七年级上册数学压轴题(提升篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学压轴题(提升篇)(Word 版 含解析)
一、压轴题
1.请观察下列算式,找出规律并填空.
111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.
根据以上规律解读以下两题: (1)求
111
1
122334
20192020
++++
⨯⨯⨯⨯的值;
(2)若有理数a ,b 满足|2||4|0a b -+-=,试求:
1111
(2)(2)(4)(4)
(2016)(2016)
ab a b a b a b ++++
++++++的值.
2.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).
(1)若35BOC ∠=,求MOC ∠的大小.
(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.
(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果
50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.
3.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度
(2)若点D 在数轴上,且3DA DB =,求点D 对应的数
(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =
4.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .
(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;
(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;
(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.
5.已知AOB ∠是锐角,2AOC BOD ∠=∠.
(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与
COD ∠互余;
①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.
(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下
BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?
6.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?
通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;
情况②当点C 在点B 的左侧时, 如图2此时,AC =5.
仿照上面的解题思路,完成下列问题:
问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.
问题(2): 若2x =,3y =求x y +的值.
问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,
OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).
7.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.
(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数: (2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;
(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.
8.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)
(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;
(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且
3DOE AOE ∠∠=,3COF BOF ∠=∠,7
2
EOF COD ∠=∠,求EOF ∠的度数;
(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若
3MOI POI ∠=∠,则t = 秒.
9.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;
(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;
(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.
10.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;
(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.
11.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
已知:点C 在直线AB 上,AC a =,BC b =,且a
b ,点M 是AB 的中点,请按照