二项分布专题练习
2024届全国高考(统考版)理科数学复习历年好题专项(二项分布及其应用)练习(附答案)
2024届全国高考(统考版)理科数学复习历年好题专项(二项分布及其应用)练习命题范围:条件概率、事件的相互独立性、独立重复试验与二项分布.[基础强化]一、选择题1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现反面”为事件B ,则P (B |A )=( )A .12 B .14 C .16 D .182.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”;则P (B |A )=( )A .18B .14C .25D .123.打靶时甲每打10次,可中靶8次;乙每打10次可中靶7次,若两人同时射击一个目标,则他们都中靶的概率是( )A .35B .34C .1225D .14254.甲、乙两名学生通过某种听力测试的概率分别为12 和13 ,两人同时参加测试,其中有且只有一人能通过的概率是( )A .13B .23C .12 D .15.已知随机变量X 服从二项分布X ~B (4,12 ),则P (X =2)=( ) A .32 B .34 C .38 D .3166.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击四次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D .0.757.设X ~B (4,P ),其中0<P <12 ,且P (X =2)=827 ,那么P (X =1)=( ) A .881 B .1681 C .827 D .32818.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12 .质点P 移动五次后位于点(2,3)的概率是( )A .(12 )5B .C 25 (12 )5C .C 35 (12 )3D .C 25 C 35 (12 )59.设X 为随机变量,X ~B (n ,13 ),若随机变量X 的数学期望E (X )=2.则P (X =2)=( ) A .1316 B .4243 C .13243 D .80243二、填空题10.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不同”,B 为“甲独立去一个景点”,则P (A |B )=________.11.已知随机变量X ~B (n ,p ),若E (X )=30,D (X )=20,则p =________.12.[2023ꞏ江西省上饶六校联考]排球比赛的规则是5局3胜制(5局比赛中,优先取得3局胜利的一方,获得最终胜利,无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为13 ,则最后甲队获胜的概率是________.13.设有下面四个命题p 1:若X ~B (3,12 ),则P (X ≥1)=34 ; p 2:若X ~B (3,12 ),则P (X ≥1)=78 ; p 3:若(x 2-1x )6的中间项为-20; p 4:若(x 2-1x )6的中间项为-20x 3. 其中真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 414.[2023ꞏ吉林省长春质检]已知随机变量X ~B (4,13 ),下列表达式正确的是( ) A .P (X =2)=481 B .E (3X +1)=4 C .D (3X +1)=8 D .D (X )=4915.设X 为随机变量,X ~B (n ,13 ),若E (X )=43 ,则P (X =3)=________.16.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12 ,两次闭合后都出现红灯的概率为15 ,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为________.1.A P (A )=12 ,P (AB )=14 , ∴P (B |A )=P (AB )P (A )=12 . 2.B P (A )=C 23 +C 22 C 25 =25 ,P (AB )=C 22 C 25 =110 , ∴P (B |A )=P (AB )P (A )=11025=14 .3.D 由题意可知甲中靶的概率P 1=810 =45 , 乙中靶的概率P 2=710 , 又两人中靶相互独立,∴他们都中靶的概率P =P 1P 2=710 ×45 =1425 .4.C 记甲通过某种听力测试记为事件A ,乙通过某种听力测试记为事件B ,则P (A )=12 ,P (B )=13 ,∴他们中有且仅有一人通过的概率P =P (A B )+P (A B )=12 ×(1-13 )+(1-12 )×13 =12 ×23 +12 ×13 =12 .5.C P (X =2)=C 24 (12 )2×(1-12 )4-2=616 =38 .6.B 射击四次至少击中3次的概率P =C 34 ×0.83×(1-0.8)+C 44 ×0.84=0.819 2. 7.D ∵P (X =2)=C 24 P 2(1-P )2=827 , 得P =13 或P =23 ,又0<P <12 , ∴P =13 ,∴P =(X =1)=C 14 P (1-P )3=4×13 ×(23 )3=3281 . 8.B 移动五次后位于点(2,3),所以质点P 必须向上移动三次,向右移动两次. 故其概率为C 35 (12 )3ꞏ(12 )2=C 35 (12 )5=C 25 (12 )5. 9.D ∵X ~B (n ,13 ),E (X )=13 n =2,∴n =6,∴P (X =2)=C 26(13 )2(1-13 )6-2=15×2436 =5×2435 =80243 .10.12答案解析:n (B )=C 13 22=12,n (AB )=A 33 =6, P (A |B )=n (AB )n (B ) =612 =12 . 11.13 答案解析:12.1781答案解析:当经过3局甲队获胜,则概率为13 ×13 ×13 =127 , 当经过4局甲队获胜,则概率为13 ×C 23 ×(13 )2×(1-13 )=227 , 当经过5局甲队获胜,则概率为13 ×C 24 ×(13 )2×(1-13 )2=881 , 所以最后甲队获胜的概率是127 +227 +881 =1781 .13.D 若X ~B (3,12 ),则P (X ≥1)=1-P (X =0)=1-(1-12 )3=78 ,故p 2为真命题; (x 2-1x )6的中间项为C 36 (x 2)3(-1x )3=-20x 3,故p 4为真命题. 故选D.14.C 因为X ~B (4,13 ),所以E (X )=4×13 =43 ,D (X )=4×13 ×⎝⎛⎭⎫1-13 =89 ,因此E (3X +1)=3E (X )+1=3×43 +1=5,D (3X +1)=32ꞏD (X )=9×89 =8,因此选项B 、D 不正确,选项C 正确,又因为P (X =2)=C 24 (13 )2(1-13 )2=827 ,所以选项A 不正确.15.881答案解析:∵X ~B (n ,13 ),∴E (X )=n 3 =43 , ∴n =4,∴P (X =3)=C 34 ×(13 )3×(1-13 )=4×127 ×23 =881 . 16.25答案解析:设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B,则由题意可得P(A)=12,P(AB)=15,则“在第一次闭合后出现红灯的条件下第二次闭合出现红灯”的概率是P(B|A)=P(AB)P(A)=1512=25.。
高中试卷-7.4 二项分布与超几何分布(精练)(含答案)
7.4 二项分布与超几何分布(精练)【题组一 二项分布】1.(2021·北京房山区·高二期末)已知某种药物对某种疾病的治愈率为34,现有3位患有该病的患者服用了这种药物,3位患者是否会被治愈是相互独立的,则恰有1位患者被治愈的概率为( )A .2764B .964C .364D .34【答案】B【解析】由已知3位患者被治愈是相互独立的,每位患者被治愈的概率为34,则不被治愈的概率为14所以3位患者中恰有1为患者被治愈的概率为12133194464P C æöæö=´´=ç÷ç÷èøèø故选:B 2.(2020·北京高二期末)已知随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,则二项分布的参数n ,p 的值为( )A .4n =,12p =B .6n =,13p =C .8n =,14p =D .10n =,15p =【答案】D【解析】随机变量X 服从二项分布,即(),X B n p :,且()2E X =,() 1.6D X =,可得2np =,()1 1.6np p -=,解得0.2p =,10n =,故选:D.3.(2020·山西晋中市)某同学参加学校篮球选修课的期末考试,老师规定每个同学罚篮20次,每罚进一球得5分,不进记0分,已知该同学罚球命中率为60%,则该同学得分的数学期望和方差分别为( ).A .60,24B .80,120C .80,24D .60,120【答案】D【解析】设该同学20次罚篮,命中次数为X ,则320,5X B æöç÷èø:,所以()320125E X =´=,()3324201555D X æö=´´-=ç÷èø,所以该同学得分5X 的期望为()551260E X =´=,方差为()224551205D X =´=.故选:D4.(2020·营口市第二高级中学高二期末)从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取6次,设摸得黑球的个数为X ,已知()3E X =,则m 等于( )A .2B .1C .3D .5【答案】C【解析】根据题意可得出63()()(33kk m k m P X k C m m-==++ ,即3(6,)3X B m ~+ 所以()36333E X m m=´=Þ=+故选C 5.(多选)(2020·全国高二单元测试)若随机变量ξ~B 1(5,)3,则P (ξ=k )最大时,k 的值为( )A .1B .2C .3D .4【答案】AB【解析】依题意5512()33kkk P k C x -æöæö==ç÷ç÷èøèø,k=0,1,2,3,4,5.可以求得P (ξ=0)=32243,P (ξ=1)=80243,P (ξ=2)=80243,P (ξ=3)=40243,P (ξ=4)=10243,P (ξ=5)=1243.故当k=2或1时,P (ξ=k )最大.故选:AB ..6.(2021·广东东莞)为迎接8月8日的“全民健身日”,某大学学生会从全体男生中随机抽取16名男生参加1500米中长跑测试,经测试得到每个男生的跑步所用时间的茎叶图(小数点前一位数字为茎,小数点的后一位数字为叶),如图,若跑步时间不高于5.6秒,则称为“好体能”.(1)写出这组数据的众数和中位数;(2)要从这16人中随机选取3人,求至少有2人是“好体能”的概率;(3)以这16人的样本数据来估计整个学校男生的总体数据,若从该校男生(人数众多)任取3人,记X 表示抽到“好体能”学生的人数,求X 的分布列【答案】(1)众数和中位数分别是5.8,5.8;(2)19140;(3)分布列见解析;【解析】(1)这组数据的众数和中位数分别是5.8,5.8;(2)设至少有2人是“好体能”的事件为A ,则事件A 包含得基本事件个数为;2134124C C C +g 总的基本事件个数为316C ,213412431619()140C C C P A C +==g (3)X 的可能取值为0,1,2,3,由于该校男生人数众多,故X 近似服从二项分布1(3,)4B 3327(0)()464P x ===,1231327(1)()4464P x C ===g ,223139(2)(4464P x C ===g ,311(3)(464P x ===X 的分布列为:X123P276427649641647.(2021·山东德州市·高三期末)某研究院为了调查学生的身体发育情况,从某校随机抽频率组距测120名学生检测他们的身高(单位:米),按数据分成[1.2,1.3],(1.3,1.4],,(1.7,1.8]L 这6组,得到如图所示的频率分布直方图,其中身高大于或等于1.59米的学生有20人,其身高分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,,1.68,1.69,1.69,1.71,1.72,1.74,以这120名学生身高在各组的身高的频率估计整个学校的学生在各组身高的概率.(1)求该校学生身高大于1.60米的频率,并求频率分布直方图中m 、n 、t 的值;(2)若从该校中随机选取3名学生(学生数量足够大),记X 为抽取学生的身高在(1.4,1.6]的人数求X 的分布列和数学期望.【答案】(1)0.25m = , 1.25n =, 3.5t =;(2)分布列见详解;2.1.【解析】(1)由题意可知120名学生中身高大于1.60米的有18人,所以该校学生身高大于1.60米的频率为180.15120= 记d 为学生身高,则()()31.2 1.3 1.7 1.80.025120p p d d ££=<£== ()()151.3 1.4 1.6 1.70.125120p p d d <£=<£==()()()11.4 1.5 1.5 1.6120.02520.1250.352p p d d <£=<£=-´-´=所以0.0250.250.1m == ,0.125 1.250.1n ==,0.353.50.1t ==;(2)由(1)知学生身高在[]1.41.6, 的概率20.350.7p =´=随机变量X 服从二项分布()~3,0.7X B 则()()33010.70.027p x C ==´-= ()()213110.70.70.189p x C ==´-´=()()1223210.70.70.441p x C ==´-´=()33330.70.343p x C ==´=所以X 的分布列为X0123P0.0270.1890.4410.34330.7 2.1EX =´=8.(2020·湖北随州市·高二期末)疫情过后,为促进居民消费,某超市准备举办一次有奖促销活动,若顾客一次消费达到500元则可参加一轮抽奖活动,超市设计了两种抽奖方案.在一个不透明的盒子中装有6个质地均匀且大小相同的小球,其中2个红球,4个白球,搅拌均匀.方案一:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得50元的返金券,若抽到白球则获得30元的返金券,可以有放回地抽取3次,最终获得的返金券金额累加.方案二:顾客从盒子中随机抽取一个球,若抽到红球则顾客获得100元的返金券,若抽到白球则不获得返金券,可以有放回地抽取3次,最终获得的返金券金额累加.(1)方案一中,设顾客抽取3次后最终可能获得的返金券的金额为X ,求X 的分布列;(2)若某顾客获得抽奖机会,试分别计算他选择两种抽奖方案最终获得返金券的数学期望,并以此判断应该选择哪种抽奖方案更合适.【答案】(1)答案见解析;(2)方案一数学期望为110(元),方案二数学期望为100(元);方案一.【解析】(1)由题意易知,方案一和方案二中单次抽到红球的概率为13,抽到白球的概率为23,依题意,X 的取值可能为90,110,130,150.且30328(90)327P X C æö==×=ç÷èø,1213124(110)339P X C æöæö==××=ç÷ç÷èøèø223122(130)339P X C æöæö==××=ç÷ç÷èøèø,33311(150)327P X C æö==×=ç÷èø其分布列为X 90110130150p8274929127(2)由(1)知选择方案一时最终获得返金券金额的数学期望为8421()90110130150110279927E X =´+´+´+´=(元),选择方案二时,设摸到红球的次数为Y ,最终可能获得返金券金额为Z 元,由题意可知,1~3,3Y B æöç÷èø,得1()313E Y =´=()(100)100()100E Z E Y E Y ===由()()E X E Z >可知,该顾客应该选择方案一抽奖.【题组二 超几何分布】1.(2020·辽宁沈阳市)在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数为X ,求X 的数学期望;(2)取出的3个球中红球个数多于白球个数的概率.【答案】(1)910;(2)13.【解析】(1)取出的3个球中红球的个数为X ,可能取值为:0,1,2,3,所以()37310350120p X C C===, ()2731016331120p X C C C===, ()1731022132120p X C C C===,()3103313120p X C C===.所以X 的数学期望()35632119012312012012012010E X =´+´+´+´=.(2)设“取出的3个球中红球个数多于白球个数”为事件A ,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,而()12341310320C C P A C ==,()()21372310217212040C C P A P X C =====,()()3037331013120C C P A P X C ×====,所以取出的3个球中红球个数多于白球个数的概率为:()()()()123371120401203P A P A P A P A =++=++=.2.(2021·山东德州市)在全面抗击新冠肺炎疫情这一特殊时期,某大型企业组织员工进行爱心捐款活动.原则上以自愿为基础,每人捐款不超过300元,捐款活动负责人统计全体员工数据后,随机抽取的10名员工的捐款数额如下表:员工编号12345678910捐款数额120802155013019530090200225(1)若从这10名员工中随机选取2人,则选取的人中捐款恰有一人高于200元,一人低于200元的概率;(2)若从这10名员工中任意选取4人,记选到的4人中捐款数额大于200元的人数为X ,求X 的分布列和数学期望.【答案】(1)25;(2)分布列见解析,65.【解析】(1)10名员工中捐款数额大于200元的有3人,低于200元的有6人故选取的人中捐款恰有一人高于200元,一人低于200元的概率为:1136210182455C C P C ===(2)由题知,10名员工中捐款数额大于200元的有3人,则随机变量X 的所有可能取值为0,1,2,3()4741035102106C P X C ====,()133********12102C C P X C ====,()2237410623221010C C P X C ====()313741071321020C C P X C ====则X 的分布列为X0123P1612310130()1131601236210305E X =´+´+´+´=;(用超几何分布公式()366105nM E X N ´===计算同样得分)3.(2020·河北省盐山中学高二期末)在某城市气象部门的数据库中,随机抽取30天的空气质量指数的监测数据,整理得如下表格:空气质量指数优良好轻度污染中度污染重度污染天数5a84b空气质量指数为优或良好,规定为Ⅰ级,轻度或中度污染,规定为Ⅱ级,重度污染规定为Ⅲ级.若按等级用分层抽样的方法从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天.(1)求a ,b 的值;(2)若以这30天的空气质量指数来估计一年的空气质量情况,试问一年(按366天计算)中大约有多少天的空气质量指数为优?(3)若从抽取的10天的数据中再随机抽取4天的数据进行深入研究,记其中空气质量为Ⅰ级的天数为X ,求X 的分布列及数学期望.【答案】(1)10a =,3b =.(2)61天(3)见解析【解析】(1)由题意知从中抽取10天的数据,则空气质量为Ⅰ级的恰好有5天,所以空气质量为Ⅰ级的天数为总天数的12,所以5+a=15,8+4+b=15,可得10a =,950.(2)依题意可知,一年中每天空气质量指数为优的概率为51306P ==,则一年中空气质量指数为优的天数约为1366616´=.(3)由题可知抽取的10天的数据中,Ⅰ级的天数为5,Ⅱ级和Ⅲ级的天数之和为5,满足超几何分布,所以X 的可能取值为0,1,2,3,4,4541051(0)21042C P X C ====,135510505(1)21021C C P X C ====,225541010010(2)21021C C P X C ====,3551410505(3)21021C C P X C ====,4541051(4)21042C P X C ====,X 的分布列为X1234P142 521 1021521 142故151051()0123424221212142E X =´+´+´+´+´=.4.(2020·延安市第一中学)在一个袋中,装有大小、形状完全相同的3个红球、2个黄球.现从中任取2个球,设随机变量x 为取得红球的个数.(1)求x 的分布列;(2)求x 的数学期望()E x 和方差()D x .【答案】(1)详见解析(2)6()5E x =,9()25D x =【解析】(1)x 的取值为0,1,2.()0232251010C C P C x ===,()113225631105C C P C x ====,()2032253210C C P C x ===,则x 的分布列为:x012P11035310(2)()1336012105105E x =´+´+´=,2226163639()0125105551025D x æöæöæö=-´+-´+-´=ç÷ç÷ç÷èøèøèø.5.(2020·西藏拉萨市)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有n 天,从这n 天中任取两天,设X 为这两天中客流量超过7万人的天数.求X 的分布列和期望.【答案】(1)①4.15,②4.125;(2)分布列见解析,()23E X =【解析】(1)①平均值为()2.50.2 3.50.25 4.50.4 5.50.05 6.50.057.50.051 4.15´+´+´+´+´+´´=②设中位数为x ,则()0.200.250.4040.5x ++-=解得中位数为 4.125x =(2)可知15n =其中超过7万人次的有5天()2010521545301057C C P X C ====()111052155010110521C C P X C ====()02105215102210521C C P X C ====X012P371021221所以()31022012721213E X =´+´+´=6.(2021·福建莆田市)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球中恰有1个红球的概率;(2)设x 为取出的4个球中红球的个数,求x 的分布列和数学期望.【答案】(1)715;(2)见解析.【解析】(1)记事件:A 取出的4个球中恰有1个红球,事件1:A 取出的4个球中唯一的红球取自于甲盒,事件2:A 取出的4个球中唯一的红球取自于乙盒,则12A A A =U ,且事件1A 与2A 互斥,由互斥事件的概率公式可得()()()1221134324122246715C C C C C P A P A P A C C +=+==,因此,取出的4个球中恰有1个红球的概率为715;(2)由题意知随机变量x 的可能取值为0、1、2、3,()22342246105C C P C C x ===,()7115P x ==,()111223243222463210C C C C C P C C x +===,()123222461330C C P C C x ===.所以,随机变量x 的分布列如下表所示:x123P15715310130因此,随机变量x 的数学期望为17317012351510306E x =´+´+´+´=.7.(2020·福建省南安市侨光中学高二月考)某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题.(1)求甲选手能晋级的概率;(2)若乙选手每题能答对的概率都是34,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平.【答案】(1)45;(2)乙选手比甲选手的答题水平高【解析】解法一:(1)记“甲选手答对i 道题”为事件i A ,1,2,3i =,“甲选手能晋级”为事件A ,则23A A A =U .()()()()2134242323336645C C C P A P A A P A P A C C =È=+=+=;(2)设乙选手答对的题目数量为X ,则3~3,4X B æöç÷èø,故()39344E X =´=,设甲选手答对的数量为Y ,则Y 的可能取值为1,2,3,()124236115C C P Y C ===,()214236325C C P Y C ===,()3436135C P Y C ===,故随机变量Y 的分布列为Y123P153515所以,()1311232555E Y =´+´+´=,则()()E X E Y >,所以,乙选手比甲选手的答题水平高;解法二:(1)记“甲选手能晋级”为事件A ,则()124236141155C C P A C =-=-=;(2)同解法二.8.(2020·全国高二课时练习)某大学在一次公益活动中聘用了10名志愿者,他们分别来自于A 、B 、C 三个不同的专业,其中A 专业2人,B 专业3人,C 专业5人,现从这10人中任意选取3人参加一个访谈节目.(1)求3个人来自两个不同专业的概率;(2)设X 表示取到B 专业的人数,求X 的分布列.【答案】(1)79120(2)见解析【解析】()1令事件A 表示“3个来自于两个不同专业”,1A 表示“3个人来自于同一个专业”,2A 表示“3个人来自于三个不同专业”,()3335131011120C C P A C +==,()111235231030120C C C P A C ==,3\个人来自两个不同专业的概率:()()()1211307911120120120P A P A P A =--=--=.()2随机变量X 有取值为0,1,2,3,()0337310350120C C P X C ===,()1237310631120C C P X C ===,()2137310212120C C P X C ===,()307331013120C C P X C ===,X \的分布列为:X123P3512063120211201120【题组三 二项分布与超几何分布综合运用】1.(2020·甘肃省会宁县第四中学) 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国 2.5PM 标准采用世卫组织设定的最宽限值,即 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,某试点城市环保局从该市市区2019年上半年每天的 2.5PM 监测数据中随机的抽取15天的数据作为样本,监测值如下茎叶图所示(十位为茎,个位为叶).(1)在这15天的 2.5PM 日均监测数据中,求其中位数;(2)从这15天的数据中任取2天数据,记x 表示抽到 2.5PM 监测数据超标的天数,求x 的分布列及数学期望;(3)以这15天的 2.5PM 日均值来估计该市下一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级.【答案】(1)45;(2)分布列见解析,45;(3)219.【解析】(1)由茎叶图可得中位数是45.(2)依据条件,x 服从超几何分布:其中15N =,6M =,2n =,x 的可能值为0,1,2,()026921512035C C P C x ===,()116921518135C C P C x ===,()2069215512357C C P C x ====,所以x 的分布列为:x012P1235183517()121814012353575E x =´+´+´=.(3)依题意可知,一年中每天空气质量达到一级或二级的概率为93=155P =,一年中空气质量达到一级或二级的天数为h ,则3365,5B h æöç÷èø:,33652195E h =´=,∴一年中平均有219天的空气质量达到一级或二级.2.(2020·山东高二期末)1933年7月11日,中华苏维埃共和国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日.中华人民共和国成立后,将此纪念日改称为中国人民解放军建军节.为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中间产生,该班委设计了一个测试方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的.(1)求A 恰好答对两个问题的概率;(2)求B 恰好答对两个问题的概率;(3)设A 答对题数为X ,B 答对题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.【答案】(1)35 ;(2)49;(3)选择A .【解析】(1) A 恰好答对两个问题的概率为214236C C 3C 5=;(2) B 恰好答对两个问题的概率为223214339C æö´=ç÷èø;(3) X 所有可能的取值为1,2,3. ()124236C C 11C 5P X ===,214236C C 3(2)C 5P X ===,304236C C 1(3)C 5P X ===,所以131()1232555E X =´+´+´=,2221312()(12)(22)(32)5555D X =-´+-´+-´=;而23,3Y B æö-ç÷èø,2()323E Y =´=,212()3333D Y =´´=,所以()()E X E Y =,()()D X D Y <,可见,A 与B 的平均水平相当,但A 比B 的成绩更稳定.所以选择投票给学生A .3.(2021·湖南高二期末)一个袋中装有大小形状相同的标号为1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回袋中)记下标号,若拿出球的标号是奇数,则得1分,否则得0分.(1)求拿2次得分不小于1分的概率;(2)拿4次所得分数x 的分布列和数学期望()E x 【答案】(1)34;(2)分布列见解析;期望为2.【解析】(1)一次拿到奇数的概率3162P ==,所以拿2次得分为0分的概率为2021124C æö=ç÷èø所以拿2次得分不小于1分的概率为2211311244C æö-=-=ç÷èø(2)x 可以取值:0,1,2,3,4所以()404121601C P x æö=ç÷èø==()13141112124C P x æöæö´=ç÷ç÷èøèø==()22241132228C P x æöæö´=ç÷ç÷èøèø==()31341112324C P x æöæö´=ç÷ç÷èøèø==()404411122164P C x æöæö´=ç÷ç÷èøèø==分布列x01234P116143814116满足二项分布概率1~42B x æöç÷èø,1()=4=22E x \´4.(2020·武汉外国语学校高二期中)为有效预防新冠肺炎对老年人的侵害,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,根据测试成绩(百分制)绘制茎叶图如下.根据老年人体质健康标准,可知成绩不低于80分为优良,且体质优良的老年人感染新冠肺炎的可能性较低.(Ⅰ)从抽取的12人中随机选取3人,记x 表示成绩优良的人数,求x 的分布列及数学期望;(Ⅱ)将频率视为概率,根据用样本估计总体的思想,在该社区全体老年人中依次抽取10人,若抽到k 人的成绩是优良的可能性最大,求k 的值.【答案】(Ⅰ)分布列见解析;()2E x =;(Ⅱ)7k =.【解析】(Ⅰ)由题意12人中有8人体质优良,x 可能的取值为0,1,2,3,()343121055C P C x ===,()128431212155C C P C x ×===,()218431228255C C P C x ×===,()3831214355C P C x ===,所以x 的分布列为:x0123P155125528551455数学期望()1122814 01232 55555555E x=´+´+´+´=;(Ⅱ)由题意可知,抽取的10人中,成绩是优良的人数210,3X Bæöç÷èø∼,所以()10 102133k k kP X k C-æöæö==××ç÷ç÷èøèø,0,1,210k=×××,令()()10110111010101101110102121333321213333k k k kk kk k k kk kC CC C------+-++ìæöæöæöæö×׳××ïç÷ç÷ç÷ç÷ïèøèøèøèøíïæöæöæöæö×׳××ç÷ç÷ç÷ç÷ïèøèøèøèøî,解得192233k££,又kÎN,所以7k=,所以当7k=时,抽到k人的成绩是优良的可能性最大.。
二项分布练习题
二项分布知识清单:1.独立重复试验:一般地,在相同条件下重复做的次试验称为________________2.二项分布:一般地,在次独立重复试验中,用 表示事件发生的次数,设每次试验中事件发生的概率为,则_______________ ,.此时称随机变量服从_____________,记作 ,并称为成功概率. 例题1.独立重复试验应满足的条件是( )①每次试验之间是相互独立的; ②每次实验只有发生与不发生两种结果;③每次试验中发生的机会是均等的;④每次试验发生的事件是互斥的(A )①② (B )②③ (C )①②③ (D )①②④2.某次试验中事件A 发生的概率为,则在次这样的试验中,发生次的概率为( ) (A ) (B ) (C ) (D )3.已知随机变量服从二项分布,则等于( ) (A ) (B ) (C ) (D ) 4.某射手每次射击击中目标的概率是,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.5.甲乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为,求 (1)甲恰好击中目标2次的概率;(2)乙至少击中目标2次的概率;(3)乙恰好比甲多击中目标2次得概率;练习题1.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为,则事件A 在1次试验中发生的概率为( )(A ) (B ) (C ) (D ) 2.流星穿越大气层落在地面上的概率为0.002,,流星数量为10的流星群穿过大气层有4个落在地面上的概率为( )(A ) (B ) (C ) (D )3.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是( ) (A ) (B ) (C ) (D ) 4.甲乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获n n X A A p ()P X k ==0,1,2,,k n =X (,)X B n p p p n A k k p -1k n k p p --)1(k p )1(-k n k k n p p C --)1(ξ)31,6(~B ξ)2(=ξP 163243424313243800.8213281653152654351032.3-⨯91032.3-⨯51064.6-⨯91064.6-⨯546251662596625192625256胜的概率为0.6,则本次比赛甲获胜的概率是( )(A )0.216 (B )0.36 (C )0.432 (D )0.6485.接种某疫苗后,出现发热反映的概率为0.80,现有5人接种该疫苗,至少有3人出现发热反应的概率为________6.如果学生甲每次投篮中的概率为,那么他连续投三次,恰好两次投中的概率为_____________,至少有一次投中的概率为____________ 7.若血色素化验的准确率是,则在10次化验中,最多一次不准确的概率是_____________ 8.某篮球运动员在三分线投球的命中率为,他投球10次,恰好投进3个球的概率为_____________ 9.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为_______________10.某学生在上学路上要经过4个路口,假设在各个路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率?(2)求这名学生在上学路上因遇到红灯停留的总时间至少4min 的概率?11.某单位为绿化环境,移栽了甲乙两种大树各2株,设甲乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响,求移栽的4株大树中:(1)至少有1株成活的概率;(2)两种大树各成活1株的概率.12.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为,甲乙丙三位同学每人购买了一瓶该饮料 (1)求三位同学都没有中奖的概率;(2)求三位同学中至少有两位没有中奖的概率. 31p 2131655461。
二项分布题目
二项分布题目一、一个篮球运动员投篮的命中率为0.6,他独立进行5次投篮,恰有3次投中的概率是多少?(答案:C)A. 0.12B. 0.23C. 0.26D. 0.35二、某药品对某种疾病的治愈率为0.8,现有10位患者独立使用该药品,恰有8位被治愈的概率是多少?(答案:B)A. 0.10B. 0.17C. 0.40D. 0.60三、一枚硬币投掷的正面概率为0.5,独立投掷8次,出现4次正面的概率是多少?(答案:A)A. 0.27B. 0.35C. 0.50D. 0.65四、某种电子产品的合格率为0.95,现随机抽取20个进行检验,恰有1个不合格的概率是多少?(答案:D)A. 0.01B. 0.05C. 0.10D. 0.19五、一个骰子投掷的点数大于3的概率为0.5,独立投掷6次,出现3次点数大于3的概率是多少?(答案:C)A. 0.10B. 0.15C. 0.25D. 0.35六、某品牌手机的故障率为0.05,现随机售出100部手机,恰有2部出现故障的概率是多少?(答案:B)A. 0.01B. 0.18C. 0.50D. 0.82七、一个学生做题的正确率为0.7,他独立做10道题,恰有7道做对的概率是多少?(答案:A)A. 0.20B. 0.25C. 0.30D. 0.35八、某种疫苗的接种成功率为0.9,现有50人独立接种该疫苗,恰有45人接种成功的概率是多少?(答案:D)A. 0.01B. 0.05C. 0.10D. 0.18九、一个网站的用户点击广告的概率为0.2,独立有1000次用户访问,恰有200次点击广告的概率是多少?(答案:C)A. 0.01B. 0.05C. 几乎为零(实际值极小)D. 0.20十、某种植物的种子发芽率为0.8,现随机播种10粒种子,恰有8粒发芽的概率是多少?(答案:B)A. 0.10B. 0.20C. 0.40D. 0.60。
二项分布与超几何分布专题训练
二项分布与超几何分布专题训练一、知识梳理知识点一n重伯努利试验及其特征1.n重伯努利试验的概念将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.n重伯努利试验的共同特征(1)同一个伯努利试验重复做n次.(2)各次试验的结果相互独立.知识点二二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=C n p k(1-p)n-k,k=0,1,2,…,n.称随机变量X服从二项分布,记作X〜B(n,p).知识点三二项分布的均值与方差若X〜B(n,p),则E(X)=np,D(X)=np(1-p).知识点四超几何分布1.定义:一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C kMC N-M,k=m,m+1,m+2,其中n,N,M E N*,M W N,n W N,m=max{0,n—N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.2•均值:E(X)=N・二、题型归纳】考点一:超几何与二项分布概念的辨析【例1-1】下列随机变量中,服从超几何分布的有.(填序号)①在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为X;②从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数;③一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯数为随机变量X.【例1-2】下列例子中随机变量E服从二项分布的有.①随机变量E表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数E;③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,E表示n次抽取中出现次品的件数(M 〈N);④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,E表示n次抽取中出现次品的件数.r.【考点精练】1.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.27 81 现从中任取4个球,有如下几种变量:① X 表示取出的最大号码;② X 表示取出的最小号码;③ 取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分;④ X 表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①②B.③④C.①②④D.①②③④2•下列随机事件中的随机变量X 服从超几何分布的是()A. 将一枚硬币连抛3次,记正面向上的次数为XB. 从7男3女共10名学生干部中随机选出5名学生干部,记选出女生的人数为XC •某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为XD.盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,记第一次摸出黑球时摸取的次数为X 3•下列例子中随机变量服从二项分布的个数为()① 某同学投篮的命中率为0.6,他10次投篮中命中的次数g ;② 某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数g ;③ 从装有5个红球,5个白球的袋中,有放回地摸球,直到摸出白球为止,摸到白球时的摸球次数g ;④ 有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,g 表示n 次抽取中出现次品的件数4•下列选项中的随机变量不服从两点分布的是()A. 抛掷一枚骰子,所得点数XB. 某射击手射击一次,击中目标的次数X D.某医生做一次手术,手术成功的次数X 考点二:二项分布的均值与方差【例2】•已知随机变量:,耳满足2C +H =9,且匚〜B (8,p ),E (匚)二2,则E (q ),D (q )分别是()【考点精练】(1、1•设随机变量X,Y 满足:Y=3X-1,X 〜B 2,-,则V(Y)=()V 3丿 A.4B.5C.6D.72•设随机变量B (2,p),q ~B (4,p),若P(g >1)=9,则P (q >2)的值为()9 A.0 B.1 C.2D.3C. 从装有除颜色外其余均相同的5个红球,3个白球的袋中任取1个球,设X 1,取出白球 <0,取出红球A.5,3B.5,6C.8,3D.8,6A. 32 81 D. 16 813•已知随机变量X〜B(5,0.2),随机变量Y=5X+10,则()27 81A.E(Y)=5B.E(Y)=10C.D(Y)=20D.D(Y)=30考点三:二项分布【例3】很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.687288955667891000(1)求这12名新手的平均成绩与方差;(2)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4名参加座谈会,用X表示成绩合格的人数,求X的分布列与数学期望.【考点精练】1.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图.学生视力测试结果666777S12(1)写出这组数据的众数和中位数.(2)若视力测试结果不低于5.0,则称为“好视力”•①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率若从该地区学生(人数较多)中任选3名,记X表示抽到“好视力”学生的人数,求X的分布列.2.甲、乙二人进行定点投篮比赛,已知甲、乙二人每次投进的概率均为丄,两人各投1次称为一轮投篮.2(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量g,求g的分布列与期望.3.某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟)•将统计数据按[5,10),110,15),[15,20),…,[35,40]分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A;从乙站的乘客中随机抽取1人,记为B.用频率估计概率,求乘客A,B乘车等待时间都小于20分钟的概率;(2)在上班高峰时段,从甲站乘车的乘客中随机抽取3人,X表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X的分布列与数学期望.考点四:超几何分布【例4】某班利用课外活动时间举行了一次“函数求导比赛”活动,为了解本次比赛中学生的总体情况,从中抽取了甲、乙两个小组的样本分数的茎叶图如图所示11叶6 87 24698 1391Z(1)分别求出甲、乙两个小组成绩的平均数与方差,并判断哪个小组的成绩更稳定?(2)从甲组同学成绩不低于70分的人中任意抽取3人,设X表示所抽取的3名同学的得分在[70,80)的人数,求X的分布列及数学期望.【考点精练】1.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行•它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:~s^rTO高二8986361269765007345799611呂025788771109133589根据学生的竞赛成绩,将其分为四个等级:(1)从样本中任取2名同学的竞赛成绩,在成绩为优秀的情况下,求这2名同学来自同一个年级的概率;(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X为抽到高二年级的人数,求X的分布列,数学期望与方差.2.为庆祝2021年中国共产党成立100周年,某校高二年级举行“党史知识你我答”活动,共有10个班,每班选5名选手参加了预赛,预赛满分为150分,现预赛成绩全部介于90分到140分之间•将成绩结果按如下方式分成五组:第一组b0,100),第二组1100,110),…,第五组1130,140]•按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求参赛学生在这次活动中成绩良好的人数;(2)若从第一五组中共随机取出两个成绩,记X为取得第一组成绩的个数,求X的分布列与数学期望.3.已知袋中装有5个白球,2个黑球,3个红球,现从中任取3个球.(1)求恰有一个白球的方法种数;(2)求至少有一个红球的方法种数;(3)设随机变量X为取出3球中黑球的个数,求X的概率分布及数学期望.考点五:二项分布与超几何分布的综合【例5】袋中有6个白球、3个黑球,从中随机地连续抽取2次,每次取1个球.(1)若每次抽取后都放回,设取到黑球的次数为X,求X的分布列;(2)若每次抽取后都不放回,设取到黑球的个数为Y,求Y的分布列.【考点精练】1.某校从高三年级中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1道相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级4名选手,现从每个班级4名选手中随机抽取2人回答这个问题.已知这4人中,甲班级有3人可以正确回答3这道题目,而乙班级4人中能正确回答这道题目的概率均为二,甲、乙两班级每个人对问题的回答都是相4互独立、互不影响的.(1)求甲、乙两个班级抽取的4人都能正确回答的概率.(2)设甲、乙两个班级被抽取的选手中能正确回答题目的人数分别为X,Y,求随机变量X,Y的期望E(X),E(Y)和方差D(X),D(Y),并由此分析由哪个班级代表学校参加大赛更好.2.PM2.5是指大气中直径小于或等于2.5pm的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35p g/m3以下空气质量为一级;在35〜75p g/m3之间空气质量为二级;在75p g/m3以上空气质量为污染•某市生态环境局从该市2021年上半年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)•PM2.5日均值(pg/m123)28537143445638791从这15天的数据中任取1天,求这天空气质量达到一级的概率;2从这15天的数据中任取3天的数据,记g表示其中空气质量达到一级的天数,求g的分布列和数学期望;3以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按365天来计算),则一年中大约有多少天的空气质量达到一级?3.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频863925(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.考点六:二项分布与超几何分布与其他知识综合【例6】某企业为检验某种设备生产的零件质量,现随机选取20个零件进行检验,分出合格品和次品•设每个零件是次品的概率为P(0<P<1),且相互独立.(I)若20个零件中恰有2个次品的概率为f(p),求f(p)的最大值点p;(II)若合格品又分为一等品和二等品,每个零件是二等品的概率为是一等品概率的2倍.已知生产一个一等品可获利100元,生产一个二等品可获利30元,生产一个次品会亏损40元,当每个零件平均获利低于20元时,需对设备进行技术升级.当P满足什么条件时,企业需对该设备进行技术升级?【考点精练】1.某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日送礼,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶A,A,A中的一个,每个乙系列盲盒可以开出123玩偶B1,B2中的一个.(1)记事件E:一次性购买n个甲系列盲盒后集齐玩偶A,A,A玩偶;事件F:—次性购买n个乙系n123n列盲盒后集齐B1,B2玩偶;求概率P(三)及P(佇);(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选2择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为亍,购买乙系113列的概率为-;而前一次购买甲系列的消费者下一次购买甲系列的概率为;,购买乙系列的概率为匚,前344一次购买乙系列的消费者下一次购买甲系列的概率为1,购买乙系列的概率为1;如此往复,记某人第n次22购买甲系列的概率为Q.n①求{Q}的通项公式;n②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.2.由于“新冠肺炎”对抵抗力差的人的感染率相对更高,特别是老年人群体,因此某社区在疫情控制后,及时给老年人免费体检,通过体检发现“高血糖,高血脂,高血压”,即“三高”老人较多为此社区根据医生的建议为每位老人提供了一份详细的健康安排表,还特地建设了一个老年人活动中心,老年人每天可以到该活动中心去活动,以增强体质,通过统计每周到活动中心去运动的老年人的活动时间,得到了以下频率分布直方图.(1)从到活动中心参加活动的老人中任意选取5人.①若将频率视为概率,求至少有3人每周活动时间在[8,9)(单位:h)的概率;②若抽取的5人中每周活动时间在[8,11](单位:h)的人数为2人,从5人中选出3人进行健康情况调查,记3人中每周活动时间在[8,11](单位:h)的人数为求g的分布列和期望;(2)将某人的每周活动时间量与所有老人的每周平均活动时间量比较,当超出所有老人的每周平均活动量不少于0.74h时,则称该老人为“活动爱好者”,从参加活动的老人中随机抽取10人,且抽到k人为“活动爱好者”的可能性最大,试求k的值.(每组数据以区间的中点值为代表)3.现有一批疫苗试剂,拟进入动物试验阶段,将1000只动物平均分成100组,任选一组进行试验.第一轮注射,对该组的每只动物都注射一次,若检验出该组中有9只或10只动物产生抗体,说明疫苗有效,试验终止;否则对没有产生抗体的动物进行第二轮注射,再次检验.如果被二次注射的动物都产生抗体,说明疫苗有效,否则需要改进疫苗.设每只动物是否产生抗体相互独立,两次注射疫苗互不影响,且产生抗体的概率均为P(0<P<1).(1)求该组试验只需第一轮注射的概率(用含P的多项式表示);(2)记该组动物需要注射次数X的数学期望为E(X),求证:10<E(X)<10(2-p)。
(完整版)二项分布专题练习
二项分布专题练习1.已知随机变量X 服从二项分布,X ~B 16,3⎛⎫ ⎪⎝⎭,则P (X =2)=( ). A .316B .4243C .13243D .802432.设某批电子手表正品率为34,次品率为14,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ).A .22313C 44⎛⎫⨯ ⎪⎝⎭B .22331C 44⎛⎫⨯ ⎪⎝⎭C . 21344⎛⎫⨯ ⎪⎝⎭D .23144⎛⎫⨯ ⎪⎝⎭3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ).A .0.6k -1×0.4B .0.24k -1×0.76C .0.4k -1×0.6D .0.76k -1×0.244.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ).A .2191010n k-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭B . 191010k n k-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .1119C 1010kn kk n ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .11119C 1010k n kk n ----⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( ). A .13B .25C .56D .346.某一批花生种子,如果每一粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是__________.7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答)8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)9.某安全生产监督部门对6家小型煤矿进行安全检查(安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的, 每家煤矿整改前安检合格的概率是0.6,整改后安检合格的概率是0.9,计算:(1)恰好有三家煤矿必须整改的概率; (2)至少关闭一家煤矿的概率.(精确到0.01)10.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率, (I )甲恰好击中目标的2次的概率; (II )乙至少击中目标2次的概率;(III )求乙恰好比甲多击中目标2次的概率.2132参考答案1. 答案:D解析:P (X =2)=24201180C 133243⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭. 2. 答案:C解析:P (X =3)是前两次未抽到正品,第三次抽到正品的概率,则P (X =3)=21344⎛⎫⨯ ⎪⎝⎭.3. 答案:B解析:甲每次投篮命中的概率为0.4,不中的概率为0.6,乙每次投篮命中的概率为0.6,不中的概率为0.4,则在一轮中两人均未中的概率为0.6×0.4=0.24,至少有一人中的概率为0.76. 所以P (X =k )的概率是前k -1轮两人均未中,第k 轮时至少有一人中,则P (X =k )=0.24k-1×0.76. 4. 答案:C解析:10个球中有一个红球,每次取出一球是红球的概率为110,不是红球的概率为910,直到第n 次才取得k (k ≤n )次红球,说明前n -1次中已取得红球k -1次,其余均不为红球.则概率为11119C 1010k n kk n ----⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭×110=1119C 1010k n kk n ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.5. 答案:A解析:事件A 在一次试验中发生的概率为p , 由题意得1-04C p 0(1-p )4=6581. 所以1-p =23,p =13.6. 答案:96625解析:每粒种子的发芽概率为45,并且4粒种子的发芽与不发芽互不影响,符合二项分布B 44,5⎛⎫ ⎪⎝⎭,则4粒种子恰有2粒发芽的概率为:22244196C 55625⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 7. 答案:0.947 7解析:治愈的病人数X ~B (4,0.9),则4个病人中至少被治愈3人的概率为P (X ≥3)=P (X =3)+P (X =4)=34C 0.93×0.1+44C 0.94=0.947 7.8. 解:由题意,设“一个人生日是元旦”为事件A ,要研究50人的生日,则相当于进行50次试验,显然各人的生日是随机的,互不影响的,所以属于50次独立重复试验,P (A )=1365,设50人中生于元旦的人数为ξ, 则P (ξ=0)=0500501364C 365365⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,P (ξ=1)=1491501364C 365365⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭, “两人以上生于元旦”的概率为:P (ξ≥2)=1-P (ξ<2)=1-P (ξ=0)-P (ξ=1)=1-0500501364C 365365⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-1491501364C 365365⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭≈0. 008 4. 9. 解:(1)每家煤矿需整改的概率是1-0.6=0.4,且每家煤矿是否整改是独立的.所以恰好有三家煤矿必须整改的概率是p 1=36C ·0.43·0.63≈0.28.(2)每家煤矿被关闭的概率是0.4×0.1=0.04,且每家煤矿是否被关闭是相互独立的,所以至少关闭一家煤矿的概率是p 2=1-(1-0.04)6≈0.22.。
二项分布练习题
二项分布知识清单:1.独立重复试验:一般地,在相同条件下重复做的次试验称为________________2.二项分布:一般地,在次独立重复试验中,用 表示事件发生的次数,设每次试验中事件发生的概率为,则_______________ ,.此时称随机变量服从_____________,记作 ,并称为成功概率. 例题1.独立重复试验应满足的条件是( )①每次试验之间是相互独立的; ②每次实验只有发生与不发生两种结果;③每次试验中发生的机会是均等的;④每次试验发生的事件是互斥的(A )①② (B )②③ (C )①②③ (D )①②④2.某次试验中事件A 发生的概率为,则在次这样的试验中,发生次的概率为( ) (A ) (B ) (C ) (D )3.已知随机变量服从二项分布,则等于( ) (A ) (B ) (C ) (D ) 4.某射手每次射击击中目标的概率是,求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.5.甲乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为,求 (1)甲恰好击中目标2次的概率;(2)乙至少击中目标2次的概率;(3)乙恰好比甲多击中目标2次得概率;练习题1.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为,则事件A 在1次试验中发生的概率为( )(A ) (B ) (C ) (D ) 2.流星穿越大气层落在地面上的概率为0.002,,流星数量为10的流星群穿过大气层有4个落在地面上的概率为( )(A ) (B ) (C ) (D )3.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是( ) (A ) (B ) (C ) (D ) 4.甲乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获n n X A A p ()P X k ==0,1,2,,k n =X (,)X B n p p p n A k k p -1k n k p p --)1(k p )1(-k n k k n p p C --)1(ξ)31,6(~B ξ)2(=ξP 163243424313243800.8213281653152654351032.3-⨯91032.3-⨯51064.6-⨯91064.6-⨯546251662596625192625256胜的概率为0.6,则本次比赛甲获胜的概率是( )(A )0.216 (B )0.36 (C )0.432 (D )0.6485.接种某疫苗后,出现发热反映的概率为0.80,现有5人接种该疫苗,至少有3人出现发热反应的概率为________6.如果学生甲每次投篮中的概率为,那么他连续投三次,恰好两次投中的概率为_____________,至少有一次投中的概率为____________ 7.若血色素化验的准确率是,则在10次化验中,最多一次不准确的概率是_____________ 8.某篮球运动员在三分线投球的命中率为,他投球10次,恰好投进3个球的概率为_____________ 9.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为_______________10.某学生在上学路上要经过4个路口,假设在各个路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率?(2)求这名学生在上学路上因遇到红灯停留的总时间至少4min 的概率?11.某单位为绿化环境,移栽了甲乙两种大树各2株,设甲乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响,求移栽的4株大树中:(1)至少有1株成活的概率;(2)两种大树各成活1株的概率.12.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为,甲乙丙三位同学每人购买了一瓶该饮料 (1)求三位同学都没有中奖的概率;(2)求三位同学中至少有两位没有中奖的概率. 31p 2131655461。
高中三年级上学期数学《二项分布的概念》练习题
《二项分布的概念》练习题习题1.某射击运动员进行了4次射击,假设每次射击击中的目标概率都为43,且各次击中目标与否相互独立。
用X 表示这4次射击中击中目标的次数,求X 的分布列。
习题2:某公司安装了3台报警器,它们彼此独立工作,且发生险情时每台报警器报警的概率均为0.9。
设Y 为3台报警器报警的台数,求发生险情时Y 的分布列。
习题3:下列随机变量X 服从二项分布吗?如果服从二项分布,其参数各是什么? (1)掷 5 枚相同的骰子,X 为出现“1”点的骰子数; (2)n 个新生儿,X 为男婴的个数;(3)某产品的合格品率为 p ,X 为 n 个产品中的次品数;(4)袋中有除了颜色不同其他都相同的白球2个,红球3个,有放回的连续取4次,每次取一个,X 为4次中取到红球的总数.习题4:若电梯在每一层停或不停的概率是相等的,则从底层到第十层电梯之间停了(底层不停)不少于3次的概率是多少?停几次概率最大?习题5:抛掷两枚质地均匀的骰子,取其中一枚的点数作为点P 的横坐标,另一枚的点数为P 的纵坐标,求连续抛掷这两枚骰子三次,点P 在圆1622=+y x 内的次数X 的分布列.参考答案1. 解析:X1234)(k X P =4004)41()43(C 3114)41()43(C 2224)41()43(C 1334)41()43(C 0444)41()43(C2. 解析:n 次独立重复试验;每次试验的概率不变;每次试验只有两个对立结果。
通项.3,2,1,0,)9.01(9.0)(33=-==-k C k Y P k k k3. 解析:(1)X ~B(5,1/6)(2)X ~B(n ,1/2)(3)X ~B(n ,1- p)(4)X ~B(4,3/5)4. 解析:设停电梯的次数为 X ,X=0,1,2,3, (9)根据三点特征,X 服从二项分布,X ~ B (9,1/2)99954496339)21()21()21()21()21()3(⨯++⨯⨯+⨯⨯=≥∴C C C X P,)(次时设电梯停9999)21()21(21)(k kk k C C k X P k ===-.21,54999最大)(最大,即时或当k k C C k =∴5. 解析:设每次试验中点P 落在圆内的概率为p ,X ~ B (3,p )点P 的坐标一共有36种情况,落在圆内的点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1)(3,2)共8个.92368==∴p)923(~,B X ∴ .3,2,1,0,)97()92()(33===-k C k X P k k k。
统计学二项分布习题
(一)单项选择题1.某地人群中高血压的患病率为π,由该地区随机抽查n 人,则()A .样本患病率p=X/n 服从B (n,π)B .n 人中患高血压的人数X 服从B (n,π)C .患病人数与样本患病率均不服从B (n,π)D .患病人数与样本患病率均服从B (n,π)答案:B [评析]本题考点:二项分布概念的理解。
二项分布中所指的随机变量X 代表n 次试验中出现某种结果的次数,具体到本题目就是指抽查的n 个人中患高血压的人数,因此答案为B 。
2.二项分布近似正态分布的条件是()A .n 较大且π接近0B .n 较大且π接近1C .n 较大且π接近0或1D .n 较大且π接近0.5答案:D[评析]本题考点:二项分布的正态近似特性。
从对二项分布特性的描述中可知:当n 较大,π不接近0也不接近1时,二项分布B (n ,π)近似正态分布N (n π,)1(n )。
π不接近0也不接近1,等同于π接近0.5,因而此题目答案为D 。
3.以下分布中,其均数和方差总是相等的是()A .正态分布 B. 对称分布 C.Poisson 分布D. 二项分布答案:C[评析]本题考点:Poisson 分布的特性。
Poisson 分布P (μ)的参数只有一个,即μ。
它的均数和方差均等于μ,这一点大家需要牢记。
4. 测得某地区井水中细菌含量为10000/L,据此估计该地区每毫升井水中细菌平均含量的95%可信区间为()A .1000096.110000B. 1096.110 C.10001000096.110 D. 1000096.110答案:C[评析]本题考点:Poisson 分布的正态近似性。
当X 较大(一般大于50)时,Poisson 分布近似正态分布,按照正态分布资料的计算公式计算该地区井水中平均每升细菌含量的95%可信区间,再除以1000即得平均每毫升井水中细菌的平均含量(设1000XY,有1000100001000XYS S )。
二项分布例题
1、一个篮子里有5个红球和3个蓝球,随机摸取3次(每次摸取后放回),摸到红球的次数服从什么分布?A. 正态分布B. 二项分布C. 泊松分布D. 均匀分布(答案)B2、某品牌手机的故障率为0.05,若随机抽取100部该品牌手机,故障手机数服从什么分布?A. 指数分布B. 二项分布C. 正态分布D. 卡方分布(答案)B3、一枚硬币投掷5次,正面朝上的次数最可能服从什么分布?A. 二项分布B. 正态分布C. 均匀分布D. t分布(答案)A4、某药品的治愈率为70%,若对100名患者使用该药品,被治愈的患者数服从什么分布?A. F分布B. 二项分布C. 幂律分布D. 对数正态分布(答案)B5、一个骰子投掷3次,出现点数大于4的次数服从什么分布?A. 几何分布B. 二项分布C. 超几何分布D. 瑞利分布(答案)B6、某射击运动员的命中率为80%,若他射击10次,命中的次数服从什么分布?A. 韦布尔分布B. 二项分布C. 柯西分布D. 莱维分布(答案)B7、一箱苹果中有80%是好苹果,随机挑选10个苹果,好苹果的数量服从什么分布?A. 二项分布B. 伽马分布C. 贝塔分布D. 逻辑斯蒂分布(答案)A8、某网站的用户点击广告的概率为0.1,若随机抽取1000名用户,点击广告的用户数服从什么分布?A. 二项分布B. 古斯-贝叶斯分布C. 帕累托分布D. 威布尔分布(答案)A9、一个班级里有40%的学生是女生,随机抽取10名学生,女生的数量服从什么分布?A. 二项分布B. 三角分布C. 梯形分布D. 半正态分布(答案)A10、某产品的合格率为95%,若随机抽取50件产品,合格的产品数服从什么分布?A. 二项分布B. 伯努利分布C. 拉普拉斯分布D. 瑞利分布(答案)A。
二项分布 练习
二项分布练习1、已知一个射手每次击中目标的概率为p=3/5,求他在次射击中下列事件发生的概率:(1)命中一次;(2)恰在第三次命中目标;(3)命中两次;(4)刚好在第二、第三两次击中目标。
2、在图书室中只存放技术书和数学书,任一读者借技术书的概率为0.2,而借数学书的概率为0.8,设每人只借一本,有5名读者依次借书,求至多有2人借数学书的概率。
3、甲投篮的命中率为0.8 ,乙投篮的命中率为0.7 ,每人各投篮3次,每人恰好都投中2次的概率是多少?4、实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).⑴试求甲打完5局才能取胜的概率.⑵按比赛规则甲获胜的概率.5、某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同。
假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡的寿命为1年以上的概率为p,寿命为2年以上的概率为p2。
从使用之日起每满年进行一次灯泡更换工作,1只更换已坏的灯泡,平时不换。
(1)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(2)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(3)当p1=0.8 p2=0.3 时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率。
(结果保留两个有效数字)6、假定人在一年365天中的任一天出生的概率是一样的,某班级有50名同学,其中有两个以上的同学生于元旦的概率是多少?(保留四位小数)7、某人参加一次考试,若5道题中解对4道则为及格,已知他解一道题的正确率为0.6,是求他能及格的概率。
8、甲乙两人各进行3次射击,甲每次击中目标的概率为1/2 ,乙每次击中目标的概率为2/3,求:①甲恰好击中目标2次的概率;②乙至少击中目标2次的概率;③乙恰好比甲多击中目标2次的概率;④甲、乙两人共击中5次的概率。
8、甲、乙两个篮球远动员投篮命中率分别为0.7和0.6,每人投篮3次,求:(1)二人进球数相同的概率;(2)甲比乙进球多的概率。
项分布专题练习
二项分布专题练习1.已知随机变量X 服从二项分布,X ~B 16,3⎛⎫ ⎪⎝⎭,则P (X =2)=( ).A .316B .4243C .13243D .802432.设某批电子手表正品率为34,次品率为14,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ).A .22313C 44⎛⎫⨯ ⎪⎝⎭ B .22331C 44⎛⎫⨯ ⎪⎝⎭ C . 21344⎛⎫⨯ ⎪⎝⎭D .23144⎛⎫⨯ ⎪⎝⎭3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ).A .0.6k -1×0.4B .0.24k -1×0.76C .0.4k -1×0.6D .0.76k-1×0.244.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ).A .2191010n k-⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭B . 191010k n k-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C .1119C1010kn kk n ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .11119C1010k n kk n ----⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为( ). A .13B .25C .56D .346.某一批花生种子,如果每一粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是__________.7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答)8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)9.某安全生产监督部门对6家小型煤矿进行安全检查(安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的, 每家煤矿整改前安检合格的概率是0.6,整改后安检合格的概率是0.9,计算:(1)恰好有三家煤矿必须整改的概率; (2)至少关闭一家煤矿的概率.(精确到0.01)10.甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率32,(I )甲恰好击中目标的2次的概率; (II )乙至少击中目标2次的概率;(III )求乙恰好比甲多击中目标2次的概率.参考答案1. 答案:D解析:P (X =2)=24201180C 133243⎛⎫⎛⎫-= ⎪⎪⎝⎭⎝⎭. 2. 答案:C解析:P (X =3)是前两次未抽到正品,第三次抽到正品的概率,则P (X =3)=21344⎛⎫⨯ ⎪⎝⎭. 3. 答案:B解析:甲每次投篮命中的概率为0.4,不中的概率为0.6,乙每次投篮命中的概率为0.6,不中的概率为0.4,则在一轮中两人均未中的概率为0.6×0.4=0.24,至少有一人中的概率为0.76. 所以P (X =k )的概率是前k -1轮两人均未中,第k 轮时至少有一人中,则P (X =k )=0.24k -1×0.76.4. 答案:C解析:10个球中有一个红球,每次取出一球是红球的概率为110,不是红球的概率为910,直到第n 次才取得k (k ≤n )次红球,说明前n -1次中已取得红球k -1次,其余均不为红球.则概率为11119C 1010k n kk n ----⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭×110=1119C 1010k n kk n ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.5. 答案:A解析:事件A 在一次试验中发生的概率为p ,由题意得1-04C p 0(1-p )4=6581. 所以1-p =23,p =13.6. 答案:96625解析:每粒种子的发芽概率为45,并且4粒种子的发芽与不发芽互不影响,符合二项分布B 44,5⎛⎫ ⎪⎝⎭,则4粒种子恰有2粒发芽的概率为:22244196C 55625⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 7. 答案:0.947 7解析:治愈的病人数X ~B (4,0.9),则4个病人中至少被治愈3人的概率为P (X ≥3)=P (X =3)+P (X =4)=34C 0.93×0.1+44C 0.94=0.947 7.8. 解:由题意,设“一个人生日是元旦”为事件A ,要研究50人的生日,则相当于进行50次试验,显然各人的生日是随机的,互不影响的,所以属于50次独立重复试验,P (A )=1365,设50人中生于元旦的人数为ξ, 则P (ξ=0)=0500501364C 365365⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, P (ξ=1)=1491501364C 365365⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭, “两人以上生于元旦”的概率为:P (ξ≥2)=1-P (ξ<2)=1-P (ξ=0)-P (ξ=1)=1-0500501364C 365365⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-1491501364C 365365⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭≈0. 008 4. 9. 解:(1)每家煤矿需整改的概率是1-0.6=0.4,且每家煤矿是否整改是独立的.所以恰好有三家煤矿必须整改的概率是p 1=36C ·0.43·0.63≈0.28. (2)每家煤矿被关闭的概率是0.4×0.1=0.04,且每家煤矿是否被关闭是相互独立的,所以至少关闭一家煤矿的概率是p 2=1-(1-0.04)6≈0.22.。
二项分布经典例题+练习题
二项分布1.n 次独立重复试验一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。
我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。
(1)独立重复试验满足的条件 第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。
(2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。
2.二项分布若随机变量X 的分布列为()P X k ==k k n k nCp q -,其中0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)XB n p 。
1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。
2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31. (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.3.甲乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是12,试求需要比赛场数的期望.3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别有关?(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望()E X和方差()D X.5.(2007陕西理)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率; (Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)6. 一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数ξ的概率分别布. (1)每次取出的产品不再放回去; (2)每次取出的产品仍放回去;(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.7. (2007•山东)设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx+c=0实根的个数(重根按一个计). (I )求方程x 2+bx+c=0有实根的概率; (II )求ξ的分布列和数学期望;8.(本题满分12分)某商场为吸引顾客消费推出一项惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (I )若某位顾客消费128元,求返券金额不低于30元的概率;(II )若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元),求随机变量X 的分布列和数学期望.9. (本题满分12分)中国∙黄石第三届国际矿冶文化旅游节将于2012年8月20日在黄石铁山举行,为了搞好接待工作,组委会准备在湖北理工学院和湖北师范学院分别招募8名和12名志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm )湖湖9 18若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”,且只有湖北师范学院的“高个子”才能担任“兼职导游”。
高考数学专题《二项分布、正态分布》练习
专题11.7 二项分布、正态分布1.(2015·全国高考真题(理))投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648B .0.432C .0.36D .0.3122.(2020·湖北十堰·期末)设某地胡柚(把胡柚近似看成球体)的直径(单位:)mm 服从正态分布(75,16)N ,则在随机抽取的1000个胡柚中,直径在(79,83]内的个数约为()附:若2~(,)X N μσ,则()0.6827P X μσμσ-<+=,(22)0.9545P X μσμσ-<+=. A .134B .136C .817D .8193.(2020·青铜峡市高级中学高二期末(理))有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X 表示取得次品的次数,则(2)P X ≤=( ) A .38B .1314C .45D .784.(2021·全国·高二课时练习)抛掷骰子2次,每次结果用()12,x x 表示,其中1x ,2x 分别表示第一次、第二次骰子朝上的点数.若设(){}1212,10A x x x x =+=,(){}1212,B x x x x =>,则()P B A =______.5.(2021·全国·高二课时练习)若随机变量()2,X N μσ,则Y aX b =+服从的正态分布为______(填序号).①()2,N a μσ;②()0,1N ;③2,N a b μσ⎛⎫ ⎪⎝⎭;④()22,N a b a μσ+.6.(2021·全国·高二课时练习)一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取1只,每一次取后不放回.若已知第1只是好的,则第2只也是好的的概率是______. 7.(2021·全国·高二课时练习)设随机变量ξ服从正态分布()0,1N ,则下列结论正确的是______.(填序号)①()()()()0P a P a P a a ξξξ<=<+>->; ②()()()210P a P a a ξξ<=<->; ③()()()120P a P a a ξξ<=-<>; ④()()()10P a P a a ξξ<=->>.8.(2021·全国·高二课时练习)设随机变量ξ服从标准正态分布()0,1N ,已知练基础()1.960.025Φ-=,求()1.96P ξ<.9.(2019·河北高二期末(理))互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占23,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.10.(2021·全国·高二课时练习)某校从高三年级中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1道相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级4名选手,现从每个班级4名选手中随机抽取2人回答这个问题.已知这4人中,甲班级有3人可以正确回答这道题目,而乙班级4人中能正确回答这道题目的概率均为34,甲、乙两班级每个人对问题的回答都是相互独立、互不影响的.(1)求甲、乙两个班级抽取的4人都能正确回答的概率.(2)设甲、乙两个班级被抽取的选手中能正确回答题目的人数分别为X ,Y ,求随机变量X ,Y 的期望()E X ,()E Y 和方差()D X ,()D Y ,并由此分析由哪个班级代表学校参加大赛更好.1.(2021·四川·成都七中高三期中(理))已知某品牌电子元件的使用寿命X (单位:天)服从正态分布() 9864N ,.(1)一个该品牌电子元件的使用寿命超过100天的概率为_______________________; (2)由三个该品牌的电子元件组成的一条电路(如图所示)在100天后仍能正常工作(要练提升求K 能正常工作,A , B 中至少有一个能正常工作,且每个电子元件能否正常工作相互独立)的概率为__________________. (参考公式:若()2,XN μσ,则()0.250.250.2P X μσμσ-<≤+=)2.(2021·全国·高二课时练习)设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是0.5,则()01P ξ<<≈( ) 附:若()2,N ξμσ,则()0.6827P X μσμσ-<<+≈,()220.9545P X μσμσ-<<+≈.A .0.1587B .0.1359C .0.2718D .0.34133.(2021·全国·高二课时练习)已知()0P B >,12A A φ=,则下列式子成立的是( ) ①()10P A B >;②()()()()1212P A A B P A B P A B ⋃=+; ③()120P A A B ≠; ④()121P A A B =. A .①②③④B .②C .②③D .②④4.(2021·全国·高二课时练习)某学校工会积极组织该校教职工参与“日行万步”活动.界定日行步数不足4千步的人为“不健康生活方式者”,不少于10千步的人为“超健康生活方式者”,其他为“一般生活方式者”.某日,学校工会随机抽取了该校400名教职工,统计他们的日行步数,按步数分组,得到频率分布直方图如图所示.(1)求400名教职工日行步数(千步)的样本平均数(结果四舍五入保留整数). (2)由频率分布直方图可以认为该校教职工的日行步数ξ(千步)服从正态分布()2,N μσ,其中μ为样本平均数,标准差σ的近似值为2.5,求该校被抽取的400名教职工中日行步数(千步)()2,4.5ξ∈的人数(结果四舍五入保留整数).(3)用样本估计总体,将频率视为概率.若工会从该校教职工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:“不健康生活方式者”给予精神鼓励,奖励金额每人0元;“一般生活方式者”奖励金额每人100元;“超健康生活方式者”奖励金额每人200元.求工会慰问奖励金额X 的分布列和数学期望. 附:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<<+≈,()220.9545P μσξμσ-<<+≈.5.(2021·全国·高三月考(理))2020年是比较特殊的一年,延期一个月进行的高考在万众瞩目下顺利举行并安全结束.在备考期间,某教育考试研究机构举办了多次的跨地域性的联考,在最后一次大型联考结束后,经统计分析发现,学生的模拟测试成绩X 服从正态分布()2550,N σ(满分为750分).已知(450)0.1P X <=,(600)0.3P X >=.现在从参加联考的学生名单库中,随机抽取4名学生.(1)求抽到的4名学生中,恰好有2名学生的成绩落在区间[500,600]内,2名学生的成绩落在区间[650,750]内的概率;(2)用ξ表示抽取的4名同学的成绩落在区间[500,600]内的人数,求ξ的分布列和数学期望()E ξ.6.(2021·全国·高二课时练习)现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求: (1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.7.(2021·全国·高二课时练习)某市在实施垃圾分类的过程中,从本市人口数量在两万人左右的A 类社区(全市共320个)中随机抽取了50个进行调查,统计这50个社区某天产生的垃圾量(单位:吨),得到如下频数分布表,并将这一天垃圾数量超过8吨的社区定为“超标”社区.(1)估计该市A 类社区这一天垃圾量的平均值x .(2)若该市A 类社区这一天的垃圾量大致服从正态分布(),27.04N μ,其中μ近似为50个样本社区的平均值x (精确到0.1吨,估计该市A 类社区中“超标”社区的个数.(3)根据原始样本数据,在抽取的50个社区中,这一天共有8个“超标”社区,市政府决定从这8个“超标”社区中任选5个跟踪调查其垃圾来源.设这一天垃圾量不小于30.5吨的社区个数为X ,求X 的分布列和数学期望附:若X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.8.(2021·全国·高二课时练习)影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图.(1)写出这组数据的众数和中位数.(2)若视力测试结果不低于5.0,则称为“好视力”.①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记X 表示抽到“好视力”学生的人数,求X 的分布列.9.(2021·安徽省怀宁中学高三月考(理))为了调查90后上班族每个月的休假天数,研究人员随机抽取了1000名90后上班族作出调查,所得数据统计如下图所示.(1)求a 的值以及这1000名90后上班族每个月休假天数的平均数(同一组中的数据用该组区间的中点值作代表)(2)以频率估计概率,若从所有90后上班族中随机抽取4人,求至少2人休假天数在6天以上(含6天)的概率;(3)为研究90后上班族休假天数与月薪的关系,从上述1000名被调查者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为休假天数与月薪有关.10.(2021·吉林·长春外国语学校高三期中(理))很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.(1)求这12名新手的平均成绩与方差;(2)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4名参加座谈会,用X 表示成绩合格的人数,求X 的分布列与数学期望.1.(2021·全国·高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .σ越小,该物理量在一次测量中大于10的概率为0.5C .σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D .σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等 2.(2021·天津·高考真题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次练真题活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.3.(2020·天津高考真题)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.4.(2019·全国高考真题(理))甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.5.(2015·全国高考真题(理))某公司为了解用户对其产品的满意度,从A 、B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度的平均值及分散程度(不要求算出具体值,给出结论即可):(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率。
专题72二项分布(特色专题卷)(人教A版2019选择性)(原卷版)
专题7.2 二项分布(特色专题卷)考试时间:120分钟;满分:150分姓名:___________班级:___________考号:___________考卷信息:本卷试题共22题,单选12题,填空4题,解答题6题,满分150分,限时120分钟,试卷紧扣教材,细分题组,精选一年好题,两年真题,练基础,提能力!一.选择题(共12小题,每题5分,共60分) 1.设随机变量X ~B (4,23),则P (X ≤1)=( )A .127B .19C .13D .122.一盒中有5个大小形状一致的球,其中3个为黄球,2个为红球,采用放回抽样取3球,记一共取到的红球数为x ,则X 服从二项分布,(n ,p )为( ) A .(3,0.4)B .(3,0.6)C .(2,0.4)D .(2,0.6)3.下列说法正确的是( )A .n 重伯努利试验的每次试验结果可以多于两种B .n 重伯努利试验的各次试验结果可以不独立C .n 重伯努利试验中,每次试验“成功”的概率可以不同D .一次伯努利试验中,事件A 发生的次数X 服从两点分布4.某学校对高二年级学生进行体能测试,若每名学生测试达标的概率都是23(相互独立),且5名学生中恰有k 名学生同时达标的概率是80243,则k 的值为( )A .2B .3C .4D .3或45.(2021秋•成都月考)已知某篮球运动员每次罚球命中的概率为0.4,该运动员进行罚球练习(每次罚球互不影响),则在罚球命中两次时,罚球次数恰为4次的概率是( ) A .36625B .9125C .108625D .541256.(2022•叙州区校级模拟)已知随机变量X ~B (n ,p ),E (X )=2,D (X )=23,则P (X ≥2)=( ) A .2027B .23C .1627D .13277.(2021春•梅河口市校级期末)设随机变量X 服从二项分布X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则p =( ) A .0.1B .0.2C .0.3D .0.48.(2021春•淮安期末)设随机变量X ,Y 满足:Y =3X ﹣1,X ~B (2,13),则D (Y )=( ) A .4B .5C .6D .79.(2019春•海淀区校级期末)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现4次时停止,设停止时共取了X 次球,则P (X =6)等于( )A .C 64(38)6(58)2 B .C 63(38)3(58)2 C .C 53(38)3(58)2D .C 53(38)4(58)210.(2021春•会宁县校级期末)如果X ~B (20,13),Y ~B (20,23),那么当X ,Y 变化时,使P (X =k )=P (Y =r )成立的(k ,r )的个数为( ) A .21B .20C .10D .011.(2021春•武汉期中)已知随机变量X 服从二项分布X ~B (n ,p ),若E (X )=54,D (X )=1516,则p =( ) A .14B .13C .34D .4512.(2021春•天津期末)随着现代科技的不断发展,使用微信支付越来越广泛.设某群体的每位成员使用微信支付的概率都为0.8,且各成员的支付方式相互独立,则该群体的10位成员中使用微信支付的人数X 的均值和方差分别为( ) A .E (X )=8,D (X )=2 B .E (X )=8,D (X )=1.6 C .E (X )=2,D (X )=8 D .E (X )=2,D (X )=1.6二.填空题(共4小题,每题5分,共20分)13.设随机变量X 服从B (2,0.5)的二项分布,则P (X ≥1)= .14.若随机变量X 服从两点分布,且P (X =0)=0.8,令Y =3X ﹣2,则P (Y =﹣2)= .15.(2021春•重庆期末)某射击队对9位运动员进行射击测试,每位运动员进行3次射击,至少命中2次则通过测试,已知每位运动员每次射击命中的概率均为23,各次射击是否命中相互独立,且每位运动员本次测试是否通过相互独立,设9位运动员中有X 人通过本次测试,则E (X )= .16.(2021秋•宁化县校级月考)已知随机变量X ~B (4,p ),方差D (X )最大值为 ,当方差D (X )最大时,(4px−1x)6的展开式中1x2的系数为.三.解答题(共6小题,第17题10分,第1822题每题12分,共60分)17.(2013春•禅城区校级期末)篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P.(1)若投篮1次得分记为ξ,求方差Dξ的最大值;(2)当(1)中Dξ取最大值时,求运动员甲投5次篮得分为4分的概率.18.(2014•文登市三模)现有正整数1,2,3,4,5,…n,一质点从第一个数1出发顺次跳动,质点的跳动步数通过抛掷骰子来决定:骰子的点数小于等于4时,质点向前跳一步;骰子的点数大于4时,质点向前跳两步.(Ⅰ)若抛掷骰子二次,质点到达的正整数记为ξ,求Eξ和Dξ;(Ⅱ)求质点恰好到达正整数6的概率.19.(2021春•福州期中)福州纸伞是历史悠久的中国传统手工艺品,属于福州三宝之一,纸伞的制作工序大致分为三步:第一步削伞架,第二步裱伞面;第三步绘花刷油.一个优秀的作品除了需要有很好的素材外,更要有制作上的技术要求,已知某工艺师在每个环节制作合格的概率分别为34,45,23,只有当每个环节制作都合格才认为一次成功制作.(1)求该工艺师进行3次制作,恰有一件优秀作品的概率;(2)若该工艺师制作4次,其中优秀作品数为X,求X概率分布列及期望;20.(2014•旌阳区校级模拟)德阳中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,课程初等代数初等几何初等数论微积分初步合格的概率34232312(1)求甲同学取得参加数学竞赛复赛的资格的概率;(2)记ξ表示三位同学中取得参加数学竞赛复赛的资格的人数,求ξ的分布列及期望Eξ.21.(2016秋•清城区期末)某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:日销售量1 1.52天数102515频率0.2a b若以上表中频率作为概率,且每天的销售量相互独立.(Ⅰ)求5天中该种商品恰好有两天的销售量为1.5吨的概率;(Ⅱ)已知每吨该商品的销售利润为2千元,X表示该种商品某两天销售利润的和(单位:千元),求X 的分布列和数学期望.22.(2014春•奉新县校级月考)作为家长都希望自己的孩子能升上比较理想的高中,于是就催生了“名校热”,这样择校的结果就导致了学生在路上耽误的时间增加了.若某生由于种种原因,每天只能6:15骑车从家出发到学校,途经5个路口,这5个路口将家到学校分成了6个路段,每个路段的骑车时间是10分钟(通过路口的时间忽略不计),假定他在每个路口遇见红灯的概率均为13,且该生只在遇到红灯或到达学校才停车.对每个路口遇见红灯情况统计如下:红灯12345等待时间(秒)6060903090(1)设学校规定7:20后(含7:20)到校即为迟到,求这名学生迟到的概率;(2)设X表示该学生上学途中遇到的红灯数,求P(X≥2)的值;(3)设Y表示该学生第一次停车时已经通过路口数,求随机变量Y的分布列和数学期望.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布专题练习
1.已知随机变量X 服从二项分布,X ~B 16,3⎛⎫ ⎪⎝
⎭
,则P (X =2)=( ). A .
316
B .
4
243
C .
13
243
D .
80243
2.设某批电子手表正品率为
34,次品率为1
4
,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ).
A .2
23
13
C 44
⎛⎫⨯ ⎪⎝⎭
B .2
2331C 44
⎛⎫⨯ ⎪⎝⎭
C . 2
1344⎛⎫⨯ ⎪⎝⎭
D .2
3144
⎛⎫⨯ ⎪⎝⎭
3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ).
A .0.6k -
1×0.4
B .0.24k -
1×0.76
C .0.4k -
1×0.6
D .0.76k -
1×0.24
4.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ).
A .2191010n k
-⎛⎫⎛⎫ ⎪ ⎪
⎝⎭⎝⎭
B . 191010k n k
-⎛⎫⎛⎫ ⎪ ⎪
⎝⎭⎝⎭
C .1119C 1010k
n k
k n ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
D .1
1119C 1010k n k
k n ----⎛⎫⎛⎫ ⎪ ⎪⎝⎭
⎝⎭
5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为
65
81
,则事件A 在1次试验中发生的概率为( ). A .
13
B .
25
C .
56
D .
34
6.某一批花生种子,如果每一粒发芽的概率为4
5
,那么播下4粒种子恰有2粒发芽的概率是__________.
7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答)
8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)
9.某安全生产监督部门对6家小型煤矿进行安全检查(安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的, 每家煤矿整改前安检合格的概率是0.6,整改后安检合格的概率是0.9,计算:
(1)恰好有三家煤矿必须整改的概率; (2)至少关闭一家煤矿的概率.(精确到0.01)
10.甲、乙两人各进行3次射击,甲每次击中目标的概率为
,乙每次击中目标的概率, (I )甲恰好击中目标的2次的概率; (II )乙至少击中目标2次的概率;
(III )求乙恰好比甲多击中目标2次的概率.
2
1
3
2
参考答案
1. 答案:D
解析:P (X =2)=2
4
201180C 133243⎛⎫⎛⎫
-= ⎪ ⎪
⎝⎭
⎝⎭
. 2. 答案:C
解析:P (X =3)是前两次未抽到正品,第三次抽到正品的概率,则P (X =3)=2
13
44
⎛⎫⨯ ⎪⎝⎭.
3. 答案:B
解析:甲每次投篮命中的概率为0.4,不中的概率为0.6,乙每次投篮命中的概率为0.6,不中的概率为0.4,
则在一轮中两人均未中的概率为0.6×0.4=0.24,至少有一人中的概率为0.76. 所以P (X =k )的概率是前k -1轮两人均未中,第k 轮时至少有一人中,则P (X =k )=0.24k
-1
×0.76. 4. 答案:C
解析:10个球中有一个红球,每次取出一球是红球的概率为
110,不是红球的概率为9
10
,直到第n 次才取得k (k ≤n )次红球,说明前n -1次中已取得红球k -1次,其余均不为红球.则
概率为1
1119C 1010k n k
k n ----⎛⎫⎛⎫ ⎪
⎪⎝⎭
⎝⎭
×110=1119C 1010k n k
k n ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
.
5. 答案:A
解析:事件A 在一次试验中发生的概率为p , 由题意得1-0
4C p 0(1-p )4=65
81
. 所以1-p =
2
3
,p =13.
6. 答案:
96625
解析:每粒种子的发芽概率为
4
5
,并且4粒种子的发芽与不发芽互不影响,符合二项分布B 44,5⎛⎫ ⎪⎝⎭,则4粒种子恰有2粒发芽的概率为:2
2
244196C 55625
⎛⎫⎛⎫
= ⎪ ⎪⎝⎭⎝⎭. 7. 答案:0.947 7
解析:治愈的病人数X ~B (4,0.9),
则4个病人中至少被治愈3人的概率为P (X ≥3)=P (X =3)+P (X =4)=3
4C 0.93×0.1+
44C 0.94=0.947 7.
8. 解:由题意,设“一个人生日是元旦”为事件A ,要研究50人的生日,则相当于进行50次试验,显然各人的生日是随机的,互不影响的,所以属于50次独立重复试验,P (A )=
1
365
,设50人中生于元旦的人数为ξ, 则P (ξ=0)=050
050
1364C 365365⎛⎫⎛⎫
⎪ ⎪⎝⎭⎝⎭
,
P (ξ=1)=1
49
1501364C 365365⎛⎫
⎛⎫ ⎪
⎪⎝⎭
⎝⎭
, “两人以上生于元旦”的概率为:
P (ξ≥2)=1-P (ξ<2)=1-P (ξ=0)-P (ξ=1)=1-0
50
0501364C 365365⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
-
1
49
1501364C 365365⎛⎫
⎛⎫ ⎪ ⎪⎝⎭
⎝⎭
≈0. 008 4. 9. 解:(1)每家煤矿需整改的概率是1-0.6=0.4,且每家煤矿是否整改是独立的.所以恰好有三家煤矿必须整改的概率是p 1=3
6C ·0.43·0.63≈0.28.
(2)每家煤矿被关闭的概率是0.4×0.1=0.04,且每家煤矿是否被关闭是相互独立的,所以至少关闭一家煤矿的概率是p 2=1-(1-0.04)6≈0.22.。