圆柱和圆锥体积公式推导课件
合集下载
圆柱圆锥体积公式推导PPT精品文档
![圆柱圆锥体积公式推导PPT精品文档](https://img.taocdn.com/s3/m/351ff7a54793daef5ef7ba0d4a7302768f996f5a.png)
55
想一想、填一填:
把圆柱体切割拼成近似( ),它们
的( )相等。长方体的高就是圆柱体的
( ),长方体的底面积就是圆柱体的
(
),因为长方体的体积=( 底面积×高
),所以圆柱体的体积=(底面积×高)。用
字母“V”表示( ),“S”表示
(
),“h”表示( ),那么,圆柱
体体积用字母表示为( )
56
圆柱体积=底面积×高
d 2
2
h
C
2
2
h
168
巩固练习
练习1
1、求下面各圆锥的体积。 (2)底面半径是2 厘米,高3厘米。 (3)底面直径是6分米,高6分米 。
1 2 3 主16页9
巩固练习
练习2
2、求下面各圆锥的体积。(单位:厘米)
(1)
(2)
7
8 10
3
1 2 3 主17页0
思 考:
1、一个圆锥与一个圆练柱习等底3等好高, 已知圆锥的体积是 8 立方米, 圆柱的体积是( 24立方米 )。
1 3
4、一个圆柱和一个圆锥的体积相等,底面 积也相等,那么圆锥高是圆柱高的3倍。
172
判断:
1、圆柱体的体积一判定比断圆锥体的体积大(× )
2、圆锥的体积等于和它等底等高的圆柱体的
1 3
。
()
√
3、正方体、长方体、圆锥体的体积都等于底面
积×高。
(× )
4、一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的
圆锥体积
166
选择笔练:
S=3.14平方米 R=1米 D=2米 C=6.28米
H=3米 H=3米 H=3米 H=3米
167
想一想、填一填:
把圆柱体切割拼成近似( ),它们
的( )相等。长方体的高就是圆柱体的
( ),长方体的底面积就是圆柱体的
(
),因为长方体的体积=( 底面积×高
),所以圆柱体的体积=(底面积×高)。用
字母“V”表示( ),“S”表示
(
),“h”表示( ),那么,圆柱
体体积用字母表示为( )
56
圆柱体积=底面积×高
d 2
2
h
C
2
2
h
168
巩固练习
练习1
1、求下面各圆锥的体积。 (2)底面半径是2 厘米,高3厘米。 (3)底面直径是6分米,高6分米 。
1 2 3 主16页9
巩固练习
练习2
2、求下面各圆锥的体积。(单位:厘米)
(1)
(2)
7
8 10
3
1 2 3 主17页0
思 考:
1、一个圆锥与一个圆练柱习等底3等好高, 已知圆锥的体积是 8 立方米, 圆柱的体积是( 24立方米 )。
1 3
4、一个圆柱和一个圆锥的体积相等,底面 积也相等,那么圆锥高是圆柱高的3倍。
172
判断:
1、圆柱体的体积一判定比断圆锥体的体积大(× )
2、圆锥的体积等于和它等底等高的圆柱体的
1 3
。
()
√
3、正方体、长方体、圆锥体的体积都等于底面
积×高。
(× )
4、一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的
圆锥体积
166
选择笔练:
S=3.14平方米 R=1米 D=2米 C=6.28米
H=3米 H=3米 H=3米 H=3米
167
《圆柱和圆锥——圆柱的体积》数学教学PPT课件(3篇)
![《圆柱和圆锥——圆柱的体积》数学教学PPT课件(3篇)](https://img.taocdn.com/s3/m/ddbf41f55ebfc77da26925c52cc58bd6318693d5.png)
V=sh
S h
教学新知
教学新知
试一试:一个圆柱形零件,底面半径是5厘米,高是8厘米。 这个零件的体积是多少立方厘米?
V=sh=5²π×8=628(cm³)
教学新知
练一练:
1.计算圆柱的体积。(单位:cm)
V=sh=4²π×8=401.92(cm³) V=sh=3²π×6=169.56(cm³)
V=sh=1.5²π×0.5×2=7.065(m³)
8.两个底面积相等的圆柱,一个高是4.5分米,体积是81立方分米。另 一个高是3分米,它的体积是多少立方分米?
s=V1÷h1=81÷4.5=18(dm²) V2=sh2=18×3=54(m³)
课堂练习
9.把3个高相等、底面半径都是10厘米的圆柱形盒子叠放在 一起,如图 所示,拿走1个盒子,表面积就减少314平方厘米。每个盒子的体积是 多少立方厘米?
个近似的长方体。拼成的长方体的底面积等于圆柱的(底面积), 高就是圆柱的( 高 )。 (2)用字母V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高, 圆柱的体积公式可以写成(V=sh)。 (3)一个圆柱的底面积是0.6平方分米,高是3.5分米,体积是(2.1)立 方分米。
课后习题
2.—根木料如图所示,求这根木料的体积。(单位:m)
2.一根圆柱形木料,底面周长是62.8厘米,高是50厘米。这根木料的体 积是多少?
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
体积/m3
圆 柱
0.6
1.2
0.25
3
0.72 0.75
圆柱圆锥体积公式推导课件
![圆柱圆锥体积公式推导课件](https://img.taocdn.com/s3/m/c2992c69443610661ed9ad51f01dc281e43a5653.png)
圆柱的参数
底面半径(r)、高(h) 。
圆柱体积公式的推导过程
圆柱体积公式推导
利用微积分的知识,将圆柱底面 分割成无数个小的扇形,再将这 些扇形旋转成无数个小的圆柱体 ,求和得到圆柱的体积。
圆柱体积公式
V=πr²h,其中π是圆周率,r是底 面半径,h是高。
圆柱体积公式的应用
计算圆柱的体积
通过已知的底面半径和高 ,代入公式计算圆柱的体 积。
对圆柱圆锥体积公式的思考与探索
公式推导的局限性
01
公式推导过程中采用了微积分的方法,对于初学者来说可能存
在理解上的困难。
实际应用中的注意事项
02
在计算体积时,需要注意单位的一致性,以及在计算过程中避
免出现计算错误。
探索与拓展
03
可以尝试将圆柱和圆锥的体积公式应用到其他领域,如建筑设
计、机械制造等,以解决实际问题。
圆锥形烧杯
在物理实验中,圆锥形烧杯常用于测量液体的体积和密度等参数。
05 总结与思考
对圆柱圆锥体积公式的总结
圆柱体积公式
V = πr²h,其中r是底面半径,h是高 。
圆锥体积公式
推导过程
通过将圆柱或圆锥分割成若干个小的 长方体或正方体,然后分别求出每个 小体的体积,再求和得到总体积。
V = (1/3)πr²h,其中r是底面半径,h 是高。
解决实际问题
在工程、建筑、地质等领域中,经常需要计算圆锥形物体的 体积,如土堆、矿山的体积等。
03
圆柱圆锥体积公式的比较与联 系
圆柱与圆锥的体积公式比较
圆柱体积公式
V₁=πr²h₁
圆锥体积公式
V₂=1/3πr²h₂
比较结果
从公式中可以看出,圆锥的体积是相应圆柱体积的1/3。
圆柱体积公式推导课件(动画演示)
![圆柱体积公式推导课件(动画演示)](https://img.taocdn.com/s3/m/89df502f24c52cc58bd63186bceb19e8b8f6ecb8.png)
利用率。
圆柱体的局限性
由于圆柱体的形状限制,它可能 不适合所有应用场景。例如,在 需要更复杂形状或特定功能的场
合,其他形状可能更适合。
02
圆柱体积公式推导
圆柱体积公式推导的背景
圆柱体是三维空间中常见的几何形状之一,其体积计算在数学、物理、工程等领域 具有广泛的应用。
圆柱体积公式推导的目的是为了解决实际问题,如计算圆柱形物体的容积、液体或 气体的体积等。
圆柱体积公式的推导过程。
圆柱体积公式的应用
圆柱体积公式可以应用于计算 圆柱形物体的容积,如水桶、 油罐等。
圆柱体积公式也可以用于计算 液体或气体的体积,如在化学 实验、流体动力学等领域的应 用。
圆柱体积公式还可以用于计算 圆柱形物体的质量、密度等物 理量,如在物理学、工程学等 领域的应用。
03
动画演示
未来圆柱体积公式推导的应用前景
随着数学教育的不断深入和普及,圆柱体积公式的推导将会被广泛应用于各个领 域。同时,随着虚拟现实技术的不断发展,未来的圆柱体积公式推导将会更加真 实、生动和有趣。
THANKS
感谢观看
圆柱体与球体的关系
球体的体积是圆柱体的2/3,但它们的 表面积相等。
05
总结与展望
总结圆柱体积公式推导的过程
圆柱体积公式推导过程
通过动画演示,将圆柱体切割成无数个小的长方体,然后 分别求出这些小长方体的体积,最后将这些体积相加,得 到圆柱体的总体积。
动画演示的优点
通过动画演示,可以直观地展示圆柱体被切割和重组的过 程,帮助学生更好地理解圆柱体积公式的推导过程。
圆柱体积公式推导课件(动画演示)
目 录
• 圆柱体介绍 • 圆柱体积公式推导 • 动画演示 • 圆柱体积公式的实际应用 • 总结与展望
圆柱体的局限性
由于圆柱体的形状限制,它可能 不适合所有应用场景。例如,在 需要更复杂形状或特定功能的场
合,其他形状可能更适合。
02
圆柱体积公式推导
圆柱体积公式推导的背景
圆柱体是三维空间中常见的几何形状之一,其体积计算在数学、物理、工程等领域 具有广泛的应用。
圆柱体积公式推导的目的是为了解决实际问题,如计算圆柱形物体的容积、液体或 气体的体积等。
圆柱体积公式的推导过程。
圆柱体积公式的应用
圆柱体积公式可以应用于计算 圆柱形物体的容积,如水桶、 油罐等。
圆柱体积公式也可以用于计算 液体或气体的体积,如在化学 实验、流体动力学等领域的应 用。
圆柱体积公式还可以用于计算 圆柱形物体的质量、密度等物 理量,如在物理学、工程学等 领域的应用。
03
动画演示
未来圆柱体积公式推导的应用前景
随着数学教育的不断深入和普及,圆柱体积公式的推导将会被广泛应用于各个领 域。同时,随着虚拟现实技术的不断发展,未来的圆柱体积公式推导将会更加真 实、生动和有趣。
THANKS
感谢观看
圆柱体与球体的关系
球体的体积是圆柱体的2/3,但它们的 表面积相等。
05
总结与展望
总结圆柱体积公式推导的过程
圆柱体积公式推导过程
通过动画演示,将圆柱体切割成无数个小的长方体,然后 分别求出这些小长方体的体积,最后将这些体积相加,得 到圆柱体的总体积。
动画演示的优点
通过动画演示,可以直观地展示圆柱体被切割和重组的过 程,帮助学生更好地理解圆柱体积公式的推导过程。
圆柱体积公式推导课件(动画演示)
目 录
• 圆柱体介绍 • 圆柱体积公式推导 • 动画演示 • 圆柱体积公式的实际应用 • 总结与展望
苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)
![苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)](https://img.taocdn.com/s3/m/8e1508c37d1cfad6195f312b3169a4517623e562.png)
教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,
部编版六年级数学下册第三单元《圆锥》(复习课件)
![部编版六年级数学下册第三单元《圆锥》(复习课件)](https://img.taocdn.com/s3/m/afefd144e418964bcf84b9d528ea81c758f52e46.png)
得到的是圆锥。 (1)以6 cm长的边所在直线为轴旋转一周时, d=16 cm,h=6 cm。 (2)以8 cm长的边所在直线为轴旋转一周时, d=12 cm,h=8 cm。
8.用如图所示的扇形纸片和圆形纸片能否制作成一个圆 锥?请通过计算说明理由。
扇形圆弧的长:3.14×2×2×34=9.42(cm) 圆的周长:3.14×3=9.42(cm) 扇形圆弧的长和圆的周长相等,所以能制作成一个圆锥。
3 圆柱与圆锥
圆锥 整理复习
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
圆柱=
1 Sh 3
填一填。
(1)一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积 是(25.12)m³。
一定时间内,降落在水平地面上的水,在未经蒸发、渗漏、流失情况下, 所及的深度称为降水量(通常以毫米为单位)。测定降水量常用雨量器 和量筒。我国气象上规定按24小时的降水量为标准,降水级别如下表:
级别 降水量/mm
小雨 10以下
中雨
大雨
暴雨
大暴雨
10-24.9 25-49.9 50-99.9 100-199.9
知识点 2 运用圆锥的体积公式计算
2.计算下面各圆锥的体积。
(1) 13×36×5=60(cm3)
(2)
3.14×42×12×31=200.96(cm3)
(3)
3.14×(4÷2)2×5.4×13=22.608(cm3)
易错辨析
3.判断。(对的画“√”,错的画“×”) (1)圆柱的体积是圆锥体积的3倍。
人教版《圆柱与圆锥》(完美版)PPT课件1
![人教版《圆柱与圆锥》(完美版)PPT课件1](https://img.taocdn.com/s3/m/8b9357d9ed630b1c58eeb569.png)
解答此类题的关键是明确长方形的长(宽)或 正方形的边长等于圆柱的底面周长,根据公式 C=2πr 或C=πd求出圆的周长,然后与长方形 的长(宽)或正方形的边长进行比较即可确定 答案。
规范解答:选择①和B、②和A或②和C都恰好 能做成圆柱形的盒子。
1.把圆柱的侧面沿高展开,得到一个(长方形),它 的长等于圆柱底面的(周长),宽等于圆柱的 ( 高 )。
思路分析:塔的顶端呈圆锥形,求塔的顶端的体积就
是求圆锥的体积。计算时先根据公式S底=π
求
出圆锥的底面积,再根据公式V
求出圆锥的体
积。
规范解答::圆锥的底面积: 3.14×(18.84÷3.14÷2)²
=3.14×9 =28.26(m²) 圆锥的体积:
×28.26×6 =2×28.26 =56.52(m³) 答:塔的顶端的体积是 56.52立方米。
20×2×3.14×60+202×3.14=8792(cm²) 答:做这个水桶至少需要8792平方厘米铁皮。
例3 一根钢管,长50厘米,外圆直径是10厘米, 钢管厚2cm(如下图)。铸造这样一根钢管需要 钢材多少立方厘米?
思路分析:求铸造这样一根钢管需要钢材的体积, 就是用大圆柱的体积减去中空的小圆柱的体积。
思路分析:瓶子正放和倒放时的容积与饮料的体积不
变,所以瓶子空余部分的容积相等。因此,饮料瓶的
容积就相当于一个高为(20+4)cm 的圆柱形容器的
容积,可推知饮料体积占瓶子容积的
,即
480mL的
。
确定瓶中饮料的体积占瓶子容积的几分之几是解答
此题的关键。
规范解答:20+4=24(cm) 480× =400(mL) 答:瓶内现有饮料400毫升。
3.一个内半径是10cm的饮料瓶里,饮料的高度为 4cm,把瓶盖拧紧倒置放平,无水部分是圆柱形, 高度为16cm,这个瓶子的容积是多少?
圆柱与圆锥圆柱圆柱体积公式的推导与计算ppt
![圆柱与圆锥圆柱圆柱体积公式的推导与计算ppt](https://img.taocdn.com/s3/m/fb03f117905f804d2b160b4e767f5acfa0c78350.png)
圆锥的体积为 π x 4² x 10 / 3 = 160π / 3 ≈ 175.827173697787 (cm³)
05
圆柱与圆锥体积公式的实际应用
圆柱与圆锥体积公式在工业设计中的应用
机械零件设计
圆柱和圆锥体积公式在机械零件设计中具有广泛应用,例如 计算圆柱体的体积和表面积等,可用于分析机械零件的制造 、设计和性能等方面。
圆柱与圆锥圆柱圆柱体积 公式的推导与计算
xx年xx月xx日
contents
目录
• 圆柱与圆锥的基本概念 • 圆柱体积公式的推导 • 圆锥体积公式的推导 • 圆柱与圆锥体积的比较与计算 • 圆柱与圆锥体积公式的实际应用 • 其他相关问题的探讨
01
圆柱与圆锥的基本概念
圆柱的定义与性质
定义
以矩形的一边所在直线为旋转轴,其余各边旋转形成的面所围成的旋转体叫 做圆柱
圆柱与圆锥表面积的计算
圆柱的表面积
底面积 + 侧面积 = πr^2 + 2πrh
圆锥的表面积
底面积 + 侧面积 = πr^2 + πrl
利用三维软件进行圆柱与圆锥的设计与建模
AutoCAD
创建三维模型,进行参数化设计,具备强大的建模能力。
SolidWorks
具备强大的三维建模能力,易学易用,支持大部分文件格式的导入和导出。
容。
THANKS
谢谢您的观看
性质
圆柱的底面是两个完全相等的圆形,侧面是一个矩形
圆锥的定义与性质
定义
以直角三角形的一条直角边所在直线为旋转轴,旋转形成的面所围成的旋转体叫 做圆锥
性质
圆锥的底面是一个圆形,侧面是一个扇形
圆柱与圆锥的相似之处
05
圆柱与圆锥体积公式的实际应用
圆柱与圆锥体积公式在工业设计中的应用
机械零件设计
圆柱和圆锥体积公式在机械零件设计中具有广泛应用,例如 计算圆柱体的体积和表面积等,可用于分析机械零件的制造 、设计和性能等方面。
圆柱与圆锥圆柱圆柱体积 公式的推导与计算
xx年xx月xx日
contents
目录
• 圆柱与圆锥的基本概念 • 圆柱体积公式的推导 • 圆锥体积公式的推导 • 圆柱与圆锥体积的比较与计算 • 圆柱与圆锥体积公式的实际应用 • 其他相关问题的探讨
01
圆柱与圆锥的基本概念
圆柱的定义与性质
定义
以矩形的一边所在直线为旋转轴,其余各边旋转形成的面所围成的旋转体叫 做圆柱
圆柱与圆锥表面积的计算
圆柱的表面积
底面积 + 侧面积 = πr^2 + 2πrh
圆锥的表面积
底面积 + 侧面积 = πr^2 + πrl
利用三维软件进行圆柱与圆锥的设计与建模
AutoCAD
创建三维模型,进行参数化设计,具备强大的建模能力。
SolidWorks
具备强大的三维建模能力,易学易用,支持大部分文件格式的导入和导出。
容。
THANKS
谢谢您的观看
性质
圆柱的底面是两个完全相等的圆形,侧面是一个矩形
圆锥的定义与性质
定义
以直角三角形的一条直角边所在直线为旋转轴,旋转形成的面所围成的旋转体叫 做圆锥
性质
圆锥的底面是一个圆形,侧面是一个扇形
圆柱与圆锥的相似之处
六年级数学下册《圆锥的体积》课件
![六年级数学下册《圆锥的体积》课件](https://img.taocdn.com/s3/m/b1eedc40591b6bd97f192279168884868762b81f.png)
圆锥的体积公式推导
01
将圆锥分割成若干个小的圆柱体 ,每个圆柱体的体积为πr²h/3, 因此整个圆锥的体积为(1/3)πr²h 。
02
通过实验的方法,将圆锥装满水 或其他液体,然后将液体倒入量 杯或其他容器中,读出液体的体 积即为圆锥的体积。
圆锥的体积公式应用
计算圆锥的容积
通过测量圆锥的高度和底面直径或半径,利用公式计算出圆锥的 容积。
制造望远镜。
圆锥的体积练习题
04
基础练习题
01
02
03
04
圆锥的体积公式是什么 ?
一个圆锥的底面积是15 平方厘米,高是8厘米, 它的体积是多少?
一个圆锥的体积是18立 方厘米,它的底面积是 多少?
一个圆锥的底面半径是3 厘米,高是5厘米,它的 体积是多少?
进阶练习题
01
02
03
04
一个圆锥的底面直径是6厘米 ,高是4厘米,它的体积是多
圆锥的体积在建筑中的应用
计算土方量
在建筑工地,挖土和填土是常见 的作业。圆锥的体积公式可以帮 助我们快速计算土方量,从而优
化施工计划。
设计桥梁
桥梁的桥墩通常设计成圆锥形,以 承受压力。通过计算圆锥的体积, 可以确定桥墩的大小和所需的材料 量。
设计排水系统
排水管道通常设计成圆柱形或圆锥 形。通过计算圆锥的体积,可以确 定管道的大小和所需的材料量。
六年级数学下册《圆锥 的体积》ppt课件
目录
• 圆锥的体积公式 • 圆锥的体积与圆柱的关系 • 圆锥的体积的实际应用 • 圆锥的体积练习题 • 圆锥的体积总结与回顾
圆锥的体积公式
01
圆锥的体积定义
圆锥的体积
指圆锥所占空间的大小。
圆锥的体积公式的推导 ppt课件
![圆锥的体积公式的推导 ppt课件](https://img.taocdn.com/s3/m/f3bd7ff550e2524de5187ed6.png)
ppt课件
29
ppt课件
30
ppt课件
31
ppt课件
32
ppt课件
33
ppt课件
34
ppt课件
35
ppt课件
36
ppt课件
37
ppt课件
38
ppt课件
39
ppt课件
40
ppt课件
41
ppt课件
42
ppt课件
43
ppt课件
44
ppt课件
45
想一想:
圆柱变成圆锥的过程中, 什么没有变化?
ppt课件
73
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
74
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
75
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
76
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
7
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
8
圆柱变成圆锥的过程中,什么没 有变化?
ppt课件
9
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
10
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
11
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
12
圆柱变成圆锥的过程中,什么没有变化?
ppt课件
69
自学指导(二): 圆柱和圆锥等底等高的情况下,体积有什么样的关系?
ppt课件
70
苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)
![苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)](https://img.taocdn.com/s3/m/efed9178e418964bcf84b9d528ea81c758f52e14.png)
(打结处大约用彩带15厘米) (1)S=2πrh+2πr²=2×3.14×15×20+2×3.14×15²=3297(cm²)
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径 2米的半圆形。
(1)搭建这个大棚大约要用多少 平方米的塑料薄膜?
(1)V=sh=4²π×3.5=175.84(m³) 175.84m³=175.84t (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.16(m²)
教学新知
试一试:一个圆柱形蛋糕盒,底面半径是15厘米,高是20厘米。 (1)做这个蛋糕盒大约要用硬纸板多少平方厘米? (2)用彩带捆扎这个蛋糕盒(如下图),至少需要彩带多少厘米?
18.84dm
2m
282.6cm² 157cm³
244.92dm² 282.6dm³
37.68m² 15.7m³
教学新知
算一算:一个圆柱形油桶,从里面量,底面直径是40厘米,高是50厘米。 (1)它的容积是多少升? (2)如果1升柴油重0.85千克,这个油桶可装柴油多少千克? (3)做这样一个油桶,至少需要铁皮多少平方分米?(得数保留一位
教学新知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了 4厘米,你
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
教学新知
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径 2米的半圆形。
(1)搭建这个大棚大约要用多少 平方米的塑料薄膜?
(1)V=sh=4²π×3.5=175.84(m³) 175.84m³=175.84t (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.16(m²)
教学新知
试一试:一个圆柱形蛋糕盒,底面半径是15厘米,高是20厘米。 (1)做这个蛋糕盒大约要用硬纸板多少平方厘米? (2)用彩带捆扎这个蛋糕盒(如下图),至少需要彩带多少厘米?
18.84dm
2m
282.6cm² 157cm³
244.92dm² 282.6dm³
37.68m² 15.7m³
教学新知
算一算:一个圆柱形油桶,从里面量,底面直径是40厘米,高是50厘米。 (1)它的容积是多少升? (2)如果1升柴油重0.85千克,这个油桶可装柴油多少千克? (3)做这样一个油桶,至少需要铁皮多少平方分米?(得数保留一位
教学新知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了 4厘米,你
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
教学新知
圆柱与圆锥ppt模版课件
![圆柱与圆锥ppt模版课件](https://img.taocdn.com/s3/m/dfbe2b3f03768e9951e79b89680203d8ce2f6aae.png)
圆锥的体积
圆锥的体积计算公式为:V = (1/3) * π * r^2 * h,其中r是 底面半径,h是圆锥的高。
圆锥的体积由底面圆的面积和 高度共同决定,与斜高无关。
圆锥的体积随底面半径和高的 增大而增大。
圆锥的斜高与底面半径关系
圆锥的斜高计算公式为:l = sqrt(r^2 + h^2),其中r是底面
饮料瓶、帽子和灯罩等。
02 圆柱的几何性质
圆柱的表面积
01
02
03
04
圆柱的表面积由两个底面和一 个侧面组成。
底面是一个圆形,其面积为π × r^2,其中r是底面半径。
侧面是一个矩形,其面积为2 × π × r × h,其中h是圆柱的
高。
因此,圆柱的表面积A = 2 × π × r^2 + 2 × π × r × h。
当圆锥的高固定时,母线随底面半径的增大而增大;当底面半径固定时,母线随高 的增大而增大。
04 圆柱与圆锥的相互关系
圆柱与圆锥的相似性
01
02
03
定义相似
如果一个圆柱和一个圆锥 的底面直径与高之比相等, 则它们是相似的。
面积相似
相似圆柱和圆锥的底面面 积之比等于它们的半径平 方之比,而侧面积之比等 于它们的半径之比。
度。
圆柱与圆锥的应用场景
建筑学
圆柱和圆锥在建筑设计中有广 泛的应用,如柱子、穹顶和拱
门。
工程学
在机械工程中,圆柱和圆锥用 于制造各种零件和结构,如轴 承、齿轮和螺母。
自然界
自然界中存在许多圆柱和圆锥 形状的物体,如树木、植物和 动物的身体结构。
日常生活
在日常生活中,我们经常接触 到圆柱和圆锥形状的物品,如
【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册
![【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册](https://img.taocdn.com/s3/m/3cad0258a88271fe910ef12d2af90242a895ab89.png)
例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆
)
2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).
)
新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =
《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)
![《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)](https://img.taocdn.com/s3/m/9992eb7fe418964bcf84b9d528ea81c758f52ef2.png)
人教版六年级下册
圆锥的体积
一、问题导入、引入新课
看,小麦堆得像小山一
样,小麦丰收了!张小
玲和爷爷笑得合不搅嘴
这时,爷爷用竹子量了量麦堆的
高和底面的直径,出了个难题要
考一考小玲,让小玲算一算这堆
小麦大约有多少立方米?
二、探索新知
• 等底等高
1.估一估:你能估计出这个
圆锥的体积是圆柱几分之几
吗?
2.想一想:可以用什么
1、圆锥的体积等于圆柱体积的1/3( )
2、因为圆锥的体积等于圆柱体积的1/3,所以圆柱的体积比圆锥的体积大
( )
3、等底等高的圆柱与圆锥的体积比是3:1 ( )
4、把一个圆柱加工成一个与它等底的圆锥,削去部分的体积是这个圆锥体积的2倍( )
第一关
第二关:
一个圆锥形的零件,底面积是19平方厘米,高是12厘米,
与它等底等高的圆柱体铝坯。
15 ÷ 3 = 5(个)
)个
5
等底等高的圆柱和圆锥
1
圆锥 = 圆柱
3
2.计算下面各圆锥的体积。
1
9×3.6×3
=10.8(㎡)
1
3×3×3.14×8×3
=75.36(d㎡)
1
(8÷2)²×3.14×12×3
=200.96(cm²)
3. 一个圆锥形的零件,底面积是19cm2 ,高是12cm,
这个零件的体积是多少?
规范解答:
圆锥 =
×19×12=76(cm³)
答:这个零件的体积是76 cm3 。
4. 一个圆柱的底面周长是12.56dm,高是4.5dm,将它削成
最大的圆锥,削去部分的体积是多少?
圆锥的体积
一、问题导入、引入新课
看,小麦堆得像小山一
样,小麦丰收了!张小
玲和爷爷笑得合不搅嘴
这时,爷爷用竹子量了量麦堆的
高和底面的直径,出了个难题要
考一考小玲,让小玲算一算这堆
小麦大约有多少立方米?
二、探索新知
• 等底等高
1.估一估:你能估计出这个
圆锥的体积是圆柱几分之几
吗?
2.想一想:可以用什么
1、圆锥的体积等于圆柱体积的1/3( )
2、因为圆锥的体积等于圆柱体积的1/3,所以圆柱的体积比圆锥的体积大
( )
3、等底等高的圆柱与圆锥的体积比是3:1 ( )
4、把一个圆柱加工成一个与它等底的圆锥,削去部分的体积是这个圆锥体积的2倍( )
第一关
第二关:
一个圆锥形的零件,底面积是19平方厘米,高是12厘米,
与它等底等高的圆柱体铝坯。
15 ÷ 3 = 5(个)
)个
5
等底等高的圆柱和圆锥
1
圆锥 = 圆柱
3
2.计算下面各圆锥的体积。
1
9×3.6×3
=10.8(㎡)
1
3×3×3.14×8×3
=75.36(d㎡)
1
(8÷2)²×3.14×12×3
=200.96(cm²)
3. 一个圆锥形的零件,底面积是19cm2 ,高是12cm,
这个零件的体积是多少?
规范解答:
圆锥 =
×19×12=76(cm³)
答:这个零件的体积是76 cm3 。
4. 一个圆柱的底面周长是12.56dm,高是4.5dm,将它削成
最大的圆锥,削去部分的体积是多少?
圆锥体积公式的推导(ppt)
![圆锥体积公式的推导(ppt)](https://img.taocdn.com/s3/m/e04537096c85ec3a87c2c57c.png)
参考刚才我们算出的结果,我们得出:
圆锥体积=兀r² ×h×1/n ×[(n/n)² + (n-1/n )²+(n-2/n )² +…… +(1/n )² ] = 兀r ² ×h×1/n³×[ 1²+ 2²+…… (n-2)² +(n-1)² ² +n ]
圆柱体积=兀r² ×h
因为兀r² ×h=兀r² ×h 所以只要证明1/n³×[ 1² + 2²+……(n-2)² +(n-1)² ] =1/3即可。 +n²
右图为一个倒圆锥 的横截面。 想一想:把右图三 角形无限平均细分 会出现什么?
示意图
无限平均细分 后,每一个部 分就会是一个 圆柱体。横截 面如左图一样, 是一个长方体。
设圆锥高为h,底面圆的半径是r,共平均分 成n份。 每份高:h÷n=h/n 第1份半径:r 第1份底面积:S=兀r² 第一份体积:兀r² h/n 也就是 兀r ² ×h×1/n 第二份体积:兀×h/n× (n-1/n ×r)² 也就是 兀r ² ×h/n ×(n-1/n )² 等同于 兀r² ×h×1/n ×(n-1/n )²
圆柱体积=底面积 圆锥体积=底面积
高 高
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
假设左图为 一个长方体。
假设左图为 一个长方体。 底面是一个 正方形。
Hale Waihona Puke 假设左图为 一个长方体。 底面是一个 正方形。 高的长度是 底边的2倍 取它的中心。 做一个四棱 锥 以此类推, 共能做出六 个
答案是没有。n是无穷大的,n+1也就=n。 1/n³ ×1/6×n×(n+1) ×(2n+1)
六年级数学下册《圆柱和圆锥的认识》课件
![六年级数学下册《圆柱和圆锥的认识》课件](https://img.taocdn.com/s3/m/a82ce146e97101f69e3143323968011ca300f7fb.png)
定积分法
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰收的喜悦
一堆大米,近似于圆锥形,量得 底面周长是18.84厘米,高6厘米。 它的体积是多少立方厘米?
如果每立方米大米重500千克, 这堆大米有多少千克?
动动手:
1.一堆圆锥形的煤体积是12立方米,底面积是6立方米, 高是多少?
2.如图,直角梯形ABCD,以AB为旋转轴旋转一周, 所以成几何图形的体积是多少?
判断:
1、圆柱体的体积一判定比断圆锥体的体积大(× )
2、圆锥的体积等于和它等底等高的圆柱体的 13。
()
√
3、正方体、长方体、圆锥体的体积都等于底面
积×高。
(× )
4、一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的
体积和圆锥的体积比是2 :1. ( )
√
5、把一个圆柱木块削成一个最大的圆锥,
C
V
2
1 sh 3
r
1 3
r
r2h 1
3
C
2 C
2
2
h
1 3
6.28 2 3.14
2
3
V
1
3
d 2
2
h
V
1
3
C
2
2
h
3.14dm3
巩固练习
练习1
1、求下面各圆锥的体积。 (2)底面半径是2 厘米,高3厘米。 (3)底面直径是6分米,高6分米 。
12平方分米 6 分 米
12×6
7分米
.
3 分 米
3.14 ×32 ×7
3.14 ×(6÷2)2 ×8
想一想、填一填:
把圆柱体切割拼成近似( ),它们
的( )相等。长方体的高就是圆柱体的
( ),长方体的底面积就是圆柱体的
(
),因为长方体的体积=( 底面积×高
),所以圆柱体的体积=(底面积×高)。用
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
把圆柱的底面平均分的份数越多, 切拼成的立体图形越接近长方体。
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 底面积
思考
要求圆锥的体积,必须知道
哪两个条件?为什么要乘
1 3
?
主页
例1
V=31 sh
1 3
×19×12=76(立方厘米)
答:这个零件的体积是76立方厘米。
求圆锥的体积,还可能出现哪些 情况?在这些情况下,分别怎样求圆 锥的体积?
主页
必要条件
计算圆锥的体积所必须的条件可以是:
底面积和高 底面半径和高 底面直径和高 底面周长和高
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 底面积
长方体的体积=底面积×高 圆柱体的体积= 底面积 ×高
直柱体的体积 = 底面积×高
V =s h
已知:S r d
h 只求 v h 先求s 再求v h 先求r 再求s 然后求v
V=sh V= 兀r2 × h V=兀(d÷2)2 ×h
V 1r2h
3
V
1 3
sh
1
3
r 2h
1
3
12
3
3.14dm3
(3) 底面直径是2dm,高是3dm.
d
r
V
2
1 sh 3
1 3
r 2h
1 3
d 2
2
h
1 3
2 2
2
3
3.14dm3
(4) 底面周长是6.28dm,高是3dm.
A
D 6
4
B
C
3
3.如图,直角梯形ABCD,以AB为旋转轴旋转一 周,所以成几何图形的体积是多少? A
A
2 D
63 4
B
C
3
2 D
3
6
4
C B3
有一根底面直径是6厘米,长是10厘米的圆 柱形钢材,要把它削成与它等底等高的圆锥形 零件。要削去钢材多少立方厘米?
10厘米
6厘米
1 3
与和它(等底等高)的圆
锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱 的体积是3立方分米,圆锥的体积是( 1 ) 立方分米。
4、一个圆锥的底面积是12平方厘米,高 是6厘米,体积是( 24 )立方厘米。
2
1、一个圆柱体体积是27立方分
米,与它等底等高的圆锥的体积是
(
)立方分米。
2、一个圆锥体积是15立方厘 米,与它等底等高的圆柱的体积是 ( )立方厘米.
1 2 3 主页
巩固练习
练习2
2、求下面各圆锥的体积。(单位:厘米)
(1)
(2)
7
8 10
3
1 2 3 主页
思 考:
1、一个圆锥与一个圆练柱习等底3等好高, 已知圆锥的体积是 8 立方米, 圆柱的体积是( 24立方米 )。
2、一个圆锥与一个圆柱等底等体积, 已知圆柱的高是 2 厘米, 圆锥的 高是( 6 厘米 )。
3、一个圆锥与一个圆柱等高等体积, 已知圆柱的底面积是 6平方米, 圆锥的底面积是( 18平方米 )。
1 2 3 主页
判断
1 、圆锥的体积是圆柱体积的 1 。
3
2、圆锥的体积比圆柱的体积小。
3、圆锥体积比和它等底等高的圆柱体积少
1 3
4、一个圆柱和一个圆锥的体积相等,底面 积也相等,那么圆锥高是圆柱高的3倍。
字母“V”表示( ),“S”表示
(
),“h”表示( ),那么,圆
柱体体积用字母表示为( )
圆柱体积=底面积×高
1.5米=150厘米 50×150=7500(立方厘米)
答:它的体积是7500立方厘米。
努 力 吧 !
练一练: 1、计算下面圆柱的体积。
8dm
2
4cm 2
2、 一根方钢长50厘米,底面是边长 12厘米的正方形。如果把它锻造成底 面面积是90平方厘米的圆柱形钢材, 这根钢材长多少厘米?
应削去圆柱的
2。 ( )
3
6、一个圆锥,底面积是6平方厘米,高
是10厘米,体积是60立方厘米。 ( )
7.一个圆柱和一个圆锥等底等高,体积相
差8立方厘米,圆锥的体积是12立方厘米
()
选择
选择题:
1、将一个圆柱体铝块熔铸成圆锥体,它的( ) 不变。
A、体积 B、表面积 C、底面积 D、侧面积
2、底面积、体积分别相等的圆柱体和圆锥体,如果圆锥的高是15 厘米,那么圆柱的高是( )厘米。 A、5厘米 B、15厘米 C、30厘米 D、45厘米
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=底面积 高
•
A. 圆柱的体积是圆锥体积的——。
•
B. 圆锥的体积是圆柱体积的——。
•
C. 圆柱的体积比圆锥体积——。
•
D. 圆锥的体积比圆柱体积——。
•
E. 圆柱与圆锥体积之比是——。
•
F. 圆锥与圆柱体积之比是——。
一、填空:
1、圆锥的体积=(
用字母表示是(V=
1 3
s
1 3
×底面积×高
h )。
),
2、圆柱体积的
1、同桌说一说圆柱体积的计算公式。 (1)已知 s、h 求 v
(2)已知 r、圆h柱公式求 复v 习
(3)已知 d、h 求 v (4)已知 C、h 求 v
计算体积 主页
今日作业:
• 小练习册 P8 4. 解决问题 (1) . (3) P9 2. 算一算 (2). P10 3. 解决问题 (2)
圆锥的体积
圆柱体积=底面积 高
圆锥体积=底面积
高
1 3
圆柱体积=底面积 高
圆锥体积=底面积
高
1 3
想一想,讨论一下:
通过刚才的实验,你 发现了什么?
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
V=
1 3
sh
圆锥的体积等于和它等底等高 的圆柱体积的三分之一
V=
1 3
sh
考考你:
• 已知一个圆柱体和一个圆锥体的底面积相等, 高也相等,圆柱的体积和圆锥体积的关系是:
实验
小实验
圆柱体积=底面积 高
圆柱体积=底面积 高
圆柱体积=底面积 高
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆柱体积=底面积 高 圆锥体积=
圆锥体积
选择笔练:
S=3.14平方米 R=1米 D=2米 C=6.28米
H=3米 H=3米 H=3米 H=3米
求下列圆锥的体积:
(1) 底面积是3.14dm,高是3dm.
V 1 sh 1 3 3.14dm3 33
V 1 sh 3
(2)s底面半r 2径是1dm,高是3dm.
长方体的体积=圆柱体的体积
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
答:这根钢材长80厘米。