重力势能和机械能守恒定律的典型例题

合集下载

《动能》 《重力势能》 《机械能守恒定律》习题

《动能》 《重力势能》 《机械能守恒定律》习题

一. 知识梳理:1. 动能:⑴.定义 物体由于运动而具有的能叫作动能。

用E K 表示。

. ⑵ 大小 221mv E K = ⑶.动能只有大小,没有方向,是标量,单位是焦耳,用J 表示。

⑷动能的大小不只与速度有关,还与物体的质量有关,动能只有正值。

2. 重力势能:⑴定义;地球上的物体具有跟它的高度有关的能叫做重力势能。

用E p 表示。

. ⑵大小:mgh E p =⑶.重力势能只有大小,没有方向,是标量。

单位是焦耳,用J 表示。

⑷.重力势能具有相对性。

在研究重力势能时,要首先选定一个零势能面。

重力势能有正负,但不表示方向,只表示物体相对于所选取的零势能面的位置。

在零势能面上,其值为正,在零势能面下,其值为负。

⑸ 重力势能与重力做功的关系:当重力做正功时,重力势能减少,重力做负功时,重力做负功时,重力势能增加。

3. 机械能守恒定律:⑴.机械能定义:动能和势能的统称为机械能。

⑵.定律内容:在只有重力做功的情形下,物体发生动能和重力势能的相互转化,机械能的总量保持不变。

⑶.定律的成立条件:只有重力和弹力做功。

物体可以有其它力作用,但其它力不作功,在解题时一定要注意。

⑷.解题步骤:①.确定研究对象 ②分析物体受力 ③判定守恒条件 ④当条件符合时,根据定律列方程。

二.练习题:《动能》 《重力势能》 《机械能守恒定律》习题㈠选择题:1.改变汽车的质量和速度都能使汽车的动能发生变化,在下面的四种情况中,能使汽车的动能变为原来的4倍的是:( )A.质量不变,速度增大到原来的4倍B.质量不变,速度增大到原来的2倍C.速度不变,质量增大到原来的2倍D.速度不变,质量增大到原来的3倍2.做匀加速直线运动的物体,速度从0增大到ν,动能增加了1E ∆;速度从ν增大到2ν,动能增加了2E ∆,则:( ) A. 1E ∆/2E ∆=1:1 B. 1E ∆/2E ∆=1:3 C. 1E ∆/2E ∆=1:2 D. 1E ∆/2E ∆=1:43.在下列几种运动中,遵守机械能守恒定律的运动是:( )A.雨点匀速下落B.物体做自由落体运动C.物体沿斜面匀速下滑D.4.一个物体从长度是L 、高度是H 的光滑斜面顶端A由静止开始下滑,如图所示,物体滑到斜面下端B 时速度的大小为:( )A.gHB.gH 2C.gLD.gL 25.沿着高度相同、坡度、长度和粗糙程度均不同的斜面把同一物体从底端拉到顶端,比较克服重力所做的功,正确的是( )A 沿长度大的粗糙斜面拉,克服重力做功最多B 沿坡度大的粗糙斜面拉,克服重力做功最多C 几种情况下克服重力所做的功相等,与路径无关D 无法比较6.物体在运动过程中,克服重力做功100J ,则正确的判断是( )A.物体的重力势能一定增加100JB.物体的重力势能一定减少100JC.物体的动能一定增加100JD.物体的动能一定减少100J7.两物体质量之比为1:3,它们距离地面高度之比是1:3。

机械能守恒定律的物理实例

机械能守恒定律的物理实例

机械能守恒定律的物理实例机械能守恒定律是物理学中的一个重要原理,它描述了一个封闭系统内的机械能不会发生变化。

在这篇文章中,我们将介绍一些机械能守恒定律的物理实例,以帮助读者更好地理解这一原理。

实例一:弹簧振子考虑一个简单的弹簧振子系统,它由一根弹簧和一个质点组成。

当质点在弹簧上做简谐振动时,机械能守恒定律成立。

在振动的过程中,质点的动能和弹性势能相互转化,但总的机械能保持不变。

无论质点处于振动的哪个位置,机械能的总量始终保持恒定。

实例二:滑雪运动滑雪运动也是一个机械能守恒的实例。

当滑雪者从山坡上下滑时,他的机械能由重力势能和动能组成。

滑雪者开始时处于较高的位置,拥有更多的重力势能。

随着滑雪者下滑,重力势能逐渐转化为动能。

当他达到最低点时,重力势能最小,动能最大。

然后滑雪者开始攀登下一个山坡,动能转化为重力势能。

在整个滑雪过程中,滑雪者的总机械能保持恒定。

实例三:摆锤考虑一个简单的摆锤系统,由一个线性摆锤和一个固定点组成。

当摆锤在摆动的过程中,机械能守恒定律同样成立。

摆锤摆动时,动能和重力势能不断转化。

在摆锤摆动的最高点,动能为零,重力势能最大;在摆锤摆动的最低点,动能最大,重力势能为零。

不论摆锤摆动的角度如何变化,机械能的总量始终保持不变。

结论以上的实例展示了机械能守恒定律在不同物理系统中的应用。

在这些实例中,机械能以不同形式存在,如重力势能、动能和弹性势能。

通过转化和交换,这些形式的机械能可以相互转化,但总的机械能保持不变。

机械能守恒定律的应用帮助我们理解物理系统中能量的转化过程,并为物理学的研究提供了重要的理论基础。

虽然机械能守恒定律在这些实例中得到了验证,但在实际情况下,存在能量的损耗和摩擦力等因素的影响。

因此,在实际应用中,机械能守恒并不是完全精确的,但仍可以作为近似的物理原理来应用。

通过以上实例,我们可以更好地理解机械能守恒定律的物理实现。

这一定律在物理学中具有广泛的应用,不仅帮助我们理解自然界中的现象,同时也为设计和优化各种机械系统提供了指导原则。

能量守恒练习题计算物体在不同位置的机械能

能量守恒练习题计算物体在不同位置的机械能

能量守恒练习题计算物体在不同位置的机械能能量守恒练习题:计算物体在不同位置的机械能能量守恒定律是物理学中重要的基本定律之一。

根据能量守恒定律,一个系统的机械能在任何时刻都保持不变,只会转化为其他形式的能量或转移至其他物体上。

在本文中,我们将通过一些练习题来计算物体在不同位置的机械能。

一、问题一: 物体从高处自由下落假设有一个物体从高处自由下落,当该物体处于不同位置时,如何计算其机械能?我们假设该物体质量为m,重力加速度为g,其高度和速度分别为h和v。

1. 当物体位于高度为h处时:机械能E = 动能K + 重力势能U动能K = 1/2mv^2重力势能U = mgh所以,物体在高度为h处的机械能为:E = 1/2mv^2 + mgh2. 当物体落到地面时:记地面高度为0,此时物体高度为h = 0,速度为v'。

动能K' = 1/2mv'^2重力势能U' = mgh' = 0(因为地面高度为0)所以,物体在地面的机械能为:E' = 1/2mv'^2 + 0 = 1/2mv'^2根据能量守恒定律:E = E'即,1/2mv^2 + mgh = 1/2mv'^2二、问题二: 物体在斜面上滑动假设有一个斜面,物体在斜面上滑动,斜面角度为θ,物体的质量为m,斜面上的高度为h,物体在不同位置的机械能如何计算?1. 当物体位于斜面顶端时:机械能E = 动能K + 重力势能U动能K = 1/2mv^2重力势能U = mgh所以,物体在斜面顶端的机械能为:E = 1/2mv^2 + mgh2. 当物体滑到斜面底端时:记斜面底端高度为0,此时物体高度为h',速度为v'。

动能K' = 1/2mv'^2重力势能U' = mgh' = 0(因为底端高度为0)所以,物体在斜面底端的机械能为:E' = 1/2mv'^2 + 0 = 1/2mv'^2根据能量守恒定律:E = E'即,1/2mv^2 + mgh = 1/2mv'^2三、问题三: 物体在弹簧上振动考虑一个质量为m的物体,以速度v撞击一个具有劲度系数为k的弹簧,物体和弹簧共同振动,当物体处于不同位置时,如何计算其机械能?1. 当物体位于弹簧伸长的最大位置时:机械能E = 动能K + 弹性势能U动能K = 1/2mv^2弹性势能U = 1/2kx^2(x为伸长/压缩的距离)所以,物体在伸长的最大位置的机械能为:E = 1/2mv^2 + 1/2kx^22. 当物体通过平衡位置并开始压缩弹簧时:物体速度逐渐降为0,所以动能K' = 1/2mv'^2 = 0压缩距离为-x',弹性势能U' = 1/2k(-x')^2 = 1/2kx'^2所以,物体在通过平衡位置并开始压缩弹簧时的机械能为:E' = 0 + 1/2kx'^2根据能量守恒定律:E = E'即,1/2mv^2 + 1/2kx^2 = 0 + 1/2kx'^2综上所述,利用能量守恒定律可以计算物体在不同位置的机械能。

重力势能、机械能守恒定律

重力势能、机械能守恒定律
物体运动过程中,重力对其做功500J,则物 体的( ) A.动能一定增加500J B.动能一定减少500J C.重力势能一定增加500 一物体在自由下落过程中,重力做了2J的功, 则( ) A.该物体重力势能减少,减少量等于2J B.该物体重力势能减少,减少量大于2J C.该物体重力势能减少,减少量小于2J D.该物体重力势能增加,增加量等于2J
实战训练
质量为的小物块,从离桌面高处由静止下落 (不计阻力),桌面离地面高为,如图所示。 如果以桌面为参考平面,那么小物块落地时 的机械能及整个过程中重力势能的变化分别 是( ) A.mgh,增加mg(H-h) B.mgh,减少mg(H+h) C.mgH,增加mg(H+h) D.mgH,减少mg(H-h)
物理学业水平测试总复习 之
重力势能、机 械能守恒定律
重力势能
定义:由物体所处位置的高度决定的能量 公式:跟物体所受重力与所处高度有关
Ep mgh
特别注意:参考平面的选取
实战训练
(2010年真题)如图,质量为m的小球,从 离桌面H高处自由下落.已知桌面离地高度 为h,若以桌面为参考平面,则小球落到地 面时的重力势能为( ) A.-mgh B.-mg(H+h) C.mgH D.-mg(H-h)
实战训练
如图所示,质量为m的小木块,从半径为r的竖 直圆轨道上的A点滑向B点,由于摩擦力的作用, 木块的速率保持不变,则在此过程中( ) A.木块的机械能守恒 B.木块的动能不断增大 C.木块的机械能转化成内能 D.木块的重力势能转化为动能
实战训练
关于机械能是否守恒的叙述中正确的是( ) A.只要重力对物体做了功,物体的机械能一 定守恒 B.做匀速直线运动的物体,机械能一定守恒 C.外力对物体做的功为零时,物体的机械能 一定守恒 D.只有重力对物体做功时,物体的机械能一 定守恒

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法

机械能守恒定律常考题型及解题方法要点一机械能守恒的判断(系统摩擦力做功,系统机械能一定不守恒)例1.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对跟踪训练1.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大要点二机械能守恒定律的简单应用(熟练理解“守恒”)例2.如图所示,一轻杆可绕O点的水平轴无摩擦地转动,杆两端各固定一个小球,球心到O轴的距离分和r2,球的质量分别为m1和m2,且m1>m2,r1>r2,将杆由水平位置从静止开别为r始释放,不考虑空气阻力,求小球m1摆到最低点时的速度是多少?跟踪训练2.如图所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?要点三应用机械能守恒定律处理竖直平面内的圆周运动(整体分析)例3.如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0 m的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为半径r=0.69 m的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m=0.01 kg的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到曲面N的某一点上,取g=10 m/s2.问:(1)发射该钢珠前,弹簧的弹性势能E p多大?(2)钢珠落到圆弧N上时的动能E k多大?(结果保留两位有效数字)跟踪训练3.如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF 是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合的点.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放.(g取10 m/s2)(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.课堂分组训练A组机械能守恒的判断1.[多选]一个轻质弹簧,固定于天花板的O点处,原长为L,如图所示.一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,在此过程中()A.由A到C的过程中,物块的机械能守恒B.由A到B的过程中,物块的动能和重力势能之和不变C.由B到C的过程中,弹性势能的变化量与克服弹力做的功相等D.由A到C的过程中,重力势能的减少量等于弹性势能的增加量2.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()A.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mghD.弹簧的弹性势能最大时圆环动能最大3.[多选]如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始运动过程中()A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒B组机械能守恒的简单应用4.如图是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系物体A、B,且m A=2m B,从图示位置由静止开始释放A物体,当物体B到达半圆顶点时,求绳的张力对物体B所做的功.C组应用机械能守恒定律处理竖直平面内的圆周运动5.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点).a 站在地面上,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态.当演员b摆至最低点时,a刚好对地面无压力,则演员a的质量与演员b的质量之比为()A.1∶1 B.2∶1 C.3∶1 D.4∶16.为了研究过山车的原理,物理兴趣小组提出了下列设想:如图所示,取一个与水平方向夹角为30°,长L=0.8 m的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道都是光滑的.其中AB与BC轨道以微小圆弧相接,竖直圆轨道的半径R=0.6 m.现使一个质量m=0.1 kg的小物块从A点开始以初速度v0沿倾斜轨道滑下,g取10 m/s2.问:(1)若v0=5.0 m/s,则小物块到达B点时的速度为多大?(2)若v0=5.0 m/s,小物块到达竖直圆轨道的最高点时对轨道的压力为多大?(3)为了使小物块在竖直圆轨道上运动时能够不脱离轨道,v0大小应满足什么条件?7. 如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。

机械能守恒典型例题带详解

机械能守恒典型例题带详解

第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。

解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。

(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。

在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。

由以上两式解得104204220⨯==g v h m=10m 。

点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。

本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。

例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。

解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==。

根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。

解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。

重力势能的减少量AB241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。

高一物理机械能守恒解析及典型例题

高一物理机械能守恒解析及典型例题

高一物理机械能守恒解析及典型例题(1)只有重力做功时机械能守恒.设一个质量为m 的物体自然下落,经过高度为1h 的A 点(初位置)时速度为1v ,下落到高度为2h 的B 点(末位置)时速度为2v (图8-42),由动能定理得:21222121mv mv W G -=.又由重力做功与重力势能的关系得:21mgh mgh W G -= 则2121222121mgh mgh mv mv -=-或2221212121mgh mv mgh mv +=+ 这表明,在自由落体中,物体的动能与重力势能之和保持不变,则机械能守恒.事实上,上面推导过程中涉及重力做功与动能变化、势能变化的关系,与物体的运动轨迹形状无关,因而物体只受重力作曲线运动(如平抛运动、斜抛运动等)时,机械能也一定守恒.(2)只有弹力作用时机械能守恒.如图8-43所示,一个质量为m 的小球被处于压缩状态的弹簧弹开,速度由1v 增大到2v ,由动能定理得:1221222121k k N E E mv mv W -=-= 由弹力做功与弹性势能的关系得:21p p N E E W -= 则2112p p k k E E E E -=-即2211p k p k E E E E +=+,物体的动能与弹性势能之和保持不变,机械能守恒.(3)既有重力做功,又有弹力做功,并且只有这两个力做功时,机械能也守恒.如图8—44所示,一根轻弹簧一端固定在天花板上,另一端固定一质量为m 的小球,小球在竖直平面内从高处荡下,在速度由1v 增大到2v 的过程中,由动能定理得21222121mv mv W W N G -=+ 又由重力做功与重力势能的关系得21p p G E E W -= 由弹力做功与弹性势能的关系得''21p p N E E W -= 则212221212121mv mv 'E 'E E E p p p p -=-+- 即2222211121'21'mv E E mv E E p p p p ++=++,物体的动能、重力势能和弹性势能之和保持不变,机械能守恒.(4)有除重力和弹力之外的力做功,将使机械能增大或减小,机械能不守恒.例如,升降机匀速提升重物时,重物的动能不变,势能在增大,总的机械能不守恒,原因是除重力做功外,升降机也对重物做功,且做正功,通过做功将电能转化为重物的机械能.又例如,在水平面上运动的汽车刹车后,逐渐减速并停止,汽车的重力势能不变,动能在减小,总的机械能在减少,原因是汽车受到摩擦力做功,且做负功,通过做功将机械能转化为内能.(5)有除重力和弹力之外的力做功,但力所做功的代数和为零,则机械能守恒.例如,汽车在水平面上匀速行驶时,虽然受牵引力与摩擦力的作用,但其动能和势能均不变,机械能守恒.原因是牵引力与摩擦力做功的代数和为零例2 一轻绳通过无摩擦的定滑轮与在倾角为30°的光滑斜面上的物体m 1连接,另一端和套在竖直光滑杆上的物体m 2连接.已知定滑轮到杆的距离为3m ,物体m 2由静止从AB 连线为水平的位置开始下滑1m 时,m 1、m 2恰受力平衡如图所示.试求:(1)m 2在下滑过程中的最大速度.(2)m 2沿竖直杆能够向下滑动的最大距离一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物体做的功等于( )A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和4.一个质量为0.3 kg 的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv =0B .Δv =12 m/sC .W =0D .W =10.8 J5.将一物体由地面竖直上抛,如果不计空气阻力,物体能够达到的最大高度为H ,当物体在上升过程中的某一位置时,它的动能是重力势能的2倍,则这一位置的高度为( )A .32H B .2H C .3H D .4H6 、(2010·成都市摸底测试)如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=0.25.设计要求:木箱在轨道顶端时,自动装货装置将质量m =2 kg 的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小;(2)满足设计要求的木箱质量.1.如图8—51所示,小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩至最短,若不计弹簧的质量和空气阻力,小球由a →b →c 的运动过程中A .小球的动能逐渐减小B .小球的重力势能逐渐减小C .小球的机械能守恒D .小球的加速度逐渐减小2.两个质量相同的小球A 、B ,分别用细线悬挂在等高的 、 1O 、2O 点,A 球的悬线比B球的长,如图8—52所示,把两球均拉到与悬线水平后由静止释放,以悬点所在平面为参考平面,到两球经最低点时的A. A球的速度等于B球的速度B.A球的动能等于B球的动能C.A球的机械能等于B球的机械能D.A球对绳的拉力等于B球对绳的拉力1.下列叙述中正确的是( )A.合外力对物体做功为零的过程中,物体的机械能一定守恒B.做匀速直线运动的物体机械能一定守恒C.做匀变速运动的物体机械能可能守恒D.当只有重力对物体做功时,物体的机械能守恒2.从地面竖直上抛两个质量不同而动能相同的物体(不计空气阻力),当上升到同一高度时,它们( )A.所具有的重力势能相等B.所具有的动能相等C.所具有的机械能相等D.所具有的机械能不等3.如下图所示,在粗糙斜面顶端固定一弹簧,其下端挂一物体,物体在A点处于平衡状态.现用平行于斜面向下的力拉物体,第一次直接拉到B点,第二次将物体先拉到C点,再回到B点.则这两次过程中( )A.重力势能改变量相等B.弹簧的弹性势能改变量相等C.摩擦力对物体做的功相等D.弹簧弹力对物体做功相等5.物体由静止出发从光滑斜面顶端自由滑下,当所用时间是下滑到底端所用时间的一半时,物体的动能与势能(以斜面底端为零势能参考平面)之比为( )A.1∶4B.1∶3C.1∶2D.1∶210.如下图所示,ABC是一段竖直平面内的光滑的1/4圆弧形轨道,圆弧半径为R,O为圆心,OA水平,CD是一段水平光滑轨道.一根长2R、粗细均匀的细棒,开始时正好搁在轨道两个端点上.现由静止释放细棒,则此棒最后在水平轨道上滑行的速度为 .11.如下图所示,在细线下吊一个小球,线的上端固定在O点,将小球拉开使线与竖直方向有一个夹角后放开,则小球将往复运动,若在悬点O的正下方A点钉一个光滑小钉,球在从右向左运动中,线被小钉挡住,若一切摩擦阻力均不计,则小球到左侧上升的最大高度是( )A.在水平线的上方B.在水平线上C.在水平线的下方D.无法确定12.如下图所示,OA、OB、BC均为光滑面,OA=OB+BC,角α>β,物体从静止由O点放开,沿斜面到A点所需时间为t1,物体从静止由O点放开沿OBC面滑到C点时间为t2,A、C 在同一水平面上,则关于t1与t2的大小的下述说法中正确的是( )A.t1=t2B.t1>t2C.t1<t2D.条件不足,无法判定13.如下图所示,有许多根交于A点的光滑硬杆具有不同的倾角和方向.每根光滑硬杆上都套有一个小环,它们的质量不相等.设在t=0时,各小环都由A点从静止开始分别沿这些光滑硬杆下滑,那么这些小环下滑速率相同的各点联结起来是一个( )A.球面B.抛物面C.水平面D.不规则曲面16.如下图所示,分别用质量不计不能伸长的细线与弹簧分别吊质量相同的小球A、B,将二球拉开使细线与弹簧都在水平方向上,且高度相同,而后由静止放开A、B二球,二球在运动中空气阻力不计,到最低点时二球在同一水平面上,关于二球在最低点时速度的大小是( )A.A球的速度大B.B球的速度大C.A、B球的速度大小相等D.无法判定19.如下图所示,一轻质杆上有两个质量相等的小球A、B,轻杆可绕O点在竖直平面内自由转动.OA=AB=l,先将杆拉至水平面后由静止释放,则当轻杆转到竖直方向时,B球的速度大小为 .3.22.如上图所示,质量相等的重物A 、B 用绕过轻小的定滑轮的细线连在一起处于静止状态.现将质量与A 、B 相同的物体C 挂在水平段绳的中点P ,挂好后立即放手.设滑轮间距离为2a ,绳足够长,求物体下落的最大位移.1.一物体从高处同一点沿不同倾角的光滑斜面滑到同一水平面,则( )A.在下滑过程中,重力对物体做的功相同B.在下滑过程中,重力对物体做功的平均功率相同C.在物体滑到水平面的瞬间,重力对物体做功的瞬时功率相同D.在物体滑到水平面的瞬间,物体的动能相同3.质量为m 的汽车以恒定功率P 在平直公路上行驶,汽车匀速行驶的速率为υ1,若汽车所受阻力不变,则汽车的速度为υ2(υ2<υ1=时,汽车的加速度大小是( ) A.2m v P B. 1m vP C. 2121)(v m v v v P - D. )()(22121v v m v v P +- 6.如下图所示,木块A 放在木块B 上左端,用恒力F 将A 拉至B 的右端,第一次将B 固定在地面上,F 做功为W 1,生热为Q 1;第二次让B 可以在光滑地面上自由滑动,这次F 做的功为W 2,生热为Q 2,则应有( )A.W 1<W 2,Q 1=Q 2B.W 1=W 2,Q 1=Q 2C.W 1<W 2,Q 1<Q 2D.W 1=W 2,Q 1<Q 29.如下图所示,小球做平抛运动的初动能为6J ,不计一切阻力,它落到斜面P 点时的动能为( )A.10JB.12JC.14JD.8J8.有一槽状的光滑直轨道,与水平桌面成某一倾角固定.一可视为质点的滑块,从轨道顶端A 点由静止开始下滑,经中点C 滑至底端B 点.设前半程重力对滑块做功的平均功率为P 1,后半程重力对滑块做功的平均功率为P 2,则P 1∶P 2等于( ) A.1∶1 B.1∶2 C.1∶2 D.1∶(2+1)。

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题在高中力学的学习中,机械能守恒定律是一个非常重要的知识点。

它不仅在解决物理问题时经常用到,也是理解能量转化和守恒的关键。

下面,我们就来一起探讨一些机械能守恒定律的典型例题。

例题一:自由落体运动一个质量为 m 的物体从高度为 h 的地方自由下落,忽略空气阻力,求物体下落至地面时的速度 v。

解析:在自由落体运动中,物体只受到重力的作用,重力势能逐渐转化为动能。

初始时刻,物体的机械能为重力势能 mgh,下落至地面时,物体的机械能为动能 1/2mv²。

因为机械能守恒,所以有 mgh =1/2mv²,解得 v =√2gh 。

这个例题是机械能守恒定律的最基本应用之一,它清晰地展示了重力势能如何转化为动能。

例题二:竖直上抛运动一个质量为 m 的物体以初速度 v₀竖直上抛,忽略空气阻力,求物体上升的最大高度 h。

解析:物体竖直上抛时,动能逐渐转化为重力势能。

在初始时刻,物体的机械能为动能 1/2mv₀²,当物体上升到最大高度时,速度为 0,机械能为重力势能 mgh。

由于机械能守恒,所以 1/2mv₀²= mgh,解得 h = v₀²/ 2g 。

这个例题与自由落体运动相反,是动能转化为重力势能的过程。

例题三:光滑斜面运动一个质量为 m 的物体从光滑斜面的顶端由静止开始下滑,斜面的高度为 h,斜面的长度为 L,求物体滑到底端时的速度 v。

解析:物体在斜面上运动时,重力势能转化为动能。

初始时刻,物体的机械能为重力势能 mgh,滑到底端时,物体的机械能为动能1/2mv²。

因为斜面光滑,没有摩擦力做功,机械能守恒。

根据几何关系,物体下落的高度 h 与斜面长度 L 和斜面倾角θ 有关,h =Lsinθ。

所以mgh = 1/2mv²,解得 v =√2gh =√2gLsinθ 。

这个例题展示了在斜面这种常见的情境中机械能守恒定律的应用。

机械能守恒定律典型例题

机械能守恒定律典型例题

机械能守恒定律典型例题题型一:单个物体机械能守恒问题1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1 m,长2 m,不计空气阻力,物体滑到斜面底端的速度是多大?拓展:若光滑的斜面换为光滑的曲面,求物体滑到斜面底端的速度是多大?2、把一个小球用细绳悬挂起来,就成为一个摆,摆长为l,最大偏角为θ,求小球运动到最低位置时的速度是多大?.题型二:连续分布物体的机械能守恒问题1、如图所示,总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,则铁链刚脱离滑轮的瞬间的速度多大?2、一条长为L的均匀链条,放在光滑水平桌面上,链条的一半垂于桌边,如图所示,现由静止开始使链条自由滑落,当它全部脱离桌面时的速度多大?3、如图所示,粗细均匀的U型管内装有同种液体,开始两边液面高度差为h,管中液体总长度为4h,后来让液体自由流动,当液面的高度相等时,右侧液面下降的速度是多大?题型三:机械能守恒定律在平抛运动、圆周运动中的应用(单个物体)1、如图所示,AB是竖直平面内的四分之一圆弧轨道,其下端B与水平直轨道相切,一小球自A点起由静止开始沿轨道下滑。

已知圆弧轨道半径为R,小球的质量为m,不计各处摩擦。

求:(1)小球运动到B点时的动能(2)小球下滑到距水平轨道的高度为12R时的速度大小和方向(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大?2、如图所示,固定在竖直平面内的光滑轨道,半径为R,一质量为m的小球沿逆时针方向在轨道上做圆周运动,在最低点时,m对轨道的压力为8mg,当m 运动到最高点B时,对轨道的压力是多大?3、如上图所示,可视为质点的小球以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道.若不计轨道的摩擦,为使小球能通过圆形轨道的最高点,则v0至少应为多大?4、如右图所示,长度为l的无动力“翻滚过山车”以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道,若不计轨道的摩擦,且l>2πR,为使“过山车”能顺利通过圆形轨道,则v0至少应为多大?5、游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如左图所示,我们把这种情况抽象为右图所示的模型:弧形轨道的下端与竖直圆轨道相接.使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h 大于一定值.小球就可以顺利通过圆轨道的最高点. 如果已知圆轨道的半径为R,h至少要等于多大?不考虑摩擦等阻力。

机械能守恒定律的综合应用经典例题

机械能守恒定律的综合应用经典例题

机械能守恒定律的综合应用例1、如图所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴。

AO 、BO 的长分别为2L 和L 。

开始时直角尺的AO 部分处于水平位置而B 在O 的正下方。

让该系统由静止开始自由转动,求:⑴当A 到达最低点时,A 小球的速度大小v ;⑵ B 球能上升的最大高度h ;⑶开始转动后B 球可能达到的最大速度v m 。

解析:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。

⑴过程中A 的重力势能减少, A 、B 的动能和B 的重力势能增加,A 的即时速度总是B 的2倍。

222321221322⎪⎭⎫ ⎝⎛⋅+⋅⋅+⋅=⋅v m v m L mg L mg ,解得118gL v = ⑵B 球不可能到达O 的正上方,它到达最大高度时速度一定为零,设该位置比OA 竖直位置向左偏了α角。

2mg ∙2L cos α=3mg ∙L (1+sin α),此式可化简为4cos α-3sin α=3,解得sin (53°-α)=sin37°,α=16°⑶B 球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功W G 。

设OA 从开始转过θ角时B 球速度最大,()223212221v m v m ⋅⋅+⋅⋅=2mg ∙2L sin θ-3mg ∙L (1-cos θ) =mgL (4sin θ+3cos θ-3)≤2mg ∙L ,解得114gL v m =例2、如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?解析:A 球沿半圆弧运动,绳长不变,B A 、两球通过的路程相等,A 上升的高度为R h =;B 球下降的高度为242R R H ππ==;对于系统,由机械能守恒定律得:K P E E ∆=∆- ;2)(212v m M mgR R Mg E P +=+-=∆∴π m M mgR RMg v c +-=∴2π例3、如图所示,均匀铁链长为L ,平放在距离地面高为L 2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度? 解:选取地面为零势能面:2212)102(51254mv L mg L L mg L mg +=-+ 得:gL v 7451=v 1⑴ ⑵⑶例4、如图所示,粗细均匀的U 形管内装有总长为4L 的水。

机械能守恒定律典型例题

机械能守恒定律典型例题

机械能守恒定律1.在只有重力做功的情况下,_________________________,这个结论叫作机械能守恒定律.2.下列情况中,运动物体机械能一定守恒的是( ).(A)物体所受的合外力为零(B)物体不受摩擦力(C)物体受到重力和摩擦力(D)物体只受重力3.关于机械能是否守恒,下列叙述中正确的是( ).(A)作匀速直线运动的物体的机械能一定守恒(B)作匀变速运动的物体机械能可能守恒(C)外力对物体做功为零时,机械能一定守恒(D)只有重力对物体做功,物体机械能一定守恒4.下列说法中正确的是( ).(A)一个物体所受的合外力为零,它的机械能一定守恒(B)一个物体所受的合外力恒定不变,它的机械能可能守恒(C)一个物体作匀速直线运动,它的机械能一定守恒(D)一个物体作匀加速直线运动,它的机械能可能守恒5.a、b、c三球自同一高度以相同速率抛出,a球竖直上抛,b球水平抛出,c球竖直下抛.设三球落地的迷率分别为v a、v b,v c则( ).(A)v a>v b>v c (B)v a=v b>v c (C)v a>v b=v c(D)v a =v b =v c6.质量为m 的物体,以初速度v 0由固定的光滑斜面的底端沿斜面向上滑动,在滑动过程中,当高度为h 时,该物体具有的机械能为(). (A)20mv 21 (B)mgh mv 2120 (C)mgh (D)mgh -mv 21207.如图所示,质量相同的两个小球,分别用长l 和2l 的细绳悬挂在天花板上,分别拉起小球使线伸直呈水平状态,然后轻轻释放.当小球到达最低位置时( ).(A)两球运动的线速度相等 (B)两球运动的角速度相等(C)两球的向心加速度相等 (D)细绳对两球的拉力相等8.当重力对物体做正功时,物体的( ).(A)重力势能一定增加,动能一定减少 (B)重力势能一定减少,动能一定增加(C)重力势能一定减少,动能不一定增加 (D)重力势能不一定减少,动能一定增加9.以下运动中机械能守恒的是( ).(A)物体沿斜面匀速下滑(B)物体从高处以g/3的加速度竖直下落(C)不计阻力,细绳一端拴一小球,使小球在竖直平面内作圆周运动(D)物体沿光滑的曲面滑下10.图中的四个选项,木块均在固定的斜面上运动,其中图(A)(B)(C)中的斜面是光滑的,图(A)(B)中的F为木块所受的外力,方向如图中箭头所示,图(A)(B)(D)中的木块向下运动,图(C)中的木块向上运动.在这四个图所示的运动过程中,机械能守恒的是图( ).11.枪竖直向上以初速度v0发射子弹,忽略空气阻力,当子弹离枪口距离为____时,子弹的动能是其重力势能的一半.12.如图所示,一小球从倾角为30°的固定斜面上的A点水平抛出,初动能为6J,问球落到斜面上的B点时动能有多大?13.如图所示,通过定滑轮悬拌两个质量为m1、m2的物体(m1>m2),不计绳子质量、绳子与滑轮问的摩擦,在m1向下运动一段距离的过程中,下列说法中正确的是 ( ).(A)m1势能的减少量等于m2动能的增加量(B)m1势能的减少量等于m2势能的增加量(C)m1机械能的减少量等于m2机械能的增加量(D)m1机械能的减少量大于m2机械能的增加量14.如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端被压缩到b位置.现将重球(视为质点)从高于a位置的c位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置 d.以下关于重球运动过程的正确说法应是( ).(A)重球下落压缩弹簧由a至d的过程中,重球作减速运动(B)重球下落至b处获得最大速度(C)由a至d过程中重球克服弹簧弹力做的功等于小球由c下落至d处时重力势能减少量(D)重球在b位置处具有的动能等于小球由c下落到b处减少的重力势能15_如图所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球,支架悬挂在O点,可绕过O点并与支架所在平面相垂直的同定轴转动.开始时OB与地面相垂直,放手后支架开始运动,在不计任何阻力的情况下,下列说法中正确的是( ).(A)A球到达最低点时速度为零(B)A球机械能减少量等于B球机械能增加量(C)B球向左摆动所能达到的最高位置应高于A球开始运动时的高度(D)当支架从左向右返回摆动时,A球一定能回到起始高度16.如图35所示,一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ.17.质量是2000kg、额定功率为80kW的汽车,在平直公路上行驶中的最大速度为20m/s。

机械能守恒定律典型例题

机械能守恒定律典型例题

机械能守恒定律典型例题一、单物体在重力作用下的机械能守恒1. 例题- 质量为m = 1kg的物体从离地面h = 5m高处以初速度v_0= 10m/s水平抛出,不计空气阻力,求物体落地时的速度大小。

2. 解析- (1)首先分析物体的运动过程,物体在平抛运动过程中,只有重力做功。

- (2)取地面为零势能面,根据机械能守恒定律E_1=E_2。

- (3)物体抛出时的机械能E_1包括动能E_k1和重力势能E_p1。

- 动能E_k1=(1)/(2)mv_0^2=(1)/(2)×1×10^2 = 50J。

- 重力势能E_p1=mgh = 1×10×5=50J。

- 所以E_1=E_k1 + E_p1=50 + 50 = 100J。

- (4)物体落地时的机械能E_2只有动能E_k2(因为重力势能E_p2 = 0)。

- (5)由E_1=E_2,即100=(1)/(2)mv^2,解得v=√(frac{2×100){1}} =10√(2)m/s。

二、系统内物体间机械能守恒(轻绳连接)1. 例题- 如图所示,一轻绳跨过定滑轮,两端分别系着质量为m_1和m_2的物体(m_1,m_2开始时静止在地面上,当m_1由静止释放下落h高度时(m_1未落地),求此时m_2的速度大小。

(不计滑轮质量和摩擦)2. 解析- (1)对于m_1和m_2组成的系统,只有重力做功,系统机械能守恒。

- (2)设m_1下落h高度时,m_1和m_2的速度大小均为v。

- (3)以地面为零势能面,系统初始机械能E_1为m_1的重力势能m_1gh。

- (4)系统末态机械能E_2为m_1的动能(1)/(2)m_1v^2、m_1的重力势能m_1g(h - h)(此时m_1相对于初始位置下降了h),以及m_2的动能(1)/(2)m_2v^2和m_2的重力势能m_2gh。

- (5)根据机械能守恒定律E_1=E_2,即m_1gh=(1)/(2)m_1v^2+(1)/(2)m_2v^2+m_2gh。

机械能及其守恒定律练习5

机械能及其守恒定律练习5

机械能及其守恒定律练习5在力学中,机械能是指物体的动能和势能总和。

机械能守恒定律是指在没有外力做功和能量损失的条件下,闭合系统中的机械能保持不变。

本文将通过练习题的方式来巩固对机械能及其守恒定律的理解和应用。

练习题1一个质量为2kg的物体从高度为10m的位置自由下落,落地后弹起到高度为6m的位置。

求物体开始下落前的速度。

解答:首先我们可以利用重力势能和动能的守恒来解答这个问题。

在物体自由下落的过程中,重力势能减少,而动能增加。

当物体到达高度为6m的位置时,重力势能变为0,动能为最大值。

根据机械能守恒定律可得:初始重力势能 + 初始动能 = 最终重力势能 + 最终动能mgh + 0.5mv^2 = 0 + 0.5mv^2解方程得v = √(2gh)代入 g = 9.8m/s^2,h = 10m,可得v = √(2 × 9.8 × 10) ≈ 14m/s所以物体开始下落前的速度约为14m/s。

练习题2一个质量为0.5kg的物体由光滑的水平面上的位置A沿光滑斜面滑下,滑到斜面底端位置B时的速度为4m/s。

斜面倾角为30°,忽略空气阻力。

求物体从位置A到位置B的高度差。

解答:在这个问题中,我们需要利用重力势能、动能和斜面上的势能的守恒来求解。

首先计算物体在位置B时的动能和斜面上的势能。

设物体在位置B 的高度为hB,设斜面上的高度为hS。

根据物体在位置B的速度和动能的关系,可得:动能 = 0.5mv^2 = 0.5 × 0.5 × 4^2 = 4J根据斜面上的势能和动能的关系,可得:斜面上的势能 = mghS = 0.5 × 9.8 × hS根据物体从位置A到位置B的高度差可得:高度差 = hS - hB根据机械能守恒定律可得:初始重力势能 + 初始动能 = 最终斜面上的势能 + 最终动能0 + 0.5 × 0.5 × 0^2 = 0.5 × 9.8 × hS + 4解方程可得:hS = (0.5 × 0.5 × 0^2 - 4) / (0.5 × 9.8)代入数值计算可得:hS = -0.4082m因为高度差不能为负数,所以解得的结果不符合实际情况。

重力势能和机械能守恒定律的典型例题

重力势能和机械能守恒定律的典型例题

“重力势能和机械能守恒定律”的典型例题【例1】如图所示,桌面距地面0.8m,一物体质量为2kg,放在距桌面0.4m的支架上.(1)以地面为零势能位置,计算物体具有的势能,并计算物体由支架下落到桌面过程中,势能减少多少?(2)以桌面为零势能位置时,计算物体具有的势能,并计算物体由支架下落到桌面过程中势能减少多少?【分析】根据物体相对零势能位置的高度,直接应用公式计算即得.【解】(1)以地面为零势能位置,物体的高度h1=1.2m,因而物体的重力势能:E p1=mgh1=2×9.8×1.2J=23.52J物体落至桌面时重力势能:E p2=mgh2=2×9.8×0.8J=15.68J物体重力势能的减少量:△E p=E p1-E p2=23.52J-15.68J=7.84J而物体的重力势能:物体落至桌面时,重力势能的减少量【说明】通过上面的计算,可以看出,物体的重力势能的大小是相对的,其数值与零势能位置的选择有.而重力势能的变化是绝对的,它与零势能位置的选择无关,其变化值是与重力对物体做功的多少有关.当物体从支架落到桌面时重力做功:【例2】质量为2kg的物体自高为100m处以5m/s的速度竖直落下,不计空气阻力,下落2s,物体动能增加多少?重力势能减少多少?以地面为重力势能零位置,此时物体的机械能为多少?(g取10m/s2)【分析】物体下落时,只受重力作用,其加速度a=g,由运动学公式算出2s末的速度和2s内下落高度,即可由定义式算出动能和势能.【解】物体下落至2s末时的速度为:2s内物体增加的动能:2s内下落的高度为:重力势能的减少量:此时物体离地面的高度为:h′=H-h=(100-30)m=70m以地面为零势能位置时,物体的机械能为:【说明】抛出后,由于物体只受重力作用,整个运动过程中只有重力做功,物体的机械能守恒.刚抛出时,物体的机械能为:在下落过程中,重力势能的减少量恰等于动能的增加量,即△E k=△E p【例3】质量为1.0kg的物体,自空中落下,以8.0m/s2的加速度经A点到达B点,A、B相距0.75m.若物体在B点时的动能为8.0J,那么通过AB的过程中物体动能的增加量为多少?物体克服阻力做多少功?(取g=10m/s2)【分析】由于下落的加速度a<g,在下落时一定受到阻力,根据牛顿第二定律,可算出阻力,于是即可得克服阻力的功.已知物体在B点的动能,可算出在B 点的速度,结合运动学公式算出A点的速度后,即可算出动能的增量.【解】设下落中物体受到的阻力为f,由mg-f=ma得f=mg-ma=1.0(10-8)N=2N物体克服阻力做功:物体从A落到B的过程中,动能的增加量为:△E p=E kB-E kA=8.0J-2.0J=6.0J【说明】物体从A落到B的过程中,势能减少:△E p=mgs=1×10×0.75J=7.5J它大于物体动能的增加,可见其机械能不守恒.这是由于存在阻力的缘故.势能的减少与动能增加量之差恰等于物体克服阻力做的功,即△E p-△E k=W f这也就是从A到B的过程中所减少的机械能.【例4】如图所示,光滑圆管形轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r《R,有一质量m,半径比r略小的光滑小球以水平初速v0射入圆管,(1)若要小球能从C端出来,初速v0多大?(2)在小球从C端出来的瞬间,对管壁压力有哪几种典型情况,初速v0各应满足什么条件?【分析】小球在管内运动过程中,只有重力做功,机械能守恒,要求小球能从C端射出,小球运动到C点的速度v c>0.根据机械能守恒定律即可算出初速v0.小球从C端射出时可能有三种典型情况:①刚好对管壁无压力;②对下管壁有压力;③对上管壁有压力.同理由机械能守恒可确定需满足的条件.【解】(1)小球从A端射入后,如果刚好能到达管顶,则v c=0,由机械能守恒因此,要求小球能从C端出来,必须使v c>0,所以入射速度应满足条件(2)小球从C端出来的瞬间,可以有三种典型情况:①刚好对管壁无压力,此时需满足条件联立得入射速度②对下管壁有压力,此时相应的入射速度为③对上管壁有压力,相应的入射速度为【例5】如图所示,劲度系数k1的轻质弹簧两端分别与质量为m1、m2的物块1、2栓接,劲度系数为k2的轻质弹簧上端与物块2栓接,下端压在桌面(不栓接),整个系统处于平衡状态.现施力将物块1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.【分析】设原来两弹簧压缩量分别为x1和x2,由物体的力平衡知当施力将物块1缓慢上提至下面弹簧刚脱离桌面时,表示下面的弹簧已恢复原长,物块2升高的高度h2=x2,所以在此过程中,物块2的重力势能增加此时,上面的弹簧受到拉伸,设其伸长量为x'1,由物块2的力平衡条件知,则物块1在这过程中升高的高度为所以,物块1的重力势能增加【例6】关于机械能是否守恒的叙述,正确的是[ ]A.作匀速直线运动的物体的机械能一定守恒B.作匀变速运动的物体机械能可能守恒C.外力对物体做功为零时,机械能一定守恒D.只有重力对物体做功,物体机械能一定守恒【分析】机械能守恒的条件是除重力对物体做功外,没有其它外力对物体做功,或其它外力对物体做功的代数和等于零.当物体作匀速直线运动时,除重力对物体做功外,可能还有其他外力做功.如降落伞在空中匀速下降时,既有重力做功,又有阻力做功,机械能不守恒.物体作匀变速运动时,可能只有重力对物体做功,如自由落体运动,此时物体的机械能守恒.因物体所受的外力,指的是包括重力在内的所有外力,当外力对物体做功为零时,可能是处于有介质阻力的状态,如匀速下降的降落伞,所以机械能不一定守恒.【答】B,D.【例7】某人以v0=4m/s的初速度,抛出一个质量为m的小球,测得小球落地时的速度大小为8m/s,则小球刚抛出时离开地面的高度为多少?取g=10m/s2.空气阻力不计.【分析】小球从抛出到落地过程中,不受阻力,只有重力做功,由小球的机械能守恒即可算出离地高度.【解答】设小球抛出时的高度为h,落地速度为v t,取抛出和落地为始、末两状态,以地面为零势能位置,由机械能守恒定律得:出结果,尽管答案相同,但是不正确的.这里的小球不一定作直线运动,必须根据机械能守恒求解.【例8】如图所示,以速度v0=12m/s沿光滑地面滑行的小球,上升到顶部水平的跳板上后由跳板飞出,当跳板高度h多大时,小球飞行的距离s最大?这个距离是多少?(g=10m/s2)【分析】小球上滑到跳板顶端的过程中,只有重力做功,机械能守恒.从跳板顶飞出,小球作平抛运动.【解】设小球从跳板顶飞出的速度为v,由机械能守恒(取底部为势能的参考平面)得小球从顶端飞出后作平抛运动,其水平位移为为了找出使水平位移s最大的条件,对上式作变换得可见,当满足条件小球飞出后的水平距离最大,其值为【例9】图中圆弧轨道AB是在竖直平面内的1/4圆周,在B点,轨道的切线是水平的.一质点自A点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B点时的加速度大小和刚滑过B点时的加速度大小分别为( )A.0,g B.g,g C.2g,g D.2g,2g【分析】质点从A到B的下滑过程中,只有重力做功,机械能守恒.取过B点的水平面为零势能面,设轨道半径为R,则有质点从A到B是作变速圆周运动,当它刚到达B点瞬间的加速度为联立(1),(2)两式得质点刚滑过B点,仅受重力作用,其加速度大小为【答】C.【说明】必须注意,物体的加速度跟所受外力是一个瞬时关系,一旦外力变化,加速度随即变化.图中质点刚到达B点时,受到轨道向上的弹力和竖直向下的重力作用,产生的加速度指向过B点竖直向上的方向,即指向圆心.刚滑过B 点,轨道支持力为零,仅受重力作用,产生的加速度竖直向下.物体的速度则由于惯性,力图保持不变,图中质点在刚到达B!iedtxx(`stylebkzd', `1107P04.htm')【例10】如图1所示,ABC和AD是两上高度相等的光滑斜面,ABC由倾角不同的两部分组成,且AB+BC=AD,两个相同的小球a、b从A点分别沿两侧斜面由静止滑下,不计转折处的能量损失,则滑到底部的先后次序是[ ]]A.a球先到B.b球先到C.两球同时到达D.无法判断【分析】小球沿两斜面下滑过程中,都只有小球的重力做功,机械能守恒,因此,a、b两球滑到底端的速度大小一定相等,即v C=v D.在AD斜面上取AB′=AB(图2),由于AB部分比AB′部分陡些,小球滑到B点的速度必大于滑到B′点的速度,即v B>v B′.因此,两球在AB与AB′段、BC与B′D段上的平均速度的大小必然是由于对应的斜面长度AB=AB′,BC=B′D.所以通过它们的时间长短必然是t AB<t AB′,t BC<t B′D.也就是说,沿ABC斜面的小球先滑到底部.【答】A.【说明】本题还可以画出v-t图作出更简捷的判断.如图3所示,为沿ABC和AD下滑小球a、b的v-t图.由于AB+BC=AD,则图线下方与t轴间的面积应相等,也就是图中划有斜线的两部分面积相等,显然,两球运动时间必然是t a<t b.图3【例11】如图1,一个质量为m的小球拴在全长L的细线上做成一个单摆,把小球从平衡位置O拉至A,使细线与竖直方向成θ角,然后轻轻释放.若在悬点O′的正下方有一颗钉子P,试讨论,钉子在何处时,(1)可使小球绕钉来回摆动;(2)可使小球绕钉做圆周运动.【分析】小球摆动过程中,只有小球的重力做功.当不考虑细线碰钉时的能量损失时,无论小球绕钉来回摆动,或绕钉做圆周运动,小球的机械能都守恒.【解】(1)小球绕钉来回摆动时,只能摆到跟开始位置A等高的地方,因此,钉子P的位置范围只能在过A点的水平线与竖直线OO′的交点上方(图2),即钉子离悬点O′的距离h应满足条件0≤h≤Lcosθ.(2)设钉子在位置P′时刚好使小球能绕钉做圆周运动,圆半径R=P′O,设小球在最高点C的速度为v c,并规定最低处O为重力势能的零位置(图3),由A、C两位置时的机械能守恒E A=E C,即又因为刚好能越过C点做圆运动,此时绳中的张力为零,由重力提供向心力,即所以钉子P′离悬点O′的距离如果钉子位置从P′处继续下移,则小球将以更大的速度越过圆周的最高点,此时可由绳子的张力补充在最高点时所需的向心力,仍能绕钉子做圆周运动.所以,能绕钉做圆运动时钉子离悬点的距离h′应满足条件【说明】由本题的解答可知,位置P是小球能绕钉来回摆动的最纸位置;位置P′是小球能绕钉做圆周运动的最高位置.如钉子在PP′之间,则悬线碰钉后,先绕钉做圆运动,然后将在某一位置上转化为斜抛运动.【例12】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径比细管内径略小的小球(可视为质点).A 球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足的关系式是______.【分析】A球运动到最低点时,由外壁对它产生的弹力N A和A球重力m1g的合力作为向心力,即A球对外壁产生的压力N A′大小等于N A,方向沿半径背离圆心(图1).要求对圆管的合力为零,B球在最高点时也必须对外壁(不可能是内壁)产生一个等量的压力N B′.因此,B球在最高点有向外壁挤压的作用,由外壁对它产生的弹力N B和球重m2g的合力作为向心力(图2).设B球在最高点的速度为v B,据向心力公式和机械能守恒有根据题意N A′=N B′,即要求【例13】如图所示,半径为r,质量不计的圆盘盘面与地面相垂直,圆心处有一个垂直盘面的光滑水平固定轴O,在盘的最右边缘固定有一个质量为m的小球A,在O点的正下方离O点r/2处固定一个质量也为m的小球B.放开盘让其自由转动,问:(1)当A球转到最低点时,两小球的重力势能之和减少了多少?(2)A球转到最低点时的线速度是多少?(3)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?【分析】两小球势能之和的减少,可选取任意参考平面(零势能位置)进行计算.由于圆盘转动过程中,只有两个小球重力做功,根据机械能守恒即可列式算出A球的线速度和半径OA最大偏角.【解】(1)以通过O的水平面为零势能位置,开始时和A球转到最低点时两球重力势能之和分别为∴两球重力势能之和减少(2)由于圆盘转动过程中,只有两球重力做功、机械能守恒,因此,两球重力势能之和的减少一定等于两球动能的增加.设A球转到最低点时,A、B两球的速度分别为v A、v B,则因A、B两球固定在同一个圆盘上,转动过程中的角速度(设为ω)相同.由得v A=2v B.代入公式,得(3)设半径OA向左偏离竖直线的最大角度为θ如图,该位置的机械能和开始时机械能分别为由机械能守恒定律E1=E3,即即2cosθ=1+sinθ.两边平方得4(1-sin2θ)=1+sin2θ+2sinθ,5sin2θ+2sinθ-3=0,【例14】一个质量为m的木块,从半径为R、质量为M的1/4光滑圆槽顶端由静止滑下,在槽被固定和可沿着光滑平面自由滑动两情况下,如图,木块从槽口滑出时的速度大小之比为[ ]【分析】槽固定时,木块下滑过程中只能有重力做功,木块的机械能守恒,木块在最高处的势能全部转化为滑出槽口时的动能.由得木块滑出槽口的速度槽可动时,当木块开始下滑到脱离槽口的过程中,对木块和槽所组成的系统,水平方向不受外力,水平方向的动量守恒.设木块滑出槽口时的速度为v2,槽的速度为u,则mv2+Mu=0又木块下滑时只有重力做功,机械能守恒,木块在最高处的势能转化为木块滑出槽口时的动能和圆槽的动能,即联立两式得木块滑出槽口的速度因此,两情况下滑出槽口的速度之比【答】D.【例15】如图,长为L的光滑平台固定在地面上,平台中央有两小物体A和B,彼此接触靠在一起,A的上表面有一半径为R(R L)、顶端距台面高h的圆槽,槽顶有一小物体C,A、B、C三者质量均为m,现使物体C由静止沿圆槽下滑,且运动过程中它始终与圆槽接触,求1.A和B刚分离时,B的速度;2.A和B分离后,C能达到距平台的最大高度.【分析】物体C下滑时,C对A作用力的水平分力向右,推动A、B一起向右加速运动.当C滑至圆槽底部时,C对A作用力的水平分力为零,A、B两者向右的加速过程结束,速度达到最大.以后,C将沿圆槽上滑,C对A作用力的水平分力向左,A将开始做减速运动,而B则沿平台匀速向右.因此,C滑至圆槽底部的时刻就是A、B即将分离的时刻.把A、B、C三个物体组成的系统作为研究对象,C下滑过程中,系统在水平方向不受外力,动量守恒.同时,整个系统无重力和弹力以外的力作功,机械能守恒.联合应用这两条守恒定律,即可得解.【解】规定以水平向右为正方向,由C刚开始滑下和C滑至圆槽底部两时刻的动量守恒,0=mv A+mv B-mv C.(1)又由于整个系统无重力和弹力以外的力作功,机械能守恒,当取槽底为零势能位置时,且v A=v B.由(1)、(3)两式,得v C=2v B,代入(2)式,即得2.C沿圆槽上滑,至某一最高点时,A、C两者无相对运动,设此时共同速度为v,其方向为水平向左,仍以A+B+C为研究对象,由C刚开始滑下至C、A两者相对静止两时刻动量守恒(此时B以速度v B沿平台匀速右滑),则0=mv B-2mv.(4)又由整个系统的机械能守恒,当取平台为零势能位置时,则【说明】确定A、B两物体何时分离,是解答前半题的关键,此外在应用动量守恒定律时,可始终以A+B+C为研究对象,其初动量恒为零,列式较为简单.【例16】在光滑的水平面上有运动的物体A,其质量为m A,动能为E ka,另有静止的物体B,其质量为m B.在物体B的一个侧面固定一个劲度系数为k的轻质弹簧.如图所示.若物体A冲向弹簧并推动物体B,且相互作用过程中没有能损耗,问(1)m A、m B之间的关系满足什么条件,物体A传给B的动能最大?最大值是多少?(2)如果相互作用后,物体A、B的速率相等,那么m A∶m B=?(3)如果相互作用后,物体A、B的动能相等,那么m A∶m B=?(4)相互作用过程中,弹簧的最大压缩量为多少?【分析】取物体A和B(包括弹簧)组成的系统为研究对象,物体A、B相互作用的过程中,所受到的合外力为零,因此,系统的动量守恒,且题目给定相互作用过程中没有能量损耗,这就意味着系统的机械能守恒.在运用动量守恒和机械能守恒建立方程时,要注意选择合适的两个时刻.(1)~(3)问涉及相互作用结束时物体的动能、速率,要选择相互作用始、末两状态建立方程.而(4)问中要求解弹簧的最大压缩量,当然此时刻并非是弹簧作用的结束,但可以选此时刻和初始时刻,来建立方程求解相关问题.【解】设物体A、B相互作用前,A的速度是v0,作用后A、B的速度分别为v A′和v B′.据动量守恒定律有据机械能守恒定律有联立(1)、(2)两式解得(1)物体A传给B的动能,即相互作用后B的动能为由此可知,当m A=m B时,E′KB取最大值,且最大值为E KA,若v A′=v B′时,有解得,-m A=m B,物体的质量不可能有负值,此解无意义.若v A′=v B′时,有解得m B=3m A,即m A∶m B=1∶3.v A′和v B′后整理得两解都合题意.(4)当弹簧压缩量最大时,物体A、B间没有相对运动,即A和B的速度相等,若其速度为v.据动量守恒和机械能守恒有联立(3)、(4)两式解得【说明】(1)数学是解决物理问题的工具,通常物理问题中求最大值的一类习题,实质上就是数学上求函数极值的问题.为此,第(1)问中,首先要写出动能E′KB 的函数表达式,继而根据函数的性质确定其极值.(2)用数学方法求出的解具有更普遍的意义,这些解是否符合题意,且明确的物理意义,还必须加以分析,本题(2)问中,有一个解出现了“负质量”,这在物理中是不存在的,必须舍去.但在(3)问中,通过解方程也得到两个解,而这两个解则都合题意,则应保留.(3)在解第(4)问时,建立动量守恒和机械能守恒的方程时,选择了相互作用的初始时刻和相互作用过程中间的一个时刻,而不是相互作用末时刻.这正是运用了动量守恒和机械能守恒是对全过程而言的性质.!iedtxx(`stylebkzd', `1107P09.htm')[例17]小球A、B分别固定在长度均为L的轻线、轻杆的下端,杆的上端分别固定于O点,且均能绕O点无摩擦地转动。

机械能守恒典型例题带详解【范本模板】

机械能守恒典型例题带详解【范本模板】

第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。

解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。

(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。

在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。

由以上两式解得104204220⨯==g v h m=10m. 点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。

本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。

例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。

解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==.根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。

解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。

重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。

机械能守恒定律典型例题

机械能守恒定律典型例题
机械能守恒定律
例1.某同学从高为h 处以速度v0 水平投 出一个质量为m 的铅球,求铅球落地时 速度大小。
例2.以初速度v0 冲上倾角为 光滑斜面, 求物体在斜面上运动的最远距离是多 少?
分析: 物体在运动过程中受到重力和支 持力的作用,但只有重力做功,因此 物体的机械能守恒,选水平地面为零 势面,则物体开始上滑时和到达最高 时的机械能相等
在能量转化中, m的重力势能减小, 动能增加, M 的重力势能和动能都增加, 用机械能的减少量 等于增加量是解决为一类题的关键
mg M h sgin h 1M2 v1m2v
可得
22
2gh(mMs in)
v
Mm
需要提醒的是, 这一类的题目往往需要利用 绳连物体的速度关系来确定两个物体的速度关系
例:如图,光滑斜面的倾角为 ,竖直的光
在整个机械能当中,只有A的重力势能减小, A球的动能以及B球的动能和重力势能都增 加,我们让减少的机械能等于增加的机械 能。有:
m2g Lmg 1 2 LmA 2v1 2mB 2v
根据同轴转动, 角速度相等可知 vA 2vB
所以:
vA 2
2 5gLvB
2gL 5
需要强调的是, 这一类的题目要根据同轴转动,
两球受到的重力做功不会改变系统的机械能,轴 对杆的作用力由于作用点没有位移而对系统不做 功,所以满足系统机械能守恒的外部条件,系统 内部的相互作用力是轻杆的弹力,弹力对A球做 负功,对B球做正功,但这种做功只是使机械能 在系统内部进行等量的转换也不会改变系统的机 械能,故满足系统机械能守恒的外部条件。
C. 甲小球在a点的机械能等于乙小球在b点的机械能 (相对同一个零势能参考面)
D. 甲小球在a点时重力的功率等于乙小球在b点时重 力的功率

高中物理机械能守恒定律典型分类例题

高中物理机械能守恒定律典型分类例题

高中物理机械能守恒定律典型分类例题判断一个物体的机械能是否守恒有两种方法。

第一种是当物体在运动过程中只受到重力作用时,机械能守恒。

第二种是当物体在运动过程中不受到媒质阻力和摩擦阻力时,机械能守恒。

这种情况下,我们需要解决四种不同类型的题目:阻力不计的抛体类、固定的光滑斜面类、固定的光滑圆弧类、悬点固定的摆动类。

阻力不计的抛体类包括竖直上抛、竖直下抛、斜上抛、斜下抛、平抛。

只要物体在运动过程中所受的空气阻力不计,那么物体在运动过程中就只受重力作用,也只有重力做功。

通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

在固定光滑斜面上运动的物体,同时受到重力和支持力的作用。

由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用。

由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。

由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。

因此只有重力做功,物体的机械能守恒。

在解决这些题目时,通常会将物体运动的最低点作为重力势能的零势参考点,将物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。

需要注意的是,在固定的光滑圆弧类和悬点固定的摆动类两种题目中,常和向心力的公式结合使用。

在计算中要特别注意这一点。

举例来说,对于一个三个质量相同的小球悬挂在三根长度不等的细线上的问题,我们需要知道线长LaLbLc在这种情况下,当悬线摆至竖直位置时,细线中张力大小的关系是TcTbTa另一个例子是一个质量为2千克的小球从高h=3.5米的光滑斜面上滑下,接着滑到一个半径为R=1米的光滑圆环。

在这个问题中,我们需要求出小球滑至圆环顶点时对环的压力、小球至少要从多高处静止滑下才能越过圆环最高点,以及小球从h=2米处静止滑下时将在何处脱离圆环。

重力势能机械能守恒定律

重力势能机械能守恒定律
(2)重力做正功,重力势能减少;重力做负功,重力势能增加
例1、如图,小球由位置1变到位置2,求重力做了多少功?重力势能是增加了依旧减少了?变化了多少?
例2、重15N的物体的重力作了75J的功,则
A有75J的重力势能发生了转化
B重物一定竖直的下落了增加了75J
重力势能机械能守恒定律
重力势能、机械能守恒定律
课时数:1
目标
知识与技能:
情感态度与价值观:
重点
难点
教具
网址
环节
教学过程
组织教学
一、重力势能
1、表达式:Ep=mgh
(1)说明h的相对性(举例)
(2)属于物体与地球组成的系统所共有的
(3)是一个标量
(4)单位为焦耳
2、重力做功的特点
(1)与路径无关,取决于初、末两位置的高度差
例3、如图,小球从高处下落到竖直放置的轻弹簧上,从小球接触弹簧到将弹簧压缩到最短的过程中,下列关于能量叙述正确的是
A小球的动能逐步减少
B弹簧的弹性势能逐步增大
C小球的重力势能逐步减少
D机械能总和逐步增大
二、机械能守恒定律
1、机械能:动能、重力势能和弹性势能
2、守恒定律:没有摩擦和介质阻力,只发生动能和势能的相互转化,机械能的总量保持不变
小结
作业
《会考导引》1、P6613、20、21、22 2、P684、7、13、14
板书设计
重力势能、机械能守恒定律
一、重力势能
1、表达式:Ep=mgh
2、重力做功的特点
二、机械能守恒定律
1、机械能
2、守恒定律
3、条件
教学反思
教学目标落实情形:
教学过程中的亮点:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“重力势能和机械能守恒定律”的典型例题【例1】如图所示,桌面距地面0.8m,一物体质量为2kg,放在距桌面0.4m的支架上.(1)以地面为零势能位置,计算物体具有的势能,并计算物体由支架下落到桌面过程中,势能减少多少?(2)以桌面为零势能位置时,计算物体具有的势能,并计算物体由支架下落到桌面过程中势能减少多少?【分析】根据物体相对零势能位置的高度,直接应用公式计算即得.【解】(1)以地面为零势能位置,物体的高度h1=1.2m,因而物体的重力势能:Ep1=mgh1=2×9.8×1.2J=23.52J物体落至桌面时重力势能:E p2=mgh2=2×9.8×0.8J=15.68J物体重力势能的减少量:△E p=E p1-Ep2=23.52J-15.68J=7.84J而物体的重力势能:物体落至桌面时,重力势能的减少量【说明】通过上面的计算,可以看出,物体的重力势能的大小是相对的,其数值与零势能位置的选择有.而重力势能的变化是绝对的,它与零势能位置的选择无关,其变化值是与重力对物体做功的多少有关.当物体从支架落到桌面时重力做功:【例2】质量为2kg的物体自高为100m处以5m/s的速度竖直落下,不计空气阻力,下落2s,物体动能增加多少?重力势能减少多少?以地面为重力势能零位置,此时物体的机械能为多少?(g取10m/s2)【分析】物体下落时,只受重力作用,其加速度a=g,由运动学公式算出2s末的速度和2s内下落高度,即可由定义式算出动能和势能.【解】物体下落至2s末时的速度为:2s内物体增加的动能:2s内下落的高度为:重力势能的减少量:此时物体离地面的高度为:h′=H-h=(100-30)m=70m以地面为零势能位置时,物体的机械能为:【说明】抛出后,由于物体只受重力作用,整个运动过程中只有重力做功,物体的机械能守恒.刚抛出时,物体的机械能为:在下落过程中,重力势能的减少量恰等于动能的增加量,即△E k=△E p【例3】质量为1.0kg的物体,自空中落下,以8.0m/s2的加速度经A点到达B点,A、B相距0.75m.若物体在B点时的动能为8.0J,那么通过AB的过程中物体动能的增加量为多少?物体克服阻力做多少功?(取g=10m/s2)【分析】由于下落的加速度a<g,在下落时一定受到阻力,根据牛顿第二定律,可算出阻力,于是即可得克服阻力的功.已知物体在B点的动能,可算出在B点的速度,结合运动学公式算出A点的速度后,即可算出动能的增量.【解】设下落中物体受到的阻力为f,由mg-f=ma得f=mg-ma=1.0(10-8)N=2N物体克服阻力做功:物体从A落到B的过程中,动能的增加量为:△E p=E kB-E kA=8.0J-2.0J=6.0J【说明】物体从A落到B的过程中,势能减少:△Ep=mgs=1×10×0.75J=7.5J它大于物体动能的增加,可见其机械能不守恒.这是由于存在阻力的缘故.势能的减少与动能增加量之差恰等于物体克服阻力做的功,即△Ep-△E k=Wf这也就是从A到B的过程中所减少的机械能.【例4】如图所示,光滑圆管形轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r《R,有一质量m,半径比r略小的光滑小球以水平初速v0射入圆管,(1)若要小球能从C端出来,初速v0多大?(2)在小球从C端出来的瞬间,对管壁压力有哪几种典型情况,初速v0各应满足什么条件?【分析】小球在管内运动过程中,只有重力做功,机械能守恒,要求小球能从C端射出,小球运动到C点的速度vc>0.根据机械能守恒定律即可算出初速v0.小球从C端射出时可能有三种典型情况:①刚好对管壁无压力;②对下管壁有压力;③对上管壁有压力.同理由机械能守恒可确定需满足的条件.【解】(1)小球从A端射入后,如果刚好能到达管顶,则v c=0,由机械能守恒因此,要求小球能从C端出来,必须使v c>0,所以入射速度应满足条件(2)小球从C端出来的瞬间,可以有三种典型情况:①刚好对管壁无压力,此时需满足条件联立得入射速度②对下管壁有压力,此时相应的入射速度为③对上管壁有压力,相应的入射速度为【例5】如图所示,劲度系数k1的轻质弹簧两端分别与质量为m1、m2的物块1、2栓接,劲度系数为k2的轻质弹簧上端与物块2栓接,下端压在桌面(不栓接),整个系统处于平衡状态.现施力将物块1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.【分析】设原来两弹簧压缩量分别为x1和x2,由物体的力平衡知当施力将物块1缓慢上提至下面弹簧刚脱离桌面时,表示下面的弹簧已恢复原长,物块2升高的高度h2=x2,所以在此过程中,物块2的重力势能增加此时,上面的弹簧受到拉伸,设其伸长量为x'1,由物块2的力平衡条件知,则物块1在这过程中升高的高度为所以,物块1的重力势能增加【例6】关于机械能是否守恒的叙述,正确的是[ ]A.作匀速直线运动的物体的机械能一定守恒B.作匀变速运动的物体机械能可能守恒C.外力对物体做功为零时,机械能一定守恒D.只有重力对物体做功,物体机械能一定守恒【分析】机械能守恒的条件是除重力对物体做功外,没有其它外力对物体做功,或其它外力对物体做功的代数和等于零.当物体作匀速直线运动时,除重力对物体做功外,可能还有其他外力做功.如降落伞在空中匀速下降时,既有重力做功,又有阻力做功,机械能不守恒.物体作匀变速运动时,可能只有重力对物体做功,如自由落体运动,此时物体的机械能守恒.因物体所受的外力,指的是包括重力在内的所有外力,当外力对物体做功为零时,可能是处于有介质阻力的状态,如匀速下降的降落伞,所以机械能不一定守恒.【答】B,D.【例7】某人以v0=4m/s的初速度,抛出一个质量为m的小球,测得小球落地时的速度大小为8m/s,则小球刚抛出时离开地面的高度为多少?取g=10m/s2.空气阻力不计.【分析】小球从抛出到落地过程中,不受阻力,只有重力做功,由小球的机械能守恒即可算出离地高度.【解答】设小球抛出时的高度为h,落地速度为v t,取抛出和落地为始、末两状态,以地面为零势能位置,由机械能守恒定律得:出结果,尽管答案相同,但是不正确的.这里的小球不一定作直线运动,必须根据机械能守恒求解.【例8】如图所示,以速度v0=12m/s沿光滑地面滑行的小球,上升到顶部水平的跳板上后由跳板飞出,当跳板高度h多大时,小球飞行的距离s最大?这个距离是多少?(g=10m/s2)【分析】小球上滑到跳板顶端的过程中,只有重力做功,机械能守恒.从跳板顶飞出,小球作平抛运动.【解】设小球从跳板顶飞出的速度为v,由机械能守恒(取底部为势能的参考平面)得小球从顶端飞出后作平抛运动,其水平位移为为了找出使水平位移s最大的条件,对上式作变换得可见,当满足条件小球飞出后的水平距离最大,其值为【例9】图中圆弧轨道AB是在竖直平面内的1/4圆周,在B点,轨道的切线是水平的.一质点自A点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B点时的加速度大小和刚滑过B点时的加速度大小分别为()A.0,g B.g,g C.2g,g D.2g,2g【分析】质点从A到B的下滑过程中,只有重力做功,机械能守恒.取过B点的水平面为零势能面,设轨道半径为R,则有质点从A到B是作变速圆周运动,当它刚到达B点瞬间的加速度为联立(1),(2)两式得质点刚滑过B点,仅受重力作用,其加速度大小为【答】C.【说明】必须注意,物体的加速度跟所受外力是一个瞬时关系,一旦外力变化,加速度随即变化.图中质点刚到达B点时,受到轨道向上的弹力和竖直向下的重力作用,产生的加速度指向过B点竖直向上的方向,即指向圆心.刚滑过B点,轨道支持力为零,仅受重力作用,产生的加速度竖直向下.物体的速度则由于惯性,力图保持不变,图中质点在刚到达B!iedtxx(`stylebkzd', `1107P04.htm')【例10】如图1所示,ABC和AD是两上高度相等的光滑斜面,ABC由倾角不同的两部分组成,且AB+BC=AD,两个相同的小球a、b从A点分别沿两侧斜面由静止滑下,不计转折处的能量损失,则滑到底部的先后次序是[]]A.a球先到B.b球先到C.两球同时到达D.无法判断【分析】小球沿两斜面下滑过程中,都只有小球的重力做功,机械能守恒,因此,a、b两球滑到底端的速度大小一定相等,即v C=vD.在AD斜面上取AB′=AB(图2),由于AB部分比AB′部分陡些,小球滑到B 点的速度必大于滑到B′点的速度,即vB>v B′.因此,两球在AB与AB′段、BC与B′D段上的平均速度的大小必然是由于对应的斜面长度AB=AB′,BC=B′D.所以通过它们的时间长短必然是tAB<tAB′,tBC<t B′D.也就是说,沿ABC斜面的小球先滑到底部.【答】A.【说明】本题还可以画出v-t图作出更简捷的判断.如图3所示,为沿ABC和AD下滑小球a、b的v-t图.由于AB+BC=AD,则图线下方与t轴间的面积应相等,也就是图中划有斜线的两部分面积相等,显然,两球运动时间必然是ta<t b.图3【例11】如图1,一个质量为m的小球拴在全长L的细线上做成一个单摆,把小球从平衡位置O拉至A,使细线与竖直方向成θ角,然后轻轻释放.若在悬点O′的正下方有一颗钉子P,试讨论,钉子在何处时,(1)可使小球绕钉来回摆动;(2)可使小球绕钉做圆周运动.【分析】小球摆动过程中,只有小球的重力做功.当不考虑细线碰钉时的能量损失时,无论小球绕钉来回摆动,或绕钉做圆周运动,小球的机械能都守恒.【解】(1)小球绕钉来回摆动时,只能摆到跟开始位置A等高的地方,因此,钉子P的位置范围只能在过A点的水平线与竖直线OO′的交点上方(图2),即钉子离悬点O′的距离h应满足条件0≤h≤Lcosθ.(2)设钉子在位置P′时刚好使小球能绕钉做圆周运动,圆半径R=P′O,设小球在最高点C的速度为v c,并规定最低处O为重力势能的零位置(图3),由A、C两位置时的机械能守恒EA=E C,即又因为刚好能越过C点做圆运动,此时绳中的张力为零,由重力提供向心力,即所以钉子P′离悬点O′的距离如果钉子位置从P′处继续下移,则小球将以更大的速度越过圆周的最高点,此时可由绳子的张力补充在最高点时所需的向心力,仍能绕钉子做圆周运动.所以,能绕钉做圆运动时钉子离悬点的距离h′应满足条件【说明】由本题的解答可知,位置P是小球能绕钉来回摆动的最纸位置;位置P′是小球能绕钉做圆周运动的最高位置.如钉子在PP′之间,则悬线碰钉后,先绕钉做圆运动,然后将在某一位置上转化为斜抛运动.【例12】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径比细管内径略小的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足的关系式是______.【分析】A球运动到最低点时,由外壁对它产生的弹力N A和A球重力m1g的合力作为向心力,即A球对外壁产生的压力NA′大小等于NA,方向沿半径背离圆心(图1).要求对圆管的合力为零,B球在最高点时也必须对外壁(不可能是内壁)产生一个等量的压力N B′.因此,B球在最高点有向外壁挤压的作用,由外壁对它产生的弹力NB和球重m2g的合力作为向心力(图2).设B球在最高点的速度为v B,据向心力公式和机械能守恒有根据题意N A′=NB′,即要求【例13】如图所示,半径为r,质量不计的圆盘盘面与地面相垂直,圆心处有一个垂直盘面的光滑水平固定轴O,在盘的最右边缘固定有一个质量为m的小球A,在O点的正下方离O点r/2处固定一个质量也为m的小球B.放开盘让其自由转动,问:(1)当A球转到最低点时,两小球的重力势能之和减少了多少?(2)A球转到最低点时的线速度是多少?(3)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?【分析】两小球势能之和的减少,可选取任意参考平面(零势能位置)进行计算.由于圆盘转动过程中,只有两个小球重力做功,根据机械能守恒即可列式算出A球的线速度和半径OA最大偏角.【解】(1)以通过O的水平面为零势能位置,开始时和A球转到最低点时两球重力势能之和分别为∴两球重力势能之和减少(2)由于圆盘转动过程中,只有两球重力做功、机械能守恒,因此,两球重力势能之和的减少一定等于两球动能的增加.设A球转到最低点时,A、B两球的速度分别为v A、v B,则因A、B两球固定在同一个圆盘上,转动过程中的角速度(设为ω)相同.由得v A=2v B.代入公式,得(3)设半径OA向左偏离竖直线的最大角度为θ如图,该位置的机械能和开始时机械能分别为由机械能守恒定律E1=E3,即即2cosθ=1+sinθ.两边平方得4(1-sin2θ)=1+sin2θ+2sinθ,5sin2θ+2sinθ-3=0,【例14】一个质量为m的木块,从半径为R、质量为M的1/4光滑圆槽顶端由静止滑下,在槽被固定和可沿着光滑平面自由滑动两情况下,如图,木块从槽口滑出时的速度大小之比为[]【分析】槽固定时,木块下滑过程中只能有重力做功,木块的机械能守恒,木块在最高处的势能全部转化为滑出槽口时的动能.由得木块滑出槽口的速度槽可动时,当木块开始下滑到脱离槽口的过程中,对木块和槽所组成的系统,水平方向不受外力,水平方向的动量守恒.设木块滑出槽口时的速度为v2,槽的速度为u,则mv2+Mu=0又木块下滑时只有重力做功,机械能守恒,木块在最高处的势能转化为木块滑出槽口时的动能和圆槽的动能,即联立两式得木块滑出槽口的速度因此,两情况下滑出槽口的速度之比【答】D.【例15】如图,长为L的光滑平台固定在地面上,平台中央有两小物体A和B,彼此接触靠在一起,A的上表面有一半径为R(R L)、顶端距台面高h的圆槽,槽顶有一小物体C,A、B、C三者质量均为m,现使物体C由静止沿圆槽下滑,且运动过程中它始终与圆槽接触,求1.A和B刚分离时,B的速度;2.A和B分离后,C能达到距平台的最大高度.【分析】物体C下滑时,C对A作用力的水平分力向右,推动A、B一起向右加速运动.当C滑至圆槽底部时,C对A作用力的水平分力为零,A、B两者向右的加速过程结束,速度达到最大.以后,C将沿圆槽上滑,C对A作用力的水平分力向左,A将开始做减速运动,而B则沿平台匀速向右.因此,C滑至圆槽底部的时刻就是A、B即将分离的时刻.把A、B、C三个物体组成的系统作为研究对象,C下滑过程中,系统在水平方向不受外力,动量守恒.同时,整个系统无重力和弹力以外的力作功,机械能守恒.联合应用这两条守恒定律,即可得解.【解】规定以水平向右为正方向,由C刚开始滑下和C滑至圆槽底部两时刻的动量守恒,0=mvA+mv B-mv C. (1)又由于整个系统无重力和弹力以外的力作功,机械能守恒,当取槽底为零势能位置时,且vA=vB.由(1)、(3)两式,得v C=2vB,代入(2)式,即得2.C沿圆槽上滑,至某一最高点时,A、C两者无相对运动,设此时共同速度为v,其方向为水平向左,仍以A+B+C为研究对象,由C刚开始滑下至C、A两者相对静止两时刻动量守恒(此时B以速度v B沿平台匀速右滑),则0=mv B-2mv. (4)又由整个系统的机械能守恒,当取平台为零势能位置时,则【说明】确定A、B两物体何时分离,是解答前半题的关键,此外在应用动量守恒定律时,可始终以A+B+C为研究对象,其初动量恒为零,列式较为简单.【例16】在光滑的水平面上有运动的物体A,其质量为mA,动能为E ka,另有静止的物体B,其质量为m B.在物体B的一个侧面固定一个劲度系数为k的轻质弹簧.如图所示.若物体A冲向弹簧并推动物体B,且相互作用过程中没有能损耗,问(1)m A、m B之间的关系满足什么条件,物体A传给B的动能最大?最大值是多少?(2)如果相互作用后,物体A、B的速率相等,那么mA∶m B=?(3)如果相互作用后,物体A、B的动能相等,那么m A∶mB=?(4)相互作用过程中,弹簧的最大压缩量为多少?【分析】取物体A和B(包括弹簧)组成的系统为研究对象,物体A、B相互作用的过程中,所受到的合外力为零,因此,系统的动量守恒,且题目给定相互作用过程中没有能量损耗,这就意味着系统的机械能守恒.在运用动量守恒和机械能守恒建立方程时,要注意选择合适的两个时刻.(1)~(3)问涉及相互作用结束时物体的动能、速率,要选择相互作用始、末两状态建立方程.而(4)问中要求解弹簧的最大压缩量,当然此时刻并非是弹簧作用的结束,但可以选此时刻和初始时刻,来建立方程求解相关问题.【解】设物体A、B相互作用前,A的速度是v0,作用后A、B的速度分别为v A′和v B′.据动量守恒定律有据机械能守恒定律有联立(1)、(2)两式解得(1)物体A传给B的动能,即相互作用后B的动能为由此可知,当mA=m B时,E′KB取最大值,且最大值为E KA,若v A′=vB′时,有解得,-mA=m B,物体的质量不可能有负值,此解无意义.若vA′=v B′时,有解得m B=3mA,即m A∶mB=1∶3.vA′和v B′后整理得两解都合题意.(4)当弹簧压缩量最大时,物体A、B间没有相对运动,即A和B的速度相等,若其速度为v.据动量守恒和机械能守恒有联立(3)、(4)两式解得【说明】(1)数学是解决物理问题的工具,通常物理问题中求最大值的一类习题,实质上就是数学上求函数极值的问题.为此,第(1)问中,首先要写出动能E′KB的函数表达式,继而根据函数的性质确定其极值.(2)用数学方法求出的解具有更普遍的意义,这些解是否符合题意,且明确的物理意义,还必须加以分析,本题(2)问中,有一个解出现了“负质量”,这在物理中是不存在的,必须舍去.但在(3)问中,通过解方程也得到两个解,而这两个解则都合题意,则应保留.(3)在解第(4)问时,建立动量守恒和机械能守恒的方程时,选择了相互作用的初始时刻和相互作用过程中间的一个时刻,而不是相互作用末时刻.这正是运用了动量守恒和机械能守恒是对全过程而言的性质.!iedtxx(`stylebkzd', `1107P09.htm')[例17]小球A、B分别固定在长度均为L的轻线、轻杆的下端,杆的上端分别固定于O点,且均能绕O点无摩擦地转动。

相关文档
最新文档