电力电子技术在电力系统中的应用
电力电子技术在电力系统中的应用文档
![电力电子技术在电力系统中的应用文档](https://img.taocdn.com/s3/m/0e0b0772777f5acfa1c7aa00b52acfc789eb9f08.png)
电力电子技术在电力系统中的应用文档电力电子技术在电力系统中的应用随着工业化进程的不断推进和能源消费的不断增加,现代社会对电力的需求越来越急切。
而在新能源、能量储存和智能电网等相关技术的不断发展和完善下,电力电子技术也不断被应用于电力系统中,成为支撑电力系统可靠性和安全性的重要技术之一。
一、电力电子技术在智能电网中的应用智能电网是一种基于电力电子技术和通信技术的新型电网,其具有能量效率高、可靠性高、灵活性强、响应速度快等特点。
智能电网中主要应用了以下几种电力电子技术:1.改进的高压直流输电技术直流输电技术可以降低输电损失,提高电力系统的稳定性,满足能源长距离输送的需求。
然而,传统的直流输电技术存在成本高、电压平稳性差等问题。
改进的高压直流输电技术通过引入成熟的电力电子技术,如换流、滤波和快速保护等,可以显著提高电压平稳性和输电效率,有助于实现远距离大容量能量输送。
2.分布式发电系统控制技术分布式发电系统是指将小型发电机与电网连接,形成微网,通过整合不同的能源来满足用户的需求。
而电力电子技术可以通过转换电流、控制电压等方式,实现分布式能源的高效控制和管理,提高系统的负载平衡能力和稳定性。
3.储能技术电力储能技术是指通过将电能转换为其他形式存储,以便在需要时释放电能为电力供应系统所使用。
电力电子技术可以将电力储能系统与电力输配电设施连接起来,并控制电流方向、充放电等过程,提高储能效率和安全性。
二、电力电子技术在新能源领域中的应用1.可再生能源发电控制技术可再生能源发电是科技和环保的结晶,减少了石油、煤炭等传统发电方式所带来的污染和浪费。
然而,可再生能源出现的不稳定性和不可控性,一定程度上受限了其应用范围。
而电力电子技术可以通过电压转换和频率转换等技术手段管理电网输入的不稳定电量,实现对电力输出的更好控制和调节,提高可再生能源的发电效率。
2.电动车充电技术电动车的充电功能离不开电力电子技术,通过电池管理系统、充电器、控制器等设备的配合,可以实现电动车的快速充电和稳定运行。
电力电子技术在电力系统中的应用及发展
![电力电子技术在电力系统中的应用及发展](https://img.taocdn.com/s3/m/201bc40b326c1eb91a37f111f18583d049640fe0.png)
电力电子技术在电力系统中的应用及发展首先,电力电子技术在电力系统中的应用非常广泛。
电力电子技术包含了各种电力电子器件和电路,如开关电源、逆变器、整流器、变频器等。
这些技术可以用于各种不同的应用,包括电力调节、变频调速、无停电切换、能量回馈等。
电力电子技术在电力系统中的应用主要有以下几个方面:1.电力调节:电力电子技术可以用来调节电力系统的电压和频率。
例如,电力电子技术可以用于调节输电线路的电压,以保证电力系统的稳定性和可靠性。
同时,它也可以用来调节电力系统的频率,以适应不同的负载条件。
2.变频调速:电力电子技术可以用于变频调速系统中,通过改变电机的供电频率来改变电机的转速。
这可以使电机在不同负载要求下,具备良好的性能特性。
变频调速系统广泛应用于工业、交通等领域。
3.无停电切换:电力电子技术可以实现无停电切换。
例如,在配电系统中,当发生故障时,电力电子技术可以实现对备用电源的无停电切换,以保证供电的连续性和可靠性。
4.能量回馈:电力电子技术可以实现能量的回馈。
例如,通过逆变器将太阳能等可再生能源转换为电能,然后回馈到电力系统中,减少对传统能源的依赖,提高能源利用效率。
除了以上应用,电力电子技术还可以用于电力系统的电力质量改善、电力系统的故障检测和故障定位等方面,为电力系统的稳定运行和安全性提供支持。
其次,电力电子技术在电力系统中的发展也非常迅速。
随着科技的不断进步和应用需求的不断增加,电力电子技术得到了广泛的研究和应用。
目前,电力电子技术正在向下列几个方向发展:1.高效率:提高电力电子设备的工作效率是当前的重要发展方向。
高效率的电力电子设备可以减少能量损失,提高能源利用效率。
2.高功率密度:提高电力电子设备的功率密度,使其在体积相同的情况下可以提供更大的功率输出。
这对于应用于空间有限的场合非常有用。
3.高可靠性:提高电力电子设备的可靠性,使其能够在恶劣的工作环境下稳定运行。
这对于电力系统的稳定性和可靠性非常重要。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/90b8b2401611cc7931b765ce05087632311274b6.png)
电力电子技术在电力系统中的应用随着电子技术的迅速发展,电力电子技术得到了广泛的应用。
电力电子技术是指将电力和电子技术相结合,通过半导体器件将电力进行变换、传递和控制的技术。
在电力系统中,电力电子技术的应用已经成为了研究的热点之一。
一、电力电子技术的概述电力电子技术是一种电力工程和电子工程相结合的技术。
其主要应用在将电力进行变换、传递和控制的过程中。
电力电子技术的发展可以追溯到1960年代,当时出现了用半导体器件实现交流电到直流电的变换技术,即交流输电系统的直流输电技术(HVDC)。
这项技术实现了对远距离长距离输电的需求,缩短了电力传输距离,减少了线路损耗,提高了电力传输的效率和可靠性。
随着时代的发展,电力电子技术应用领域不断扩大,如市电变频器、电力电容、UPS等系统都是电力电子技术的代表。
电力电子技术的发展,推动了电力系统的革新,提升了电力传输的能力和效率,实现了电网智能化、数字化、可靠性和安全性的大幅提升。
二、1、 HVDC交流输电系统的直流输电技术(HVDC)是电力电子技术在电力系统中的基础应用之一。
它可以将交流电转换成直流电,从而实现不同地点之间的电力互联、跨越海洋和山区、进行长距离电力输送。
HVDC技术可以提高输电线路的容量、减少输电损耗,并且提高电力传输的可靠性。
HVDC技术正在逐渐普及,已经被应用到欧洲、北美、亚洲等地区的多条输电线路中,成为了电力系统中重要的输电方式。
2、 FACTS灵活交流输电系统(FACTS)技术是一种电力电子技术,它可以根据负荷不同而调整电力系统的电压、电流和相角,从而提高电力系统的稳定性、可靠性以及抗干扰能力。
FACTS技术可以使电力系统在电力负载发生变化时,自动调整电力参数和稳定电力系统,从而提高电网的稳定性,减少配电线路的损耗,降低能源消耗和污染排放。
3、 STATCOM静止补偿器(STATCOM)是一种电力电子设备,它可以在电力系统中自动实现电容电抗补偿,从而提高电力系统的稳定性和可靠性,减少电力线路的损耗。
电力电子技术在电力系统自动化中的应用
![电力电子技术在电力系统自动化中的应用](https://img.taocdn.com/s3/m/60f27cb8c9d376eeaeaad1f34693daef5ff7135d.png)
电力电子技术在电力系统自动化中的应用随着现代电力系统的不断发展,电力电子技术在电力系统自动化中的应用变得越来越重要。
电力电子技术的出现不仅提高了电力系统的稳定性和可靠性,还为电力系统的智能化和高效化提供了有力支持。
本文将探讨电力电子技术在电力系统自动化中的具体应用,包括逆变技术、短路电流限制技术以及柔性交流输电技术。
1. 逆变技术逆变技术是电力电子技术在电力系统自动化中的重要应用之一。
逆变器是将直流电转换为交流电的装置,由于其具有高效、可靠、灵活等特点,被广泛应用于变频调速、UPS电源、太阳能发电等领域。
在电力系统自动化中,逆变技术被用于实现直流输电、高压直流输电、交流与直流的互联互通等功能。
通过逆变技术,电力系统可以实现不同电压等级之间的互联互通,提高系统的可靠性和供电质量。
2. 短路电流限制技术电力系统中的短路故障常常会对系统的稳定性和安全性造成严重影响。
为了限制短路电流的大小,保护系统的设备和运行状态,电力电子技术被用于短路电流限制技术的研究与应用。
利用电力电子技术,可以通过调节电流限制器的控制策略,实现对短路电流的精确控制。
短路电流限制技术可以减少系统中的电磁力、电流冲击等问题,提高系统的稳定性和可靠性。
3. 柔性交流输电技术柔性交流输电技术是电力电子技术在电力系统自动化中的又一重要应用领域。
通过柔性交流输电技术,可以实现对电力系统中电压、频率等参数的控制和调节,进而优化系统的运行状态。
柔性交流输电技术主要包括STATCOM(静止同步补偿器)和SVC (静止无功补偿器)等装置。
这些装置通过电力电子技术可以实时控制并调整电力系统中的电流和电压,提高系统的稳定性和可靠性。
4. 智能电力电子装置随着信息技术的发展,智能电力电子装置在电力系统自动化中的应用也越来越广泛。
智能电力电子装置通过与传感器、监控系统等设备的联动,可以实时获取电力系统运行状态的信息,并进行智能化的控制和运行。
智能电力电子装置的应用,可以实现电力系统的自动化运行和管理。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/fea84b1cbc64783e0912a21614791711cc79796e.png)
电力电子技术在电力系统中的应用电力电子技术是当今电力系统中最重要的一个领域,它已经成为电力行业的重要支撑技术之一,广泛应用于电力系统的各个领域。
电力电子技术是将电力电子元件和电力电子系统应用于电力领域,实现电力的控制、调节和变换。
它主要包括变流器技术、逆变器技术、直流输电技术、电机驱动技术等。
这些技术在电力系统中起到了至关重要的作用,它们可以更好地适应各种复杂的电力系统,提高电力系统的质量、效率和可靠性,同时还能更好地满足用户的需求,为电力行业的发展注入新的活力。
变流器技术是电力电子技术中的一个重要分支,它是通过将交流电转换为直流电或直流电转换为交流电,从而实现电力的控制和变换。
变流器技术在电力系统中的应用非常广泛,可以应用于发电机的输出电压控制、直流输电、交流输电、电动汽车充电桩和逆变器等领域。
它可以使电力系统更加高效、可靠和性能更加稳定。
逆变器技术是将直流电转换为交流电的一种技术,它可以将直流电转换为纯正的交流电,从而实现电力的控制和变换。
逆变器技术不仅可以通过电池实现电力存储,还可以应用于太阳能电池板、风力发电机等,从而实现可再生能源的利用。
直流输电技术是近年来出现的一种新的技术,它可以将电力以直流的形式输送到长距离的地方。
直流输电技术可以使电力传输更加高效、节能、可靠和安全,是电力系统中不可或缺的一部分。
电机驱动技术是电力电子技术中的重要分支,它主要应用于各种电机的起动、调速和控制等方面。
电机驱动技术可以使电机更加高效、节能和智能化,提高电机的性能和精度,从而实现各种各样的自动化控制。
总的来说,电力电子技术已经成为电力系统中不可或缺的一部分,它可以更好地适应电力系统的庞大和复杂,提高电力系统的质量、效率和可靠性,同时还能更好地满足用户的需求,为电力行业的发展注入新的活力。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/e0d9879785254b35eefdc8d376eeaeaad0f3164f.png)
电力电子技术在电力系统中的应用随着科技的不断发展,电力电子技术在电力系统中的应用日益广泛。
电力电子技术作为一种能将电能转换、控制和调节的技术,对于电力系统的可靠性、稳定性和效率等方面起着至关重要的作用。
本文将探讨电力电子技术在电力系统中的应用,并介绍其在能源转换、变流器、智能电网和可再生能源等方面的具体应用。
能源转换是电力电子技术最重要的应用之一。
在传统的电力系统中,能源转换主要通过发电厂和变电站实现,存在能源的损耗和负载匹配的问题。
而采用电力电子技术,可以将不同形式的电能进行高效的转换。
比如,在直流输电(HVDC)系统中,将交流电转化为直流电进行传输,不仅大大降低了传输损耗,还能够更好地实现电网间的互联互通。
此外,电力电子技术还可以将直流电转化为交流电,用于逆变器的输入,更好地适应不同负载的需求。
变流器是电力电子技术的另一个重要应用领域。
变流器是一种将交流电转换为直流电或将直流电转换为交流电的装置,常用于风力发电和太阳能发电等可再生能源系统中。
比如,风力发电机通过变流器将交流电转换为直流电,并通过逆变器将直流电转换为交流电,以供电网使用。
这种方式不仅可以实现风能的高效利用,还可以通过逆变器将多余的电能注入电网。
同样地,太阳能发电系统也可以借助变流器实现对电能的转换和调节。
智能电网也是电力电子技术的一个重要应用领域。
智能电网,又称为智能输配电网,是一种通过高级通信与控制技术,实现对电网的智能集成和优化管理的电力系统。
在智能电网中,电力电子技术发挥着关键作用。
例如,智能电网中的储能系统,可以利用电力电子技术将多余的电能进行储存,以供高峰期使用,从而平衡电网的供需关系。
此外,智能电网还可以通过电力电子技术实现对电能的远程监控和在线检修,提高电网的可靠性和稳定性。
最后,电力电子技术在可再生能源领域也发挥着重要作用。
随着可再生能源如太阳能和风能的快速发展,如何将这些可再生能源有效地纳入电力系统,成为一个重要的问题。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/30535f4f7ed5360cba1aa8114431b90d6d858960.png)
电力电子技术在电力系统中的应用电力电子技术是一种在电力系统中广泛应用的技术,它在能源转换、电能控制、稳压稳流以及储能等方面发挥着重要作用。
本文将从几个方面论述电力电子技术在电力系统中的应用。
首先,电力电子技术在能源转换方面有着重要的应用。
在电力系统中,能源的形式往往需要经过转换才能被合理利用。
电力电子技术通过使用开关器件(如晶闸管、IGBT等)和控制电路,可以实现直流到交流、交流到直流以及交流频率的变换。
例如,交流变频器可以将交流电源输出的固定频率的电能转化为可变频率的电能,这样就满足了配电系统对不同频率电能的需求。
其次,电力电子技术在电能控制方面也发挥着重要作用。
在电力系统中,对电能的控制和调节是必不可少的。
电力电子技术可以通过智能控制器对电能进行精确的调节和控制,从而实现对电能的合理利用。
例如,使用直流斩波器控制器可以将交流电转换为直流电,并可以通过PWM(脉宽调制)技术调节输出电压的大小,实现对电能的精确调节。
另外,稳压稳流也是电力电子技术在电力系统中的重要应用之一。
在电力输送和供电过程中,往往需要对电流和电压进行稳定控制,以确保电力系统的正常运行。
电力电子技术可以通过电流传感器和电压传感器对电流和电压进行实时监测,并通过反馈控制系统来控制电流和电压的稳定输出。
例如,使用电子稳压器可以实现对电压的精确控制,使电压在规定范围内保持稳定。
此外,电力电子技术在电力系统中的储能方面也有广泛的应用。
随着可再生能源的快速发展,如风能和太阳能等,电网对储能的需求日益增加。
电力电子技术可以将电能转换为另一种形式的能量(如化学能、机械能等)来进行储存,并在需要时再次转换为电能输出。
例如,使用电力电子技术可以将太阳能电池板产生的直流电转换为交流电,然后通过储能系统进行储存,以便夜间或阴天使用。
总结起来,电力电子技术在电力系统中具有重要的应用价值。
通过能源转换、电能控制、稳压稳流和储能等方面的应用,电力电子技术可以实现电能的高效利用和多样化输出,提高电力系统的可靠性和稳定性。
电力电子技术在电力系统电能利用中的应用
![电力电子技术在电力系统电能利用中的应用](https://img.taocdn.com/s3/m/8635fe525e0e7cd184254b35eefdc8d376ee1438.png)
电力电子技术在电力系统电能利用中的应用随着电力供需矛盾逐渐加剧和对能源可持续发展的迫切需求,电力电子技术逐渐成为电力系统中的核心技术。
本文将探讨电力电子技术在电力系统电能利用中的应用。
一、电力电子技术概述电力电子技术是应用电子技术在电力系统中的一种新技术,通过将电力与电子技术结合,实现电能的调节、变换和控制。
电力电子技术广泛应用于电力系统中的输电、配电和用电环节,具有高效、可靠、灵活等优点。
二、电力电子技术在输电环节中的应用1. 高压直流输电(HVDC)通过高压直流输电技术,可以将电能从远距离输送到需求较远的地区,有效解决了传统交流线路输电损耗大的问题。
高压直流输电系统借助电力电子变流器实现输电线路的直流与交流之间的转换,提高了电能输送的效率和稳定性。
2. 柔性交流输电(FACTS)柔性交流输电技术利用电力电子装置(如静止无功补偿器、静止有功补偿器等)对电力系统进行精确的控制,可以实现对电流、电压、无功功率等多个参数的调节,提高了电能的传输能力和传输质量。
三、电力电子技术在配电环节中的应用1. 电力电子变压器电力电子变压器是利用电力电子技术实现的一种新型变压器,具有体积小、重量轻、效率高等特点。
电力电子变压器可实现电压、频率等参数的精确调节,提高了电能在配电系统中的利用效率。
2. 无功补偿装置无功补偿装置是通过电力电子技术实现的一种装置,用于在配电系统中实现对无功功率的补偿。
通过控制电力电子装置,可以实时调节电网的无功功率,维护电力系统的电压稳定性和功率因数。
四、电力电子技术在用电环节中的应用1. 电力电子变频器电力电子变频器通过电力电子技术将交流电转换成可调频率和可调幅度的交流电,广泛应用于电机驱动系统中。
电力电子变频器可以根据负载需求实时调整电机的转速和运行状态,提高了电能利用的灵活性和效率。
2. 光伏逆变器光伏逆变器是将光伏电池组发出的直流电转换为交流电的装置。
光伏逆变器利用电力电子技术实现对太阳能电池组输出电能的控制和调整,使其能够与电网中的交流电同步运行,实现对太阳能电能的高效利用。
电力电子技术在现代电力系统中的应用
![电力电子技术在现代电力系统中的应用](https://img.taocdn.com/s3/m/870aa1f264ce0508763231126edb6f1aff0071e9.png)
电力电子技术在现代电力系统中的应用电力电子技术是指利用电子器件和电子控制技术来处理、控制和转换电力的技术,广泛应用于现代电力系统中。
它的出现和发展,不仅大大提高了电力系统的运行效率和稳定性,还为新能源的接入和能量互联网的建设提供了可靠的支持。
本文将从电能的传输、转换和控制三个方面,介绍电力电子技术在现代电力系统中的具体应用。
一、电能的传输在现代电力系统中,电能的传输是电力电子技术的重要应用领域之一。
直流输电(DC)是其中的典型代表。
通过将交流电转换为直流电,再经过长距离传输后,再将直流电转换为交流电,可以大大减少线路损耗,提高电网的稳定性。
这种方式适用于远距离的电能传输,如跨海输电、大型水电站等。
此外,换流器技术也广泛应用于高压直流输电(HVDC),通过将交流电转换为直流电,再经过输电线路传输,再将直流电转换为交流电供应给用户,以提高能源利用效率。
二、电能的转换电力电子技术在电能转换方面的应用主要体现在变频器、逆变器、整流器等装置中。
变频器是将交流电转换为可调频率的交流电的装置,广泛应用于变频调速、风能、光能转换等领域。
逆变器则是将直流电转换为交流电的装置,常用于太阳能发电系统和电动汽车充电等方面。
整流器则是将交流电转换为直流电的装置,在电力系统中起到整流电能、滤波等作用,降低电网对谐波的敏感程度,提高电能的稳定性。
三、电能的控制电力电子技术在电能控制方面的应用体现在电力调节器上,如静止无功补偿装置(SVC)、静止有功发电机励磁调节器(AVR)等。
静止无功补偿装置是一种通过电力电子设备对电流和电压进行调节,从而改善电力系统的功率因数,提高电力系统能效的装置。
静止有功发电机励磁调节器是根据负荷的需求,对发电机的励磁电流进行控制,保持电力系统的频率和电压稳定。
此外,电力电子技术还广泛用于电网的保护和控制系统,如故障检测、自愈能力等方面,提供可靠的保护和控制手段。
总结起来,电力电子技术在现代电力系统中的应用十分广泛。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/dbfbd11cbfd5b9f3f90f76c66137ee06eff94eac.png)
电力电子技术在电力系统中的应用摘要一般认为,电力电子技术诞生于1957年,是以美国的通用电气公司研制出第一个晶闸管为标志的。
虽然是一门新兴的学科,但是现已成为电气工程及其自动化专业不可缺少的一门专业基础课,在培养该专业优秀人才中占有非常重要地位,为世界各国培养电力高新技术人才发挥了巨大的作用,备受世界各国重视。
通过对其广泛应用的分析,研究电力电子技术在未来的发展趋势和前景。
关键词:电力电子技术应用电力系统发展前景1. 电力电子技术在电力系统中的应用1.1 在发电环节中的应用各类专业技术人员研制了众多的发电设备用以满足生产和生活的各种需求,电力电子技术的应用使得这些设备的运行更加稳定,更加方便快捷、高效及节省人力物力等资源。
1.1.1 太阳能发电控制系统传统能源的变革正在世界各国内逐步推进,大力开发和利用太阳能在全球都是非常重要的发展步骤和环节。
电能的转换和存储及各类用户的使用都应用到了电力电子技术,逆变器的应用可以满足用户对于电压的要求和电能的使用,方便了因地制宜实事求是的使用各类的太能能发电设备,大到工业和农业生产,小到太阳能路灯使用,特殊地段比如山区的居宅用电等等,太阳能发电控制各方各面都应用到了电力电子技术。
1.1.2 大型发电机的静止励磁控制在电力系统的应用中静止励磁控制的优点是结构相对简单,可靠性比较高及造价相对较低等,因此被广泛应用在世界各大相关电力系统中。
因其具有快速性调节特性,在各类发电机组中都发挥着重要的作用,对机组的控制产生了良好的使用效果。
静止励磁控制是目前世界各国都存在的大型发电机的技术难题,需要进行更进一步的升级更新,用以更便捷高效的在电力系统中发挥更加重要的作用。
1.1.3 水力、风力发电机的变速恒频励磁对水力和风力发电来说,变速恒频励磁是最大的特点。
水力发电的有效功率取决于水流的流量和压力,当水流流量和压力发生变化时,会对发电机组设备产生相应的变化和不稳定。
风力发电是利用风车设备的转动从而产生电能并配套进行存储,风车的转动速度随风速的变化而发生变化,风速越大,风车转速越快,随之为电力系统就提供了更大的功率。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/fa0720b5d1d233d4b14e852458fb770bf78a3b80.png)
电力电子技术在电力系统中的应用摘要:现阶段在社会广泛发展先进电磁兼容技术的背景下,促使其对电力系统中的众多设备起到良好的保护作用。
但是对于我国而言,研究电磁兼容技术应用到电力系统的自动化设备的过程中,起步时间相对较晚,因此其使用存在着一定的问题。
当前为了能够在电力系统中形成更加良好的应用,则需要对其问题、技术应用、应用措施及其未来发展进行探讨,从而能够在未来的发展中形成更加完善的技术应用效果。
关键词:电力电子技术;电能质量;电流控制;微电网孤岛引言在智能电网建设中,电力技术起着举足轻重的作用,是实现智能电网的基础。
加强对智能电网建设中的现代电子能源技术的研究,将有助于推动智能电网的发展。
1研究背景我国电力行业已经取得了快速发展,各类相关技术都得到了很大程度的进步与提高,在这种情况下,要想进一步保证系统运行可靠性,需要转变原有的控制模式,通过引入自动化技术来提高设备及系统的控制水平,从而为电力系统运行提供良好的辅助支撑。
对电力工程而言,应始终以用户自身利益为出发点,为用户创造一个安全可靠的用电环境,这就需要做好设备及整个系统的日常维护。
在电力系统中通过引入自动化技术可以帮助设备更好运行,最大限度发挥出设备自身各项功能,尽可能减少电能浪费,这样还能为企业创造可观的经济效益。
在自动化技术加持下能使电力系统得到有效保护,相关技术人员依靠自动化系统自动收集并处理各类运行参数信息,进而通过正确且具有针对性的调整使系统始终处在稳定运行状态。
另外,在实现自动化控制以后,控制系统还能实现自诊断,及时发现系统中存在的问题隐患,从而防止故障发生,在发生故障后,也能迅速定位故障,并切断故障段落,恢复其他正常段落的供电,减小由停电造成的损失。
2我国智能电网的特点和技术要求根据今后的经济和社会对电力的需求,智能电网应该具有如下几个主要特征:(1)低排放、可大量利用可再生能源进行联网,降低了对环境的潜在影响。
(2)自愈,诊断,调整,故障隔离,恢复。
电力电子技术在电力系统中的实践运用
![电力电子技术在电力系统中的实践运用](https://img.taocdn.com/s3/m/ef8c15775b8102d276a20029bd64783e08127d7e.png)
电力电子技术在电力系统中的实践运用随着社会的发展和科技的进步,电力系统作为现代工业的支撑和基础,在不断地发展和完善。
电力电子技术作为电力系统中的关键技术之一,在电力系统的各个领域中发挥着重要的作用,为电力系统的稳定运行和高效运转提供了强大的支持。
本文将从电力电子技术在电力系统中的实践运用方面展开探讨,讨论电力电子技术在输变电、电力质量控制、电力调度和新能源接入等方面的具体应用。
一、电力电子技术在输变电中的应用输变电是电力系统中的重要环节,是实现电力输送和配送的关键环节。
在输变电过程中,电力电子技术发挥着重要的作用,主要体现在以下几个方面:1. 智能电网技术随着电力系统规模的不断扩大和发展,传统的输变电系统已经不能满足快速发展的需要。
智能电网技术借助电力电子技术,实现了传统电力系统向智能电网的转变,通过采用先进的电力电子设备和智能控制技术,实现了电力系统的远程监控和智能化运行,提高了电力系统的可靠性和稳定性,使得电力系统具有更强的适应性和灵活性。
2. 柔性直流输电技术柔性直流输电技术是一种基于电力电子技术的新型输电方式,通过使用高压直流输电技术和柔性交流电力电子设备,将可再生能源和大规模电力系统连接起来,实现了不同频率和电压的协调运行,提高了电力系统的输电效率和稳定性。
电力质量是电力系统中的重要参数,直接关系到电力供应的稳定性和可靠性,而电力电子技术在电力系统中的实践运用中也发挥了重要的作用。
1. 无功功率补偿电力系统中的无功功率是造成电力系统压力下降和电压波动等问题的重要原因,而电力电子技术可以通过使用无功功率补偿装置,实现对电力系统中无功功率的补偿和调节,从而提高了电力系统的稳定性和可靠性。
1. 非线性负载控制在电力系统中,大量的非线性负载设备会对电力系统的稳定运行和电力质量产生负面影响,而电力电子技术可以通过使用非线性负载控制技术,实现对非线性负载设备的控制和调节,从而降低了电力系统中的电力质量问题。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/0a4822ad112de2bd960590c69ec3d5bbfd0adaef.png)
电力电子技术在电力系统中的应用一、引言电力电子技术是指利用电子器件和电子控制技术来实现电力转换、控制和调节的一门学科。
它在电力系统中的应用广泛而重要。
本文将结合实际案例,探讨电力电子技术在电力系统中的应用。
二、直流输电技术1. 直流输电系统原理直流输电技术是电力电子技术在电力系统中的重要应用之一。
通过将交流电转换为直流电进行输送,可以有效解决长距离传输中所遇到的电压和电流损耗问题,提高输电效率。
例如,高压直流输电(HVDC)系统可以将电能从远距离的火电厂输送到需求地,降低了能源损耗,提高了输电容量。
2. 直流输电技术的优势直流输电技术相对于传统的交流输电技术具有以下优势:低损耗、大容量、节约输电线路、节约投资等。
而且,直流输电技术还具有可靠性高、对负荷变化响应快等特点。
三、电力调速技术1. 电力调速系统原理电力调速技术是指利用电力电子技术对发电机的输出功率进行调整,以满足电力系统的需求。
通过控制并联在发电机轴上的电动机的转速,可以调整发电机的输出功率,使其与负荷需求相匹配。
2. 电力调速系统的应用电力调速技术在调频调速水轮机、风力发电和光电发电等领域得到广泛应用。
例如,调频调速水轮机在水电站中的应用通过控制水轮机的转速,实现对水轮机的输出功率的调整,以满足电力系统负荷需求。
四、电力滤波技术1. 电力滤波技术原理电力滤波技术是指通过引入滤波器将电力系统中的电源谐波进行滤除,改善电力质量的一项技术。
电力谐波是指电力系统中包含在交流电中的频率为基波频率整数倍的电压或电流成分。
电力谐波会导致电力系统的电压失真,影响电力设备的正常工作。
2. 电力滤波技术的应用电力滤波技术在电力系统的主变电所、电动机驱动系统等领域得到广泛应用。
例如,电力滤波器可以通过滤除电力系统中的谐波,避免了负载对电力系统的干扰,保证了电力系统的正常运行。
五、智能电网技术1. 智能电网系统原理智能电网技术是指将信息通信技术与电力系统相结合,实现对电力系统的智能化、自动化管理的技术。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/1918bec77e192279168884868762caaedd33ba73.png)
电力电子技术在电力系统中的应用摘要:在社会经济快速发展的今天,电力电子技术是我国电力行业经济效益的重要影响因素。
为此,文章概述了电力电子技术的发展,分析了电力电子技术在电力系统中的作用,提出电力电子技术在电力系统中的应用存在的问题,并从电力系统节能、输电环节、发电环节等方面探讨电力电子技术在电力系统中的具体应用,希望可以为电力系统的可持续发展起到良好的推动作用。
关键词:电力电子技术;电力系统;电力电子器件1电力电子技术概述电力电子技术诞生于20世纪50年代,晶闸管的问世代表了电力电子技术的诞生。
电力电子技术是电力系统中一种重要的传动技术,以晶闸管技术为基础,可以开发得到可控硅整流装置。
可控硅整流装置的问世,表明电力电子技术取得了大的进步,标志着电能的变换和控制进人变流器控制时代。
由此可见,可控硅整流装置是电力电子技术的主要标志。
2电力电子技术及电力电子器件的发展历程(1)第一代电力电子器件。
自从开始应用电力电子技术,电力系统和电力电子器件取得了良好的发展,电力二极管和晶闸管是第一代电力电子器件的主要代表。
晶闸管具有耗能低与体积小的特点,可以取代原有电力系统中的老式汞弧整流器,推动电力电子技术的可持续发展;电力二极管可以提高电路的性能,有利于降低电路损耗、提高电源使用率。
(2)第二代电力电子器件。
随着电力电子技术的发展,电力电子器件得到了发展,如整流二极管的多样化。
20世纪70年代,第二代电力电子器件诞生,其主要特点为可以自动关断。
第二代电力电子器件显著提升了开关速度,被应用在开关频率较高的电路.(3)第三代电力电子器件。
20世纪90年代,产生了第三代电力电子器件,其体积更小、结构更紧凑。
此外,还出现了将几种电力器件结合的电子模块,推动了电力电子器件的发展。
在此之后,研究人员以集成模块为基础,将用于电力技术的多种电力器件结合,得到了集成电路。
集成电路的产生标志着我国电力电子技术已经进人智能化与集成化的阶段。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/f96724db88eb172ded630b1c59eef8c75fbf953b.png)
电力电子技术在电力系统中的应用在电力系统中的应用可以增加传输容量,提高电能质量,增强稳定性,可靠性,灵活性并减少损失。
本文首先介绍了电力、传输、配电和节能方面的专业电子技术应用。
然后,以风力发电为例,介绍应用前景,控制技术和存在的问题,挑战电力电子技术在可再生能源发电中的应用。
最后展望了电力电子技术在智能电网中的应用前景。
关键词:电力系统;直流输电;风力发电第1章电力电子技术在双馈风力发电机组中的应用利用电力技术的综合风力,自动控制等研究成果,已经发展成为电力系统研究的新领域。
随着大规模电子技术的发展,钴诱导风力发电系统已成为发电设备的主要选择之一。
风力发电系统不需要保持风力涡轮机的风速恒定,但是其它控制使得频率更强。
这种风力发电系统的主要优点是:(1)风力发电技术非常庞大。
由于风力涡轮机可变运行的速度,可以在大风速下保持最大功率点和最佳叶尖速度比,从而提高单元生成效率和优化风力涡轮机的运行条件。
(2)功率因数可以通过风力发电技术进行调整。
风力发电方法将低频电流的第三级减小到感应电动机转子侧,识别交流励磁并控制频率,幅度和电流励磁相位,从而找到电力输出的恒定频率和电压。
(3)风能技术使俯仰控制更容易。
当提升速度高时,可以通过调节俯仰角来限制最大输出功率。
当风速很高时,角落仍在那里。
1.1双馈风力发电机组变速恒频运行的基本原理:电动机的结构与绕线感应电动机的结构相似。
定子绕组也被对称的三对称固定频率电源所吸引。
不同之处在于转子回路由具有可调频率的三相可调电源修整。
通常,AC-AC或AC-DC-AC转换器用于提供当前的低频。
转子转速、由转子的外部激振力产生的磁场相对于转子的速度的旋转速度磁场的旋转速度与定子同步之间的关系为:在双动力风力发电机中,大规模运行,定子输出电压和恒定频率不仅可以调节电网中的功率因数,还可以增加系统的稳定性。
该控制方案不仅实现了频率变化的频率控制,从而降低了变频器的容量,实现了有功功率和无功功率的灵活控制,可以作为电网的无功补偿。
电力电子技术在电力系统中应用分析论文
![电力电子技术在电力系统中应用分析论文](https://img.taocdn.com/s3/m/124d4e1a492fb4daa58da0116c175f0e7cd11900.png)
电力电子技术在电力系统中应用分析论文电力电子技术是指利用电子电路控制和转换电能的技术。
它将普通的交流电变成直流电,控制电流、电压,提高能量的效率。
电力电子技术在电力系统中应用广泛,不仅可以提高系统的可靠性和经济性,而且可以实现对电能的精确控制和调节。
本文将从电力电子技术在电力系统中的应用分析入手,探讨电力电子技术对电力系统的贡献以及它未来在电力系统中的发展趋势。
一、电力电子技术在电力系统中的应用分析1. 电力电子变流器在交流输电中的应用电力电子变流器是将交流电转换为直流电或将直流电转换为交流电的关键设备,它被广泛应用于交流输电系统中。
交流电通过变流器采用PWM脉宽调制技术,可以得到高质量的直流电,这对于电力系统中的稳定运行具有很大意义。
在输电线路过长或有远距离跨越海底等特殊条件下,高压直流输电技术也是一种很好的选择。
电力电子变流器在高压直流输电系统中的应用已经得到了广泛的应用。
2. 电力电子器件在电力系统中的应用电力电子器件是电力电子技术中不可缺少的重要部分。
它们通常可以分为大功率晶闸管、大功率MOSFET、IGBT等。
这些器件的特点是高可靠性、大电流密度和快速切换速度等,使之可以在电力系统中发挥出重要的作用。
例如,在电力系统的配电控制中,通常使用全电子变压器、变频调速技术等来进行分配电压和控制电流。
此外,还应用在电力系统中的许多其他方面,例如电力质量控制、无功补偿和过电压保护等领域。
3. 电力电子半导体器件在新能源领域的应用电力电子技术在新能源领域的应用日益重要。
以风力发电为例,在风力发电机组中,通常使用多台并联的发电机对电力进行转化,控制电机转速和输出电压。
在这个过程中,电力电子器件发挥着重要的作用。
此外,电力电子器件也被广泛应用于太阳能发电、燃料电池汽车等新能源领域。
二、电力电子技术在电力系统中的贡献电力电子技术对电力系统的贡献可以从以下几个方面进行探讨。
1. 提高效率电力电子技术可以实现交、直流电的相互转换,提高了系统的能量转换效率。
电力电子技术在电力系统中的应用
![电力电子技术在电力系统中的应用](https://img.taocdn.com/s3/m/4ad88da6e53a580216fcfee8.png)
有源电压电流补偿装臵
•PWM开关型并联无功功率发生器(STATCOM) 功用:先进的(或高级的)静止型无功功率发生器ASVG。 也被称为静止同步补偿器STATCOM,又称为静止调相器。
装臵图
电感上电流
V V V V V V i S i S S i I j j jX L XL XL
补偿原理
装臵图
阻抗补偿装臵
设计公式:
Pe V2Icos Pmax sin
发电机功角特性导电
Pmax
V1V2 XG XT XL
极限最大功率
阻抗补偿装臵
•晶闸管控制串联电容器(TCSC)
功用:输电线路的电感越大,其传输功率极限值越小,在 输电线电路中串联介入电容器可以补偿线路电感,提高输 电线的输电能力改善系统稳定性。为了改变等效串联电容 的大小,可将一定容量的电容C与一个晶闸管控制的电感L 相并联,再共同串联在线路上。
结语
引入大功率半导体开关型电力变换器、补偿器、控制 器以后,原有电力系统的结构将发生重大变化。无论是发 电、输配电和电力应用都将获得更好的技术经济效益、更 高的安全可靠性、更灵活有效的控制特性和更优良的供电 质量。随着现代电力电子技术的不断发展和电力电子技术 在电力系统领域中的广泛应用,传统的电力系统将成为一 个其运行更加安全、可靠、经济、控制灵活的柔性电力系 统,传统的电力技术将发生革命性的变革。
T1导电
i(t)
2V 2 (cos cost ) L
V2 L I1 sin 2 2( )
T2导电
X 1
等效基波电抗
阻抗补偿装臵
带TPCI及TSC的电力系统
阻抗补偿装臵
•晶闸管投切电阻(TSR) 功用:防止故障时发电机功率不平衡所引起的矢步,应在 原动机功率调节作用尚未动作之前增加发电机的输出功率。 通过晶闸管接入一个制动(负载)电阻R。以增大发电机 的输出功率使发电机转子受到附加的制动力矩,防止电动 机失步。
电力电子技术在电力系统中的应用研究
![电力电子技术在电力系统中的应用研究](https://img.taocdn.com/s3/m/71c03d7a5627a5e9856a561252d380eb62942380.png)
电力电子技术在电力系统中的应用研究随着科技的不断进步,电力电子技术在电力系统中的应用越来越广泛。
电力电子技术是通过控制和调节电气能量传输和转换的技术,它在提高电力系统效率、稳定性和可靠性方面发挥着重要作用。
本文将讨论电力电子技术在电力系统中的应用研究,并且探讨其未来发展方向。
1. 可再生能源接入电网随着可再生能源如风能、太阳能等的不断发展和普及,电力系统需要更多的可再生能源接入。
电力电子技术提供了各种变流器和逆变器,可以将可再生能源转换为可控的交流电,以便接入电网。
电力电子技术还提供了各种功率电子器件,用于调节和控制可再生能源的输出功率,确保其安全可靠地接入电网。
2. 电力质量改善电力系统中存在各种电力质量问题,如电压波动、谐波、闪变等。
电力电子技术可以通过各种有源和无源滤波器来改善电力质量问题。
有源滤波器可以通过电力电子器件实时补偿电网中的谐波和无功功率,提高电力质量。
而无源滤波器则可以通过电容、电感等元件来抑制电网中的谐波和波动,改善电力质量。
3. 柔性输电电力电子技术可以实现柔性交流输电(FACTS)和柔性直流输电(HVDC)等技术,从而提高电力系统的稳定性和灵活性。
FACTS可以通过控制电力系统的电压和无功功率来提高系统的稳定性,降低输电损耗。
HVDC可以通过控制换流器来实现不同频率、不同相电网之间的电能传输,提高电力系统的互联互通。
4. 电能质量调节电力电子技术在直流输电和无功补偿方面也发挥着重要作用。
直流输电可以通过换流器实现长距离的高功率电能传输,减少输电损耗和电压降。
无功补偿装置可以通过控制有源或无源电力电子器件来实现高效率的无功功率调节,提高电力系统的稳定性和可靠性。
二、电力电子技术的未来发展方向1. 大功率、高效率未来电力电子技术的发展方向是实现更大功率、更高效率的电力电子器件和系统。
随着电力系统规模的不断扩大,需要更大功率的变流器、逆变器等设备来应对电力系统的需求。
为了提高能源利用效率,电力电子技术需要不断提高其转换效率和功率密度。
电力电子技术在电力系统中的实践运用
![电力电子技术在电力系统中的实践运用](https://img.taocdn.com/s3/m/14e0be0066ec102de2bd960590c69ec3d5bbdba3.png)
电力电子技术在电力系统中的实践运用电力电子技术是指应用电子技术来控制电力的变换和传输过程的技术。
该技术已经广泛应用于电力系统中,为电力系统的运行提供了很多支持和帮助。
下面就电力电子技术在电力系统中的实践运用进行探讨。
1. 交流电压变换电力电子技术应用最广泛的方面就是交流电压变换,直流转交流逆变器和交流电源均采用电力电子技术。
直流电能可以通过电力电子技术进行逆变成为交流电,或者通过电力电子技术进行变频之后再输出交流电。
这对于电网工作和电机控制的灵活性和高效性都有很大的提升作用。
2. 电力变换器电力变换器在电力系统中拥有着很重要的地位,是实现电能的变换和控制的核心部件。
电力电子技术是实现电力变换器的重要技术手段之一。
可以通过电力电子技术实现快速开关电路,从而控制电压、电流大小和方向。
电力调节器主要用于调节电网电压、频率和功率因数等方面,从而实现对电力负荷的控制和管理。
电力电子技术的应用可以实现电力调节器的多级电平输出、高频交叉控制等,提高了电力调节器的效率和精度。
4. 智能配电网电力电子技术的应用可以提高配电网的可靠性和智能化水平。
智能配电网可以将电力电子设备与传感器、控制器等设备相结合,进行集中控制,实现对配电网的监控和管理。
通过智能配电网技术,可以实现电力负荷的合理调度和电力负荷的预测,进一步提高配电网的安全性和经济性。
5. 变频调速器电力电子技术还广泛应用于电机变频调速器中。
变频调速器能够实现对电机的转速、转矩和功率的精确控制,从而提高电机的效率和可靠性。
电力电子技术应用于变频调速器可以实现高速换向、高频调制等功能,使得变频调速器的性能更加优越。
总之,电力电子技术在电力系统中的应用非常广泛,首先是实现了电压变换、电力调节器等功效,同时在智能化配电网和变频调速技术等方面也有着重要的推动作用。
这些电力电子技术的应用提高了电力系统的可靠性、安全性和经济性,有利于电力系统的健康可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在水力发电系统中,如果水龙头的变化幅度过大,超越了发电机的最大限值,那么发电机的转速就会发生改变,从而影响到了水力发电机有效功率的大小。所以要求工作人员在水力发电系统的运行过程中,仔细的观察水龙头的变化幅度,将其控制在一定的范围之内,避免其变化幅度过大,超越发电机的最大限制,将不利的因素控制在最低。而风力发电机的有效功率是由风速决定的,风能发电机的有效功率会受到风力大小的影响,风速的大小也会直接影响风能发电机的发电效率。受到上文因素的影响,必须对发电机机组的运行速度进行调节,才能有效地提高水力或风力发电机的发电效率。因此将变速恒频励磁控制系统应用在水力、风力发电机中可以对发电机机组的运行速度进行合理的调节,及那好发电机机组的损耗,提高水力或者风力发电机的发电效率。
三.电力电子技术在电力系统输电环节的情况
到了21世纪,我国的经济水平和科学技术都有了明显的提高,各种先进的技术被不断的发明出来,各种新型设备和材料不断的出现,在这种背景下,电力系统进入了快速发展时期。所以发电企业将电力电子技术应用在输电环节就成为了时代背景下的要求,只有这样才可以有效地提高电网运行的效率。同时要求相关研究人员能够对这一技术进行适当的科学改造。直流电和轻型直流输电是当前电力系统输电环节中常见的输电方式,因为直流输电与交流输电相比更加的稳定和便于控制,所以被更加广泛的应用在输电环节。在直流水电技术的不断发展下,柔性交流输电也不断的发展,它将电力电子技术、通信技术等多种技术融合进来,可以有效地降低输电成本,保证其安全运行电力系统包含多个环节,其中发电环节是相对复杂的环节,这是因为发电装置与多个发电组和电气设备被相连接,发电组和电气设备的结构复杂,其操作困难,所以它要求电力发电环节的工作人员具备专业的电力技术,需要电力发电环节的工作人员具有很高的技术和专业的电力电子技术知识。只有电力发电环节的工作人员满足上述要求,他才能将电力发电环节的相关工作有效的完成,例如电力发电运行、管理以及维护的工作。所以在电力系统的发电环节应用电力电子技术是非常的必要的,他能保证电力发电系统的平稳运行。
四.电力电子技术在电力系统配电环节的情况
配电网的运行过程很难保持稳定,会受到外界因素的影响,最常见的包括:谐波、频率、电压等,在这些因素的影响之下,配电网的电压会发生变化,造成大量的电能损耗,这对于配电网运行效率的提高是非常的不利的。为了解决上述问题,必须将电力电子技术应用在配电环节当中,它可以有效的满足电压、谐波和频率的要求,从而提高电网的运行效率,而且这一技术的成本较低,操作简单,有着良好的应用前景。
关键词:电力电子技术电力系统;输电环节;配电环节;稳定性;安全性
一.电力电子技术简介
由于电力电子技术的功能不同,所以应用的方式也有所不同,主要有两种应用方式,一种是变流技术的应用,还有一种是电力电子期间制造的应用。这两种应用方式具有的特点是不同的,因此工作人员必须对这两种应用方式的具体应用条件进行深入的研究,找出最佳的应用方式。电力电子技术是一种先进的控制电力系统技术,它的应用前景十分的良好,它对于满足人们的用电需求以及满足发电企业的盈利需求有着积极的作用,所以在?力系统应用电力电子技术可以实现消费者与生产企业的双赢。但必须注意的是,电力系统的运营企业必须对国家电网的相关要求进行关注,及时了解政策的变化,紧跟时代的潮流,抓住机遇积极的迎接挑战。此外,电力生产企业为了更好的应用电力电子技术,需要对自己企业的基本情况进行了解,在符合自身企业特点的基础上,将电力电机技术融合进来。
电力电子技术在电力系统中的应用
摘 要:电力电子技术的综合性非常的强,它涉及到多个层面,多个学科的专业知识,要想更好的应用电力电子技术,要求其工作人员必须具有计算机知识、信息知识以及控制知识。只有这样才能够促进电力系统的发电效率提高。电力电子技术的相关研究人员在各种新型设备和材料不断出现、电力系统快速发展的背景下,必须对其进行研究,从而促进电力系统发电效率的提高,满足人们的用电需求。笔者从四个方面对电力电子技术的应用情况进行介绍。
五.结论
综上所述,在科学技术的不断发展下,各种新技术和新材料被开发出来,这些新技术和新材料的出现对于电力电子技术的进步有着积极的作用。笔者认为,电力系统为了更好的应用电力电子技术就应该对电力电子技术的基本情况、应用方式、应用范围进行了解,同时,要求相关的工作人员能够在满足电力系统各项要求的前提下,将电力电子技术与电力系统的特点和运行方式进行有效的融合,还要求电力电子技术的研究人员对应用过程中可能出现的问题进行设想,并预先找出应对问题的方式,从而在问题出现的第一时间就对问题进行有效的解决,避免损失扩大。电力企业也应该抓住机遇,积极的迎接挑战,学习其他企业的应用方式并结合自己公司的实际情况对应用方式进行调整。
作者简介:
王斌,出生年月:1995年7月25 性别:男 民族:汉族 籍贯:湖南省武冈市 职务:学生 学历:本科。
2.励磁系统发电机应用
励磁系统的结构简单,操作更为的容易,再加上这一方式的控制可靠性强,安装的成本低,所以成为目前最常见的发电控制方式之一。通过对励磁机进行改造,将发电机的惯性进行祛除的控制方式属于静止励磁控制方式,这一方式对于保障电力系统安全顺利的运行有着积极的作用。适当的科学改造,并与电力系统的运行规律以及运行特点进行融合,对于提高电气设备的运行质量和速度都有着积极的作用。励磁系统应用电力电子技术的优势非常的明显,因为,这一系统的结构简单、操作容易,所以工作人员上手更加的容易,出错的几率也就比较的小。如果对励磁系统进行适当的科学改造,让这一系统与电力系统的融合更加的紧密,那么这一方式的应用前景也会更加的广阔。再加上这一方式的控制可靠性强,安装成本低,所以企业也会更加优先选择此种方式进行工作,它对于降低发电成本,提高发电收益的作用非常的明显。
参考文献:
[1]武明月.电力电子技术在电力系统中的应用及发展[J/OL].电子技术与软件工程,2018(05):
[2]张瑞华.电力电子技术在电力系统中的应用[J].时代教育,2017(01):206.
[3]魏志芬,郝梦薇.探究电力系统中电力电子变流技术的应用分析[J].电子世界,2014(05):60-61.