MATLAB矩阵运算与应用实例
【精选】数学实验一矩阵运算与Matlab命令24
运行
17
矩阵的运算(矩阵的加减、数乘、乘积)
C=A1+B1 D=A1-B1 syms c, cA=c*A1 A2=A1(:,1:3), B1 G=A2*B1
18
矩阵的运算(矩阵的加减、数乘、乘积)
求解方程组Ax=b x=A\b 若A为可逆方阵, 输出原方程的解x; 若A为nxm(n>m)阵, 且A’A可逆,输出
原方程的最小二乘解x.
21
矩阵的运算(求解线性方程组)
求矩阵方程:
设A、B满足关系式:AB=2B+A,求B。 其中A=[3 0 1; 1 1 0; 0 1 4]。
取出A的1、3行和1、3列的交叉处元素 构成新矩阵A1
程序
A=[1 0 1 1 2;0 1 -1 2 3;
3 0 5 1 0;2 3 1 2 1],
vr=[1, 3];vc=[1, 3];
A1=A(vr, vc)
观察结果
26
分块矩阵(矩阵的标识)
将A分为四块,并把它们赋值到矩阵B 中,观察运行后的结果。
3
2
2
35 20 60 45
, B 10
15
50
40
20 12 45 20
将 表 格 写 成 矩 阵 形 式
6
计算
输入下面Matlab指令 A=[4 2 3;1 3 2;1 3 3;3 2 2], B=[35 20 60 45;10 15 50 40;20
3 0 5 1 0;2 3 1 2 1]
第三章_matlab矩阵运算
主讲:陈孝敬 E-mail:chenxj9@
第3章
数学运算
主要内容:
①矩阵运算; ②矩阵元素运算;
3.1 矩阵运算
3.1.1 矩阵分析
1.向量范式定义:
x x x
1
n
k 1
xk
2 k
2
k 1 n
x
n
1/ 2
k 1
xk
向量的3种常用范数及其计算函数 在MATLAB中,求向量范数的函数为: (1) norm(V)或norm(V,2):计算向量V的2—范数。 (2) norm(V,1):计算向量V的1—范数。 (3) norm(V,inf):计算向量V的∞—范数。
3.1.2 矩阵分解
矩阵分解:把矩阵分解成比较简单或对它性质比较熟悉的若干 矩阵的乘积的形式;
1.Cholesky分解: Cholesky分解是把对称正定矩阵表示成上三角矩阵的转 置与其本身的乘积,即:A=RTR,在Matlab中用函数chol 来计算Cholesky分解 例3-13 求矩阵A=pascal(4)的Cholesky分解, A=pascal(4) R=chol(A) R’*R
例3-18.求解方程组
x1 x2 3 x3 x4 1 3 x1 x2 3 x3 4 x4 4 x 5x 9 x 8x 0 2 3 4 1
解 先用Matlab函数null求出对应的齐次线性方程组的基础解 系,再利用其系数矩阵的上、下三角阵求出方程组的一个特解, 这样即可得到该方程组的通解,程序如下: >> >> >> >> >> >> A=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8]; b=[1 4 0] ′; format rat C=null(A , ′r′); %求基础解系 [L,U]=lu(A); %A=LU,L为上三角阵,U为下三角阵 X0= U\(L\b) %用LU求出一个齐次方程的特解
实训三 MATLAB 矩阵建立与运算
物理与工程技术学院实验报告班级: 17物理分组: 姓名:陈俊聪学号: 04同组人:日期:教师评分:实验名称:实训三矩阵建立与运算一、目的1.了解MATLAB基本运算对象,即矩阵:2.通过输入矩阵中每个元素的值来建立一个矩阵;3.矢量法创建矩阵,学会使用冒号和数字产生矢量:4.函数法创建矩阵,利用函数可以快速产生- -些特殊有用的矩阵;5.掌握矩阵的基本运算:矩阵与标量的运算,矩阵与矩阵的运算,提取子块,矩阵的展开,矩阵的线性变换。
二、仪器电脑显示器、电脑主机、键盘、鼠标、MATLAB 软件三、内容1.通过输入矩阵中每个元素的值来创立-一个矩阵,只需以左方括号,以逗号或空格为间隔输入元素值,行与行之间用分号或单击Enter键隔开,最后以右方括号结尾即可。
当矩阵中元素个数比较少是,这种方法非常适用。
另外,用单引号界定的字符或字符串可以创字符例【1-6】创建3X3数值矩阵A, B和字符矩阵C。
例【1-7】建立一个10以内的奇数矩阵。
例【1-8】建立空矩阵A、单位矩阵B、常数矩阵C、均匀分布随机矩阵D、正正态分布的随机矩阵E、零矩阵F。
例【1-9】已知矩阵A=[1 2 3;4 5 6],标量b=3,计算A+b、A*b、A/b和A.^b。
例【1-10】已知矩阵A=[1 2;3 4],矩阵B=[5 6;7 8],求A*B、A.*B、A\B、A/B和A./B的运算结果。
例【1-11】输入一个4×3的矩阵,选出前3行构成一个矩阵;选出前两列构成一个矩阵。
例【1-12】把矩阵A=[1 3 5;7 9 11]和矩阵B=[2 4 6]合并成一个矩阵,再转置后展开。
例【1-13】建立-一个3×3的魔方矩阵,提取其对角元素和下三角矩阵,并上下翻转。
例【1-14】例[1-14] 将矩阵转化为稀疏矩阵B,并察看;再将稀疏矩阵B转化为完全矩阵C。
例【1-15】已知矩阵A=[1,3,5,7,9],找出大于4的元素的位置。
矩阵的运算应用实例
25 .0 40 .0 55 .0
25 .0 25 .0 47 .5
矩阵运算应用示例三
问题描述:
设我们要为一次聚会准备餐饮,需要10个大型
三明治(巨无霸)、6夸脱(每夸脱约1.14 升——译注)果汁饮料、3夸脱土豆沙拉及2盘 开胃菜。以下数据给出3家不同供货商提供这 些商品的单价:
问题分析一:
问题所要求的是对于题目中所给出的四种矩阵,
理解它们所代表的含义,并根据所提出的三个 问题,将对应的矩阵组合起来,以乘积形式表 述出来。由于各个矩阵代表的含义不同,所以 局阵乘积所代表的含义也尽不相同。
问题分析二:
对于第一个问题是要求出为建造每种类型住宅
需要各种物品的数量,由题意对于C矩阵的定 义我们得知矩阵C正是题目所要求的答案。 对于第二个问题是要求出在每个国家制造每种物
(b)哪个矩阵乘积给出了在每个国家制造 每种物品需要多少费用? (c)哪个矩阵乘积给出了在每个国家建造 每种类型住宅需要多少费用?
预备知识:
两个矩阵乘积的定义: 矩阵A与B的乘积C的第i行第j列的元素等于第
一个矩阵A的第i行与第二个矩阵B的第j列的对 应元素乘积的和。当然,在矩真乘积定义中, 我要求第二个矩阵的行数与第一个矩阵的列数 相等。
A
机时
I/O 执行 系统
计时收费
B I/0 执行 系统
方式Ⅰ
方式Ⅱ
作业A 作业B
20 10 作业C 5 4 25 8 10 10 5
2 3 6 5 3 4
C 每种类型的作业数量 D 方式Ⅰ 方式Ⅱ 机时比
供货商A 供货商B 供货商C
巨无霸 $ 4.00 $ 6.00 $ 1.00 $ 0.85 $ 5.00 $ 5.00 $ 0.85 $ 1.00 $ 7.00
MATLAB中的矩阵运算与计算技巧分享
MATLAB中的矩阵运算与计算技巧分享概述:MATLAB是一款强大的数值计算软件,广泛应用于科学研究、工程设计等领域。
在MATLAB中,矩阵运算是非常重要的一部分内容。
本文旨在分享一些MATLAB中的矩阵运算和计算技巧,帮助读者更好地应用MATLAB进行数值计算和数据处理。
一、基本的矩阵运算1. 矩阵的创建与存储在MATLAB中,可以使用不同的方法创建矩阵,如直接赋值、生成全零矩阵、单位矩阵等。
创建矩阵后,可以使用变量名进行存储,方便后续的计算和操作。
2. 矩阵的运算MATLAB提供了丰富的矩阵运算函数,如加法、减法、乘法、除法等。
例如,使用"+"进行两个矩阵的相加,使用"*"进行矩阵相乘,使用"\ "进行矩阵的求解等等。
3. 矩阵的转置与共轭转置通过单引号操作符可以实现矩阵的转置操作,即将矩阵的行和列进行交换。
对于复数矩阵,可以使用"'"进行共轭转置。
二、常用的矩阵运算函数1. 矩阵求逆与伪逆MATLAB提供了inv函数来求矩阵的逆,pinv函数来求矩阵的伪逆。
对于非奇异矩阵,可以使用inv函数实现精确的逆求解;对于奇异矩阵,则可以使用pinv函数求得伪逆。
2. 矩阵的特征值与特征向量可以使用eig函数来求解矩阵的特征值和特征向量。
特征值表示矩阵的特征属性,特征向量则表示对应特征值的方向信息。
3. 矩阵的奇异值分解奇异值分解(Singular Value Decomposition,简称SVD)是一种重要的矩阵分解方法。
在MATLAB中,可以使用svd函数进行奇异值分解。
通过SVD,我们可以将矩阵分解为三个矩阵的乘积,便于后续的处理和分析。
三、高效计算的技巧与技巧1. 矩阵的切片与索引通过切片和索引操作,可以选取矩阵的部分元素进行操作,或者获取特定的行或列。
这在大规模数据处理和计算中非常有用。
2. 向量化计算向量化计算是一种更高效的计算方式,在MATLAB中,可以通过矩阵运算和函数的向量化实现。
MATLAB矩阵及运算
点乘——元素对元素乘法 叉乘——矩阵对矩阵乘法
对比举例
矩阵的右除、左除
MATLAB的基本处理单元是复数矩阵(标量是一 个1*1的矩阵)。而在《线性代数》理论中没有除 法运算。所以定义了除法为乘法的逆运算。
注意:因为矩阵乘法不满足交换律,即一般 A*B≠B*A,所以除法要考虑“右除”、“左 除”。
2.1.2 变量
变量的命名规则: 1)变量名、函数名对字母的大、小写敏感。 2)变量名由字母、数字和下划线构成。第一个
字母必须是英文字母。 3)有字符个数限制(版本5.0 :最多31个字符)
2.1.2 变量
MATLAB系统默认变量
重点
(注意大小写!)
i或j:
虚单元 正确:5+7j 错误:5+j7
2.1表达式
表达式 (即语句):将变量、数值、函数 用操作符连接起来,就构成了表达式 。
例如:a=(10j+sqrt(10))/2; %注释 ☆行末的“;”用于抑制结果在屏幕上显示
例如: sin(a),sin(b) ,a+b ☆同在一行的表达式,必须用“,”分开
2.2 矩阵的产生与操作
矩阵的产生:
A./Baa31//b b1 3
a2/b2 a4/b4
B.\A
A.\Bbb31//aa13 bb42//aa42B./A
分析:
K/N=K*inv(N)
因为N不是方阵,没有逆 阵,所以报告错误。
K\N=inv(K)*N
因为K的逆阵尺寸2×2, N的尺寸2×3,所以结 果矩阵2×3。
矩阵元素的指数运算
这种战略取得了成功:使人们不在编程细节上化 精力,把注意力集中到科学计算的方法和建模合理性等 大问题上。
matlab矩阵与线性变换与计算
05
实例演示
矩阵的基本操作实例
矩阵的创建
使用方括号[],例如A = [1 2; 3 4]。
矩阵的加法
使用加号+,例如B = [5 6; 7 8],则A + B = [6 8; 10 12]。
矩阵的数乘
使用标量乘法,例如2 * A = [2 4; 6 8]。
矩阵的元素运算
使用点运算符.,例如A.^2 = [1 4; 9 16]。
矩阵计算实例
行列式计算
使用det函数,例如det(A) = -2。
行最简形式
使用rref函数,例如rref(A) = [1 0; 0 1]。
矩阵的逆
使用inv函数,例如inv(A) = [-2 -3; 1.5 0.5]。
矩阵的转置
使用'运算符,例如A' = [1 3; 2 4]。
THANKS
感谢观看
Matlab矩阵与线性变换与计 算
• Matlab矩阵基础 • 线性变换 • 矩阵计算 • Matlab中的矩阵与线性变换操作 • 实例演示
01
Matlab矩阵基础
矩阵的定义与表示
矩阵是一个由数字组 成的矩形阵列,行和 列的数量可以不同。
还可以使用分号来分 隔行,以创建多行矩 阵。
在Matlab中,可以 使用方括号[]来创建 矩阵,并使用逗号分 隔行内的元素。
矩阵的基本操作
加法
将两个矩阵的对应元素相加。
减法
将一个矩阵的对应元素减去另 一个矩阵的对应元素。
数乘
将一个标量与矩阵中的每个元 素相乘。
转置
将矩阵的行和列互换。
特殊类型的矩阵
对角矩阵
除了主对角线上的元素外,其他元素都为零 的矩阵。
如何使用Matlab进行矩阵运算
如何使用Matlab进行矩阵运算随着科学技术的不断发展,矩阵运算在各个领域的应用日益广泛。
Matlab作为一款功能强大的数学软件,其矩阵运算能力非常强大。
本文将介绍如何使用Matlab进行矩阵运算,希望能对读者在科学研究和工程实践中的矩阵计算有所帮助。
一、Matlab的基本矩阵运算1. 创建矩阵在Matlab中,可以使用一对方括号`[]`来创建矩阵。
例如,要创建一个3行3列的矩阵A,可以使用如下命令:A = [1 2 3; 4 5 6; 7 8 9]。
这样就创建了一个元素分别为1到9的3行3列矩阵。
2. 矩阵加法和减法Matlab中可以使用加号和减号来进行矩阵的加法和减法运算。
例如,要计算矩阵A和B的和,可以使用命令C = A + B;要计算矩阵A和B的差,可以使用命令D = A - B。
3. 矩阵乘法Matlab中使用乘号`*`来进行矩阵的乘法运算。
例如,要计算矩阵A和B的乘积,可以使用命令C = A * B。
需要注意的是,矩阵乘法是满足结合律的,即A *(B * C) = (A * B) * C。
4. 矩阵转置在Matlab中,可以使用单引号`'`来对矩阵进行转置操作。
例如,对矩阵A进行转置,可以使用命令B = A'。
需要注意的是,转置操作只能应用于二维矩阵。
5. 求逆矩阵在Matlab中,可以使用inv函数来求解矩阵的逆矩阵。
例如,要求矩阵A的逆矩阵,可以使用命令B = inv(A)。
需要注意的是,只有方阵才有逆矩阵。
6. 矩阵的特征值和特征向量Matlab中可以使用eig函数来求解矩阵的特征值和特征向量。
例如,要求矩阵A的特征值和特征向量,可以使用命令[V,D] = eig(A),其中V为特征向量矩阵,D 为特征值对角矩阵。
二、Matlab的高级矩阵运算1. 矩阵的点乘和叉乘Matlab中使用.*和.^来进行矩阵的点乘和叉乘运算。
例如,要计算矩阵A和B 的点乘,可以使用命令C = A .* B;要计算矩阵A和B的叉乘,可以使用命令D =A .^ B。
单位矩阵matlab
单位矩阵在Matlab中的应用单位矩阵,也被称为恒等矩阵或单位阵,是一种特殊的方阵。
它在矩阵运算和线性代数中具有重要的作用。
在Matlab编程语言中,单位矩阵也具有广泛的应用。
本文将详细介绍单位矩阵在Matlab中的定义、生成、属性以及常见的应用场景。
1. 单位矩阵简介单位矩阵是一个n×n的方阵,其中主对角线上的元素全都为1,其他位置的元素全都为0。
例如3阶单位矩阵可以表示为:I = [1, 0, 0;0, 1, 0;0, 0, 1];单位矩阵在矩阵运算中是一个特殊的元素,它在许多情况下扮演者“乘法单位元”的角色。
在线性代数中,单位矩阵的性质极为重要,它是唯一一个使得矩阵与其相乘结果保持不变的矩阵。
2. 单位矩阵的生成与定义在Matlab中,单位矩阵可以通过多种方法生成。
下面列举了几种常用的生成方式:2.1 直接生成单位矩阵可以使用Matlab的内置函数eye(n)来直接生成一个n×n的单位矩阵,其中n为矩阵的维度。
例如,要生成一个3×3的单位矩阵,可以使用如下代码:I = eye(3);生成的结果I将是一个3×3的单位矩阵。
2.2 通过单位矩阵性质生成由于单位矩阵在矩阵乘法运算中扮演着乘法单位元的角色,因此可以利用这个性质生成单位矩阵。
例如,可以通过如下代码生成一个3×3的单位矩阵:A = magic(3); % 生成一个3×3的魔方矩阵I = A * inv(A);这种方法利用了魔方矩阵在与其逆矩阵相乘时得到单位矩阵的性质。
2.3 通过矩阵赋值生成可以直接通过矩阵赋值的方式生成单位矩阵。
例如,要生成一个4×4的单位矩阵,可以使用如下代码:I = zeros(4); % 先生成一个全部元素为0的4×4矩阵I(1:4+1:end) = 1; % 通过索引赋值,将主对角线上的元素设为1这种方法通过先生成全零矩阵,再逐个将主对角线上的元素设为1实现了单位矩阵的生成。
matlab矩阵运算实验报告
matlab矩阵运算实验报告Matlab矩阵运算实验报告一、引言矩阵运算是数学和工程领域中的重要概念之一,它在各个领域中都有广泛的应用。
Matlab作为一种强大的数学软件工具,提供了丰富的矩阵运算功能,可以帮助我们进行高效的数值计算和数据处理。
本实验报告将介绍Matlab中的矩阵运算功能,并通过实例展示其在实际问题中的应用。
二、矩阵运算的基本概念矩阵是由若干个数按照行和列排列形成的一个矩形阵列,它是线性代数中的基本工具。
在Matlab中,矩阵可以通过直接输入数值或使用内置函数生成。
矩阵运算包括加法、减法、乘法、转置等操作,这些操作可以对矩阵的每个元素进行运算,也可以对整个矩阵进行运算。
三、矩阵运算的实例分析1. 矩阵的创建与赋值在Matlab中,可以使用以下命令创建一个矩阵,并对其进行赋值操作:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];这样就创建了一个3行3列的矩阵A,并对其进行了赋值。
可以通过输入A来查看矩阵A的内容。
2. 矩阵的加法与减法矩阵的加法和减法是按照对应元素进行运算的。
例如,对于两个3行3列的矩阵A和B,可以使用以下命令进行加法运算:C = A + B;同样地,可以使用以下命令进行减法运算:D = A - B;这样就得到了矩阵C和D。
3. 矩阵的乘法矩阵的乘法是按照行乘以列的方式进行的。
例如,对于一个3行2列的矩阵A和一个2行4列的矩阵B,可以使用以下命令进行乘法运算:C = A * B;这样就得到了一个3行4列的矩阵C。
4. 矩阵的转置矩阵的转置是将矩阵的行和列进行交换的操作。
例如,对于一个3行2列的矩阵A,可以使用以下命令进行转置操作:B = A';这样就得到了一个2行3列的矩阵B。
四、矩阵运算的应用实例矩阵运算在实际问题中有着广泛的应用。
以下是一个简单的实例,通过矩阵运算来解决线性方程组的问题。
假设有一个线性方程组:2x + y = 4x + 3y = 6可以将其表示为矩阵形式:A = [2, 1; 1, 3];B = [4; 6];通过矩阵运算可以求解出未知数x和y的值:X = A \ B;这样就得到了未知数x和y的值。
MATLAB中的矩阵运算
哈 工 程 大 学 数 值 计 算 软 件
●randn生成正态分布的随机阵 生成正态分布的随机阵 randn(n)生成 ×n的正态随机阵; 生成n× 的正态随机阵 的正态随机阵; 生成 randn(m,n),randn([m,n])生成 ×n的正态随机阵; 生成m× 的正态随机阵 的正态随机阵; 生成 randn(size(A))生成与矩阵 大小相同的正态随机阵。 生成与矩阵A大小相同的正态随机阵 生成与矩阵 大小相同的正态随机阵。 (5)其它基本运算 左右翻转; 上下翻转; ●fliplr(A) 将A左右翻转;●flipud(A) 将A上下翻转; 左右翻转 上下翻转 旋转90度 返回A ● rot90(A) 将 A旋转 度 。 ● tril(A)返回 A 的下三角部分 ; 旋转 返回 的下三角部分; tril(A,k)返回A第K 条对角线以下部分,K=0为主对角线, 返回A 条对角线以下部分,K=0为主对角线, 返回 K>0为主对角线以上,K<0为主对角线以下。 K>0为主对角线以上,K<0为主对角线以下。 返回A ●triu(A), triu(A,K)返回A的上三角部分,其它同上。 返回 的上三角部分,其它同上。 返回以向量v为主对角线的矩阵 ●diag(v)返回以向量 为主对角线的矩阵; 返回以向量 为主对角线的矩阵; diag(v,k) 若 v 是 n 个 元 素 的 向 量 , 则 它 返 回 一 个 大 小 为 n+abs(k)方阵,向量 位于第 条对角线上。K=0代表主对角线 方阵, 位于第k条对角线上 方阵 向量v位于第 条对角线上。 代表主对角线 为主对角线以上, 为主对角线以下。 , k>0为主对角线以上,k<0为主对角线以下。 diag(A)以向量 为主对角线以上 为主对角线以下 以向量 形式, 返回A 的主对角线元素; 对于矩阵A 形式 , 返回 A 的主对角线元素 ; diag(A,k)对于矩阵 A , 返回 对于矩阵 由第k条对角线构成的列向量 条对角线构成的列向量。 由第 条对角线构成的列向量。
MATLAB的矩阵运算
MATLAB的矩阵运算阅读⽬录 MATLAB是基于矩阵和数组计算的,可以直接对矩阵和数组进⾏整体的操作,MATLAB有三种矩阵运算类型:矩阵的代数运算、矩阵的关系运算和矩阵的逻辑运算。
其中,矩阵的代数运算应⽤最⼴泛。
本⽂主要讲述矩阵的基本操作,涉及矩阵的创建、矩阵的代数运算、关系运算和逻辑运算等基本知识。
矩阵的创建直接输⼊法创建矩阵% 1. 直接输⼊法创建矩阵>> A = [1,2,3; 4,5,6; 7,8,9]A =1 2 34 5 67 8 9函数法创建矩阵简单矩阵% 2. 函数法创建矩阵>> zeros(3)% ⽣成3x3的全零矩阵ans =0 0 00 0 00 0 0>> zeros(3,2)% ⽣成3x2的全零矩阵ans =0 00 00 0>> eye(3)% ⽣成单位矩阵ans =1 0 00 1 00 0 1>> ones(3)% ⽣成全1矩阵ans =1 1 11 1 11 1 1>> magic(3)% ⽣成3x3的魔⽅阵ans =8 1 63 5 74 9 2>> diag(1:3)% 对⾓矩阵ans =1 0 00 2 00 0 3>> diag(1:5,1)% 对⾓线向上移1位矩阵ans =0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 >> diag(1:5,-1)% 对⾓线向下移1位矩阵ans =0 0 0 0 0 01 0 0 0 0 0 02 0 0 0 0 0 03 0 0 0 0 0 04 0 0 0 0 0 05 0 >> triu(ones(3,3))% 上三⾓矩阵ans =1 1 10 1 10 0 1>> tril(ones(3,3))% 下三⾓矩阵ans =1 0 01 1 01 1 1随机矩阵>> rand(3)% ⽣成随机矩阵ans =0.2898 0.8637 0.05620.4357 0.8921 0.14580.3234 0.0167 0.7216>> rand('state',0); % 设定种⼦数,产⽣特定种⼦数下相同的随机数>> rand(3)ans =0.9501 0.4860 0.45650.2311 0.8913 0.01850.6068 0.7621 0.8214>> a = 1; b = 100;>> x = a + (b-a)* rand(3)% 产⽣区间(1,100)内的随机数x =38.2127 20.7575 91.113389.9610 31.0064 53.004043.4711 54.2917 31.3762>> a = 1; b = 100;>> a + fix(b * rand(1,50))% 产⽣50个[1,100]内的随机正整数ans =列 1 ⾄ 154 72 77 6 63 27 32 53 41 90 58 57 40 70 57列 16 ⾄ 3035 60 28 5 84 11 73 45 100 57 47 42 22 24 32列 31 ⾄ 4587 26 97 31 38 35 71 62 76 80 22 90 90 94 28列 46 ⾄ 5048 26 37 53 39相似函数扩展>> randn(3)% ⽣成均值为0,⽅差为1的正太分布随机数矩阵ans =-0.4326 0.2877 1.1892-1.6656 -1.1465 -0.03760.1253 1.1909 0.3273>> randperm(10)% ⽣成1-10之间随机分布10个正整数ans =4 9 10 25 8 1 3 7 6% 多项式x^3 - 7x + 6 的伴随矩阵>> u = [1,0,-7,6];>> A = compan(u)% ⽣成伴随矩阵A =0 7 -61 0 00 1 0>> eig(A) % 此处eig()函数⽤于求特征值% 利⽤伴随矩阵求得⽅程的根ans =-3.00002.00001.0000矩阵的运算矩阵的代数运算矩阵的算术运算>> A = [1,1;2,2];>> B = [1,1;2,2];>> AA =1 12 2>> BB =1 12 2>> A + Bans =2 24 4>> B-Aans =0 00 0>> A * Bans =3 36 6>> A^2ans =3 36 6>> A^3ans =9 918 18矩阵的运算函数>> C = magic(3)C =8 1 63 5 74 9 2>> size(C)ans =3 3>> length(C)ans =3>> sum(C)ans =15 15 15>> max(C)ans =8 9 7>> C'ans =8 3 41 5 96 7 2>> inv(C)ans =0.1472 -0.1444 0.0639 -0.0611 0.0222 0.1056 -0.0194 0.1889 -0.1028矩阵的元素群运算元素群运算,是指矩阵中的所有元素按单个元素进⾏运算,也即是对应位置进⾏运算。
matlab实验三
3、方阵的行列式 求方阵的行列式的函数为det,其调用格式为det(A)
4、矩阵的特征值分解
MATLAB中,求方阵的特征值和特征向量的函数为eig,调 用格式如下: e=eig(A) 求方阵A的特征值组成的列向量e。
A) 求矩阵A的逆。要求矩阵A是方阵
且是非奇异的,如果A是病态的或接近奇异
1、矩阵的加(+)减(-)运算:
A±B
矩阵A和矩阵B的和与差,即矩阵相应位置
的元素相加、减。
进行加减运算的矩阵,要求维数相同,即行数
和列数分别相等,如果A与B大小不同,MATLAB将自
动给出错误信息。 A和B其中之一可以是标量,表示矩阵中的每个 元素分别与标量相加减,结果为矩阵。
9
矩阵的算术运算
18
线性方程组的求解
线性方程组 AX=b 的求解是用矩阵除来完成的.
当 m=n 且A可逆时, 给出唯一解,此时我们可用
A\b来求解;当XA=b 时,用A/b来求解 我们也可以利用命令rref来求解任意的线性方程组.
矩阵函数
1、矩阵的共轭
MATLAB中求矩阵的共轭矩阵的函数是conj,其调用
格式为:
(3)当A为标量,B为矩阵时,要求B为方阵。
A1 1 A B V * *V A n
其中V为方阵A的特征向量矩阵,
1 D n
为方阵A的特征值对角矩阵。
(4)A和B都是矩阵时,无定义。
16
5、矩阵的点幂运算:.^
实验三 矩阵运算与线性方程组求解
MATLAB的所有数值功能都是以(复)矩阵为基本 单元进行的,向量和标量都作为特殊的矩阵来处
matlab 元胞数组的矩阵运算
matlab 元胞数组的矩阵运算Matlab元胞数组的矩阵运算在Matlab中,元胞数组是一种特殊的数据类型,能够存储不同类型的数据。
它是由一系列元胞(cell)组成的,每个元胞可以存储一个不同类型的数据。
元胞数组的矩阵运算在Matlab中是非常重要的,它能够帮助我们高效地处理和分析数据。
一、元胞数组的基本概念元胞数组是由元胞组成的数据结构,每个元胞可以存储一个不同类型的数据。
元胞数组可以包含任意类型的数据,例如数字、字符串、结构体等。
元胞数组的大小可以根据需要动态调整,这使得它在处理不同大小的数据集时非常灵活。
二、元胞数组的创建和访问在Matlab中,可以使用花括号({})来创建一个元胞数组。
例如,可以使用以下代码创建一个包含不同类型数据的元胞数组:```matlabcellArray = {1, 'hello', [1,2,3]};```元胞数组中的元胞可以使用花括号和索引来访问。
例如,可以使用以下代码访问元胞数组中的元胞:```matlabvalue1 = cellArray{1}; % 访问第一个元胞value2 = cellArray{2}; % 访问第二个元胞```三、元胞数组的矩阵运算元胞数组可以进行各种矩阵运算,例如加法、减法、乘法和除法等。
在进行矩阵运算时,Matlab会自动对元胞数组中的每个元胞进行相应的运算。
1. 加法运算可以使用加法运算符(+)对元胞数组进行加法运算。
例如,可以使用以下代码对两个元胞数组进行加法运算:```matlabcellArray1 = {1, 2, 3};cellArray2 = {4, 5, 6};result = cellArray1 + cellArray2;```2. 减法运算可以使用减法运算符(-)对元胞数组进行减法运算。
例如,可以使用以下代码对两个元胞数组进行减法运算:```matlabcellArray1 = {1, 2, 3};cellArray2 = {4, 5, 6};result = cellArray1 - cellArray2;```3. 乘法运算可以使用乘法运算符(*)对元胞数组进行乘法运算。
MATLAB中的矩阵运算函数
MATLAB中的矩阵运算函数1,round函数函数简介调用格式:Y = round(X)在matlab中round也是一个四舍五入函数。
对数组A中每个元素朝最近的方向取整数部分,并返回与A同维的整数数组B,对于一个复数参量A,则分别对其实部和虚数朝最近的方向取整数部分,并返回一复数数据B。
(1)fix(x) : 截尾取整.>>fix( [3.12 -3.12])ans =3 -3(2)floor(x):不超过x 的最大整数.(高斯取整)>>floor( [3.12 -3.12])ans =3 -4(3)ceil(x) : 大于x 的最小整数>>ceil( [3.12 -3.12])ans =4 -3(4)四舍五入取整>> round(3.12 -3.12)ans =0>> round([3.12 -3.12])ans =3 -32,reshape函数:重新调整矩阵的行数、列数、维数先给上一段代码:>> a=[1 2 3;4 5 6;7 8 9;10 11 12];>> b=reshape(a,2,6);这段代码的结果是这样的:>>a1 2 34 5 67 8 910 11 12>>b1 72 83 94 105 116 12对于 b=reshape(a,m,n);其中的规律是这样的,先把矩阵a按列拆分,然后拼接成一个大小为m*n的向量。
然后对这个向量每隔m间隔取一个元素组成一个向量b_i,之后的向量b_i+1也是这样生成,只不过第一个元素往下移一位。
这样做完之后得到m个大小为n的行向量,将这些行向量拼接即可得到矩阵b。
3,取模(mod)与取余(rem)通常取模运算也叫取余运算,它们返回结果都是余数.rem和mod 唯一的区别在于:当x和y的正负号一样的时候,两个函数结果是等同的;当x和y的符号不同时,rem 函数结果的符号和x的一样,而mod和y一样。
2011第2讲MATLAB矩阵及其运算
2.1.2 预定义变量
在MATLAB工作空间中,还驻留一些由系统本身定义 的变量。预定义变量有特定的含义,在使用时,应尽量避免 对这些变量重新赋值。
预定义变量 ans i、j pi inf eps 含义 计算结果的缺省变量 名 虚数单位 圆周率 无穷大 计算机的最小数 预定义变 量 NaN nargin nargout realmin realmax 含义 不定量,如0/0, ∞/∞ 函数的输入变量个数 函数的输出变量个数 最小正实数 最大正实数
MATLAB的基本算术运算符有:+(加)、-(减)、*(乘)、 /(右除)、\(左除)、^(乘方),等等。 注: 运算是在矩阵意义下进行的,单个数据的算术运算只 是一种特例。
例2-1 计算表达式的值,并显示计算结果。 在MATLAB命令窗口输入命令: x=1+2i; y=3-sqrt(17); z=(cos(abs(x+y))-sin(78*pi/180))/(x+abs(y)) 其中pi和i都是MATLAB的预定义变量,分别代表 圆周率π和虚数单位。 输出结果是: z= -0.3488 + 0.3286i
matlab高维矩阵乘法
MATLAB高维矩阵乘法在数学和计算机科学中,矩阵乘法是一种重要的运算。
在MATLAB中,我们可以使用内置函数和操作符来进行高维矩阵的乘法运算。
本文将介绍MATLAB中高维矩阵乘法的基本概念、用法和一些实例。
1. 矩阵乘法的定义矩阵乘法是指两个矩阵相乘得到一个新的矩阵的运算。
设A为m×n的矩阵,B为n×p的矩阵,则它们的乘积C=A×B为一个m×p的矩阵,其中C(i,j)等于A第i 行与B第j列对应元素相乘后求和。
2. MATLAB中的基本操作符在MATLAB中,我们可以使用*操作符进行两个矩阵之间的乘法运算。
例如:A = [1, 2; 3, 4];B = [5, 6; 7, 8];C = A * B;上述代码中,我们定义了两个2×2的矩阵A和B,并使用*操作符将它们相乘得到结果C。
3. 高维矩阵乘法除了二维矩阵外,MATLAB还支持高维矩阵的乘法运算。
高维矩阵可以看作是多个二维矩阵的组合,我们可以通过指定不同的维度进行乘法运算。
3.1 三维矩阵乘法三维矩阵乘法是指对两个三维矩阵进行乘法运算。
在MATLAB中,我们可以使用多个*操作符来实现三维矩阵的乘法。
例如:A = rand(2, 3, 4);B = rand(3, 4, 2);C = A(:, :, 1) * B(:, :, 1) + A(:, :, 2) * B(:, :, 2);上述代码中,我们定义了两个大小分别为2×3×4和3×4×2的三维矩阵A和B,并将它们相乘得到结果C。
注意,在进行三维矩阵乘法时,需要明确指定要进行乘法运算的维度。
3.2 高维矩阵乘法除了三维矩阵外,MATLAB还支持更高维度的矩阵乘法。
对于更高维度的情况,我们可以使用循环或递归等方法来实现高维矩阵的乘法运算。
下面是一个例子,演示了如何计算一个4维矩阵的乘法:A = rand(2, 3, 4, 5);B = rand(3, 4, 5, 2);C = zeros(2, 3, 5, 2);for i = 1:size(A, 1)for j = 1:size(B, 2)for k = 1:size(A, 3)for l = 1:size(A, 4)C(i, j, :, :) = C(i, j, :, :) + A(i, :, k, l) * B(:, j, k,l);endendendend上述代码中,我们定义了两个大小分别为2×3×4×5和3×4×5×2的四维矩阵A 和B,并使用循环来计算它们的乘法结果C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出变量) 3. 进行你希望的处理(如成绩统计、进行基本
的数组循环处理)
A
12
(3)图片处理(2013年的全国赛B题 为图像处理类题目)
1. 使用imread()函数从外部读入一个位图 图像
2. 进行你想要和处理(如使用rgb2gray() 函数将彩图变为灰阶图;对某个灰度值 放大或放小)
︻┳═一数组
在C/C++、C#、 JAVA等几乎所有的编 程语言中,像左图这个 的数据集合都被称作数 组。使用最多的数组是 一维数组和二维数组, 左图是一个二维数组。
A
4
●明辨关系
A
它既是一维数组(编程 语言的叫法),也是向 量(数学的叫法)
它既是二维数组(编 程语言的叫法),也 是矩阵(数学的叫法)
更多内容请参考MATLAB的帮助文档或一下,以上内容引自MATLAB帮助文档。
A
9
三、应用
(1)解线性方程组 (2)批量数据的处理 (3)图片处理(2013年的全国赛 B题为图像处理类题目)
A
10
(1)解线性方程组
改写为矩阵 形式
A
A
X
B
这里必须使用左除运算符, 不能写成X=B/A。 11
(2)批量数据的处理
5
二、基本运算(操作)
(1)引用 (2)提取与删除 (3)外部录入
!!! 注意,以下讲解看到 数组和矩阵时,应该 意识到它是同一样东 西
A
6
(1)引用
左图是在MATLAB中输入和显 示的一个二维数组截图,在上 面的输入中,magic(4)将生 成一个4*4的二维数组(或者 说一个4*4的矩阵),并且将 该数组赋值给一个变量array, array为数组名,以后可以通 过数组名(数组元素所在的行 数,数组元素所在的列数)来 引用数组中的某一个元素,如 array(2,2)引用了第二行第二 列的元素,即11
A
13
A
14
对于一维数组元素(即向量)
的A引用,大家就自己摸索吧。
7
(2)提取与删除 核心内容——冒号运算符(:)
• 将任意矩阵变为列向量
array(:)
• 选取矩阵的某行:)
选取数组array第四行的所有列
• 选取矩阵的某列所有行
array(:,3)
选取数组array第三列的所有行
• 删除矩阵的某行或某列
array(:,3)=[]
令数组aArray第三列为空,即删除了第三列,[]表示空数组8
(3)外部录入
1. 使用变量窗口直接编辑(包括复制、粘 贴、修改、删除等操作)
2. 使用xlsread()函数;
Read a specific range of data from the Excel file in the previous example. filename = 'myExample.xlsx'; sheet = 1; xlRange = 'B2:C3'; subsetA = xlsread(filename, sheet, xlRange)
MATLAB矩阵运算与应用
一、基本知识
• 什么是矩阵 • 矩阵、向量以及数组的关系
A
2
先来看一个5*5的矩阵
行向量
列 向 量
A
矩阵由行向量和列向量组成,实际上, 它是一张数据表,每行的列数相等, 每列的行数相等。一般情况下,这种 数据表在数学上叫做矩阵,但在编程 语言上却有另一种叫法。
3
• 必须意识到MATLAB也是一门编程语言(事实上 你可以用它开发游戏和进行图像处理),那么在 编程语言上这种数据表一般称作什么呢?