 铝及铝合金热处理工艺1.1 铝及铝合金热处理的作用将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。
1.2 铝及铝合金热处理的主要方法及其基本作用原理1.2.1 铝及铝合金热处理的分类(见图1)图1 铝及铝合金热处理分类1.2.2 铝及铝合金热处理基本作用原理(1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。
通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。
①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。
②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。
③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再结晶状态下的软化组织,具有最好的塑性和较低的强度。
(2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。
但此时材料塑性较高,可进行冷加工或矫直工序。
①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。
②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。
(3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。
自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。
人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。
人工时效可分为欠时效和过时效。
①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。
②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温较长的时间状态下进行的时效。
③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个阶段进行。
可分为二阶段、三阶段时效(4)回归处理:为了提高塑性,便于冷弯成形或矫正形位公差,将已淬火时效的产品,在高温下加温较短的时间即可恢复到新淬火状态叫回归处理。
2、铝及铝合金产品状态表示法2.1 基本状态代号,见表12.2 H(加工硬化)状态的细分H1——单纯加工硬化状态。
适用于未经附加热处理,只经加工硬化即获得所需强度的状态。
H2——加工硬化及不完退火的状态。
适用于加工硬化程度超过成品规定要求后,经不完全退火,使强度降低到规定指标的产品。
对于室温下自然时效软化的合金,H2与对应的H3有相同的最小极限抗拉强度值;对于其他合金,H2与对应的H1具有相同的最小极限抗拉强度值,但伸长率比H1稍高。
H3——加工硬化及稳定化处理的状态。
适用于加工硬化后经低温热处理或由于加工过程中的受热作用致使其力学性能达到稳定的产品。
H3状态仅适用于在室温下逐渐时效软化(除非经稳定化处理)的合金。
H4——加工硬化及涂漆处理的状态。
适用于加工硬化后,经涂漆处理导致了不完全退火的产品。
H后面的第二位数字表示产品的加工硬化程度。
数字8表示硬状态。
稳定化处理:为了防止合金冷加工后长期放置所产生的软化现象,在冷变形后,产品进行低温退火(150℃加热3小时)的处理。
这样可以使在室温下放置的合金的力学性能趋于稳定。
2.3 退火(O)状态代号分类2.3.1 O1——均匀化退火2.3.2 O2——产品不完全(局部)退火2.3.3 O3——产品完全退火3. 时效炉工艺温度控制表燃烧室:温度控制表设定温度 200-215℃温控表显示温度190-210℃炉内实测温度 200-210℃风机右后:风机设定温度160-180℃风机表显示温度200-210℃炉内控制温度200-210℃显示:温控表显示温度 190-205℃炉内实测温度200-210℃显示:温控表显示温度 195-210℃炉内实测温度200-210℃4. 时效炉能源的计算电机(电能损耗)燃烧机(油料损耗)升温耗能(凉炉、热炉)保温耗能保温时间时效炉故障(工艺硬度影响)电机功率40/55W/h,电流81/98A,电压380V,740/1480r/min变级多速三相异步电动机型号YD2808-8/4时效炉动力配电型号XL-21,额定电压380V,额定电流1A问题:时效炉时效时只按合金状态进行了分类时效,但对于同种合金不同壁厚并没有明确规定,壁厚差距为多少时不允许一起时效5. 挤压出口如何调风当挤压出口料上翘时,要适当调小下方风速或适当关闭下方风扇;当挤压出口料下翘时,要适当调小上方风扇或适当关闭上方风扇6. 时效工艺执行细则(四分厂3号时效炉)根据对该炉工艺调查的数据,特对此炉操作时的温控参数作以下调整:1).当至少有两个温控表(风机和燃烧机)都到达该制度下,以保温温度时才开始计算保温时间。
2).保温时间的确定以炉内最大壁厚的型材为准。
3).针对装筐密度较大的型材需要适当延长保温时间。
4).对6005-T5、6005A-T5以及T6511状态的都按照T6制度执行。
5).对于具体品种的时效制度如果需要调整以工艺科的通知为准。
双空模在挤压时要注意调整各孔的流速,使其保持一致,在挤压过程中,铸锭中铝的流动问题?看GB-5237掌握扭转度、公差、会查表、并能熟练在挤压料中,发现平模制品头尾出现气泡现象较为频繁,而组合模尤其是管材出现气泡较少。
7. 挤压注意事项7.1 对6系合金低于500℃不能保证力学性能,高于560℃表面质量很差7.2 挤压速度与帮温的关系一般:低温高速,高温低速。
应尽量提高挤压速度,此时温度应按表中下限考虑,但应保证出口温度符合规定。
7.3 对于挤压参数大的模具,尤其是分流孔多的应将模具温度和铝棒温度设定到中上限,但在挤压后段应将速度调下来。
7.4 特种散热器型材模具温度480℃以上,铝棒温度530℃以上7.5 各个国家的力学性能标准有些差异,并且与型材的截面有关联,当出现力学性能不够表中的要求时,由技术人员查询相关国家标准或与客户沟通以后确定是否合格,是否放行。
力学性能用户有需求的按技术协议执行。
8. 抛光料6463-T5均质棒,460-480℃低温高速8.1 模具引起的表面机械纹问题较多8.2 在切割和转移过程中造成的分节出现划、磨等硬伤,常出现的问题种类:机械纹、划伤、白道、亮线、收缩纹、拉毛、有棱、起浪、扭拧、几何尺寸超差、虚假划伤、桔皮。
9. 铝的表面机械处理处理后的表面效果可分为:a.光亮表面b.半哑光表面c.消光(哑光)表面抛光的原理:机械抛光是靠磨削材料表面产生塑性变形,从而去掉被抛光后的凸面得到平滑面的抛光方法,一般使用布轮、羊毛轮、砂纸等等。
抛光工序一般分为三步:粗抛、中抛和精抛粗抛:用硬轮对经过或未经过磨光的表面进行抛光,对基材有一定的磨削作用中抛:用较硬的抛光轮对经过粗抛的表面进一步的加工,能去除粗抛留下的划痕精抛:抛光的最后工序,用软论抛光获得镜面光亮的表面,对基材的磨削作用很小10. 机械拉丝法:10.1 直纹拉丝是指在铝板表面用机械摩擦的方法加工出直线纹路10.2 乱纹拉丝是在告诉运转的铜丝刷下,使铝板前后左右移动摩擦所获得的一种无规则,无明显纹路的哑光丝纹10.3 旋纹也称旋光,是采用圆柱状毛毡或研石尼龙轮装在钻床上,用煤油调和抛光油膏,对铝或铝合金板表面进行旋转抛磨所获得的一种丝纹10.4 螺纹是用一台11. 抛光料问题的分析11.1 在低温高速挤压时为什么会产生机械纹过重?可能是由于挤压的填充和初期的平流挤出阶段造成对模具表面的划伤,从而在后期的挤压过程中导致机械纹过重11.2 在高温低速挤压时,也会有机械纹等缺陷?可能是棒温较高,导致挤压过程中紊流较严重,从而使铸棒表面的大量氧化物和杂质流向心部,使型材表面不好12. 模具12.1 组合模根据结构不同又分为两类:桥式组合模和分流组合模,习惯上把桥式组合模叫舌形模,分流组合模就简称为组合模12.2 舌形模:所需挤压力较低,适合挤压不易变形合金,内孔较小的空心型材12.3 组合模:适合于挤压易变形合金和内腔尺寸较大而且形状复杂的大、中型空心型材12.4 用组合模挤压的空心型材,在其宏观组织上可以看到明显的焊缝,焊缝的数目等于铸锭被分成金属股的数目12.5 为获得优质焊缝就要增大模腔内的压力,挤压系数选取的稍大一些有利,采用较高挤压温度为宜,并且挤压速度不应过快12.6 在检验空心型材时,其表面质量、几何尺寸、机械性能和内部组织与普通型材相同,但对于使用在重要部位的空心型材必须检查其焊缝质量,此时其切头长度不应少于500-1000mm13. 铸造铸锭13.1 铝合金铸锭的典型结晶由表面细晶带,柱状晶带和锭心等轴晶带组成13.2 铝合金铸锭中,铝基固溶体的晶粒形状常见的有三种:a.颗粒状的等轴晶b.长条状的柱状晶c.薄片状的羽毛晶13.3 在合金和其他条件一定时,随着铸造温度的提高,柱状晶区宽度增大;等轴晶粒尺寸随着铸造温度的下降而减小;铸造温度恒定时,随着合金元素含量的增大,柱状晶体区减小13.4 变质处理:就是在少量的专门添加剂(变质剂)的作用下改变铸态合金组织,使金属或合金的组织分散度提高的过程,也叫细化处理或孕育处理14. 壁厚技术要求14.1 氧化壁厚a.酸砂氧化:要求±0.1mmb.银白氧化:要求±0.1mmc.抛光氧化:要求±0.1mmd.喷砂氧化:要求-0.08到+0.1mmf.扭纹氧化:要求-0.08到+0.1mmg.碱蚀氧化:要求-0.05到0.15mm14.2 电泳壁厚a.平光电泳:要求±0.1mmb.喷砂电泳:要求±0.1mmc.着色碱蚀电泳:-0.05到+0.1mm14.3 喷涂壁厚a.普通喷涂:要求-0.15到+0.05mmb.砂皱喷涂:要求-0.15到+0.05mmc.木纹喷涂:要求-0.15到+0.05mmd.氟碳喷涂:要求-0.12到+0.07mm14.4 出口基材壁厚a.图纸标明壁厚公差的执行图纸壁厚公差b.未注明壁厚公差的执行国标壁厚公差2栏c.完全封闭空心型材壁厚执行国标壁厚公差3栏(SOMA系列圆管除外)注:图纸和计划单上标明壁厚公差的实为成品壁厚公差,挤压基材需根据表面处理方式的不同作出壁厚公差的相应增减。