MATLAB模型预测控制工具箱函数
mpc的matlab代码
以下是一个简单的MPC(模型预测控制)的MATLAB代码示例:matlab% MPC参数N = 20; % 预测步长nx = 2; % 状态变量数nu = 1; % 控制变量数Q = eye(nx); % 状态权重矩阵R = 1; % 控制权重x0 = [0; 0]; % 初始状态% 系统模型A = [1 1; 0 1];B = [0.5; 1];% MPC优化问题opts = optimoptions('quadprog','Algorithm','interior-point-convex');for k = 1:N% 构建预测模型Xk = A*x0 + B*u;% 构建目标函数和约束条件H = blkdiag(Q,R);f = [Xk'*Q*Xk; R*u^2];Aeq = [A B-1];beq = Xk;lb = [-inf; -1];ub = [inf; 1];% 求解优化问题U = quadprog(H,f,[],[],Aeq,beq,lb,ub,opts);% 应用控制量u = U(2);x0 = A*x0 + B*u;end在这个示例中,我们使用了一个简单的线性系统模型,其中状态变量为位置和速度,控制变量为加速度。
我们使用了一个预测步长为20的MPC控制器,其中状态权重矩阵Q和控制权重R都设置为单位矩阵。
在每个时间步中,我们构建了一个预测模型,并使用quadprog 函数求解了一个二次规划问题,以获得最优控制量。
最后,我们将控制量应用于系统,并更新状态变量以进行下一个时间步的预测。
使用MATLAB进行数据预测和预测
使用MATLAB进行数据预测和预测引言:数据预测和预测在许多领域中都具有重要的应用价值。
它们可以帮助我们预测未来的发展趋势,做出合理的决策,并在经营和决策中提供有力的支持。
在这一过程中,MATLAB作为一种功能强大的编程语言和数据分析工具,为我们提供了一个强大的工具箱,可以进行数据预测和预测。
数据预处理:在开始数据预测和预测之前,我们首先需要对数据进行预处理。
预处理包括数据清洗、数据归一化、特征选择等步骤。
通过这些步骤,我们可以提高数据的质量,减少噪声的影响,并使数据更适合于预测模型的建立。
数据清洗是指删除或修复数据中的错误值、缺失值和异常值。
在MATLAB中,我们可以使用一些函数和工具箱来处理这些问题。
例如,我们可以使用`isnan`函数来检测缺失值,并使用`fillmissing`函数来填充缺失值。
对于异常值,我们可以使用一些统计方法,如3σ原则或箱线图来识别和处理。
数据归一化是将不同尺度的数据映射到统一的尺度上。
这是因为不同尺度的数据可能对预测模型的训练和预测产生不利影响。
在MATLAB中,有许多方法可以实现数据归一化,如MinMax归一化、Z-score归一化等。
我们可以使用`mapminmax`函数来实现MinMax归一化,并使用`zscore`函数来实现Z-score归一化。
特征选择是从原始数据中选择最相关的特征,以降低数据维度并提高预测模型的准确性。
在MATLAB中,我们可以使用一些算法和函数来实现特征选择。
例如,我们可以使用`fsrnca`函数(基于相关系数的特征选择)或`sequentialfs`函数(基于逐步搜索的特征选择)来选择最佳特征子集。
在完成数据预处理后,我们可以使用各种算法和方法进行数据预测。
在MATLAB中,有许多经典的预测算法和函数可供选择。
以下是几个常用的预测方法。
1. 线性回归:线性回归是一种基本的预测方法,它使用线性模型来建立输入变量和输出变量之间的关系。
模型预测控制matlab工具箱实例
模型预测控制matlab工具箱实例模型预测控制(MPC)是一种广泛应用于工业过程控制的高级控制策略。
Matlab提供了用于设计和实施MPC的工具箱。
本实例演示了如何使用Matlab MPC工具箱执行MPC控制。
1. 创建一个MPC对象首先,我们需要创建一个MPC对象。
使用mpc对象构造函数可以创建MPC对象。
例如:```mpcobj = mpc(object func, sample time, prediction horizon, control horizon);```其中,object func是被控制系统的离散时间状态空间模型的函数句柄;sample time是采样时间,prediction horizon是预测时域长度,control horizon是控制时域长度。
2. 配置MPC对象接下来,我们需要配置MPC对象。
可以使用MPC对象的属性来进行配置。
例如:```mpcobj.Model.Plant = ss(A,B,C,D);mpcobj.Model.Noise = 'Custom';mpcobj.Model.Disturbance = 'Custom';mpcobj.PredictionHorizon = 10;mpcobj.ControlHorizon = 2;mpcobj.Weights.OV = 1;mpcobj.Weights.MV = 0.1;mpcobj.Weights.ECR = [0.1 0.2];mpcobj.MV = struct('Min',-10,'Max',10);```上述代码中,我们设置了被控制系统的动态模型,噪声模型和干扰模型的类型。
我们还设置了预测时域长度,控制时域长度和权重。
3. 模拟仿真现在,我们可以使用MPC对象进行控制。
首先,我们需要对系统进行模拟仿真以生成实验数据。
可以使用sim函数进行仿真。
matlab建模常用函数
matlab建模常用函数附录Ⅰ工具箱函数汇总Ⅰ.1 统计工具箱函数表Ⅰ-1 概率密度函数函数名对应分布的概率密度函数betapdf 贝塔分布的概率密度函数binopdf 二项分布的概率密度函数chi2pdf 卡方分布的概率密度函数exppdf 指数分布的概率密度函数fpdf f分布的概率密度函数gampdf 伽玛分布的概率密度函数geopdf 几何分布的概率密度函数hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数raylpdf 雷利分布的概率密度函数tpdf 学生氏t分布的概率密度函数unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数表Ⅰ-2 累加分布函数函数名对应分布的累加函数betacdf 贝塔分布的累加函数binocdf 二项分布的累加函数chi2cdf 卡方分布的累加函数expcdf 指数分布的累加函数fcdf f分布的累加函数gamcdf 伽玛分布的累加函数geocdf 几何分布的累加函数hygecdf 超几何分布的累加函数logncdf 对数正态分布的累加函数nbincdf 负二项分布的累加函数ncfcdf 非中心f分布的累加函数nctcdf 非中心t分布的累加函数ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数raylcdf 雷利分布的累加函数tcdf 学生氏t分布的累加函数unidcdf 离散均匀分布的累加函数unifcdf 连续均匀分布的累加函数weibcdf 威布尔分布的累加函数表Ⅰ-3 累加分布函数的逆函数函数名对应分布的累加分布函数逆函数betainv 贝塔分布的累加分布函数逆函数binoinv 二项分布的累加分布函数逆函数chi2inv 卡方分布的累加分布函数逆函数expinv 指数分布的累加分布函数逆函数finv f分布的累加分布函数逆函数gaminv 伽玛分布的累加分布函数逆函数geoinv 几何分布的累加分布函数逆函数hygeinv 超几何分布的累加分布函数逆函数logninv 对数正态分布的累加分布函数逆函数nbininv 负二项分布的累加分布函数逆函数ncfinv 非中心f分布的累加分布函数逆函数nctinv 非中心t分布的累加分布函数逆函数ncx2inv 非中心卡方分布的累加分布函数逆函数icdfnorminv 正态(高斯)分布的累加分布函数逆函数poissinv 泊松分布的累加分布函数逆函数raylinv 雷利分布的累加分布函数逆函数tinv 学生氏t分布的累加分布函数逆函数unidinv 离散均匀分布的累加分布函数逆函数unifinv 连续均匀分布的累加分布函数逆函数weibinv 威布尔分布的累加分布函数逆函数表Ⅰ-4 随机数生成器函数函数对应分布的随机数生成器betarnd 贝塔分布的随机数生成器binornd 二项分布的随机数生成器chi2rnd 卡方分布的随机数生成器exprnd 指数分布的随机数生成器frnd f分布的随机数生成器gamrnd 伽玛分布的随机数生成器geornd 几何分布的随机数生成器hygernd 超几何分布的随机数生成器lognrnd 对数正态分布的随机数生成器nbinrnd 负二项分布的随机数生成器ncfrnd 非中心f分布的随机数生成器nctrnd 非中心t分布的随机数生成器ncx2rnd 非中心卡方分布的随机数生成器normrnd 正态(高斯)分布的随机数生成器poissrnd 泊松分布的随机数生成器raylrnd 瑞利分布的随机数生成器trnd 学生氏t分布的随机数生成器unidrnd 离散均匀分布的随机数生成器unifrnd 连续均匀分布的随机数生成器weibrnd 威布尔分布的随机数生成器表Ⅰ-5 分布函数的统计量函数函数名对应分布的统计量betastat 贝塔分布函数的统计量binostat 二项分布函数的统计量chi2stat 卡方分布函数的统计量expstat 指数分布函数的统计量fstat f分布函数的统计量gamstat 伽玛分布函数的统计量geostat 几何分布函数的统计量hygestat 超几何分布函数的统计量lognstat 对数正态分布函数的统计量nbinstat 负二项分布函数的统计量ncfstat 非中心f分布函数的统计量nctstat 非中心t分布函数的统计量ncx2stat 非中心卡方分布函数的统计量normstat 正态(高斯)分布函数的统计量poisstat 泊松分布函数的统计量续表函数名对应分布的统计量raylstat 瑞利分布函数的统计量tstat 学生氏t分布函数的统计量unidstat 离散均匀分布函数的统计量unifstat 连续均匀分布函数的统计量weibstat 威布尔分布函数的统计量表Ⅰ-6 参数估计函数函数名对应分布的参数估计betafit 贝塔分布的参数估计betalike 贝塔对数似然函数的参数估计binofit 二项分布的参数估计expfit 指数分布的参数估计gamfit 伽玛分布的参数估计gamlike 伽玛似然函数的参数估计mle 极大似然估计的参数估计normlike 正态对数似然函数的参数估计normfit 正态分布的参数估计poissfit 泊松分布的参数估计unifit 均匀分布的参数估计weibfit 威布尔分布的参数估计weiblike 威布尔对数似然函数的参数估计表Ⅰ-7 统计量描述函数函数描述bootstrap 任何函数的自助统计量corrcoef 相关系数cov 协方差crosstab 列联表geomean 几何均值grpstats 分组统计量harmmean 调和均值iqr 内四分极值kurtosis 峰度mad 中值绝对差mean 均值median 中值moment 样本模量nanmax 包含缺失值的样本的最大值续表函数描述Nanmean 包含缺失值的样本的均值nanmedian 包含缺失值的样本的中值nanmin 包含缺失值的样本的最小值nanstd 包含缺失值的样本的标准差nansum 包含缺失值的样本的和prctile 百分位数range 极值skewness 偏度std 标准差tabulate 频数表trimmean 截尾均值var 方差表Ⅰ-8 统计图形函数函数描述boxplot 箱形图cdfplot 指数累加分布函数图errorbar 误差条图fsurfht 函数的交互等值线图gline 画线gname 交互标注图中的点gplotmatrix 散点图矩阵gscatter 由第三个变量分组的两个变量的散点图lsline 在散点图中添加最小二乘拟合线normplot 正态概率图pareto 帕累托图qqplot Q-Q图rcoplot 残差个案次序图refcurve 参考多项式曲线refline 参考线surfht 数据网格的交互等值线图weibplot 威布尔图表Ⅰ-9 统计过程控制函数函数描述capable 性能指标capaplot 性能图ewmaplot 指数加权移动平均图续表函数描述histfit 添加正态曲线的直方图normspec 在指定的区间上绘正态密度schart S图xbarplot x条图表Ⅰ-10 聚类分析函数函数描述cluster 根据linkage函数的输出创建聚类clusterdata 根据给定数据创建聚类cophenet Cophenet相关系数dendrogram 创建冰柱图inconsistent 聚类树的不连续值linkage 系统聚类信息pdist 观测量之间的配对距离squareform 距离平方矩阵zscore Z分数表Ⅰ-11 线性模型函数函数描述anova1 单因子方差分析anova2 双因子方差分析anovan 多因子方差分析aoctool 协方差分析交互工具dummyvar 拟变量编码friedman Friedman检验glmfit 一般线性模型拟合kruskalwallis Kruskalwallis检验leverage 中心化杠杆值lscov 已知协方差矩阵的最小二乘估计manova1 单因素多元方差分析manovacluster 多元聚类并用冰柱图表示multcompare 多元比较多项式评价及误差区间估计polyfit 最小二乘多项式拟合polyval 多项式函数的预测值polyconf 残差个案次序图regress 多元线性回归regstats 回归统计量诊断续表函数描述Ridge 岭回归rstool 多维响应面可视化robustfit 稳健回归模型拟合stepwise 逐步回归x2fx 用于设计矩阵的因子设置矩阵表Ⅰ-12 非线性回归函数函数描述nlinfit 非线性最小二乘数据拟合(牛顿法)nlintool 非线性模型拟合的交互式图形工具nlparci 参数的置信区间nlpredci 预测值的置信区间nnls 非负最小二乘表Ⅰ-13 试验设计函数函数描述cordexch D-优化设计(列交换算法)daugment 递增D-优化设计dcovary 固定协方差的D-优化设计ff2n 二水平完全析因设计fracfact 二水平部分析因设计fullfact 混合水平的完全析因设计hadamard Hadamard矩阵(正交数组)rowexch D-优化设计(行交换算法)表Ⅰ-14 主成分分析函数函数描述barttest Barttest检验pcacov 源于协方差矩阵的主成分pcares 源于主成分的方差princomp 根据原始数据进行主成分分析表Ⅰ-15 多元统计函数函数描述classify 聚类分析mahal 马氏距离manova1 单因素多元方差分析manovacluster 多元聚类分析表Ⅰ-16 假设检验函数函数描述ranksum 秩和检验signrank 符号秩检验signtest 符号检验ttest 单样本t检验ttest2 双样本t检验ztest z检验表Ⅰ-17 分布检验函数函数描述jbtest 正态性的Jarque-Bera检验kstest 单样本Kolmogorov-Smirnov检验kstest2 双样本Kolmogorov-Smirnov检验lillietest 正态性的Lilliefors检验表Ⅰ-18 非参数函数函数描述friedman Friedman检验kruskalwallis Kruskalwallis检验ranksum 秩和检验signrank 符号秩检验signtest 符号检验表Ⅰ-19 文件输入输出函数函数描述caseread 读取个案名casewrite 写个案名到文件tblread 以表格形式读数据tblwrite 以表格形式写数据到文件tdfread 从表格间隔形式的文件中读取文本或数值数据表Ⅰ-20 演示函数函数描述aoctool 协方差分析的交互式图形工具disttool 探察概率分布函数的GUI工具glmdemo 一般线性模型演示randtool 随机数生成工具polytool 多项式拟合工具rsmdemo 响应拟合工具robustdemo 稳健回归拟合工具Ⅰ.2 优化工具箱函数表Ⅰ-21 最小化函数表函数描述fgoalattain 多目标达到问题fminbnd 有边界的标量非线性最小化fmincon 有约束的非线性最小化fminimax 最大最小化fminsearch, fminunc 无约束非线性最小化fseminf 半无限问题linprog 线性课题quadprog 二次课题表Ⅰ-22 方程求解函数表函数描述\ 线性方程求解fsolve 非线性方程求解fzero 标量非线性方程求解表Ⅰ-23 最小二乘函数表函数描述\ 线性最小二乘lsqlin 有约束线性最小二乘lsqcurvefit 非线性曲线拟合lsqnonlin 非线性最小二乘lsqnonneg 非负线性最小二乘表Ⅰ-24 实用函数表函数描述optimset 设置参数optimget 获取参数表Ⅰ-25 大型方法的演示函数表函数描述circustent 马戏团帐篷问题—二次课题molecule 用无约束非线性最小化进行分子组成求解optdeblur 用有边界线性最小二乘法进行图形处理表Ⅰ-26 中型方法的演示函数表函数描述bandemo 香蕉函数的最小化dfildemo 过滤器设计的有限精度goaldemo 目标达到举例optdemo 演示过程菜单tutdemo 教程演示Ⅰ.3 样条工具箱函数表Ⅰ-27 三次样条函数函数描述csapi 插值生成三次样条函数csape 生成给定约束条件下的三次样条函数csaps 平滑生成三次样条函数cscvn 生成一条内插参数的三次样条曲线getcurve 动态生成三次样条曲线表Ⅰ-28 分段多项式样条函数函数描述pplst 显示关于生成分段多项式样条曲线的M文件ppmak 生成分段多项式样条函数ppual 计算在给定点处的分段多项式样条函数值表Ⅰ-29 B样条函数函数描述splst 显示生成B样条函数的M文件spmak 生成B样条函数spcrv 生成均匀划分的B样条函数spapi 插值生成B样条函数spap2 用最小二乘法拟合生成B样条函数spaps 对生成的B样条曲线进行光滑处理spcol 生成B样条函数的配置矩阵表Ⅰ-30 有理样条函数函数描述rpmak 生成有理样条函数rsmak 生成有理样条函数表Ⅰ-31 操作样条函数函数描述fnval 计算在给定点处的样条函数值fmbrk 返回样条函数的某一部分(如断点或系数等)fncmb 对样条函数进行算术运算fn2fm 把一种形式的样条函数转化成另一种形式的样条函数fnder 求样条函数的微分(即求导数)fndir 求样条函数的方向导数fnint 求样条函数的积分fnjmp 在间断点处求函数值fnplt 画样条曲线图fnrfn 在样条曲线中插入断点。
模型预测控制matlab
模型预测控制matlab
模型预测控制(matlab)是一种基于模型的控制方法,是一种先进的控制算法,在工业控制、机器人控制、航空航天等领域有广泛应用。
本文将介绍模型预测控制的基本原理和实现过程,并使用matlab进行模拟分析。
首先,文章将简要介绍模型预测控制的基本原理,包括预测模型的建立、控制器的设计和优化等。
然后,文章将详细介绍matlab在模型预测控制中的应用,包括建立预测模型、设计控制器、仿真分析等。
最后,文章将结合实例进行模拟分析,包括温度控制、飞行控制等领域的应用实例。
本文旨在为读者提供一种新的控制方法,即模型预测控制,并介绍其在matlab平台下的应用实现。
希望本文能够对读者在实际应用中起到一定的帮助作用。
- 1 -。
matlab拟合工具箱计算函数值
matlab拟合工具箱计算函数值MATLAB拟合工具箱是MATLAB软件中的一个重要组件,它提供了一系列函数和算法,可用于对数据进行拟合。
拟合是一种通过数学模型来描述和预测实际数据的方法,通过与实际数据的对比,我们可以得出一些结论和预测。
在使用MATLAB拟合工具箱进行数据拟合之前,我们首先需要准备一组已知的数据。
假设我们有一组测量数据,包括了自变量X和因变量Y。
我们想要通过拟合来找到一个数学模型,使得模型预测的Y值与实际测量的Y值尽可能接近。
在MATLAB中,我们可以使用fit函数来进行数据拟合。
fit函数接受两个参数,一个是用于数据拟合的模型类型,另一个是包含自变量X和因变量Y的数据表。
模型类型可以是预定义的模型,比如多项式模型、指数模型等,也可以是自定义的模型。
数据表可以通过MATLAB的数据导入工具或手动创建。
以下是一个使用MATLAB拟合工具箱进行数据拟合的示例代码:```matlab% 准备数据X = [1, 2, 3, 4, 5];Y = [2, 4, 6, 8, 10];% 创建数据表data = table(X', Y', 'VariableNames', {'X', 'Y'});% 进行数据拟合model = fit(data, 'poly1');```在上述代码中,我们首先准备了一组自变量X和因变量Y的数据。
然后,我们使用table函数将数据存储在一个数据表中,数据表有两列,分别命名为'X'和'Y'。
最后,我们使用fit函数进行数据拟合,指定模型类型为'poly1',表示多项式模型中的一次多项式。
通过上述代码,我们成功地使用MATLAB拟合工具箱进行了数据拟合。
拟合的结果存储在变量model中,我们可以使用model对象来进行预测和分析。
除了多项式模型,MATLAB拟合工具箱还支持其他模型类型,比如指数模型、对数模型、幂函数模型等。
matlab中预测模型的保存与调用
matlab中预测模型的保存与调用如何在Matlab中保存和调用预测模型?在机器学习和数据分析中,使用预测模型对新数据进行预测是一个常见的任务。
为了避免重复构建模型,我们可以将训练好的模型保存下来,并在需要的时候进行调用。
Matlab提供了一些方便的函数和工具来实现这个目标。
本文将一步一步地介绍如何在Matlab中保存和调用预测模型。
第一步:训练一个模型在保存和调用预测模型之前,我们首先需要训练一个模型。
在Matlab中,可以使用各种机器学习算法来构建预测模型,如支持向量机(SVM)、决策树和神经网络等。
在此示例中,我们将使用Support Vector Machines(SVM)算法来训练一个模型。
% 为了演示目的,我们将使用自带的鸢尾花数据集load fisheririsX = meas(:,1:2); % 使用前两个特征作为输入Y = species; % 类别作为输出svmModel = fitcsvm(X,Y); % 使用SVM算法训练模型第二步:保存模型有了训练好的模型后,我们可以使用Matlab提供的`save`函数将其保存到硬盘上。
save('svm_model.mat', 'svmModel');在上面的例子中,我们将模型保存为了名为`svm_model.mat`的文件。
`svmModel`是保存的变量名称。
您可以根据需要修改这些参数。
第三步:加载保存的模型当我们需要使用保存的模型进行预测时,可以使用Matlab的`load`函数加载模型。
load('svm_model.mat');加载后,`svmModel`变量将包含之前训练的模型。
第四步:使用模型进行预测加载模型后,我们可以使用模型进行新数据的预测。
在这个示例中,我们使用保存的SVM模型对新数据进行分类。
newData = [4.5, 3.2]; % 假设我们有一组新的特征数据predicted = predict(svmModel, newData);disp(predicted);在上面的代码中,`newData`是一组新的输入特征数据。
预测控制matlab工具箱
matlab预测控制工具箱一、设计示例注:示例均为matlab自带1、伺服系统控制器的设计图4-1 位置伺服系统原理图(1)伺服系统数学模型位置伺服系统由直流电机、变速箱、弹性轴、负载等组成(见图4-1)。
可用如下微分方程来描述:上式中的变量定义及取值见表4-1。
将上述微分方程写成状态方程形式,有其中,。
(2)控制目标及约束控制目标:在电压V的控制下,使过载角位置跟踪指定值。
输出量仅有可观测。
弹性轴承受的强度有一定的限制,因此对输出力矩T的赋值作一定约束:对输入电压的约束:该系统有一个输入V,两个输出:(可测量)和T(不可测量)。
(3)在matlab中定义该系统的状态空间模型首先需要在matlab中对系统的数学模型进行定义。
可以直接在命令行输入mpcmotormodel(建议做法),也可以在命令行中输入下列命令:% DC-motor with elastic shaft%%Parameters (MKS)%-----------------------------------------------------------Lshaft=1.0; %Shaft lengthdshaft=0.02; %Shaft diametershaftrho=7850; %Shaft specific weight (Carbon steel)G=81500*1e6; %Modulus of rigiditytauam=50*1e6; %Shear strengthMmotor=100; %Rotor massRmotor=.1; %Rotor radiusJmotor=.5*Mmotor*Rmotor^2; %Rotor axial moment of inertia Bmotor=0.1; %Rotor viscous friction coefficient (A CASO)R=20; %Resistance of armatureKt=10; %Motor constantgear=20; %Gear ratioJload=50*Jmotor; %Load inertiaBload=25; %Load viscous friction coefficientIp=pi/32*dshaft^4; %Polar momentum of shaft(circular) sectionKth=G*Ip/Lshaft; %Torsional rigidity(Torque/angle)Vshaft=pi*(dshaft^2)/4*Lshaft; %Shaft volumeMshaft=shaftrho*Vshaft; %Shaft massJshaft=Mshaft*.5*(dshaft^2/4); %Shaft moment of inertiaJM=Jmotor;JL=Jload+Jshaft;Vmax=tauam*pi*dshaft^3/16; %Maximum admissible torqueVmin=-Vmax;%Input/State/Output continuous time form%----------------------------------------------------------AA=[0 1 0 0;-Kth/JL -Bload/JL Kth/(gear*JL) 0;0 0 0 1;Kth/(JM*gear) 0 -Kth/(JM*gear^2)-(Bmotor+Kt^2/R)/JM];BB=[0;0;0;Kt/(R*JM)];Hyd=[1 0 0 0];Hvd=[Kth 0 -Kth/gear 0];Dyd=0;Dvd=0;% Define the LTI state-space modelsys=ss(AA,BB,[Hyd;Hvd],[Dyd;Dvd]);(4)利用MPCTOOL界面设计控制器第一步:导入模型在命令行窗口中输入mpctool,工具箱界面出来后点击Imort Plant…,此时界面如4-2所示。
matlab的mpc函数
在MATLAB中,MPC(模型预测控制)函数可用于实现模型预测控制(MPC)算法。
MPC是一种先进的控制策略,用于处理具有预测模型的连续或离散时间线性系统。
它通过优化性能指标并限制未来的行为,实现对系统的控制。
要使用MATLAB的MPC函数,您需要遵循以下步骤:
1. 定义模型:首先,您需要定义系统的模型。
这可以是一个线性时不变(LTI)系统,也可以是一个非线性系统。
您可以使用MATLAB 的控制系统工具箱中的函数(如`tf`,`ss`等)来定义模型。
2. 定义优化问题:接下来,您需要定义优化问题。
优化问题应包括预测模型、性能指标和约束条件。
在MPC中,预测模型通常是一个预测矩阵,用于预测未来的系统状态。
性能指标可以是控制变量的权重或状态变量的权重。
约束条件可以是控制变量的限制或状态变量的限制。
3. 调用MPC函数:一旦您定义了模型和优化问题,您可以使用MATLAB的MPC函数来求解优化问题并生成控制序列。
常用的MPC函数包括`mpcmin`和`mpcmove`。
4. 应用控制序列:最后,您需要将生成的control sequence应用于系统。
这可以通过使用一个数字或模拟控制器来实现。
这些步骤是使用MATLAB的MPC函数进行模型预测控制的一般流程。
但是,请注意,具体的实现方法可能会因应用而异。
建议查阅MATLAB的官方文档以获取更详细的信息和使用示例。
MATLAB环境下的模型预测控制理论的应用
MATLAB环境下的模型预测控制理论的应用丛爽邓娟(中国科学技术大学自动化系,合肥230027)E-mail:scong@ustc.edu.cn摘要从模型预测控制的原理出发。
介绍利用MA7ⅡAB模型预测控制工具箱进行模型预测控制器设计的全过程。
就被控对象的不同模型。
以及备类模型形式之间的转换做了具体的系统的阐述。
在控刺器的设计过程中,给出不同情况下的控制器的设计方法,并且对控制器设计申的参数选择对系统控制性能的影响进行了分析与总结。
最后通过数值实例说明了如何进行了模型预测控制器的设计。
关键词模型预测控制模型辨识阶跃响应模型系统仿真文章编号l002—8331一(2005)16-0196—03文献标识码A中圈分类号TPl3ModelPredictiveControlTheoryandApplicationunderMATLABEnvironment(Dept.ofAutomation,UniversityofScience&TechnologyofChina,Hefei230027)Abstract:Basedtheprincipleofmodelpredictivecontrol,thepaperintroducesthewholeprocessofmodelpredic—fivecontrollerdesignwithmodelpredictivecontroltoolboxinMATLAB.Systematicallyrepresentthedifferentmodelsofcontrolledplant,aswellastheconversionsofthosemodels.Intheprocedureofthecontrollerdesign,differentcontrollerdesignmethodsintroduced.Atthe8alTletime,theanalysesandconclusionofeffectstosystemcontrolperformanceintheaspectofparametersselection啪done.Atlast.annumericalexampleofthemodelpredictivecontrollerdesignisgiven.Keywords:modelpredictivecontrol,modelidentification,stepresponsemodel,systemsimulation1引言以状态空间法为基础的现代控制理论从20世纪60年代提出到70年代在理论上日趋完善,并且在许多方面得到了成功的运用。
matlab各工具箱功能简介(部分)
Toolbox工具箱序号工具箱备注一、数学、统计与优化1Symbolic Math Toolbox符号数学工具箱Symbolic Math Toolbox™提供用于求解和推演符号运算表达式以及执行可变精度算术的函数。
您可以通过分析执行微分、积分、化简、转换以及方程求解。
另外,还可以利用符号运算表达式为MATLAB®、Simulink®和Simscape™生成代码。
Symbolic Math Toolbox 包含MuPAD®语言,并已针对符号运算表达式的处理和执行进行优化。
该工具箱备有MuPAD 函数库,其中包括普通数学领域的微积分和线性代数,以及专业领域的数论和组合论。
此外,还可以使用MuPAD 语言编写自定义的符号函数和符号库。
MuPAD 记事本支持使用嵌入式文本、图形和数学排版格式来记录符号运算推导。
您可以采用HTML 或PDF 的格式分享带注释的推导。
2Partial Differential Euqation Toolbox偏微分方程工具箱偏微分方程工具箱™提供了用于在2D,3D求解偏微分方程(PDE)以及一次使用有限元分析。
它可以让你指定和网格二维和三维几何形状和制定边界条件和公式。
你能解决静态,时域,频域和特征值问题在几何领域。
功能进行后处理和绘图效果使您能够直观地探索解决方案。
你可以用偏微分方程工具箱,以解决从标准问题,如扩散,传热学,结构力学,静电,静磁学,和AC电源电磁学,以及自定义,偏微分方程的耦合系统偏微分方程。
3Statistics Toolbox统计学工具箱Statistics and Machine Learning Toolbox 提供运用统计与机器学习来描述、分析数据和对数据建模的函数和应用程序。
您可以使用用于探查数据分析的描述性统计和绘图,使用概率分布拟合数据,生成用于Monte Carlo 仿真的随机数,以及执行假设检验。
回归和分类算法用于依据数据执行推理并构建预测模型。
matlab在控制方面的示例
一、简介MATLAB(Matrix Laboratory)是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
MATLAB被广泛应用于科学和工程领域,特别是在控制系统设计和模拟方面具有重要的作用。
在控制方面,MATLAB提供了丰富的工具和函数,可用于设计、分析和实现各种类型的控制系统,并且提供了许多示例来帮助用户更好地理解控制系统。
二、控制系统的建模和仿真1. 实例一:DC电机控制假设我们希望设计一个用于控制直流电机的系统。
我们可以使用MATLAB来建立直流电机的数学模型,并使用Simulink进行仿真。
通过编写方程或使用Simulink的模块化建模工具,我们可以描述电机的动态行为和控制器的工作原理,从而获得一个完整的控制系统模型。
我们可以通过仿真来评估不同的控制策略,优化系统性能,并进行实验验证。
2. 实例二:PID控制器设计在控制系统中,PID(Proportional-Integral-Derivative)控制器是一种常用的控制器类型。
使用MATLAB中的Control System Toolbox,我们可以设计和调试PID控制器。
我们可以通过输入系统的传递函数或状态空间模型来创建控制系统对象。
可以利用Control System Toolbox提供的自动调整功能,根据系统的要求和性能指标,自动调整PID控制器的参数来实现系统稳定和性能优化。
三、控制系统分析和优化1. 实例三:系统频域分析在设计控制系统时,频域分析是一种重要的方法。
MATLAB提供了许多函数和工具,可用于进行频域分析。
我们可以使用bode函数来绘制系统的频率响应曲线,了解系统的增益和相位裕度,并进行稳定性分析。
MATLAB还提供了工具来进行奈奎斯特图和极点分析等分析方法,帮助用户更好地理解系统的动态特性。
2. 实例四:多目标优化在实际控制系统设计中,通常需要同时满足多个设计指标,例如稳定性、快速响应和抑制干扰等。
matlab mpcmove函数用法
matlab mpcmove函数用法1. 引言1.1 概述在控制系统领域,MPC(Model Predictive Control)被广泛应用于实时优化和控制问题。
MPC基于对系统模型的预测,通过反馈调整控制输入以实现最优控制效果。
本文将重点介绍Matlab中的MPCMove函数及其使用方法。
MPCMove函数是Matlab提供的一个用于执行模型预测控制的工具函数,它能够根据给定的输入参数和系统模型,计算出一组最优的控制输入序列。
1.2 文章结构本文共分为五个部分进行讨论。
首先,在引言中,我们将简要介绍文章的主题和结构。
然后,在第二部分中,我们会详细介绍Matlab中的MPCMove函数,包括该函数的概述、参数和输入要求等内容。
接着,在第三部分中,我们将通过示例应用来演示MPCMove函数的使用步骤,并展示如何进行优化问题设置和求解以及控制策略比较与改进方法等方面的操作。
在第四部分中,我们将通过一个实际案例进行更深入地讨论和分析。
具体而言,我们将讨论系统建模与状态空间设计方面的问题,并针对该案例研究MPCMove 函数调节器参数选择分析以及鲁棒性与鲁棒优化方法等内容。
最后,在第五部分的结论与展望中,我们将总结MPCMove函数的特点与优势,并提出对MPC 算法未来发展方向的一些思考。
1.3 目的本文的目的旨在通过详细介绍Matlab中的MPCMove函数及其使用方法,帮助读者更好地理解和应用MPC技术。
通过阅读本文,读者将能够了解MPC控制算法的基本原理和应用场景,掌握使用MPCMove函数实现系统优化控制的步骤和技巧,并能够在实际问题中进行模型预测控制相关参数的选择和分析。
最终,读者将能够有效地利用Matlab中的MPCMove函数进行实时优化和控制任务,并为进一步研究和应用该领域提供有价值的参考。
2. Matlab MPCMove函数介绍2.1 MPC控制简介MPC(Model Predictive Control)是一种基于模型的预测控制算法,它通过建立系统模型、在线优化和限制条件的处理来实现控制目标。
Matlab中的系统辨识与模型预测控制技术
Matlab中的系统辨识与模型预测控制技术引言Matlab是一种广泛应用于工程和科学领域的高级计算环境和编程语言。
它提供了丰富的工具箱和函数,使工程师和科学家能够进行数据分析、模拟和建模。
本文将探讨Matlab中的系统辨识与模型预测控制(Model Predictive Control, MPC)技术,并介绍其基本原理、应用和优势。
一、系统辨识的基本原理系统辨识是指通过对系统输入和输出数据的分析和处理,来获得对系统动态行为的理解和描述的过程。
在Matlab中,系统辨识工具箱提供了一系列方法和算法来实现系统辨识,其中最常用的方法是基于数据的系统辨识方法。
这些方法根据系统输入和输出的数据样本,通过参数估计和模型拟合来获取系统模型。
在系统辨识中,常用的模型包括线性模型、非线性模型和时变模型等。
线性模型是最简单和最常用的模型类型,它假设系统的行为是线性的,具有参数可调整的特点。
非线性模型考虑了系统的非线性特性,能更准确地描述系统的行为,但参数估计和模型拟合的复杂性也相应增加。
时变模型是指系统参数会随时间变化的模型,能更好地描述实际系统动态行为的变化。
在Matlab中,可以使用系统辨识工具箱中的命令和函数来进行参数估计和模型拟合。
通过对实际系统的输入和输出数据进行采样和记录,然后使用这些数据来拟合和评估系统模型,可以有效地了解和预测系统的行为。
这些模型可以用于系统控制的设计和优化,为工程师和科学家提供决策支持和指导。
二、模型预测控制的基本原理模型预测控制是一种先进的控制技术,它通过预测系统的未来行为来生成控制策略,并根据实际系统的反馈信息进行修正和优化。
在Matlab中,模型预测控制工具箱提供了一系列函数和工具,使工程师和科学家能够轻松地设计和实现模型预测控制算法。
模型预测控制的基本原理是通过建立一个系统模型来预测系统未来的行为,并根据这些预测结果生成相应的控制策略。
通常,系统模型可以使用系统辨识技术获得,也可以采用已知的数学模型。
MATLAB模型预测控制工具箱函数
MATLAB模型预测控制工具箱函数8.2 系统模型建立与转换函数前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。
MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。
在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。
这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。
这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。
表8-2列出了模型预测控制工具箱的模型建立与转换函数。
表8-2 模型建立与转换函数8.2.1 模型转换在MATLAB模型预测工具箱中支持多种系统模型格式。
这些模型格式包括:①通用状态空间模型;②通用传递函数模型;③MPC阶跃响应模型;④MPC状态空间模型;⑤ MPC 传递函数模型。
在上述5种模型格式中,前两种模型格式是MATLAB 通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。
其中,MPC 状态空间模型和MPC 传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。
模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。
下面对这些函数的用法加以介绍。
1.通用状态空间模型与MPC 状态空间模型之间的转换MPC 状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod ()和mod2ss ()用于实现这两种模型格式之间的转换。
1)通用状态空间模型转换为MPC 状态空间模型函数ss2mod ()该函数的调用格式为pmod= ss2mod (A,B,C,D)pmod = ss2mod (A,B,C,D,minfo)pmod = ss2mod (A,B,C,D,minfo,x0,u0,y0,f0)式中,A, B, C, D 为通用状态空间矩阵;minfo 为构成MPC 状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为:◆ minfo(1)=dt ,系统采样周期,默认值为1;◆ minfo(2)=n ,系统阶次,默认值为系统矩阵A 的阶次;◆ minfo(3)=nu ,受控输入的个数,默认值为系统输入的维数;◆ minfo(4)=nd ,测量扰的数目,默认值为0;◆ minfo(5)=nw ,未测量扰动的数目,默认值为0;◆ minfo(6)=nym ,测量输出的数目,默认值系统输出的维数;◆ minfo(7)=nyu ,未测量输出的数目,默认值为0;注:如果在输入参数中没有指定m i n f o ,则取默认值。
MATLAB常用工具箱及常用函数
常用工具箱MATLAB包括拥有数百个内部函数的主包和三十几种工具包。
工具包又可以分为功能性工具包和学科工具包。
功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能。
学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类。
开放性使MATLAB广受用户欢迎。
除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。
Matlab Main Toolbox——matlab主工具箱Control System Toolbox——控制系统工具箱Communication Toolbox——通讯工具箱Financial Toolbox——财政金融工具箱System Identification Toolbox——系统辨识工具箱FuzzyLogic Toolbox——模糊逻辑工具箱Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱Image Processing Toolbox——图象处理工具箱computer vision systemtoolbox----计算机视觉工具箱LMI Control Toolbox——线性矩阵不等式工具箱Model predictive Control Toolbox——模型预测控制工具箱μ-Analysis and Synthesis Toolbox——μ分析工具箱Neural Network Toolbox——神经网络工具箱Optimization Toolbox——优化工具箱Partial Differential Toolbox——偏微分方程工具箱Robust Control Toolbox——鲁棒控制工具箱Signal Processing Toolbox——信号处理工具箱 Spline Toolbox——样条工具箱Statistics Toolbox——统计工具箱Symbolic Math Toolbox——符号数学工具箱Simulink Toolbox——动态仿真工具箱Wavele Toolbox——小波工具箱DSP systemtoolbox-----DSP处理工具箱常用函数Matlab内部常数[2]eps:浮点相对精度exp:自然对数的底数ei 或j:基本虚数单位inf 或Inf:无限大, 例如1/0nan或NaN:非数值(Not a number),例如0/0 pi:圆周率p(= 3.1415926...)realmax:系统所能表示的最大数值realmin:系统所能表示的最小数值nargin: 函数的输入引数个数nargout: 函数的输出引数个数lasterr:存放最新的错误信息lastwarn:存放最新的警告信息MATLAB常用基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):下取整,即舍去正小数至最近整数ceil(x):上取整,即加入正小数至最近整数rat(x):将实数x化为多项分数展开rats(x):将实数x化为分数表示sign(x):符号函数(Signum function)。
Matlabyalmip工具编写自动驾驶模型预测控制(MPC)代码
Matlabyalmip⼯具编写⾃动驾驶模型预测控制(MPC)代码⽬录前⾔在⽆⼈驾驶的运动控制中,模型预测控制(MPC)算法得到了⼴泛使⽤,龚建伟的《⽆⼈驾驶车辆模型预测控制》⼀书对MPC算法进⾏了细致的讲解,并提供了代码,⾮常值得参考和学习。
但书中各系数矩阵的推导对于初学者来说极难理解,代码结构也过于复杂,改动代码容易报错。
采⽤yalmip⼯具可以很⼤程度简化代码,利于初学者对应理解MPC公式与代码,代码修改起来也⾮常容易。
⼀、yalmip简介yalmip是由Lofberg开发的⼀种免费的优化求解⼯具。
它是⼀个建模⼯具,甚⾄可以称为⼀种“语⾔”,通过这种“语⾔”来描述模型,然后再调⽤其他求解器(如quadprog、gurobi、fmincon等)来求解模型。
其最⼤特⾊在于集成许多外部的优化求解器,形成⼀种统⼀的建模求解语⾔,提供了Matlab的调⽤API,减少学习者学习成本。
⼆、车辆模型1.车辆运动学模型2.离散化3.线性化这⾥使⽤针对状态轨迹的线性化⽅法(《⽆⼈驾驶车辆模型预测控制》(第⼆版)第五章代码所使⽤的⽅法),与第三、四章的存在参考系统的性线化⽅法略有不同,本质上区别不⼤,具体可以参考《⽆⼈驾驶车辆模型预测控制》(第⼀版)的介绍。
若使⽤较复杂的模型,可借助jacobian函数求解雅可⽐矩阵A,B三、MPC 优化问题定义程序⽬标是对轨迹进⾏跟踪,设计成本函数第⼀项:状态量与参考轨迹误差的平⽅,第⼆项:控制量的平⽅。
约束依次为初始状态约束,车辆运动学模型,控制量约束,控制增量约束。
优化问题如下所⽰:四、Matlab 代码本⽂编写的代码主要为了对标《⽆⼈驾驶车辆模型预测控制》(第⼆版)第四章的代码,主体参照S函数形式编写,便于结合Carsim 使⽤。
以下主要介绍yalmip编写的MPC计算函数:1.函数输⼊1syms x y phi delta v L T 2%x :横坐标;y :纵坐标;phi:航向⾓;delta :前轮偏⾓;3%v :速度;L :轴距;T :离散时间4kesi=[v*cos(phi);v*sin(phi);v*tan(delta)/L]*T+[x;y;phi];%离散化⽅程5X=[x,y,phi];%状态量6u=[v,delta];%控制量7A=jacobian(kesi,X)8B=jacobian(kesi,u)A,B:模型(系统)矩阵;Q,R:权重矩阵;N:控制步长;kesi:当前状态量和控制量;state_k1:下⼀时刻状态量;umin,umax,delta_min,delta_max:控制量和控制增量约束矩阵;Ref: 参考轨迹;MPC_solver:求解器。
matlab工具箱介绍
matlab工具箱介绍MATLAB有三十多个工具箱大致可分为两类:功能型工具箱和领域型工具箱.功能型工具箱主要用来扩充MATLAB的符号计算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,能用于多种学科。
而领域型工具箱是专业性很强的。
如控制系统工具箱(Control System Toolbox)、信号处理工具箱(Signal Processing Toolbox)、财政金融工具箱(Financial Toolbox)等。
下面,将MATLAB工具箱内所包含的主要内容做简要介绍:1)通讯工具箱(Communication Toolbox)。
令提供100多个函数和150多个SIMULINK模块用于通讯系统的仿真和分析——信号编码——调制解调——滤波器和均衡器设计——通道模型——同步可由结构图直接生成可应用的C语言源代码。
2)控制系统工具箱(Control System Toolbox)。
鲁连续系统设计和离散系统设计* 状态空间和传递函数* 模型转换* 频域响应:Bode图、Nyquist图、Nichols图* 时域响应:冲击响应、阶跃响应、斜波响应等* 根轨迹、极点配置、LQG3)财政金融工具箱(FinancialTooLbox)。
* 成本、利润分析,市场灵敏度分析* 业务量分析及优化* 偏差分析* 资金流量估算* 财务报表4)频率域系统辨识工具箱(Frequency Domain System ldentification Toolbox* 辨识具有未知延迟的连续和离散系统* 计算幅值/相位、零点/极点的置信区间* 设计周期激励信号、最小峰值、最优能量诺等5)模糊逻辑工具箱(Fuzzy Logic Toolbox)。
* 友好的交互设计界面* 自适应神经—模糊学习、聚类以及Sugeno推理* 支持SIMULINK动态仿真* 可生成C语言源代码用于实时应用(6)高阶谱分析工具箱(Higher—Order SpectralAnalysis Toolbox* 高阶谱估计* 信号中非线性特征的检测和刻画* 延时估计* 幅值和相位重构* 阵列信号处理* 谐波重构(7)图像处理工具箱(Image Processing Toolbox)。
基于Matlab模型算法控制工具箱的开发
De v e l o p me n t o f mo de l a l g o r i t hm c o nt r o l t o o l b o x ba s e d o n Ma t l a b
误差权矩 阵 , u w t 为控制权 矩阵 , 咖 为柔化 系数 , in f t a l 为 建 模 时域 , t e n d为 仿 真 时 间 , 印 为设 定值 , n l z m, d e n分 别 为 被 控 对
象 模 型 离 散 方 程 的 分 子 和 分 母 系 数 。该 函 数 作 为 子 程 序 。 编 写 测 试 程 序 作 为 主 程序 ,在 主 程 序 中对 各 变 量 进 行 初 始 化 。 并且对该子程序进行 调用。 1 ) 以二 阶系 统 : G( s ) : 确性 。 首 先 验 证 首 先 验证 该 被 控 对 象 的 特 性 。 由 图 1可 知 该 系统 是 线 性 . 渐近 稳定 系统 。 取 建 模 时 域
管 峰 ,江新 星 ,张雪琴
( 中国 石 油 大 学 ( 北 京 )机 械 与 储 运 工程 学 院 , 北京 a b 中没 有 模 型 算 法 控 制 ( Mo d e l A l g o i r t h m i c C o n t r o l , M A C) 的 通 用 函数 工 具 箱 , 基 于 模 型 算 法控 制 理 论, 编 写 开发 了模 型 算 法 控 制 通 用 函数 工具 箱 , 并 且 验 证 其 正确 性 和 通 用 性 , 为今 后 的 函 数 调 用 提 供 了方 便 。 关键词 : Ma t l a b ; 模 型 算 法控 制 ; 工具 箱; 开 发
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB模型预测控制工具箱函数
8.2 系统模型建立与转换函数
前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。
MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。
在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。
这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。
这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。
表8-2列出了模型预测控制工具箱的模型建立与转换函数。
表8-2 模型建立与转换函数
8.2.1 模型转换
在MATLAB模型预测工具箱中支持多种系统模型格式。
这些模型格式包括:
①通用状态空间模型;
②通用传递函数模型;
③MPC阶跃响应模型;
④MPC状态空间模型;
⑤MPC传递函数模型。
在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。
其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。
模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。
下面对这些函数的用法加以介绍。
1.通用状态空间模型与MPC状态空间模型之间的转换
MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。
1)通用状态空间模型转换为MPC状态空间模型函数ss2mod()
该函数的调用格式为
pmod= ss2mod(A,B,C,D)
pmod= ss2mod(A,B,C,D,minfo)
pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0)
式中,A, B, C, D为通用状态空间矩阵;
minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为:
◆minfo(1)=dt,系统采样周期,默认值为1;
◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次;
◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数;
◆minfo(4)=nd,测量扰的数目,默认值为0;
◆minfo(5)=nw,未测量扰动的数目,默认值为0;
◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数;
◆minfo(7)=nyu,未测量输出的数目,默认值为0;
注:如果在输入参数中没有指定m i n f o,则取默认值。
x0, u0, y0, f0为线性化条件,默认值均为0;
pmod为系统的MPC状态空间模型格式。
例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。
解:MATLAB命令如下:
0 0 1 0 0 0 0
0 1 3 1 0 0 0
2)MPC状态空间模型转换为通用状态空间模型函数mod2ss()
该函数的调用格式为
[A, B, C, D]= mod2ss(pmod)
[A, B, C, D, minfo]= mod2ss(pmod)
[A,B,C,D,minfo,x0,u0,y0,f0]= mod2ss(pmod) 式中,pmod为系统的MPC状态空间模型格式;A,B,C,D为通用状态空间矩阵;minfo为构成MPC状态空间模型的其他描述信息,其说明参见函数ss2mod()。
2.通用传递函数模型转换为MPC传递函数模型
通用传递函数模型与MPC传递函数模型的转换函数poly2tfd()的调用格式为
g=poly2tfd(num,den,delt,delay)
式中,num为通用传递函数模型的分子多项式系数向量;
den为通用传递函数模型的分母多项式系数向量;
delt为采样周期,对连续系统,该参数为0;
delay为系统纯时延,对于离散系统,纯时延为采样时间周期的整数倍;
g为被控对象的MPC传递函数模型。
例8-6考虑如下的纯时延二阶对象,并将其转换为MPC传递函数模型。
解:MATLAB命令如下:
>> num=[1 1];den=[1 4 4];
>> g=poly2tfd(num,den,0,0.5)
结果显示:
g =
0 1.0000 1.0000
1.0000 4.0000 4.0000
0 0.5000 0
3.MPC传递函数模型转换为MPC状态空间模型函数tfd2mod()
该函数的调用格式为
pmod=tfd2mod(delt,ny,g1,g2,……,g25)
式中,delt为采样时间;
ny为输出个数;
g1,g2,……为SISO传递函数,对应多变量系统传递函数矩阵的各个元素按行向量顺序排序构成的向量,其最大个数限制为25;
pmod为系统的MPC状态空间模型。
4.MPC阶跃响应模型与其他模型格式之间的转换
函数mod2step()、tfd2step()和ss2step()分别用于将MPC状态空间模型、MPC 传递函数模型和通用状态空间模型转换为MPC阶跃响应模型。
下面对这个三函数的用法进行说明。
1)MPC状态空间模型转换为MPC阶跃响应模型函数mod2step()
plant=mod2step(pmod,tfinal)
[plant, dplant]=mod2step(pmod,tfinal,delt,nout)
式中,pmod为系统的MPC状态空间模型;
tfinal为阶跃响应模型的截断时间;
delt为采样周期,默认值由MPC状态空间模型的参数minfo(1)决定;
nout为输出稳定性向量,用于指定输出的稳定性。
对于稳定的系统,nout等于输出的个数;对于具有一个或多个积怨分输出的系统,nout为一个长度等于输出个数的向量,该向量对应积分输出的分量为0,其余分量为1;
plant为对象在受控变量作用下的阶跃响应系数矩阵;
dplant为对象在扰动作用下阶跃响应矩阵。
2)MPC传递函数模型转换为MPC阶跃响应模型函数tfd2step()
该函数的调用格式为
plant=tfd2step(tfinal,delt,nout,g1)
plant=tfd2step(tfinal,delt,nout,g1,……,g25)
式中,tfinal为阶跃响应的截断时间;
delt为采样周期;
nout为输出稳定性向量,参见函数mod2step()的有关说明;
g1,……,g25为SISO传递函数,对应多变量系统传递函数矩阵的各个元素按行向量顺序排列构成的向量,其最大个数限制为25;
plant为对象的阶跃响应系统矩阵。
例8-8设系统传递函数为
将其转换为阶跃响应模型。
解:MATLAB命令如下:
>> num=[1 2];den=[1 3 1];
>> tf1=poly2tfd(num,den,0,0);
>> plant=tfd2step(5,0.1,1,tf1);
>> plotstep(plant)
由阶跃响应模型绘制的系统阶跃响应曲线如图8-5所示。
图8-5 系统阶跃响应曲线
8.4 基于阶跃响应模型的控制器设计与仿真函数
基于系统的阶跃响应模型进行模型预测控制器设计的方法称为动态矩阵控制方法。
该方法是采用工程上易于获取的对象阶跃响应模型,算法较为简单,计算量较少,鲁棒性较强,适用于纯时迟、开环渐近稳定的非最小相位系统,在工业过程控制中得到成功应用。
MATLAB的模型预测控制工具箱提供了对动态矩阵控制方法的支持,有关的函数能够基于阶跃响应模型的模型预测控制器设计与仿真,见表8-3。
表8-3 动态矩阵控制设计与仿真函数
例8-12考虑如下的双输入输出纯时延对象,其传递函数矩阵为
解:MATLAB程序如下:
ywt为二次型性能指标的输出误差加权矩阵;
uwt为二次型性能指标的控制量加权矩阵;
M为控制时域长度;
P为预测时域长度;
tend为仿真的结束时间;
r为输入设定值或参考轨迹;
ulim=[ulow uhigh delu],式中,ulow为控制变量的下界,uhigh为控制变量的上界,delu为控制变量的变化率约束;
ylim=[ylow yhigh],式中,ylow为输出的下界,yhigh为输出的上界;
kest为估计器的增益矩阵;
z为测量噪声;v为测量扰动;w为输出未测量扰动;wu为施加到控制输入的未测量扰动;
y为系统响应;u为控制变量;ym为模型预测输出。
例8-15考虑如下的双输入输出纯时延对象,其传递函数矩阵为解:MATLAB程序如下:。