TFT LCD显示原理详解

合集下载

tft lcd工作原理

tft lcd工作原理

tft lcd工作原理
TFT(薄膜晶体管)LCD(液晶显示器)是一种基于薄膜晶体
管技术的液晶显示器。

其工作原理如下:
1. 像素结构:TFT LCD由一系列的像素组成,每个像素都包
含了红、绿、蓝三个基色的液晶单元和一个薄膜晶体管。

液晶单元根据电压的变化来控制光的透过程度,从而实现颜色的显示。

薄膜晶体管则负责控制电流的开关。

每个像素中的液晶单元和薄膜晶体管都被附着在透明的玻璃基板上。

2. 薄膜晶体管的作用:薄膜晶体管是TFT LCD的核心部件,
它负责控制电流的开关。

当电流通过薄膜晶体管时,它会改变液晶单元的电场,从而改变其透光性质。

薄膜晶体管的开关控制是通过将其上的栅极电压调高或调低来实现的,进而控制液晶单元的透光程度。

3. 光的透过过程:当液晶单元处于关闭状态时,它不能透过光,显示为黑色。

当液晶单元处于开启状态时,根据电场的变化,液晶分子会重新排列,使光线通过透射,显示为不同的颜色和亮度。

4. 控制信号:为了控制TFT LCD的每个像素,需要向每个像
素提供控制信号。

这些控制信号是通过一些线路和电路驱动器传递的,以确保每个像素都能准确显示所需的颜色和亮度。

总结来说,TFT LCD的工作原理是通过控制薄膜晶体管来调
节液晶单元的透光性质,从而显示不同的颜色和亮度。

通过像
素的排列和控制信号的传递,TFT LCD可以呈现出清晰、亮丽的图像。

tft lcd原理

tft lcd原理

tft lcd原理
TFT LCD(薄膜晶体管液晶显示器)是一种广泛用于平板电脑、智能手机、电视和计算机显示器等设备的平面显示技术。

下面是TFT LCD的基本原理:
1. 液晶材料:TFT LCD的基础是液晶材料。

液晶是一种介于液体和固体之间的有机分子,它在电场的作用下能够改变光的透过性。

液晶被封装在两块平板玻璃之间,这两块平板上有透明的电极。

2. 薄膜晶体管(TFT):TFT是薄膜晶体管的缩写,它是一种用于控制液晶像素的半导体器件。

每个像素都配备了一个TFT,用于控制电流的流动,从而精确地调节液晶分子的方向和透过性。

3. 像素结构:TFT LCD的屏幕由许多微小的像素组成。

每个像素由三个亮度可调的基本颜色(红、绿、蓝)的亮度调光器组成。

这三个颜色的不同亮度组合可呈现出各种颜色。

4. 背光源:TFT LCD需要一种背光源,以照亮屏幕上的像素。

常见的背光源包括冷阴极荧光灯(CCFL)和LED。

现代的LCD大多采用LED作为背光源,因为LED背光具有更低的功耗和更长的寿命。

5. 控制电路:TFT LCD屏幕上还有一套复杂的控制电路,用于接收来自计算机或其他设备的信号,并将其转化为适合液晶显示的信号。

6. 工作原理:当电流通过TFT时,TFT会控制液晶分子的排列,调节其透明度。

通过调整每个像素中红、绿、蓝三个亮度调光器的亮度,屏幕可以呈现出几百万种不同的颜色,形成图像。

总体来说,TFT LCD的原理是通过电流控制液晶分子的排列,从而调节光的透过性,最终呈现出清晰的图像。

TFT_LCD液晶显示器的驱动原理详解

TFT_LCD液晶显示器的驱动原理详解

TFT_LCD液晶显示器的驱动原理详解TFT液晶显示器是一种广泛应用于电子产品中的显示技术,它具有亮度高、色彩鲜艳、对比度高等特点。

其驱动原理涉及到液晶分子的操控和信号的产生,下面将详细介绍TFT_LCD液晶显示器的驱动原理。

TFT液晶显示器的基本构造是将两块玻璃基板之间夹上一层液晶材料并加上一层透明导电材料形成液晶屏幕。

液晶是一种具有各向异性的有机材料,其分子有两种排列方式:平行排列和垂直排列。

平行排列时液晶分子可以使光线通过,垂直排列时则阻止光线通过。

这种液晶分子的特性决定了TFT液晶显示器的驱动原理。

TFT液晶显示器的显示过程是通过将电信号施加到液晶分子上来实现的。

在TFT液晶显示器中,每个像素都有一个薄膜晶体管(TFT)作为驱动器,这个晶体管可以控制液晶分子的排列方式。

当电压施加到晶体管上时,晶体管会打开,液晶分子垂直排列,使得背光通过液晶层后被过滤器颜色选择,从而显示对应的颜色。

当电压不再施加到晶体管上时,晶体管关闭,液晶分子平行排列,背光被完全阻挡,形成黑色。

为了产生详细的图像,TFT液晶显示器采用了阵列式的组织结构。

在每个像素之间有三个基色滤光片,分别为红色、绿色和蓝色。

液晶层上的每个像素都与一个TFT晶体管和一个电容器相连。

当电压施加到TFT晶体管上时,电容器会积蓄电荷,触发液晶分子的排列,从而控制对应像素的颜色。

在驱动原理的实现过程中,TFT液晶显示器需要一个控制器来产生电信号。

控制器通过一个复杂的算法,将输入的图像数据转化为适合TFT液晶显示器的电信号,以实现图像的显示。

控制器还负责对TFT晶体管进行驱动,为每个像素提供适当的电压。

另外,TFT液晶显示器还需要背光模块来提供光源。

背光模块通常使用冷阴极荧光灯(CCFL)或者白色LED来产生光线。

背光通过液晶分子的排列方式来调节光的透过程度,从而形成不同的颜色。

为了提供更好的显示效果,在TFT液晶显示器中还需要增加背光的亮度和对比度的调节功能。

TFTLCD显示基本知识详解

TFTLCD显示基本知识详解

TFT LCD显示原理详解<什么是液晶>我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一):图(一)<TFT LCD显示原理>a:背景两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。

图(六)b:TFT LCD显示原理液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。

图(七)b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。

下层的偏光板与上层偏光板, 角度也是恰好差异90度。

所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。

效果如图(七)中前两个图所示。

b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。

c:TFT-LCD驱动电路。

为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。

在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。

已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。

由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。

上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。

tft lcd技术原理

tft lcd技术原理

tft lcd技术原理TFT(LCD)技术原理是指薄膜晶体管液晶显示技术(TFT-LCD,Thin-Film Transistor Liquid Crystal Display)。

下面将详细介绍其工作原理。

TFT-LCD由液晶显示屏和后端驱动电路两部分组成。

液晶显示屏是由若干个液晶单元组成的,每个液晶单元由液晶分子、电极和偏振片构成。

液晶分子具有特殊的电光特性,可以根据电场的变化来控制光的通过程度,从而实现图像显示。

液晶单元中的液晶分子处于两种不同的排列状态:平行排列和垂直排列。

当液晶分子是平行排列时,光线经过液晶层时会发生旋光现象,没有电场作用下,光线通过液晶层时方向不会发生改变。

而当液晶分子是垂直排列时,光线经过液晶层时会被旋转90度,即偏振方向会发生变化。

TFT液晶显示屏利用切换液晶分子的排列状态来控制光的透过程度。

每个液晶单元都配备一个薄膜晶体管(TFT),TFT作为一个电子开关,可以控制电场的加与不加。

当电场加到液晶单元上时,液晶分子会在电场的作用下发生排列状态的改变。

TFT-LCD通过后端驱动电路对每个液晶单元的TFT进行精确的电压控制,从而控制光的透过程度。

后端驱动电路根据输入的视频信号和控制信号生成相应的电压信号,这些信号通过电极施加到TFT上,控制液晶分子的排列状态。

具体来说,当后端驱动电路向液晶单元的TFT施加正向电压时,电场作用下液晶分子垂直排列,光线被旋转90度,无法通过偏振片,显示为暗状态。

而当后端驱动电路向TFT施加负向电压时,电场作用下液晶分子平行排列,光线无需经过旋转,可以通过偏振片,显示为亮状态。

通过对每个液晶单元的TFT施加不同的电压,可以实现不同程度的光透过,从而形成图像。

多个液晶单元组合在一起,就可以形成液晶显示屏,可以显示出各种复杂的图像和视频。

总结来说,TFT-LCD技术利用电场控制液晶分子的排列状态,通过后端驱动电路对每个液晶单元的电压进行精确控制,从而实现图像的显示。

tft lcd 工作原理

tft lcd 工作原理

tft lcd 工作原理
TFT LCD(薄膜晶体管液晶显示器)是一种常见的显示技术,广泛应用于电子设备中,例如平板电脑、智能手机和电视等。

下面是TFT LCD的工作原理:
1. 液晶层:TFT LCD最关键的部分是液晶层,液晶层由液晶
分子组成,液晶分子可以通过电场的作用改变其在空间中的排列方式。

2. 背光源:TFT LCD需要一个背光源,通常采用LED(Light Emitting Diode)作为背光源。

背光源会在显示器的后面提供
均匀的光源,通过液晶层透过背光源的光来显示图像。

3. 薄膜晶体管阵列:液晶层的每个像素点都包含一个对应的薄膜晶体管。

这些薄膜晶体管阵列是连接在导线网格上的,用于控制液晶层中液晶分子的排列方式。

4. 驱动电路:TFT LCD中的驱动电路负责控制薄膜晶体管阵列,通过在特定像素点上施加电压,改变液晶分子的排列方式。

这样,液晶层就可以根据不同的电压来控制光的透过程度,从而生成不同的颜色和亮度。

5. 控制器:TFT LCD还包含一个控制器,用于接收来自电子
设备的信号,并将其转化为正确的像素点显示在液晶屏上。

控制器通常采用计算机程序或者芯片实现。

总的来说,TFT LCD的工作原理是通过控制驱动电路中的薄
膜晶体管阵列,在液晶层中施加电场,进而控制液晶分子的排列方式,从而控制光的透过程度,最终显示出图像。

TFT_LCD_驱动原理

TFT_LCD_驱动原理

TFT_LCD_驱动原理TFT(薄膜晶体管)液晶显示屏是一种广泛应用于电子产品中的平面显示技术。

TFT液晶显示屏由液晶单元和薄膜晶体管阵列组成,每个像素都由一个液晶单元和一个薄膜晶体管控制。

TFT液晶显示屏的原理是利用液晶的电光效应来实现图像的显示。

液晶是一种介于固体和液体之间的有机化合物,具有光电效应。

通过在液晶材料中施加电场,可以改变液晶的折射率,从而控制光的透射或反射。

液晶的电光效应使得TFT液晶显示屏可以根据电信号来调节每个像素点的亮度和颜色。

TFT液晶显示屏的驱动原理主要包括以下几个步骤:1.数据传输:首先,需要将图像数据从输入设备(如计算机)传输到液晶显示屏的内部电路。

这通常是通过一种标准的视频接口(如HDMI或VGA)来完成的。

2.数据解码与处理:一旦数据传输到液晶显示屏内部,它会被解码和处理,以提取有关每个像素点的亮度和颜色信息。

这些信息通常以数字方式存储在显示屏的内部存储器中。

3.电压调节:在液晶显示屏中,每个像素是由一个液晶单元和一个薄膜晶体管组成。

薄膜晶体管通过控制液晶单元的电场来调节每个像素的亮度和颜色。

为了控制液晶单元的电场,需要施加不同电压信号到每个像素点上。

这些电压信号由驱动电路产生,并通过薄膜晶体管传递到液晶单元。

4.像素刷新:一旦电压信号被传递到液晶单元,液晶单元将会根据电场的变化来调节光的传输或反射,从而实现每个像素的亮度和颜色调节。

整个屏幕的像素都将按照这种方式进行刷新,以显示出完整的图像。

5.控制信号发生器:控制信号发生器是液晶显示屏的一个重要组成部分,用于生成各种控制信号,如行扫描和场扫描信号,以及重新刷新图像的同步信号。

这些控制信号保证了像素的正确驱动和图像的稳定显示。

总结起来,TFT液晶显示屏的驱动原理涉及数据传输、数据解码与处理、电压调节、像素刷新和控制信号发生器等多个步骤。

通过控制电压信号和液晶单元的电场变化,TFT液晶显示屏能够实现图像的显示,并且具有色彩鲜艳、高对比度和快速响应等优点,因此在各种电子产品中得到广泛应用。

TFTLCD工作原理

TFTLCD工作原理

TFTLCD工作原理
TFT LCD(Thin Film Transistor Liquid Crystal Display,薄膜晶
体管液晶显示器)是最常用的一种液晶显示器,具有体积小、重量轻、耗
电量低、响应速度快等优点,广泛的应用于电脑显示器、手机、电视机等。

TFT LCD 的工作原理如下:
TFTLCD显示器的基本结构是由像素组成的晶圆片上放置了微小的TFT (薄膜晶体管)驱动结构和液晶分子组成的LCD结构。

每个像素都有相应
的TFT结构,以驱动LCD中的液晶分子,完成显示的刷新和更新,从而实
现显示图像内容的转换。

TFT LCD 显示器的工作原理是将具有内含pixel的晶圆片上的每个
TFT晶体管做为一个晶体管四极管(包括电极、源极、漏极和控制极等),利用电压的变化调节液晶分子间的电容,从而影响液晶分子的排列和偏析
程度,从而有效地调节液晶分子的透射率,改变图像的亮度。

1.电信号处理:将接收到的电信号处理成TFT驱动所需的电压。

2.TFT驱动:通过TFT结构生成调整液晶分子电容偏移的电压,从而
改变像素亮度。

3.液晶显示:利用TFT结构调整液晶分子电容的偏移,从而调节液晶
电容释放的光,形成显示图像。

晶圆片上的TFT晶体管负责处理外界接收的信号。

TFT型LCD工作原理简述

TFT型LCD工作原理简述

TFT型LCD工作原理简述TFT型LCD的工作原理较为复杂,可以从以下5个方面加以理解:1.结构特点TFT型LCD主要由LCD控制模块和LCD面板两部分组成。

由于采用TFT(薄膜晶体管),因此又称为薄膜晶体管显示器.TFT的作用是用来主动控制每一个像素的器件,这样就相当于在每一个像素点上设计了一个场效应开关管.多个TFT构成一个TFT液晶板,如下图所示。

因此,TFT型LCD容易实现真彩色和高分辨率.TFT型LCD是由两层玻璃基板夹住液晶组成的,形成一个平行板电容器,通过嵌入在下玻璃板上的TFT对这个电容器和内置的存储电容充电,来维持每幅图像所需要的电压直到下一幅图像更新.由于LCD面板本身并不发光,因此还必须增设背光灯作为光源,并加上一个背光板来分布光线,从而提高屏幕亮度。

2.电路原理在TFT型LCD中使用的TFT是一个三端器件,其功能就是一个开关管。

在TFT型LCD的玻璃基板上制作半导体层,在两端有与之相连接的源极和漏极,并通过栅极绝缘膜与半导体相对应,利用施加于栅极的电压来控制源、漏电极间的电流。

显示屏上的每个像素从结构上可以看作为像素电极和公用电极之间夹有一层液晶,从电学的角度可以把它看作电容。

其等效电路如下图所示。

其工作原理是:要对 j行i列的像素点户(i、j)充电,就要把开关K(i,j)导通,对信号线D(i)施加目标电压,使数据线G(j)的数据信号加到像素P点。

当像素电极被充分充电后,即使开关断开,电容中的电荷也得到保存,电极间的液晶分子继续有电场作用。

数据线的作用是对信号线施加目标电压,而行驱动器的作用是起开关的导通和断开作用.由于加在液晶上的电压可以存储,因此液晶层能稳定的工作。

3.彩色形成原理TFT型LCD中的红、绿、蓝三原色是由彩色滤光片产生的。

彩色滤光片是由红、绿、蓝三种颜色的滤片,有规律地制作在一块大玻璃基板上,每个像素(点)是由三种颜色的单元或称为子像素所组成。

如下图所示为彩色滤光片排列图,每个子像素的左上角(灰色矩形)为不透光的TFT。

tftlcd使用原理

tftlcd使用原理

tftlcd使用原理
TFT-LCD(薄膜晶体管液晶显示器)的工作原理是基于液晶分子的定向控制和薄膜晶体管的电子控制。

以下是其具体使用原理:
1.电学控制:通过控制薄膜晶体管的通断状态,改变液晶分子的排
列方式,从而实现对像素亮度和颜色的控制。

2.光学调制:通过液晶分子与颜色滤光片的组合作用,控制光的传
播方向和偏振状态,实现像素的显示。

TFT-LCD由两块平行的玻璃基板组成,中间填充着液晶材料。

每个像素点都由三个互补色彩的亚像素点(红、绿、蓝)组成。

在玻璃基板上有一层透明导电层,称为ITO(铟锡氧化物)。

当电信号被施加到ITO层时,薄膜晶体管会通电并改变其开关状态,从而影响液晶分子的排列方式。

液晶分子在电场的作用下会发生扭曲或倾斜,导致液晶层的光学特性发生改变。

这些改变会影响穿过液晶层的光线的偏振方向,进而影响颜色滤光片对光的过滤效果。

通过调整薄膜晶体管的电流大小和方向,可以控制液晶分子的扭曲或倾斜程度,从而实现对像素亮度和颜色的精确控制。

在TFT-LCD中,每个像素点的颜色由红、绿、蓝三个亚像素点的颜色组合决定。

这三个亚像素点分别对应着红、绿、蓝三种基本颜色,通过调整每个亚像素点的亮度,可以实现不同颜色的组合和灰度级别的显示。

总之,TFT-LCD通过电学控制和光学调制相结合的方式实现了图像的
显示。

这种技术的使用不仅提高了图像的亮度和对比度,还降低了能源消耗,成为现代电子产品中广泛应用的显示技术之一。

最详细的TFTLCD液晶显示器结构及原理

最详细的TFTLCD液晶显示器结构及原理

最详细的TFTLCD液晶显示器结构及原理TFT-LCD(Tin Film Transistor Liquid Crystal Display)是一种常见的液晶显示技术,广泛应用于电子设备中,包括智能手机、电视、电子游戏等。

本文将详细介绍TFT-LCD液晶显示器的结构和工作原理。

TFT-LCD液晶显示器的结构主要由下面几个部分组成:背光装置、液晶模组、控制电路和驱动芯片。

首先是背光装置,它通常由冷阴极荧光灯(CCFL)或LED背光源组成。

背光装置产生光线,并通过背面照亮整个显示面板。

接下来是液晶模组,它包含两片玻璃基板和液晶材料。

其中液晶材料由液晶分子组成,这些分子具有光学特性,可以通过外部电场的作用来调节光的透过程度。

液晶材料位于两片玻璃基板之间,其中的每个像素点由一个液晶分子和一个电极组成。

然后是控制电路,它负责接收从电源和信号源传来的信号,并将这些信号转换为控制信号来控制液晶分子。

控制电路通常由硅晶圆制成,包括存储器、时钟、逻辑电路等。

最后是驱动芯片,它与控制电路紧密结合,用于控制每个像素点的液晶分子的状态。

驱动芯片通常包括行驱动器和列驱动器,分别用于控制液晶分子的行扫描和列选择。

TFT-LCD液晶显示器的工作原理如下:1.电压施加:控制电路将电压信号发送到驱动芯片,然后驱动芯片发送适当的电压信号到液晶模组中的每个像素点。

2.电场影响:液晶分子在电场的作用下发生变化。

当电场施加到一个像素点时,液晶分子会重新排列,导致光的透过程度发生变化。

3.光的透过:背光照射在液晶模组后,根据液晶分子的排列方式,光线可以透过模组的一些区域,被观察者看到。

4.彩色显示:在一些液晶显示器中,为了显示彩色,每个像素点通常由红、绿、蓝三个亚像素组成,其中每个亚像素有一个滤光片来控制光的通道。

通过调整不同颜色亚像素的透光度,可以实现彩色显示。

总结起来,TFT-LCD液晶显示器的结构和原理主要涉及背光装置、液晶模组、控制电路和驱动芯片。

TFTLCD液晶显示器的工作原理

TFTLCD液晶显示器的工作原理

TFTLCD液晶显示器的工作原理TFTLCD由若干个像素组成,每个像素由红、绿、蓝三个亚像素构成。

每个亚像素由一个薄膜晶体管和一个液晶分子组成。

晶体管负责控制亚像素的亮度,而液晶分子负责确定各亚像素之间的相对光透过率。

当亚像素的亮度和透明度被准确控制时,TFTLCD可以显示高质量的图像。

TFTLCD基本的工作原理如下所述:首先,当传递出一个行扫描信号时,液晶显示器的电路将会寻找并激活该行扫描信号所对应的各个像素。

然后,电荷信号被传递给每一个亚像素,通过薄膜晶体管的控制,来调整亚像素相对于传递的电荷的光强度。

TFTLCD的背光模块是通过液晶材料构成的,它由两块平行的玻璃基板夹心,基板上涂有透明电极。

这些电极连接到导线,与一个控制器相连,通过控制器的输出信号,可以为每个像素提供相对应的电压。

当电压施加到液晶分子上时,分子将排列成其中一种方式,改变光透过的方式。

在TFTLCD中,液晶分子是通过薄膜晶体管来进行控制的。

每一个像素有一个薄膜晶体管和一个液晶分子组成,以控制这个像素的亮度。

薄膜晶体管通常是由硅和金属氧化物构成的。

晶体管的操作由控制电路的信号驱动,这些信号控制晶体管的开关状态,以及电压施加的方式。

在液晶分子层中,液晶分子会受到施加在它们上面的电场的影响。

通过改变电场的方向和强度,液晶分子的取向也会相应改变。

当电场施加在液晶分子上时,液晶分子将在薄膜晶体管的控制下排列成特定的方式,从而改变光的传输方式。

在TFTLCD中,每一个像素的亚像素的排列方式可以改变光的透过率。

当电场施加在像素上时,液晶分子的排列方式将会改变,根据分子的排列方式,光的透过率也将会发生变化。

通过改变不同亚像素排列的方式,TFTLCD可以产生不同亮度和颜色的像素,从而显示出高质量的图像。

综上所述,TFTLCD的工作原理主要涉及到薄膜晶体管和液晶分子的相互作用。

液晶分子通过电场的影响改变光的透过率,而薄膜晶体管通过控制电场的施加方式来控制液晶分子的排列方式。

TFTLCD液晶显示器的驱动原理详解

TFTLCD液晶显示器的驱动原理详解

TFTLCD液晶显示器的驱动原理详解1.TFT液晶显示器的像素控制TFT液晶显示器由很多个像素点组成,每个像素点由一个TFT晶体管和一个液晶单元组成。

驱动原理中的像素控制指的是对每个像素点的亮度和颜色进行控制。

首先,通过扫描线进行逐行的行选择,确定需要刷新的像素点的位置。

然后,通过控制每个像素点的TFT晶体管的门电压,来控制像素点是否导通,从而决定其亮度。

最后,通过改变液晶单元的偏振方向和强度,来调整像素点显示的颜色。

2.TFT液晶显示器的背光控制TFT液晶显示器需要背光来照亮像素点,使其显示出来。

背光控制是驱动原理中非常重要的一部分。

通常,TFT液晶显示器采用CCFL(冷阴极荧光灯)或LED(发光二极管)作为背光源。

背光的亮度可以通过控制背光源的电压或电流来实现。

在驱动原理中,通过在适当的时间段内给背光源供电,来控制背光的开关和亮度,进而实现对显示器亮度的控制。

3.TFT液晶显示器的数据传输TFT液晶显示器的驱动原理还涉及到数据的传输和刷新。

液晶显示器通常使用串行并行转换器将来自图形处理器(GPU)或其他输入源的图像信号转换为液晶显示器可接受的格式。

在驱动原理中,通过控制驱动芯片中的数据线和时钟线,将每个像素点对应的图像数据传输到相应的位置,从而实现图像的显示。

此外,TFT液晶显示器的驱动原理还包括时序控制和电压控制。

时序控制用于控制图像数据的传输速率和刷新频率,以确保图像的稳定和流畅;电压控制用于确定液晶单元的电压,以实现相应的亮度和颜色效果。

总结起来,TFT液晶显示器的驱动原理主要涉及像素控制、背光控制、数据传输、时序控制和电压控制。

每个像素点的亮度和颜色通过TFT晶体管和液晶单元的控制实现,背光通过背光源的控制实现,数据通过驱动芯片的控制传输到相应的位置。

通过精确的控制和调整,TFT液晶显示器能够呈现出清晰、鲜艳的图像。

TFT LCD液晶显示器的驱动原理详解

TFT LCD液晶显示器的驱动原理详解

TFT LCD液晶显示器的驱动原理TFT LCD液晶显示器的驱动原理(一)我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理.Cs(storage capacitor)储存电容的架构一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate 的方式的原因.至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于Cs储存电容上的common电极, 则是另外利用位于与显示电极同一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.整块面板的电路架构从图3中我们可以看到整片面板的等效电路, 其中每一个TFT与Clc跟Cs所并联的电容, 代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB三原色. 以一个1024*768分辨率的TFT LCD来说, 共需要1024*768*3个这样的点组合而成. 整片面板的大致结构就是这样, 然后再藉由如图3中 gate driver所送出的波形, 依序将每一行的TFT打开, 好让整排的source driver同时将一整行的显示点, 充电到各自所需的电压, 显示不同的灰阶. 当这一行充好电时, gate driver便将电压关闭, 然后下一行的gate driver便将电压打开, 再由相同的一排source driver对下一行的显示点进行充放电. 如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电. 以一个1024*768 SVGA分辨率的液晶显示器来说, 总共会有768行的g ate走线, 而source走线则共需要1024*3=3072条. 以一般的液晶显示器多为60Hz的更新频率来说, 每一个画面的显示时间约为1/6 0=16.67ms. 由于画面的组成为768行的gate走线, 所以分配给每一条gate走线的开关时间约为16.67ms/768=21.7us. 所以在图3 g ate driver送出的波形中, 我们就可以看到, 这些波形为一个接着一个宽度为21.7us的脉波, 依序打开每一行的TFT. 而sourcedriver则在这21.7us的时间内, 经由source走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶.面板的各种极性变换方式由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏. 但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办? 所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电压低于c ommon电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶. 所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common电极的电压高, 所表现出来的灰阶是一模一样的. 不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果. 所以当您所看到的液晶显示器画面虽然静止不动, 其实里面的电压正在不停的作更换, 而其中的液晶分子正不停的一次往这边转, 另一次往反方向转呢!图4就是面板各种不同极性的变换方式, 虽然有这么多种的转换方式, 它们有一个共通点, 都是在下一次更换画面数据的时候来改变极性. 以60Hz的更新频率来说, 也就是每16ms, 更改一次画面的极性. 也就是说, 对于同一点而言, 它的极性是不停的变换的. 而相邻的点是否拥有相同的极性, 那可就依照不同的极性转换方式来决定了. 首先是frame inversion, 它整个画面所有相邻的点, 都是拥有相同的极性. 而row inversion与column inversion则各自在相邻的行与列上拥有相同的极性. 另外在dot inversion上, 则是每个点与自己相邻的上下左右四个点, 是不一样的极性. 最后是delta inversion, 由于它的排列比较不一样, 所以它是以RGB 三个点所形成的pixel作为一个基本单位, 当以pixel为单位时, 它就与dot inversion很相似了, 也就是每个pixel与自己上下左右相邻的pixel,是使用不同的极性来显示的.Common电极的驱动方式图5及图6为两种不同的Common电极的电压驱动方式, 图5中Common电极的电压是一直固定不动的, 而显示电极的电压却是依照其灰阶的不同, 不停的上下变动. 图5中是256灰阶的显示电极波形变化, 以V0这个灰阶而言, 如果您要在面板上一直显示V0这个灰阶的话, 则显示电极的电压就必须一次很高, 但是另一次却很低的这种方式来变化. 为什么要这么复杂呢? 就如同我们前面所提到的原因一样, 就是为了让液晶分子不会一直保持在同一个转向, 而导致物理特性的永久破坏. 因此在不同的frame中, 以V0这个灰阶来说, 它的显示电极与common电极的压差绝对值是固定的, 所以它的灰阶也一直不曾更动. 只不过位在Clc两端的电压, 一次是正的, 称之为正极性, 而另一次是负的, 称之为负极性. 而为了达到极性不停变换这个目的, 我们也可以让common电压不停的变动, 同样也可以达到让Clc两端的压差绝对值固定不变, 而灰阶也不会变化的效果, 而这种方法, 就是图6所显示的波形变化. 这个方法只是将common电压 一次很大, 一次很小的变化. 当然啦, 它一定要比灰阶中最大的电压还大, 而电压小的时候则要比灰阶中最小的电压还要小才行. 而各灰阶的电压与图5中的一样, 仍然要一次大一次小的变化.这两种不同的Common驱动方式影响最大的就是source driver的使用. 以图7中的不同Common电压驱动方式的穿透率来说, 我们可以看到, 当common电极的电压是固定不变的时候, 显示电极的最高电压, 需要到达common电极电压的两倍以上. 而显示电极电压的提供, 则是来自于source driver. 以图七中common电极电压若是固定于5伏特的话, 则source driver所能提供的工作电压范围就要到10伏特以上. 但是如果common电极的电压是变动的话, 假使common电极电压最大为5伏特, 则source driver的最大工作电压也只要为5伏特就可以了. 就source driver的设计制造来说, 需要越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也会因此而加高.面板极性变换与common电极驱动方式的选用并不是所有的面板极性转换方式都可以搭配上述两种common电极的驱动方式. 当common电极电压固定不变时, 可以使用所有的面板极性转换. 但是如果common电压是变动的话, 则面板极性转换就只能选用frame inversion与row inversion.(请见表1) 也就是说, 如果你想使用column inversion或是dot inversion的话, 你就只能选用 common电极电压固定不动的驱动方式. 为什么呢? 之前我们曾经提到 common电极是位于跟显示电极不同的玻璃上, 在实际的制作上时, 其实这一整片玻璃都是common电极. 也就是说, 在面板上所有的显示点, 它们的common电压是全部接在一起的. 其次由于gate driver的操作方式是将同一行的所有TFT打开,好让source driver去充电, 而这一行的所有显示点, 它的common电极都是接在一起的, 所以如果你是选用common电极电压是可变动的方式的话, 是无法在一行TFT上, 来同时做到显示正极性与负极性的. 而column inversion与dot inversion的极性变换方式, 在一行的显示点上, 是要求每个相邻的点拥有不同的正负极性的. 这也就是为什么 common电极电压变动的方式仅能适用于frame inv ersion与row inversion的缘故. 而common电极电压固定的方式, 就没有这些限制. 因为其common电压一直固定, 只要source dri ver能将电压充到比common大就可以得到正极性, 比common电压小就可以得到负极性, 所以common电极电压固定的方式, 可以适用于各种面板极性的变换方式.表1面板极性变换方式 可使用的common电极驱动方式Frame inversion固定与变动Row inversion固定与变动Column inversion只能使用固定的common电极电压Dot inversion只能使用固定的common电极电压各种面板极性变换的比较现在常见使用在个人计算机上的液晶显示器, 所使用的面板极性变换方式, 大部分都是dot inversion. 为什么呢? 原因无它, 只因为dot inversion的显示品质相对于其它的面板极性变换方式, 要来的好太多了. 表2是各种面板极性变换方式的比较表. 所谓F licker的现象, 就是当你看液晶显示器的画面上时, 你会感觉到画面会有闪烁的感觉. 它并不是故意让显示画面一亮一灭来做出闪烁的视觉效果, 而是因为显示的画面灰阶在每次更新画面时, 会有些微的变动, 让人眼感受到画面在闪烁. 这种情况最容易发生在使用frame inversion的极性变换方式, 因为frame inversion整个画面都是同一极性, 当这次画面是正极性时, 下次整个画面就都变成了是负极性. 假若你是使用common电压固定的方式来驱动, 而common电压又有了一点误差(请见图8),这时候正负极性的同一灰阶电压便会有差别, 当然灰阶的感觉也就不一样. 在不停切换画面的情况下, 由于正负极性画面交替出现,你就会感觉到Flicker的存在. 而其它面板的极性变换方式, 虽然也会有此flicker的现象, 但由于它不像frame inversion 是同时整个画面一齐变换极性, 只有一行或是一列, 甚至于是一个点变化极性而已. 以人眼的感觉来说, 就会比较不明显. 至于crosstalk 的现象, 它指的就是相邻的点之间, 要显示的资料会影响到对方, 以致于显示的画面会有不正确的状况. 虽然crosstalk的现象成因有很多种, 只要相邻点的极性不一样, 便可以减低此一现象的发生. 综合这些特性, 我们就可以知道, 为何大多数人都使用dot inve rsion了. 表2面板极性变换方式 Flicker的现象 Crosstalk的现象Frame inversion明显 垂直与水平方向都易发生Row inversion不明显 水平方向容易发生Column inversion不明显 垂直方向容易发生Dot inversion几乎没有 不易发生面板极性变换方式, 对于耗电也有不同的影响. 不过它在耗电上需要考量其搭配的common电极驱动方式. 一般来说 common电极电压若是固定, 其驱动common电极的耗电会比较小. 但是由于搭配common电压固定方式的source driver其所需的电压比较高, 反而在source driver的耗电会比较大. 但是如果使用相同的common电极驱动方式, 在source driver的耗电来说,就要考量其输出电压的变动频率与变动电压大小. 一般来说, 在此种情形下, source driver的耗电,会有 dot inversion > row inversion > column inversion > frame inversion的状况. 不过现今由于dot inversion的source driver多是使用PN型的OP, 而不是像row inversi on是使用rail to rail OP, 在source driver中OP的耗电就会比较小. 也就是说由于source driver在结构及电路上的改进, 虽然先天上它的输出电压变动频率最高也最大(变动电压最大接近10伏特,而row inversion面板由于多是使用common电极电压变动的方式,其source driver的变动电压最大只有5伏特,耗电上会比较小), 但dot inversion面板的整体耗电已经减低很多了. 这也就是为什么大多数的液晶显示器都是使用dot inversion的方式.TFT LCD液晶显示器的驱动原理(二)上次跟大家介绍液晶显示器的驱动原理中有关储存电容架构,面板极性变换方式,以及common电压的驱动方式.这次我们延续上次的内容,继续针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver 所送出波形的timing图.SVGA分辨率的二阶驱动波形我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=7864 32个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel 的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着76 8个gate driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate driver打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压.而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的timing介绍过一次呢?因为我们接下来要讨论的feed thr ough电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD 面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc).Cs on common架构且common电压固定不动的feed through电压我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成feed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed through电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame的时间比例是不正确的.在此我们是为了能仔细解释每个f rame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将768个gate driver走线打开的.所以每个gate走线打开的时间,相对于一个frame的时间,是很短的.当gate走线打开或关闭的那一瞬间,电压的变化是最激烈的,大约会有30~40伏特,再经由Cgd的寄生电容,影响到显示电极的电压.在图3中,我们可以看到Cgd寄生电容的存在位置.其实Cgd的发生,跟一般的CMOS电路一样,是位于MOS的gate 与drain端的寄生电容.但是由于在TFT LCD面板上gate端是接到gate driver输出的走线,因此一但在gate driver输出走在线的电压有了激烈变化,便会影响到显示电极上的电压.在图2之中,当Frame N的gate走线打开时,会产生一个向上的feed through电压到显示电极之上.不过此时由于gate走线打开的缘故,source driver会对显示电极开始充电,因此即便一开始的电压不对(因为feed through电压的影响),source driver仍会将显示电极充电到正确的电压,影响便不会太大.但是如果当gate走线关闭的时候,由于source driver已经不再对显示电极充电,所以gate driver关闭时的电压压降(30~40伏特),便会经由Cgd寄生电容feed through到显示电极之上,造成显示电极电压有一个feed through的电压压降,而影响到灰阶显示的正确性.而且这个feed through电压不像gate走线打开时的feed through电压一样,只影响一下子,由于此时source driver已经不再对显示电极充放电,feed through电压压降会一值影响显示电极的电压,直到下一次gate driver走在线的电压再打开的时后.所以这个feed through电压对于显示画面的灰阶的影响,人眼是可以明确的感觉到它的存在的.而在Frame N+1的时候,刚开始当gate driver走线打开的那一瞬间,也会对显示电极产生一个向上的feed through电压,不过这时候由于gate已经打开的缘故,source driver会开始对显示电极充电,因此这个向上的feed through电压影响的时间便不会太长.但是当gate走线再度关闭的时候,向下的feed through电压便会让处在负极性的显示电极电压再往下降,而且受到影响的负极性显示电压会一直维持到下一次gate走线再打开的时候.所以整体来说,显示电极上的有效电压,会比source driver的输出电压要低.而减少的电压大小刚好为gate走线电压变化经由Cgd的feed through电压.这个电压有多大呢?在图4中,我们以电荷不灭定律,可以推导出feed through电压为 (Vg2 – Vg1) * Cgd / (Cgd + Clc + Cs) .假设Cg d=0.05pF,而Clc=0.1pF, Cs=0.5pF且gate走线从打开到关闭的电压为 –35伏特的话. 则feed through电压为 –35*0.0 5 / (0.05+0.1+0.5) = 2.69伏特. 一般一个灰阶与另一个灰阶的电压差约仅有30到50 mV而已(这是以6 bit的分辨率而言,若是8 bit分辨率则仅有3到5 mV而已).因此feed through电压影响灰阶是很严重的.以normal white的偏光板配置来说,会造成正极性的灰阶会比原先预期的来得更亮,而负极型的灰阶会比原先预期的来得更暗.不过恰好feed through电压的方向有一致性,所以我们只要将common电压向下调整即可.从图2中我们可以看到,修正后的common电压与原先的comm on电压的压差恰好等于feed through电压.Cs on common架构且common电压变动的feed through电压图5为Cs on common且common电压变动的电压波形,由于其common电压是随着每一个frame而变动的,因此跟common 电压固定的波形比较起来.其产生的feed through电压来源会再多增加一个,那就是common电压的变化.这个common电压的变化,经由Clc+Cs的电容,便会影响到显示电极的电压.且由于整个LCD面板上所有显示点的Clc与Cs都是接到common电压,所以一但common电压有了变化,受影响的就是整个面板的所有点.跟前面gate电压变化不一样的是,gate电压变化影响到的只是一整行的显示点而已.不过Common电压变化虽然对显示电极的电压有影响,但是对于灰阶的影响却没有像gate电压变化来的大.怎么说呢?如果我们使用跟前面一样的电容参数值,再套用图6所推导出来的公式,再假设Common电压由0伏特变到5伏特,则common电压变化所产生的feed through电压为(5 -0)*(0.1pF+ 0.5pF) / (0.05pF + 0.1pF +0.5pF) = 5 * 0.6 /0.65=4.62伏特.虽然显示电极增加这么多电压,但是common电极也增加了5伏特.因此在Clc两端,也就是液晶的两端,所看到的压差变化,就只有4.62-5=0.38伏特而已.跟之前gate走线电压变化所产生的feed through电压2.69伏特比较起来要小的多了,所以对灰阶的影响也小多了.且由于它所产生的feed through电压有对称性,不像Gate走线所产生的feedthrough电压是一律往下,所以就同一个显示点来说,在视觉对灰阶的表现影响会比较小.当然啦,虽然比较小,但是由于对整个LCD面板的横向的768行来说, common电压变化所发生的时间点,跟gate走线打开的时间间隔并不一致,所以对整个画面的灰阶影响是不一样的.这样一来,就很难做调整以便改进画面品质,这也是为什么common电压变动的驱动方式,越来越少人使用的缘故.Cs on gate架构且common电压固定不动的feed through电压图7是Cs on gate且common电压固定不动的电压波形图.它并没有common电压变化所造成的feed through电压,它只有由于gate电压变化所造成的feed through电压.不过它跟Cs on common不一样的是,由gate电压变化所造成的feed th rough电压来源有两个地方,一个是自己这一条gate走线打开经由Cgd产生的feed through电压,另一个则是上一条gate 走线打开时,经由Cs所产生的feed through电压.经由Cgd的feed through电压跟前面所讨论过的状况是一样的,在这边就不再提了.但是经由Cs的feed through电压,是因为Cs on gate的关系,如图3所示.Cs on gate的架构,它的储存电容另一端并不是接到common电压,而是接到前一条gate走线,因此在我们这一条gate走线打开之前,也就是前一条gate走线打开时,在前一条gate走线的电压变化,便会经由Cs对我们的显示电极造成feed through电压.依照图8的公式,同时套用前面的电容参数与gate电压变化值,我们可得到此一feed through电压约为 35*0.5pF/(0.5pF+0.1pF+0.05pF)=26.92伏特.这样的feed through电压是很大的,不过当前一条gate走线关闭时,这个feed through电压也会随之消失.而且前一条gat e走线从打开到关闭,以SVGA分辨率的屏幕来说,约只有21.7us的时间而已.相对于一个frame的时间16.67ms是很短的.再者当前一条gate走线的feed through电压影响显示电极后,我们这一条的gate走线也随之打开,source driver立刻将显示电极的电压充放电到所要的目标值.从这种种的结果看来,前一条gate走线的电压变化,对于我们的显示电极所表现的灰阶,几乎是没有影响的.因此对于Cs on gate且common电压固定不动的驱动方式来说,影响最大的仍然是gate走在线电压变化经由Cgd产生的feed through电压,而其解决方式跟前面几个一样,只需将common电压往下调整即可.Cs on gate架构且common电压变动的feed through电压图9是Cs on gate架构且common电压变动的feed through电压波形图.这样子的架构,刚好有了前面3种架构的所有缺点,那就是 gate走线经由Cgd的feed through电压,和前一条gate走线经由Cs的feed through电压,以及Common电压变化经由Clc的feed through电压.可想而知,在实际的面板设计上几乎是没有人使用这种架构的.而这4种架构中最常用的就是 Cs on gate架构且common电压固定不动的架构.因为它只需要考虑经由Cgd的feed through电压,而Cs on gate的架构可得到较大的开口率的缘故.。

TFT型LCD工作原理简述

TFT型LCD工作原理简述

TFT型LCD工作原理简述TFT型LCD的工作原理较为复杂,可以从以下5个方面加以理解:1.结构特点TFT型LCD主要由LCD控制模块和LCD面板两部分组成。

由于采用TFT(薄膜晶体管),因此又称为薄膜晶体管显示器。

TFT的作用是用来主动控制每一个像素的器件,这样就相当于在每一个像素点上设计了一个场效应开关管。

多个TFT构成一个TFT液晶板,如下图所示。

因此,TFT型LCD容易实现真彩色和高分辨率。

TFT型LCD是由两层玻璃基板夹住液晶组成的,形成一个平行板电容器,通过嵌入在下玻璃板上的TFT对这个电容器和内置的存储电容充电,来维持每幅图像所需要的电压直到下一幅图像更新。

由于LCD面板本身并不发光,因此还必须增设背光灯作为光源,并加上一个背光板来分布光线,从而提高屏幕亮度。

2.电路原理在TFT型LCD中使用的TFT是一个三端器件,其功能就是一个开关管。

在TFT型LCD的玻璃基板上制作半导体层,在两端有与之相连接的源极和漏极,并通过栅极绝缘膜与半导体相对应,利用施加于栅极的电压来控制源、漏电极间的电流。

显示屏上的每个像素从结构上可以看作为像素电极和公用电极之间夹有一层液晶,从电学的角度可以把它看作电容。

其等效电路如下图所示。

其工作原理是:要对 j行i列的像素点户(i、j)充电,就要把开关K(i,j)导通,对信号线D(i)施加目标电压,使数据线G(j)的数据信号加到像素P点。

当像素电极被充分充电后,即使开关断开,电容中的电荷也得到保存,电极间的液晶分子继续有电场作用。

数据线的作用是对信号线施加目标电压,而行驱动器的作用是起开关的导通和断开作用。

由于加在液晶上的电压可以存储,因此液晶层能稳定的工作。

3.彩色形成原理TFT型LCD中的红、绿、蓝三原色是由彩色滤光片产生的。

彩色滤光片是由红、绿、蓝三种颜色的滤片,有规律地制作在一块大玻璃基板上,每个像素(点)是由三种颜色的单元或称为子像素所组成。

如下图所示为彩色滤光片排列图,每个子像素的左上角(灰色矩形)为不透光的TFT。

tftlcd驱动原理

tftlcd驱动原理

tftlcd驱动原理TFTLCD驱动原理解析TFT(Thin-Film Transistor)液晶显示屏是目前最常用的显示技术之一,其驱动原理是通过驱动电子电路控制液晶做电场变化,以实现像素点显示颜色和亮度的变化。

本文将对TFTLCD驱动原理进行详细解析。

TFTLCD驱动原理由两部分组成:图像生成和电压驱动1.图像生成TFTLCD液晶显示屏由许多像素点组成,每个像素点由三个基本颜色通道红(R),绿(G)和蓝(B)构成。

图像生成的第一步是将输入的图像数据转换为红、绿、蓝三个通道对应的灰度值,再由灰度值映射到具体的RGB值,以确定每个像素点的颜色。

该过程中需要使用一种称为查找表的技术,以有效地映射输入图像的像素值到三个通道的比例。

这个查找表中的值是由显示屏的属性和色彩设定决定的。

通过这种方式,可以根据人眼的感知方式,生成最接近输入图像的颜色。

2.电压驱动TFTLCD驱动原理的第二部分是电压驱动,通过控制每个像素点的电压来改变其颜色和亮度。

每个像素点都由一个薄膜晶体管(Thin Film Transistor,简称TFT)控制。

在电平刷新模式下,每个像素点的晶体管都要刷新很多次,在每个刷新周期内,通过在TFT上施加电压来改变晶体管的导通状态。

当TFT导通时,液晶膜上的电荷将通过该晶体管流入公共电平。

TFT导通的时间是通过控制驱动电路的频率和占空比来实现的。

频率越高,像素点的颜色刷新速度越快,可以提高图像的清晰度和稳定性。

占空比则是指TFT导通的时间和总的刷新周期的比值,通过调整占空比,可以改变像素点的亮度。

TFTLCD驱动原理的关键技术是源驱动和栅极驱动。

源驱动器是负责控制TFT的导通时间和电流的驱动电路,栅极驱动器则是负责控制每行像素点的导通时间和颜色的驱动电路。

对于源驱动器,它需要根据每行像素点的亮度和颜色,将对应的电流作为输入信号,通过增幅电路来控制TFT的导通时间。

而对于栅极驱动器,它需要根据每行像素点的导通时间和颜色,将对应的电压作为输入信号,通过驱动电路来生成合适的驱动信号。

tft-lcd显示原理

tft-lcd显示原理

tft-lcd显示原理TFT-LCD是一种广泛应用于液晶显示技术的一种显示原理,它的全称是薄膜晶体管液晶显示(Thin Film Transistor Liquid Crystal Display)。

TFT-LCD是基于液晶材料的特性和薄膜晶体管技术,通过将液晶材料充满在两块平行的玻璃基板之间,并在其中的每个亮点放置一个薄膜晶体管来控制液晶分子的取向,从而实现图像的显示。

液晶是一种具有特殊物理性质的有机化合物,具有介于固体和液体之间的特性。

它的分子具有长而细长的形状,有两个平行且密集分布的氢键。

液晶分子通过在外加电场作用下,可以在一定程度上改变其方向,从而通过光的调制来实现显示。

TFT-LCD是将液晶材料充满在两块平行的玻璃基板之间,形成一个液晶层。

TFT-LCD显示屏的显示原理主要包括液晶分子的取向控制、液晶分子的旋转以及调光滤光等过程。

首先,液晶分子的取向控制是整个显示原理的基础。

液晶分子分布在两个平行的玻璃基板之间的液晶层中,这两个玻璃基板上分别涂有导电层和薄膜晶体管。

当外加电压作用于导电层时,薄膜晶体管对应的像素点会通电,导电层上的电场会影响液晶分子的取向。

液晶分子在电场作用下,会倾向于与电场平行排列,这种排列形式被称为平行型。

其次,液晶分子的取向控制成为不均匀的情况下,就会导致图像质量下降,出现图像残留或者明暗不均的情况。

为了解决这个问题,要对液晶分子进行旋转。

将液晶分子分布在两个玻璃基板之间的液晶层中,其中一个玻璃基板上的导电层为透明电极,另一个玻璃基板上的导电层为铝箔电极。

当外界电压作用于透明电极与铝箔电极时,透明电极处的液晶分子将会被电场拉扯,从而旋转一个特定角度,使得入射的光通过液晶后可以达到最佳状态。

液晶分子旋转后,液晶层中的分子会改变光的传递特性。

液晶分子在电场作用下的旋转角度决定了通过液晶层的光的振动方向,从而控制光通过液晶层的旋转角度。

这通常通过具有光偏振功能的调光滤光片来实现,调光滤光片可以改变光的波长和振动方向,从而实现图像的显示。

tft-lcd 主要工作原理

tft-lcd 主要工作原理

TFT-LCD 主要工作原理随着科技的发展,液晶显示技术在电子产品中得到了广泛应用。

TFT-LCD(薄膜晶体管液晶显示器)作为一种主流的液晶显示技术,在手机、电视、电脑等设备中得到了广泛的应用。

那么,TFT-LCD 到底是如何工作的呢?接下来,我们将从主要工作原理等方面进行探讨。

一、基本构成1. 液晶屏幕TFT-LCD 的核心部件就是液晶屏幕,它由液晶材料和玻璃基板组成。

液晶材料是一种特殊的有机化合物,可以通过电压的变化来控制光的穿透和阻挡。

2. 薄膜晶体管TFT-LCD 还包括大量的薄膜晶体管,它们被集成在显示面板的背面。

每个像素点都对应一个薄膜晶体管,用于控制该像素点的颜色和亮度。

3. 驱动电路TFT-LCD 背面还集成了大量的驱动电路,这些电路可以给每个薄膜晶体管提供精确的电压,从而控制每个像素点的显示状态。

二、工作原理1. 液晶材料的特性液晶材料是一种特殊的有机化合物,它的分子结构可以根据外加电场的强弱来改变。

当没有电场作用于液晶材料时,它会保持无序排列,光无法通过。

而当有电场作用于液晶材料时,它的分子结构会重新排列,使得光线可以穿过。

2. 薄膜晶体管的作用每个像素点都由一个薄膜晶体管控制。

当电压施加到晶体管上时,晶体管会改变通道的导电性,从而改变液晶材料的排列。

这就决定了每个像素点的显示状态。

3. 驱动电路的控制驱动电路是整个液晶显示器的控制中枢,它可以根据输入信号,精确地控制每个薄膜晶体管的电压。

通过调节每个像素点的电压,驱动电路可以控制整个屏幕的显示状态。

三、工作过程1. 信号输入当外部设备发送视瓶信号时,这些信号会经过TFT-LCD 的接口进入显示屏。

2. 信号处理信号进入后,驱动电路会对信号进行处理,然后将处理好的信号传送给每个像素点对应的薄膜晶体管。

3. 显示效果薄膜晶体管根据驱动电路提供的电压,改变液晶材料的排列,从而实现对光的控制。

整个屏幕就会显示出相应的图像了。

四、优缺点TFT-LCD 作为一种主流液晶显示技术,具有以下特点:1. 优点4.1.1色彩丰富TFT-LCD 可以显示出数百万种颜色,色彩饱满丰富。

TFT-LCD显示原理介绍

TFT-LCD显示原理介绍

混色效果 分別控制RGB dot亮度 ,自由组成各种图案
三角形越大所能显示的颜色越丰富
TFT LCD的显示方式
Scan Line
ON OFF
OFF OFF
先开启第一行,其余关闭。
TFT 玻璃电极
Data Line
OFF ON
OFF
OFF 接着关闭第一行,电压已经固定,所以显示颜色也已 固定。开启第二行,其余仍保持关闭。依此类推,可 完成整个画面之显示。
特点:视角好,色域高。但是响应时间较慢。功耗较大,成本较TN 屏高。显示模式: Normally black
6.TN技术
TN屏(Twisted Nematic(扭曲向列型)面板) 特点:视角较差,色域低。优点是成本较IPS低,响应时间快,功耗较小。 显示模式: Normally white
7.LVDS信号格式有两种,一种JEIDA的标准,一种是VESA的标准。 JEIDA(日本电子协会)数据格式: 单数据通道:
G
S
D
Scan Data
液晶特性:极性反转驱动
•液晶必须以交流信号驱动;
•长时间持某一极性,液晶分子可能受到破坏,导致出现液晶
极化现象。
VCOM (CF侧电极) --- +++
VCOM ++++
----
+
---
-
Vpixel
+(T+FT+侧电极)
正+极性驱动
Vpixel > Vcom
++++ ----
Vpixel 负极性驱动 Vpixel < Vcom
Frame Inversion

tft-lcd原理

tft-lcd原理

tft-lcd原理TFT-LCD原理TFT-LCD(Thin Film Transistor - Liquid Crystal Display)是一种常见的液晶显示技术,广泛应用于电子产品中,如手机、电视、电脑等。

本文将介绍TFT-LCD的原理及其工作过程。

TFT-LCD是由许多像素组成的显示屏,每个像素由液晶分子和薄膜晶体管(TFT)组成。

液晶分子具有特殊的光学性质,可以控制光的透过与阻挡,从而实现图像的显示。

TFT-LCD的工作原理是基于液晶分子的光学特性和TFT的电子控制。

当外部电压施加在液晶分子上时,液晶分子会发生取向改变,从而改变光的透过性。

TFT作为驱动器,通过控制液晶分子的取向来控制像素点的亮度和颜色。

液晶分子的取向是通过液晶分子在两个玻璃基板之间的对齐层来实现的。

液晶分子在没有外部电压的情况下,会沿着对齐层的方向排列,使得光无法透过。

而当外部电压施加在液晶分子上时,液晶分子的排列会发生改变,光线可以通过液晶分子并透过显示屏。

TFT作为每个像素的驱动器,控制着液晶分子的取向。

TFT是一种特殊的薄膜晶体管,通过控制栅极上的电压来控制源极和漏极之间的电流。

当TFT接收到来自显示控制器的信号时,会根据信号的强弱来改变源极和漏极之间的电流,从而改变液晶分子的取向。

通过控制每个像素点的TFT,可以实现显示屏上不同像素的亮度和颜色变化。

TFT-LCD使用了背光源来提供背景光。

背光源通常采用冷阴极荧光灯(CCFL)或LED。

背光源的光线通过液晶分子后,在彩色滤光片的作用下形成彩色图像。

总结一下TFT-LCD的工作原理:当显示控制器发送信号给TFT时,TFT根据信号的强弱控制液晶分子的取向,改变光的透过性;背光源提供背景光,通过彩色滤光片形成彩色图像。

通过控制每个像素点的TFT,可以实现显示屏上图像的显示。

TFT-LCD技术以其优良的色彩还原度、高对比度、快速响应速度和低功耗等特点,在电子产品领域得到了广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TFT LCD显示原理详解<什么是液晶>我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一):图(一)<TFT LCD显示原理>a:背景两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。

图(六)b:TFT LCD显示原理液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。

图(七)b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。

下层的偏光板与上层偏光板, 角度也是恰好差异90度。

所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。

效果如图(七)中前两个图所示。

b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。

c:TFT-LCD驱动电路。

为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。

在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。

已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。

由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。

上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。

最后,将驱动电路装配在TAB (自动焊接柔性线路板)上,用ACF(各向异性导电胶膜)、TCP(驱动电路柔性引带)与液晶显示屏相连接。

d:TFT-LCD工作原理首先介绍显示原理。

液晶显示的原理基于液晶的透光率随其所施电压大小而变化的特性。

当光通过上偏振片后,变成线性偏振光,偏振方向与偏振片振动方向一致,与上下玻璃基板上面液晶分子排列顺序一致。

当光通过液晶层时,由于受液晶折射,线性偏振光被分解为两束光。

又由于这两束光传播速度不同(相位相同),因而当两束光合成后,必然使振光的振动方向发生变化。

通过液晶层的光,则被逐渐扭曲。

当光达到下偏振片时,其光轴振动方向被扭曲了90度,且与下偏振片的振动方向保持一致。

这样,光线通过下偏振片形成亮场。

加上电压以后,液晶在电场作用下取向,扭曲消失。

这时,通过上偏振片的线性偏振光,在液晶层不再旋转,无法通过下偏振片而形成暗场。

可见液晶本身不发光,在外光源的调制下,才能显示,在整个显示过程中,液晶起到一个电压控制的光阀作用。

TFT-LCD的工作原理则可简述为:当栅极正向电压大于施加电压时,漏源电极导通,当栅极正向电压等于0或负电压时,漏源电极断开。

漏电极与ITO象素电极连结,源电极与源线(列电极)连结,栅极与栅线(行电极)连结。

这就是TFT-LCD的简单工作原理c:常用的液晶结构c-1:所谓的NW(Normally white)NW指当我们对液晶面板不施加电压时, 我们所看到的面板是亮的画面, 所以才叫做normally white。

另外一种, 当对液晶面板不施加电压时, 面板无法透光, 看起来是黑色的, 就称之为NB(Normally black)c-2:为什么要有这两种结构?主要是为了不同的应用环境。

一般桌上型计算机或是笔记型计算机,大多为NW的配置,那是因为一般计算机软件的使用环境,你会发现整个屏幕大多是亮点, 也就是说计算机软件多为白底黑字的应用。

既然亮着的点占大多数, 使用NW当然比较方便,也因为NW的亮点不需要加电压, 平均起来也会比较省电。

反过来,NB的应用环境大多是属于显示屏为黑底的应用了。

<LCD单个像素点的结构图>a:lcd切面的结构:图(八)b:作用原理TFT_LCD(薄膜晶体管液晶显示器),液晶显示器需要电压控制来产生灰阶. TFT利用薄膜晶体管来产生电压,以控制液晶转向的显示器。

从图(八)的切面结构图来看,在上下两层玻璃间夹着液晶, 便会形成平行板电容器, 我们称之为CLC(capacitor of liquid crystal). 它的大小约为0.1pF, 但是实际应用上, 这个电容并无法将电压保持到下一次再更新画面数据的时候. 也就是说当TFT对这个电容充好电时, 它并无法将电压保持住, 直到下一次TFT再对此点充电的时候.(以一般60Hz的画面更新频率, 需要保持约16ms的时间.) 这样一来, 电压有了变化, 所显示的灰阶就会不正确. 因此一般在面板的设计上, 会再加一个储存电容CS(storage capacitor 大约为0.5pF), 以便让充好电的电压能保持到下一次更新画面的时候. 不过正确的来说, 长在玻璃上的TFT本身,只是一个使用晶体管制作的开关. 它主要的工作是决定LCD source driver上的电压是不是要充到这个点来. 至于这个点要充到多高的电压, 以便显示出怎样的灰阶. 都是由外面的LCD source driver来决定的.c:框胶与spacer:框胶与spacer两种结构成分. 其中框胶的用途,就是要让液晶面板中的上下两层玻璃, 能够紧密黏住, 并且提供面板中的液晶分子与外界的阻隔,所以框胶正如其名,是围绕于面板四周, 将液晶分子框限于面板之内. 而spacer主要是提供上下两层玻璃的支撑, 它必须均匀的分布在玻璃基板上, 不然一但分布不均造成部分spacer聚集在一起, 反而会阻碍光线通过, 也无法维持上下两片玻璃的适当间隙(gap), 会成电场分布不均的现象, 进而影响液晶的灰阶表现.<放大镜下的液晶>图(九)a:每个像素点的结构放大镜下面的液晶面板如图(九)中所显示的样子.每一份像素点由"红色","蓝色","绿色"三个子基色构成(这就是所谓的三原色. 也就是说利用这三种颜色)。

我们把RGB三种颜色,分成独立的三个点, 各自拥有不同的灰阶变化, 然后把邻近的三个RGB显示的点,当作一个显示的基本单位,也就是pixel.那这一个pixel,就可以拥有不同的色彩变化了.(然后对于一个需要分辨率为1024*768的显示画面, 我们只要让这个平面显示器的组成有1024*768个pixel,)便可以正确的显示这一个画面. b:开口率液晶显示器中有一个很重要的参数就是亮度, 而决定亮度最重要的因素就是开口率。

开口率就是光线能透过的有效区域比例。

每一个RGB的点之间的黑色部分, 就叫做Black matrix.我们回过头来看图(九)就可以发现,black matrix主要是用来遮住不打算透光的部分.比如像是一些ITO的走线,或是Cr/Al的走线,或者是TFT的部分.这也就是为什么我们在图(九)中,每一个RGB的亮点看起来, 并不是矩形, 在其左上角也有一块被black matrix遮住的部分, 这一块黑色缺角的部份就是TFT的所在位置.<常见的滤光片排列>图(十)<像素>a:像素原理液晶面板上每个像素都分成红、绿、蓝三种颜色,RGB就是所谓的三原色,利用这三种颜色可以混合出各种不同的颜色,我们把RGB三种颜色分成独立的三个点,各自拥有不同的灰阶变化,然后把邻近的三个RGB显示的点当作一个显示的基本单元,就是像素,这个像素就可以拥有不同的色彩变化了。

b:颜色深度normal Color256 Color 8(R)*8(G)*4(B)=256 Color High Color65536Coloe32(R)*64(G)*32(B)=65536 Color Full Color64(R)*64(G)*64(B)=262144 ColorTrue Color256(R)*256(G)*256(B)=16777216 Color<LCD内部电路>a:结构图图(十二)b:主要的驱动TFT工作的部分有以下几个1、source driver 源驱动,负责供电。

2、gate driver 栅驱动,负责打开关闭。

3、时序控制电路,负责控制gate driver4、灰度、gamma控制电路图(十三)a:整片面板的大致结构从图(十三)中我们可以看到整片面板的等效电路,其中每一个TFT与两个电容所并联(代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB 三原色. 以一个1024*768分辨率的TFT_LCD来说,共需要1024*768*3个这样的点组合而成)b:显示步骤如图中gate driver 所送出的波形, 依序将每一行的TFT 打开, 好让整排的source driver同时将一整行的显示点,充电到各自所需的电压,显示不同的灰阶.当这一行充好电时,gate driver便将电压关闭,然后下一行的gate driver便将电压打开,再由相同的一排source driver对下一行的显示点进行充放电.如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电.b-1:图示先开放第一行,其他关闭。

图(十四)接着关闭第一行,电压已经固定,固颜色也固定,然后开放第二类,其余关闭,以此类推。

图(十五)由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏.<背光源>图(十七)手机上用的TFT 类型的LCD 大部分是用LED来作为光源的,现有高通手机上背光有三种方式:1、PWM 方式,根据输出方波的占空比来控制电流大小2、一线脉冲方式,根据输入方波的逻辑连控制输出电流大小3、dcs方式,有LCD反馈给背光控制芯片来控制输出电流大小一般手机上都会有个背光控制芯片来升压控制电流,以8x25上的背光芯片TPS61161为例(其他的背光芯片也类似)TPS61161的连接方式:CTRL 需要连接到平台上的GPIO或则PMIC上的GPIO。

相关文档
最新文档