函数的零点课件解析

合集下载

方程的根与函数的零点说课课件ppt

方程的根与函数的零点说课课件ppt
设计意图:为 “用二分法求方程的近似解”的学习做准 备.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
3板书设计
§3.1 方程的根与函数的零点
1、零点概念:
练习:
…………………………
…………………………
2、方程的根与函数零点的关系 …………………………
函数的图象与x 两个交点 轴的交点 (-1,0),(3,0)
一个交点 (1,0)
没有交点
上述一元二次方程的实数根二次函数图象与x轴交点的横坐标
意图:引起认知冲突;了解本课主旨; 通过熟悉情境,形成初步结论.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
正反例证,熟悉定理
5、零点存在性定理的辨析与应用.
函数零点存在性定理:
y
ac O
y
y
ac
O
bx
bx
c Oa
y
c Oa
b x
b x
例1如判果断函正数误y=,f(若x)不在正区确间,[a,请b]上使的用图函象数是图连象续举不出断反的例一条曲线, 并 (且 1)有已f(知a)函·f(数b)<y=0f,(x那)在么区,间函[数a,by]=上f(连x)在续区,间且(fa(,ab)) ·内f(b有) <零0点,.则
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
—— 说课过程 ——
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

函数的零点与方程的解课件高一上学期数学人必修第一册

函数的零点与方程的解课件高一上学期数学人必修第一册

对未来学习的展望
深入学习函数和方程的概念,理解其本质和联系 掌握求解函数零点和方程解的方法和技巧,提高解题能力 培养逻辑思维能力和抽象思维能力,为后续学习打下坚实基础 激发学习兴趣,培养良好的学习习惯和态度,为未来的数学学习做好准备
THANK YOU
汇报人:
步骤:找出两个因式,使它们的乘积等于一元二次方程
例子:求解方程x^2-4x+4=0 注意事项:因式分解法适用于二次项系数为1的情况,如果二次项系数不为 1,需要先提取公因式
04
函数零点与方程解的关系
函数零点与方程解的等价关系
函数零点:函数值为0的点 方程解:满足方程的未知数的值 等价关系:函数零点与方程解之间存在一一对应关系 证明方法:利用函数图像和方程的解进行证明
一元二次方程的 判别式:b² - 4ac
一元二次方程的 根:x1, x2
配方法求解一元二次方程
配方法的基本思 想:将一元二次 方程转化为二次 函数,通过配方 法求解
配方法的步骤: 首先将一元二次 方程转化为二次 函数,然后利用 二次函数的性质 求解
配方法的应用: 求解一元二次方 程,如求解 x^2+2x+1=0
通过函数图像求方程的解
介绍函数图像的概念和作用
举例说明如何通过函数图像求解 方程
添加标题
添加标题
添加标题
添加标题
讲解如何通过函数图像找到函数 的零点
总结通过函数图像求方程解的方 法和步骤
通过方程解求函数的零点
函数零点的定义:函数在某 一点的值等于0
关系:方程的解就是函数的 零点
方程解的定义:方程的解是 指满足方程的未知数的值
函数的零点与方程的解课件高 一上学期数学人必修第一册

苏教版必修第一册8.1.1函数的零点课件

苏教版必修第一册8.1.1函数的零点课件

C D
【方法技能】解决函数零点问题的两种方法 (1)代数法: 若方程f(x)=0可解,其实数解就是函数y=f(x)的零点. (2)几何法: 若方程f(x)=0难以直接求解,将其改写为g(x)- h(x)=0,进一步改写为g(x)=h(x),在 同一坐标系中分别作出y=g(x)和y=h(x)的图象,两图象交点的横坐标就是函数y=f(x)的零 点,两图象交点的个数就是函数y=f(x)零点的个数.
(k1<k2),则x1,x2的散布范围与系数之间的关系有以下几种情形:
根的散布
图象
条件
x1<x2<k
k<x1<x2
根的散布 x1<k<x2 x1,x2∈ (k1,k2)
图象
x1,x2有且 仅有一个在 (k1,k2)内
一元二次方程ax2+bx+c=0(a<0)的根的散布情况可类似得到.
条件 f(k)<0
【解题通法】根据函数零点个数或零点所在区间求参数的方法 (1)直接法:直接根据题设条件构建关于参数的不等式(组),通过解不等式(组)确定参数的取值 范围. (2)分离参数法:先将参数分离,然后将原问题转化为求函数值域的问题加以解决. (3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后利用数形结合 思想求解.
三、判断零点所在区间
例 3 方程6-2x=ln x必有一根的区间是(A )
A.(2,3)
B.(3,4)
C.(0,1)
D.(4,5)
【分析】构造函数f (x)=2x+ln x-6,然后利用零点存在定理可判断出方程6-2x= ln x的根所在的区 间. 【解析】由6-2x=ln x,得2x+ln x-6=0,构造函数f(x)=2x+ln x-6. ∵ f(2)=ln 2-2<0,f(3)=ln 3>0,∴ f(2)f(3)<0, ∴ 由零点存在定理可知,函数f(x)在区间(2,3)上至少有一个零点. 又∵ 函数f(x)在(0,+∞)上单调递增,∴ f(x)在区间(2,3)上至多有一个零点, 【∴方函法数技f能(】x)判断在函区数间零(点2所,在3区)间上的有方唯法一和零步骤点.即方程6-2x=ln x必有一根的区间是(2,3).

高一数学人必修教学课件函数的零点

高一数学人必修教学课件函数的零点

复合函数中内层外层关系剖析
复合函数构成
01
复合函数是由内层函数和外层函数复合而成,内层函数的值作
为外层函数的自变量。
内层函数对零点影响
02
内层函数的值域决定了外层函数的定义域,内层函数的零点也
会影响到复合函数的零点。
外层函数对零点影响
03
外层函数的性质(如单调性、周期性等)会对复合函数的零点
产生影响。
04 复杂情境下函数零点问题探讨
含参数方程中参数对零点影响分析
参数变化引起函数图像变化
当参数变化时,函数的图像会随之变化,可能导致零点的位置、 数量等发生变化。
参数对函数单调性影响
参数的变化可能会影响函数的单调性,从而改变函数的零点分布。
参数对方程根的影响
含参数方程中,参数的变化可能会导致方程根的变化,进而影响函 数的零点。
分式函数和根式函数零点分析
01
分式函数零点求解
通过令分子为零,解出 $x$ 的值,同时要注意分母不能 为零的条件。
02
根式函数零点求解
将根式方程转化为整式方程进行求解,注意定义域的限 制。
03
复合函数的零点
通过逐步分析复合函数的组成部分,找出使整体函数值 为零的 $x$ 值。
三角函数和指数函数等特殊类型处理
解题技巧归纳提炼
观察法
通过观察函数表达式或 图像,直接找出零点或 判断零点所在区间。
代数法
将函数表达式化简或变 形,以便于求解方程得 到零点。
图像法
利用函数图像判断零点 的个数及所在区间,特 别适用于高次多项式函 数。
数值计算法
借助计算器或计算机程 序,采用逼近法求解方 程的近似根。
拓展延伸:高阶导数在寻找多重根中应用

高一 数学 函数的零点与二分法课件

高一 数学 函数的零点与二分法课件

二分法在寻找函数零点中的应用
二分法是一种通过不断将区间 一分为二来逼近函数零点的数 值方法。
在给定一个连续函数和一个闭 区间,不知道零点所在的大致 位置时,可以使用二分法来找 到零点。
二分法的基本思想是,如果函 数在区间两端取值异号,则该 区间内必定存在一个零点。
二分法在解决函数零点问题中的优势
实例
以 $f(x) = x^2 - 2x - 3$ 为例, 其零点为 $x = -1, x = 3$。
高次函数的零点问题
高次函数零点定义
高次函数 $f(x)$ 的零点是满足 $f(x) = 0$ 的 $x$ 值。
零点求解方法
通过解高次方程来找到零点。
实例
以 $f(x) = x^3 - x - 1$ 为例,其零点为 $x = 1, x = -1, x = frac{1}{3}$。
以 $f(x) = x - 3$ 为例,其零点为 $x = 3$。
零点求解方法
通过解方程 $ax + b = 0$ 来找到零 点。
二次函数的零点问题
二次函数零点定义
二次函数 $f(x) = ax^2 + bx + c$ 的零点是满足 $f(x) = 0$ 的
$x$ 值。
零点求解方法
通过解二次方程 $ax^2 + bx + c = 0$ 来找到零点。
导数法
通过判断导数的正负来判 断函数的单调性,进而找 到函数的零点。
03 二分法原理
二分法的定义
二分法定义
二分法是一种求解实数近似值的方法,通过不断将区间一分 为二,使区间长度逐渐缩小,当区间长度小于给定的误差范 围时,区间内的任意实数近似值即可作为所求的近似解。

方程的根与函数的零点 课件

方程的根与函数的零点  课件

此判定方法经常考,要注意条件一定要完备,缺一不可. 反之,若函数 y=f(x)在(a,b)内有零点,则 f(a)·f(b)<0 不一定 成立. 因为 f(x)在(a,b)内的零点可能为不变号零点,也可能不止一个 零点.
(2)应用零点存在性定理应注意以下问题: ①并非函数所有的零点都能用该定理找到,当函数值在零点左 右不变号时就不能应用该定理,如函数 y=x2 在零点 x0=0 左右 的函数值都是正值,显然不能使用定理判断,只有函数值在零 点的左右两侧异号时才能用这种方法. ②利用零点存在性定理只能判别函数 y=f(x)在区间(a,b)上零 点的存在性,但不能确定零点的个数.
2.解决有关根的分布问题应注意以下几点: (1)首先画出符合题意的草图,转化为函数问题. (2)结合草图考虑四个方面:①Δ 与 0 的大小;②对称轴与所给 端点值的关系;③端点的函数值与零的关系;④开口方向. (3)写出由题意得到的不等式. (4)由得到的不等式去验证图象是否符合题意,这类问题充分体 现了函数与方程的思想,也体现了方程的根就是函数的零点.在 写不等式时要注意条件的完备性.
方程的根与函数的零点
自学导引 1.函数的零点 对于函数 y=f(x),把 使f(x)=0的实数x 叫做函数 y=f(x)的零点. 想一想:函数的零点是函数 y=f(x)与 x 轴的交点吗? 提示 函数的零点不是函数 y=f(x)与 x 轴的交点,而是 y=f(x) 与 x 轴交点的横坐标,也就是说函数的零点不是一个点,而是 一个实数.
如 f(x)=ax2+bx+c(a>0)的两个零点为
x1,x2(x1≤x2)且 k1<x1≤x2<k2.
Δ≥0, 则k1<-2ba<k2,
ffkk12> >00, ,
题型一 求函数的零点 【例 1】 判断下列函数是否存在零点,如果存在,请求出. (1)f(x)=xx+;3 (2)f(x)=x2+2x+4; (3)f(x)=2x-3; (4)f(x)=1-log3x; [思路探索] 利用解方程的方法求相应方程的根即可.

专题28 函数的零点的问题(解析版)

专题28 函数的零点的问题(解析版)

专题28 函数的零点的问题一、题型选讲题型一 、 函数零点个数判断与证明可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 【答案】: 5【解析】:因为f(x +4)=f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R 上的图像,由y =f (x )-log 5| x |=0,得f (x )=log 5| x |,分别画出y =f (x )和y =log 5|x |的图像,如下图,由f (5)=f (1)=1,而log 55=1,f (-3)=f (1)=1,log 5|-3|<1,而f (-7)=f (1)=1,而log 5|-7|=log 57>1,可以得到两个图像有5个交点,所以零点的个数为5.变式1、【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点; 【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点.变式2、【2020年高考浙江】已知12a <≤,函数()e xf x x a =--,其中e=2.71828…是自然对数的底数.(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点;【解析】(Ⅰ)因为(0)10f a =-<,22(2)e 2e 40f a =--≥->,所以()y f x =在(0,)+∞上存在零点. 因为()e 1x f x '=-,所以当0x >时,()0f x '>,故函数()f x 在[0,)+∞上单调递增, 所以函数以()y f x =在(0,)+∞上有唯一零点.题型二、 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例2、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .变式1、【2018年高考全国Ⅱ卷理数】已知函数2()e x f x ax =-.若()f x 在(0,)+∞只有一个零点,求a .【解析】设函数2()1e xh x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,()(2)exh'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >. 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1e ah =-是()h x 在[0,)+∞的最小值. ①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当0x >时,2e x x >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4a =. 变式2、(2020届山东省潍坊市高三上学期统考)函数若函数只有一个零点,则可能取的值有( ) A .2 B . C .0 D .1【答案】ABC【解析】∵只有一个零点, ∴函数与函数有一个交点,作函数函数与函数的图象如下,结合图象可知,当时;函数与函数有一个交点; 当时,,可得,令可得,所以函数在时,直线与相切,可得.综合得:或. 故选:ABC.变式3、(2020届山东省滨州市三校高三上学期联考)已知函数(e 为自然对数的底),若且有四个零点,则实数m 的取值可以为( )A .1B .eC .2eD .3e【答案】CD()()1,1,ln 1,1,x e x f x x x -⎧≤⎪=⎨->⎪⎩()()g x f x x a=-+a 2-()()g x f x x a =-+()y f x =y x a =-()()1,1,ln 1,1,x e x f x x x -⎧≤⎪=⎨->⎪⎩y x a =-0a ≤()y f x =y x a =-0a >ln(1)y x =-11y x '=-111x =-2x =2x =ln(1)y x =-2a =0a ≤2a =2,0()(1),0x x e mx m x f x e x x -⎧++<=⎨-≥⎩()()()F x f x f x ()F x【解析】 因为,可得,即为偶函数,由题意可得时,有两个零点, 当时,,即时,, 由,可得,由相切,设切点为,的导数为,可得切线的斜率为,可得切线的方程为,由切线经过点,可得, 解得:或(舍去),即有切线的斜率为, 故, 故选:CD.二、达标训练1、(2020·山东省淄博实验中学高三上期末)已知函数.若函数在上无零点,则的最小值为________. 【答案】()()()F x f x f x ()()F x F x =-()F x 0x >()F x 0x >0x -<()2xf x e mx m -=-+0x >()22xxxxF x xe e e mx m xe mx m =-+-+=-+()0F x =20x xe mx m -+=(),21xy xe y m x ==-(),ttte x y xe =(1)x y x e '=+(1)t t e +(1)()tty te t e x t -=+-1,02⎛⎫ ⎪⎝⎭1(1)2t t te t e t ⎛⎫-=+- ⎪⎝⎭1t =12-2e 22,m e m e >∴>()()()212ln f x a x x =---()f x 10,2⎛⎫ ⎪⎝⎭a 24ln 2-【解析】因为在区间上恒成立不可能,故要使函数在上无零点,只要对任意的,恒成立,即对任意的,恒成立. 令,,则, 再令,,则, 故在上为减函数,于是, 从而,于是在上为增函数,所以, 故要使恒成立,只要, 综上,若函数在上无零点,则的最小值为.故答案为:2、(2020届浙江省台州市温岭中学3月模拟)已知函数()2,()f x x ax b a b R =++∈在区间[]2,3上有零点,则2a ab +的取值范围是( ) A .(],4-∞ B .81,8⎛⎤-∞ ⎥⎝⎦C .814,8⎡⎤⎢⎥⎣⎦D .81,8⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】不妨设1x ,2x 为函数()f x 的两个零点,其中[]12,3x ∈,2x R ∈, 则12x x a +=-,12x x b =.则()()()()2222212121212112112a ab x x x x x x x x x x x x +=+-+⋅=-+-+,由110x -<,2x R ∈,所以()()()()()222111122212112114121241x x x x x x x x x x x ----+≤-+-()0f x <10,2⎛⎫ ⎪⎝⎭()f x 10,2⎛⎫ ⎪⎝⎭10,2x ⎛⎫∈ ⎪⎝⎭()0f x >10,2x ⎛⎫∈ ⎪⎝⎭2ln 21x a x >--()2ln 21x l x x =--10,2x ⎛⎫∈ ⎪⎝⎭()()222ln 2'1x x l x x +-=-()22ln 2m x x x =+-10,2x ⎛⎫∈ ⎪⎝⎭()()22212'20x x x xm x ---==+<()m x 10,2⎛⎫ ⎪⎝⎭()122ln 202m x m ⎛⎫>=->⎪⎝⎭()'0l x >()l x 10,2⎛⎫ ⎪⎝⎭()124ln 22l x l ⎛⎫<=- ⎪⎝⎭2ln 21xa x >--[)24ln 2,a ∈-+∞()f x 10,2⎛⎫⎪⎝⎭a 24ln 2-24ln 2-()41141x x =-, 可令()()411141x g x x =-,()()()311113441x x g x x -'=-,当[]12,3x ∈,()10g x '>恒成立,所以()()()1812,34,8g x g g ⎡⎤∈=⎡⎤⎣⎦⎢⎥⎣⎦.则()1g x 的最大值为818,此时13x =, 还应满足()2112123214x x x x -=-=--,显然13x =,234x =-时,94a b ==-,2818a ab +=. 故选:B.3、(2020届浙江省嘉兴市3月模拟)已知函数()2ln 1f x x =-,()g x a x m =-,若存在实数0a >使()()y f x g x =-在1e e⎛⎫ ⎪⎝⎭,上有2个零点,则m 的取值范围为________.【答案】,2e e ⎛⎫⎪⎝⎭. 【解析】已知实数0a >使()()y f x g x =-在1e e⎛⎫ ⎪⎝⎭,上有2个零点,等价于()y f x =与()y g x =的函数图象在1e e ⎛⎫⎪⎝⎭,上有2个交点,显然()2ln 1f x x =-与x轴的交点为),()g x a x m =-的图象关于x m =对称,当m ≥时,若要有2个交点,由数形结合知m 一定小于e,即)m e ∈;当m <时,若要有2个交点,须存在a 使得()2ln 1x a x m -=-在)e 有两解,所以()f e a f ''<<,因为()2f x x '=,即()2,0f e f a e''==>,显然存在这样的a 使上述不等式成立; 由数形结合知m 须大于()f x 在x e =处的切线21y x e =-与x 轴交点的横坐标2e,即2e m ⎛∈ ⎝综上所述,m 的范围为,2e e ⎛⎫⎪⎝⎭.故答案为:,2e e ⎛⎫⎪⎝⎭4、(2020届山东省德州市高三上期末)已知函数(为常,若为正整数,函数恰好有两个零点,求的值. 【解析】因为为正整数,若,则,,()()2ln 22f x x ax a x =+-++a a ()f x a a 02a <<1a =()2ln 32f x x x x =+-+由(2)知在和单调递增,在单调递减,又,所以在区间内仅有实根,, 又,所以在区间内仅有实根.此时,在区间内恰有实根; 若,在单调递增,至多有实根.若,,令,则,,, 所以.由(2)知在单调递减,在和单调递增, 所以,所以在至多有实根. 综上,.()y f x =10,2⎛⎫ ⎪⎝⎭()1,+∞1,12⎛⎫⎪⎝⎭()10f =()y f x =1,2⎛⎫+∞⎪⎝⎭1()1102f f ⎛⎫>> ⎪⎝⎭()()24222330f eee e e -----=-=-<()yf x =10,2⎛⎫⎪⎝⎭1()y f x =()0,∞+22a =()y f x =()0,∞+12a >()2111111ln 22ln 1f a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=+-++=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1t a =102t <<ln 1y t t =-+110y t'=->111ln 1ln 20222y <-+=-<()y f x =11,2a ⎛⎫ ⎪⎝⎭10,a ⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭1102f f a ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭()y f x =()0,∞+11a =。

【数学】利用导数研究函数的零点问题讲评课件

【数学】利用导数研究函数的零点问题讲评课件

答案见解析
【分析】将函数 的零点转个数化为 =



=

图像交点个

数,利用导数求得 的单调性和极值,进而求得函数 的零点个
数.
【详解】令 = ,得 = − ,
当 = 时, = − 无解,∴ 无零点,
当 ≠

时,
第10讲 利用导数研究函数零点问题
知识点一 讨论函数的零点问题
知识点二 根据函数的零点求参数的取值
知识点一 讨论函数的零点问题
例1
已知函数f x = ex + 2f ′ 0 x − cosx.
(1)求f x 的解析式;
【答案】 = − −
【分析】对函数求导后令 = 可得 ′ = −,即可求得
2e
a =______

【分析】常数分离得

=


= 有唯一的解,求出 的单调性与


极值,由 有且仅有一个零点可得 = .
【详解】当 = 时, = ≥ 恒成立, 在[, ]上无零点.


当 ≠ 时,即有 = = 在[, ]上有且仅有一个解.
即 ′ 在 , +∞ 上单调递增.
又 ′ = −<, ′ = + − >,
根据零点存在定理可知∃ ∈ , ,使得 ′ = .
当��<< 时, ′ <,所以 在 , 上单调递减;
当> 时, ′ >,所以 在 , +∞ 上单调递增.

上的图象有两个交点,
设两个交点的横坐标分别为 、 ,且 < ,


由图可知,当 << 或 <<时,> ,此时,

《函数的零点》课件

《函数的零点》课件

《函数的零点》PPT课件
函数的零点是函数图像与横轴相交的点,它们在数学和实际应用中扮演着重 要角色。本课程将探索不同方法寻找和应用函数的零点。
什么是函数的零点
函数的零点是指函数图像与横轴相交的点。它们表示使函数取值为零的输入 值,有着重要的数学和实际意义。
如何寻找函数的零点
1
二分法
通过不断将区间一分为二来逼近零点。
2
牛顿迭代法
利用切线逼近零点,快速收敛。
3
增量法
通过不断加减零点附近的增量来逼近零点。
实用的寻找零点的方法
割线法
结合了二分法和牛顿迭代 法的优点,快速且稳定。
区间估计法
通过划定区间来估计零点 的位置,有效节省计算资 源。
图像法
观察函数图像上横轴与函 数相交的点,直观且易于 理解。
零点的存在定理
1 布尔查诺定理
指出了函数连续性和 函数值异号的关系, 确保在某个区间内存 在至少一个零点。
2 柯西中值定理
3 零点存在理的
利用导数存在的条件,
应用
确保在某个区间内存
在证明上述定理的基
在至少一个零点。
础上,可以推导和应
用更多零点存在定理。
应用领域
工程计算
寻找函数零点可以解决各种 工程设计和优化问题。
物理计算
零点与物理方程的交点提供 了物理问题的解。
金融计算
函数零点可以用于金融预测 和风险管理。
其他应用领域
数据分析
寻找函数的零点可以解 决大量的数据分析问题。
生物学
零点分析在生物学中用 于理解生物过程和解决 生物问题。
化学计算
函数零点在化学计算中 起着重要作用,支持反 应和物质计算。

函数的零点 优质课件

函数的零点  优质课件

然函数x=0不是函数的零点,这样函数有且仅有一个正实
数零点等价于方程mx2-2x+1=0有一个正根和一个负根,
即mf(0) <0,即m<0.故选B.
• [答案] B
• 分类讨论思想、函数与方程思想是高考着重 考查的两种数学思想,它们在本题的求解过 程中体现得淋漓尽致,还要注意函数的零点 有变号零点和不变号零点,如本题中的x=1
似值a(或b),否则重复第二、三、四步.
• 能否用二分法求任何函数(图象是连续的)的近似零点?
• 用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0, f(0.5)>0,可得其中一个零点x0∈________,第二次应计算________.
• 1. f(x)=0
• 想一想:提示:由于三者之间有等价关系, 因此,在研究函数零点、方程的根及图象交 点问题中,当从正面研究较难入手时,可以 转化为其等价的另一易入手的问题处理,如 研究含有绝对值、分式、指数、对数等较复 杂的方程问题,常转化为两熟悉函数图象的 交点问题研究.
函数与方程
• 不同寻常的一本书,不可不读哟!
• 1.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二 次方程根的存在性及根的个数.
• 2.根据具体函数的图象,能够用二分法求相应方程的近似解.
• 1个熟记口诀
• 用二分法求函数零点近似值的口诀为:定区间,找中 点,中值计算两边看,同号去,异号算,零点落在异 号间.周而复始怎么办?精确度上来判断.
• 3. 图象法:先把所求函数分解为两个简单函数,再画 两个函数图象,看其交点的个数有几个,其中交点的 横坐标有几个不同的值,就有几个不同的零点.
课前自主导学
• 1. 函数的零点 • (1)函数零点的定义 • 对于函数y=f(x),我们把使________的实数x叫做函数y=f(x)的零点. • (2)几个等价关系 • 方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有

4.5.1 函数的零点与方程的解 课件(共38张PPT) 高一数学人教A版(2019)必修第一册

4.5.1 函数的零点与方程的解 课件(共38张PPT) 高一数学人教A版(2019)必修第一册
函数零点的定义
函数零点、方程的根、函数的图象与x轴交点的关系
函数的零点存在定理
1.在二次函数 中,ac<0,则其零点的个 数为( ) A.1 B.2 C.3 D.不存在
2.若 不是常数函数且最小值为1,则 的零点个数( )
A.0
B.1
C.0或1
D.不确定
解:
x
1
2
3
4
5
6
7
8
9
f(x)
-4
-1.306 9
1.098 6
3.386 3
5.609 4
7.791 8
9.945 9
12.079 4
14.197 2
方法一
f(x)=lnx+2x-6
从而f(2)·f(3)<0,∴函数f(x)在区间(2,3)内有零点.
10
8
6
4
2
-2
-4
5
1
2
3
4
6
x
y
O
y=-2x+6
y=lnx
6
O
x
1
2
3
4
y
即求方程lnx+2x-6=0的根的个数,即求lnx=6-2x的根的个数,即判断函数y=lnx与函数y=6-2x的交点个数.
如图可知,只有一个交点,即方程只有一根,函数f(x)只有一个零点.
方法二:
函数零点
方程的根
图象交点
转化
1.求方程2-x =x的根的个数,并确定根所在的区间[n,n+1](n∈Z).
x
y
如图,
若函数y=5x2-7x-1在区间[a,b]上的图象 是连续不断的曲线,且函数y=5x2-7x-1在(a, b)内有零点,则f(a)·f(b)的值( ) A.大于0 B.小于0 C.无法判断 D.等于0

高中数学课件-第5讲 第3课时 利用导数研究函数的零点

高中数学课件-第5讲 第3课时 利用导数研究函数的零点

16
突破核心命题 限时规范训练
f(x)的极小值为f(1)=a-1>0, x→0时,f(x)→-∞, ∴f(x)恰有1个零点. 综上所述,a>0,即a的取值范围为(0,+∞).
17
突破核心命题 限时规范训练
13
突破核心命题 限时规范训练
考 点 二 利用函数的性质研究函数的零点
例 2 (2022·全国乙卷节选)已知函数 f(x)=ax-1x-(a+1)ln x,若 f(x)
恰有一个零点,求 a 的取值范围.




的定义来自域为(0


∞)

f′(x)

a

1 x2

a+1 x

(ax-1)(x-1)
x2
当 x→+∞时,h(x)→0,作出函数 h(x)的图象与直线 y
=kx-1 如图所示.
6
突破核心命题 限时规范训练
当直线 y=kx-1 与函数 h(x)的图象相切时,设切点坐标为(x0,lnx20x0), 则 k=1-2x30ln x0=lnx20xx00+1,即 3ln x0+x20-1=0,易得 x0=1,∴当直线 y= kx-1 与函数 h(x)的图象相切时,k=1.由图象知,当 0<k<1 时,直线 y=kx
.
(ⅰ)当 a≤0 时,ax-1<0 恒成立,
∴0<x<1 时,f′(x)>0,f(x)单调递增,
14
突破核心命题 限时规范训练
x>1 时,f′(x)<0,f(x)单调递减,∴f(x)max=f(1)=a-1<0. 此时 f(x)无零点,不合题意. (ⅱ)当 a>0 时,令 f′(x)=0,解得 x=1 或 x=1a, ①当 0<a<1 时,1<1a,∴1<x<1a时,f′(x)<0,f(x)单调递减, 0<x<1 或 x>1a时,f′(x)>0,f(x)单调递增,

函数的零点与方程的解ppt课件

函数的零点与方程的解ppt课件

二、函数零点的性质及求法
【强调3】f(a)f(b)<0(异号性)
对于[a,b]上的函数f(x),“异号”和“连续”能够证明在 (a,b)内存在零点。 “连续不异号”:不能说明是否有零点 “异号不连续”:不能说明是否有零点 “不异号不连续”:不能说明是否有零点
二、函数零点的性质及求法
函数零点的求法:
一、函数零点的概念 已学基本初等函数的零点
一、函数零点的概念 已学基本初等函数的零点
一、函数零点的概念 已学基本初等函数的零点
二、函数零点的性质及求法
零点存在性定理:
如果函数y=f(x)在[a,b]上的图象是一条连续不断的曲线, 并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内至少有一 个零点。
函数零点个数的判定: (3)利用单调性和奇偶性综合判断 已知,函数f(x)是定义在R上的奇函数,当x>0时,f(x)=log2x+x, 则函数y=f(x)有几个零点?
三、课堂小结
把这里的实数a与b都叫做相应区间上的端点。
一、函数零点的概念
对于一般函数y=f(x),我们把f(x)=0的 实数x叫做函数y=f(x)的零点。
【强调】函数的零点不是一个点,而是一个实数。
一、函数零点的概念
【练习1】函数f(x)=x2-5x+6的零点为: A. 2,3 B.(2,0),(3,0) C.(2,3) D. -2,-3
即存在
,使得
,这个c也就是方程f(x)=0的解。
二、函数零点的性质及求法
【强调1】连续不断(连续性) 【练习】(多选)下列函数中是连续函数的是:
二、函数零点的性质及求法
【强调2】闭区间[a,b]
二、函数零点的性质及求法

4.4 解析函数零点的孤立性及惟一性定理

4.4 解析函数零点的孤立性及惟一性定理

(2)由第二章习题(一)6(3),必f(z)在K内为常数.
(3)由唯一性定理,必f(z)在D内为一常数.
推论4.24 设(1) f(z)在有界区域D内解析,在闭 域 D D D 上连续;
则除f(z)为常数的情景外,|f(z)|<M,(z∈D).
注:最大模定理说明:解析函数在区域边界上的最大模 可以限制区域内的最大模,这也是解析函数特有的性质。 类似有最小模原理(p176)及其推论。
在这个区间之外,总是 | f (z0 Re i ) | M 在这样的情况下,由(4.15)得
M
|
f
(z0 ) |
1
2
2
|
0
f
(z0
Rei ) |
M,
自相矛盾
因此,我们已经证明了:在以点z0为中心的每一 个充分小的圆上|f(z)|=M, 换句话说,
在z0点的足够小的邻域K内(K及其周界全含于D 内)有|f(z)|=M.
零点的孤立性
不恒为零的解析函数的零点必是孤立的. 逆否命题
解析函数的零点是非孤立的,则此函数恒为零.
推论4.19 设
(1)f(z)在邻域K:|z-a|<R内解析; (2)在K内有f(z)的一列零点{zn}(zn≠0)收敛于a, 即存在{zn} K, (zn≠0) f(zn)=0, zn→a

证 因为f(z)在点a连续,且f(zn)=0,让n趋于无穷取 极限,即得f(a)=0.故a是一个非孤立的零点.由定 理4.18必f(z)在K内恒为零.
证 设a为f(z)的m级零点, 于是, 由定理(4.17)
f (z) (z a)m(z),
其中(z)在点a的邻域|z-a|<R内解析,且 (a) 0,

函数的零点与方程的解高一数学上学期同步精讲课件

函数的零点与方程的解高一数学上学期同步精讲课件

零点存在定理
添加标题
零点存在定理:如果函数f(x)在闭区间[a, b]上连续, 且f(a)·f(b)<0,则f(x)在(a, b)内至少有一个零点。
添加标题
零点存在定理的应用:求解方程f(x)=0在闭区间[a, b]内的解,或者判断函数f(x)在闭区间[a, b]内有无 零点。
添加标题
零点存在定理的证明:利用反证法,假设f(x)在(a, b) 内没有零点,然后推导出矛盾,从而证明零点存在 定理。
20XX
函数的零点与方程的解
汇报人:
目录
01
单击添加目 录项标题
02
函数的零点 概念
03
一元一次方 程的解与函 数零点
04
一元二次方 程的解与函 数零点
05
其他方程的 解与函数零 点
06
利用函数零 点解决实际 问题
01
单击此处添加章节标题
02
函数的零点概念
函数的零点定义
函数的零点:函 数与x轴的交点, 即f(x)=0的解

一元一次方程 的根与函数零 点的关系是相
互对应的
通过函数零点 可以求解一元
一次方程
利用函数图像解一元一次方程
函数图像的定义:函数y=f(x)的图像是y与x之间的对应关系 单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
一元一次方程的解:方程ax+b=0的解为x=-b/a 单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
解一元一次方程的公式:ax+b=0,解 为x=-b/a
解一元一次方程的实例:例如3x+5=1, 解为x=-2
解一元一次方程的应用:例如在解决 实际问题中,如计算利润、成本等问 题时,经常需要解一元一次方程。

新教材人教A版4.5.1函数的零点与方程的解课件(34张)

新教材人教A版4.5.1函数的零点与方程的解课件(34张)

函数f(x)=2x|logx|-1的零点个数是_____2__.
【解析】 求函数 f(x)=2x|log0.5x|-1 的零点, 即求 2x|log0.5x|-1=0 的解, 即|log0.5x|=21 x 的解.作出函数 g(x)=|log0.5x| 和函数 h(x)=12 x 的图象,如图所示.由图知 两函数的图象共有 2 个交点,故函数 f(x)的零点 个数是 2.
第四章 指数函数与对数函数
4.5 函数的应用(二)
4. 函数的零点与方程的解
函数y=f(x)的零点的定义:对于一般函数y=f(x),把使 ____f(_x_)_=__0___的实数x叫做函数y=f(x)的__零__点_____.
判断正误(请在括号中打“√”或“×”).
(1)函数的零点是一个点.
(
(2)函数y=x2-1有零点.
(
(3)有些函数没有零点.
(
(4)函数y= 的零点是2或(2,0).
(
×) √) √) ×)
【解析】 (1)函数的零点是一个实数,不是一个点. (2)函数 y=x2-1 的零点是 1 和-1. (3)如函数 y=x2+1 没有零点. (4)函数 y= x-2 的零点是 2.
4.若函数f(x)=|x2-4x|-a的零点个数为3,则a=_4_____. 5.函数f(x)=ln x-x+2的零点个数是2______. 【解析】 作出函数g(x)=ln x和h(x)=x-2的图象如图所 示.由图可知,两函数图象有2个交点,所以函数f(x)有2个 零点.
A.[-1,0)
B.[0,+∞)
C.[-1,+∞)
D.[1,+∞)
【解析】 函数g(x)=f(x)+x+a存在2个零点,即关于x的方 程f(x)=-x-a有2个不同的实根,即函数f(x)的图象与直线 y=-x-a有2个交点,作出直线y=-x-a与函数f(x)的图 象,如图所示,由图可知,-a≤1,解得a≥-1,故选C.

22.函数的零点

22.函数的零点
f ( z ) ( z z0 )m ( z ),
其中 ( z ) 在点z0解析, 且 ( z0 ) 0.
定理1 不恒为零的解析函数的零点必是 孤立零点. 这是解析函数又一个 解析函数的特性. 对于实可微函数, 其
定理 设函数f (z)在单连通区域 D上的解 零点不一定是孤立的,例如函数 1 C是 D内分段光滑 (或可求长)的Jordan曲线, z 2 x sin , x 0 f ( x) x C的内部区域 , 则f (z)在z0处存在各阶导数, 并 x0 0, 1z ) n! x f ( (n) n 1, 2, 在零点x=0处可微,但是 f ( z0 ) d z n n 1 2πi C ( z n z z 0) C lim xn 0. 也是f (z)的零点,且 ( n 1,2,3, ), n
该邻域内可展开成 Taylor 方法奠定了基础 . 级数. 由已知条件知, 该
可展开为幂级数

注 这个定理为把函数展开成Taylor级数的间接
f ( z ) cn ( z z0 ) n ,
cn
0
内解析 , z0 为D内的一点, R为 z0 到 n! (D是全平面时, R=+), 则 f ( z ) 在
3
2 f (1) 3 z 3 0, 所以可见 解 (1) 由于 z 1
z 1 是 f ( z ) 的1级零点 . 只有一个零点?
(2) 显然,zk 2k ( k 0, 1, 2, ) 是 f (z) 的零点. 由于
f (2k ) 0,
f (2k ) sin z
D内的点,且在 z z0 R 内可展成幂级数
( z z0 ) n , f ( z ) cn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时,函数值变号;
2.两个零点把 x轴分成三个区间,
-4
在每个区间上所有函数值保持同
号.
性质运用
例2 求函数 y x3 2x2 x 2 的零点,并画出它的图象.
解:因为y x3 2x2 x 2
x2 (x 2) (x 2) (x 2)(x2 1) (x 2)(x 1)(x 1)
由 (x 2)(x 1)(x 1) 0, 得,x1 1,x2 1,x3 2; 则所求函数的零点为 1,1,2.
3个零点把 x 轴分成4个区间:
-,-1,-1,1,1,2,2, .
性质运用
在这4个区间内,取 x 的一些值,以及零点,列出这 个函数的对应值表:
x … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 …
一个公共点
没有公共点
随堂练习:
如图二次函数 f (x) x2 - x - 2 的图象,请判断下列式子的 符号.
(1) f (1) f (3)
y
(2) f (2) f (0)
(3) f (0) f (1)
4
结合图象分析二次函数零点的性质
2
-2 -1 0 1 2 3
x
1.函数图象通过零点,并穿过 x轴
则函数至少有多少个零点( ).
A.1 B.2
C.3 D.4
变式练习: (2)求函数f ( x) ( x 1)( x 2)( x 3)的零点,并画出 函数简图.
y
4 2
-3
0 24
x
-2
-4
课堂总结
在知识上: 学习了函数的零点的概念,函数零点的求 法,二次函数零点个数的判定,二次函数 零点的性质并做了推广,一般函数图象的 画法.
在思想上: 渗透了由特殊到一般,抽象概括,转化化 归,函数与方程的思想.
布置作业
作业
必做题: 课本 P72习题 2-4 A2(1) (4)
选做题: 结合函数零点的性质,证明函数 y x3 2x2 x 2 在区间(1,2)上存在零点.
拓展:课本 P72习题 2-4 B2
拓展探究
探究二次函数y ax2 bx c(a 0)的零点的存在性.
判别式 △ =b2-4ac
△>0
方程ax2 +bx+c=0 两个不相等
(a≠0)的根
的实数根
△=0
△<0
有两个相等的 没有实数根 实数根
函数y= ax2 +bx +c(a≠0)的零点
两个零点
一个二阶零点 没有零点
函数的图象与 两个公共点 x 轴的公共点
y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 … y
在直角坐标系内描点连线, 这个函数的图象如图所示.
4 2
-2 0 2 4 x
-2
-4
性质运用
变式训练: 1.已知函数的图象是连续不断的,有如下的的 x, f(x)对应值.
x1 f(x) 12
23 4 5 6 15.5 -3.9 10.8 -52.4 -32
第二章 函数 2.4.1节 y
8
6 4
2
-2 0 2 4 6
x
-2
-4
课题引入
解方程x2 x 6 0,并画出相应函数
y x2 x 6的简图,并说明x取 y 哪些值时,
y>0,y<0.
6
解:原方程变
(x 3)(x 2) 0
x1
2,x2 3Leabharlann 顶点(1,- 25) 24
4 2
-2 0 -2 -4
34 6 x
-6
概念形成
一般的,如果函数y f (x)在实数处的 值等于零,即f () 0,则叫做这个函数的零点.
等价关系
方程的实数根
函数的零点
交点的横坐标
概念深化
例1.求下列函数零点,并画出函数简图.
(1) y 3x+2; (2) y 2x2 x 1; (3) y 2t2 4t 2; (4) y x2 x 2.
-6
课题引入
解方程x2 x 6 0,并画出相应函数
y x2 x 6的简图,并说明x取 y 哪些值时,
y>0,y<0.
6
4
方程x2 x 6 0的实数根 2,3
就是函数y x2 x 6的图象与
2
x轴的交点的横坐标.
-2 0
3
x
-2
函数y x2 x 6在实数 2,3处的值
-4
等于0,则 2,3叫做这个函数的零点.
相关文档
最新文档