石墨烯_纤维素复合材料的制备及应用
石墨烯复合材料的制备、表征及性能

石墨烯复合材料的制备、表征及性能郝丽娜【摘要】石墨烯属于一种二维晶体结构,它是由碳原子紧密堆积而成,其中有富勤烯、石墨以及碳纳米管等基本单元,这些都是碳的同位异形体.石墨烯在力学领域、电学领域、热学领域以及光学领域等都发挥出其优越的性能,因此,这一复合材料在当今已经成为了科学领域和物理学领域之中研究的焦点.对石墨烯复合材料的制备、表征以及性能进行分析,希望可以对石墨烯的应用与研究起到一定的帮助.%Graphene belongs to a two-dimensional crystal structure,which is formed by the close packing of carbon atoms.There are basic units such as rich olefins,graphite and carbon nanotubes,which are allomorphs of carbon.Graphene has exerted its superior performance in various fields such as mechanics,electricity,heat,and optics.Therefore,this composite material has become the focus of research in the fields of science and physics.This paper is to analyze the preparation,characterization and performance of graphene composites,and hope to help the applicationand research of graphene.【期刊名称】《化工设计通讯》【年(卷),期】2019(045)009【总页数】2页(P128-129)【关键词】石墨烯复合材料;制备;表征;性能【作者】郝丽娜【作者单位】齐齐哈尔工程学院,黑龙江齐齐哈尔 161005【正文语种】中文【中图分类】TB332 ;TM53因为石墨烯所具有的二维晶体结构是比较特殊的,所以其纵横比很高、电子迁移率也很高,这就使得石墨烯在储能领域之中的应用前景十分广泛。
石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。
它是现代科学技术的重要内容,也是未来技术的主流。
是基础研究与应用探索紧密联系的新兴高尖端科学技术。
石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。
由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。
综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。
关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。
研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。
石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。
通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。
通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。
采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。
研究表明PS微球通过公家方式连接到石墨烯的表面。
通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。
制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。
本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。
石墨烯的制备方法及发展应用概述

石墨烯的制备方法及发展应用概述一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维纳米材料,自2004年被科学家首次成功制备以来,便以其独特的物理和化学性质,引发了全球范围内的研究热潮。
本文旨在全面概述石墨烯的制备方法,以及其在各个领域的发展应用。
我们将介绍石墨烯的基本结构和性质,为后续的制备方法和应用探讨提供理论基础。
接着,我们将重点阐述石墨烯的几种主要制备方法,包括机械剥离法、化学气相沉积法、氧化还原法等,并分析各方法的优缺点。
随后,我们将深入探讨石墨烯在能源、电子、生物医学等领域的应用现状和发展前景。
我们将对石墨烯的未来研究方向进行展望,以期为其在实际应用中的进一步推广提供参考。
二、石墨烯的制备方法石墨烯的制备方法多种多样,每一种方法都有其独特的优缺点和适用范围。
目前,石墨烯的主要制备方法包括机械剥离法、化学气相沉积法(CVD)、氧化还原法、碳化硅外延生长法以及液相剥离法等。
机械剥离法:这是最早用于制备石墨烯的方法,由英国科学家Geim和Novoselov在2004年首次报道。
他们使用胶带反复剥离石墨片,最终得到了单层石墨烯。
这种方法虽然简单,但产量极低,且无法控制石墨烯的尺寸和形状,因此只适用于实验室研究,不适用于大规模生产。
化学气相沉积法(CVD):CVD法是目前工业上大规模制备石墨烯最常用的方法。
它通过高温下含碳气体在催化剂表面分解生成石墨烯。
这种方法可以制备出大面积、高质量的石墨烯,且生产效率高,成本低,因此被广泛应用于石墨烯的商业化生产。
氧化还原法:这种方法首先通过化学方法将石墨氧化成石墨氧化物,然后通过还原反应将石墨氧化物还原成石墨烯。
这种方法制备的石墨烯往往含有较多的缺陷和杂质,但其制备过程相对简单,成本较低,因此也被广泛用于石墨烯的大规模制备。
碳化硅外延生长法:这种方法通过在高温和超真空环境下加热碳化硅单晶,使硅原子从碳化硅表面升华,剩余的碳原子重组形成石墨烯。
这种方法制备的石墨烯质量高,但设备成本高,制备过程复杂,限制了其在大规模生产中的应用。
石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。
石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。
本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。
本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。
接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。
本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。
二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。
以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。
首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。
接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。
通过过滤、干燥等步骤得到石墨烯复合材料。
这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。
原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。
例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。
这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。
熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。
石墨烯基复合材料的制备及其力学性能研究

石墨烯基复合材料的制备及其力学性能研究石墨烯作为一种新兴的二维材料,因其优异的力学性能和独特的物理化学性质而备受研究者的关注。
石墨烯基复合材料的制备和性能研究是一个热门的研究领域。
本文将介绍石墨烯基复合材料的制备方法及其力学性能研究的相关进展。
1. 制备方法石墨烯基复合材料的制备方法多种多样,下面将介绍几种常用的制备方法。
1.1 石墨烯的氧化还原法石墨烯的氧化还原法制备工艺相对简单,但是会引入一定数量的氧原子和缺陷。
该方法一般是通过将石墨烯氧化成氧化石墨烯,然后再通过还原反应将其还原成石墨烯。
1.2 石墨烯的机械剥离法石墨烯的机械剥离法是通过机械手段将石墨烯层层剥离,从而得到单层或少层石墨烯。
这种方法制备的石墨烯具有高度结晶性和较低的缺陷密度。
1.3 石墨烯的化学气相沉积法石墨烯的化学气相沉积法是将碳源气体通过热解反应在基底上沉积,从而得到石墨烯。
这种方法具有制备速度快、制备规模大等优点。
2. 力学性能研究石墨烯基复合材料的力学性能研究是评价其应用前景的重要指标之一。
2.1 强度和刚度石墨烯具有出色的力学性能,因此制备的石墨烯基复合材料往往具有较高的强度和刚度。
研究者通过拉伸测试、压缩测试等实验方法来评估其力学性能,并与其他材料进行比较。
2.2 韧性和断裂韧度尽管石墨烯具有优异的强度和刚度,但其低韧性限制了其在实际应用中的广泛应用。
研究者通过断裂韧度测试等方法来评估石墨烯基复合材料的韧性,并寻找提高韧性的方法。
2.3 疲劳性能石墨烯基复合材料的疲劳性能是指其在长时间作用力下的力学性能表现。
研究者通过疲劳试验来评估其耐久性和疲劳寿命。
3. 应用前景石墨烯基复合材料具有广泛的应用前景。
例如,在航空航天领域,石墨烯基复合材料可用于制备轻质高强度的结构材料;在电子领域,石墨烯基复合材料可用于制备高性能的导电材料等。
总结:通过石墨烯的制备方法以及力学性能研究,我们可以看出石墨烯基复合材料具有巨大的潜力。
然而,目前仍存在一些挑战,如制备大尺寸石墨烯、提高石墨烯基复合材料的韧性等。
石墨烯基复合材料的制备与性能研究

石墨烯基复合材料的制备与性能研究石墨烯是一种单层碳原子排列成的二维晶体,具有极高的强度、导电性和导热性。
在过去的几年里,石墨烯在材料科学领域引起了广泛的关注。
为了进一步发展石墨烯的应用,研究人员开始将石墨烯与其他材料相结合,形成石墨烯基复合材料。
这些复合材料具有优异的性能和多样化的应用前景。
本文将探讨石墨烯基复合材料的制备方法以及其性能研究。
一、石墨烯基复合材料的制备方法1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的制备大面积石墨烯的方法。
该方法通过在金属衬底上加热挥发的碳源,使其在高温下与金属表面反应生成石墨烯。
石墨烯的生长在具有合适结晶特性的金属表面上进行,如铜、镍等。
CVD法制备的石墨烯可以获得高质量、大尺寸的单层石墨烯。
2. 液相剥离法液相剥离法是一种以石墨为原料制备石墨烯的方法。
通过在石墨表面涂覆一层粘性聚合物,然后利用粘性聚合物与石墨之间的相互作用力,将石墨从衬底上剥离,最终得到石墨烯。
这种方法能够制备出大面积的石墨烯,并且使用简便、成本较低。
3. 氧化石墨烯还原法氧化石墨烯还原法是一种制备石墨烯的简单方法。
首先将石墨烯氧化生成氧化石墨烯,然后通过还原处理,还原为石墨烯。
该方法可以在实验室条件下进行,操作简单方便。
然而,由于氧化石墨烯的导电性较差,所得石墨烯的质量较低。
二、石墨烯基复合材料的性能研究1. 机械性能石墨烯具有出色的机械性能,其强度和刚度超过大多数材料。
石墨烯基复合材料的机械性能主要取决于基体材料和石墨烯的界面相互作用。
研究表明,合适添加石墨烯可以显著提升材料的强度和硬度。
2. 电学性能石墨烯具有优异的电学性能,可以用作电极材料、导电填料等。
石墨烯基复合材料在导电性能方面表现出色,可以用于制备柔性电子器件、传感器等。
3. 热学性能由于石墨烯的热导率高达3000-5000 W/(m·K),石墨烯基复合材料在热学性能方面具有巨大的潜力。
石墨烯能够显著提高基体材料的热导率,因此可以应用于散热材料、热界面材料等领域。
石墨烯纳米复合材料的制备及应用

石墨烯纳米复合材料的制备及应用随着材料科学技术的不断发展,石墨烯这种特殊材料被越来越多地应用于诸如高强度材料、高导电材料、高热导材料等领域。
但是石墨烯纯粹的形态在某些领域中不一定能够满足要求,因此需要与其他材料结合起来形成复合材料,以期获得更好的性能。
本文将介绍石墨烯纳米复合材料的制备方法及其应用。
一、石墨烯纳米复合材料制备方法1.机械混合法这是一种较为简单的制备方法,将石墨烯和其他纳米材料一起经过机械混合后再进行压制成材料。
但是这种方法难以获得优秀的分散效果和界面相容性,因此在性能方面存在局限。
2.沉积法这是一种常见的制备方法,通过将纳米材料分散在溶液中,然后将石墨烯沉积在纳米材料上面。
这种方法可以获得较好的分散效果和界面相容性,但是需要进行复杂的前处理和后处理过程。
3.化学还原法这种方法通过化学反应来制备石墨烯纳米复合材料。
将还原剂与石墨烯和其他纳米材料混合,利用还原剂产生的化学反应来将石墨烯还原,然后与其他纳米材料结合形成材料。
这种方法具有优秀的分散效果和界面相容性,制备操作简单,成本低廉,因此被广泛应用。
二、石墨烯纳米复合材料的应用及优势1.高强材料石墨烯具有优秀的强度和刚度,而与其他材料结合可以进一步提高强度。
例如,与纳米碳管混合的石墨烯可以形成更加坚韧且抗弯曲的材料,因此可以应用于强度要求较高的结构材料中。
2.高导电和高热导材料石墨烯本身具有优秀的导电和热导性能,当与其他材料结合可以形成具有更高导电和热导性能的材料。
例如,与金属纳米颗粒混合的石墨烯可以形成高效的热界面材料,用于导热和散热。
3.吸附材料石墨烯和其他纳米材料结合可以形成高效的吸附材料,例如,与氧化镁纳米颗粒混合的石墨烯可以应用于吸附有机污染物的处理。
4.传感器石墨烯和其他纳米材料结合可以形成高灵敏、高精度的传感器,例如,与金属纳米颗粒混合的石墨烯可以应用于制备高灵敏的压力传感器。
综上所述,石墨烯纳米复合材料可以应用于很多领域,具有优良的性能和广阔的应用前景。
石墨烯复合材料的制备及性能研究

石墨烯复合材料的制备及性能研究石墨烯作为一种最薄的二维材料,具有出色的导电性、热导性和力学性能,近年来备受关注。
然而,石墨烯单层结构的应用受到制备工艺的限制,其在实际应用中的性能发挥受到限制。
为了克服这一问题,研究人员通过将石墨烯与其他材料进行复合,改善了其性能和应用范围。
石墨烯复合材料的制备方法多种多样,其中一种常见的方法是通过机械混合和化学修饰实现。
机械混合法将石墨烯和其他材料粉末进行混合,并在高温下进行烧结。
化学修饰法则是通过将石墨烯表面进行功能化修饰,使其与其他材料有更好的结合能力。
石墨烯复合材料的性能研究集中在导电性、力学性能和化学稳定性等方面。
石墨烯的导电性极佳,具有很高的载流子迁移率,可以用于制备导电材料。
石墨烯复合材料的导电性通常优于纯石墨烯,这得益于其他材料的加入,能够提高载流子的传输效率。
例如,将石墨烯与金属氧化物复合,可以显著提高复合材料的导电性能。
在力学性能方面,石墨烯复合材料具有优异的强度和韧性。
石墨烯单层结构的强度非常高,但由于其脆性,应用受到限制。
然而,通过与其他材料的复合,可以增加石墨烯复合材料的韧性,提高其抗拉强度和断裂延伸率。
例如,将石墨烯与聚合物复合,可以制备出强韧的复合材料,具有优异的拉伸性能。
此外,石墨烯复合材料的化学稳定性也是重要的研究内容之一。
石墨烯在常规环境下较为稳定,但在一些特殊条件下容易发生氧化或者化学反应,导致性能下降。
因此,石墨烯复合材料的化学稳定性研究成为了关注的焦点。
通过将石墨烯与合适的包覆材料进行复合,可以有效提高复合材料的化学稳定性。
石墨烯复合材料在实际应用中有着广阔的前景。
例如,石墨烯复合材料在电子器件领域有着重要的应用。
石墨烯的高导电性和热导性使得其成为制备高性能电子器件的理想材料。
通过将石墨烯与半导体材料或金属材料复合,可以制备出具有优异性能的纳米电子器件。
此外,石墨烯复合材料还可以应用于能源储存和传输领域。
石墨烯作为电极材料可以改善电化学电容器和锂离子电池的性能。
石墨烯及其复合材料的制备、性质及应用研究共3篇

石墨烯及其复合材料的制备、性质及应用研究共3篇石墨烯及其复合材料的制备、性质及应用研究1石墨烯及其复合材料的制备、性质及应用研究石墨烯是一种由碳原子构成的单层蜂窝状结构材料,具有独特的电学、光学、热学和机械性质。
自2004年它被首次发现以来,它的研究成果一直是纳米科学和材料科学最活跃的领域之一。
石墨烯具有很高的载流子迁移率、良好的机械强度和高比表面积,因此在传感器、电子器件、能量存储装置、超级电容器、太阳能电池、催化剂和生物医学传感器等领域具有广泛的应用。
本文旨在介绍石墨烯及其复合材料的制备方法、性质及其应用研究进展。
石墨烯的制备有许多方法,包括机械剥离、化学气相沉积、物理气相沉积、化学还原、流体力学剥离和微波辐射法等。
其中,机械剥离法是第一个制备单层石墨烯的方法,虽然成本低、易于实现,但需要大量时间和劳动力,并存在控制问题。
化学还原法则采用氧化石墨的还原,得到具有一定缺陷的石墨烯,且杂质易残留影响性质。
化学气相沉积法制备石墨烯具有高晶格载流子迁移率、具有极高的缺陷密度的石墨烯,但过程复杂,成本高。
物理气相沉积法适合生产无缺陷石墨烯,但难以控制多层石墨烯形成、且温度高,影响成品质量。
流体力学剥离法利用石墨烯的自身表面张力减小形成薄膜,但制备过程仍需要控制单层厚度。
微波辐射法是最新的石墨烯制备方法,采用微波对石墨进行瞬间加热、膨胀、冷却制备大面积石墨烯,具有制备速度快、质量好、颗粒易于控制等优点。
石墨烯的独特性质使其在许多应用中具有广阔的前景。
首先,在电子领域,石墨烯可以用来制造微电子器件、包括场效应晶体管、半导体和光电器件等。
FET型石墨烯晶体管基于石墨烯中载流子迁移率的高值,值得在短时间获得了重大的研究进展;二维电子系统(2DEG)可以用于制造高速逻辑电路和高灵敏感受器。
其次,在传感器领域,石墨烯表现出高度灵敏性,可以用于制造各种传感器,如光学传感器、生物传感器等。
此外,石墨烯还可以用于制造锂离子电池、超级电容器、声波马达等能量存储装置中。
石墨烯基复合材料的制备及性能分析

石墨烯基复合材料的制备及性能分析石墨烯是一种新型的碳材料,由于其独特的结构和优异的性能,被广泛应用于材料科学领域。
石墨烯基复合材料作为一种将石墨烯与其他材料复合而成的新材料,具有石墨烯的优势和复合材料的多功能性,因此在材料制备和性能分析方面备受关注。
一、石墨烯基复合材料的制备方法目前,制备石墨烯基复合材料的方法主要包括机械混合法、溶液处理法和化学气相沉积法等。
机械混合法是最简单的制备方法,将石墨烯和其他材料进行物理混合。
这种方法操作简单,成本低廉,但是石墨烯与其他材料的界面结合较弱,对复合材料性能的提升有限。
溶液处理法是通过将石墨烯分散于溶液中,与其他材料形成复合体。
这种方法不仅能够提高石墨烯与其他材料的界面结合,还可以调控复合体的结构和性能。
然而,溶液处理法对石墨烯的分散性要求较高,操作复杂。
化学气相沉积法是一种高温气相合成法,通过在金属基底上沉积石墨烯。
这种方法制备的石墨烯基复合材料具有较高的结晶质量和界面结合强度,但是设备要求高、制备时间长。
二、石墨烯基复合材料的性能分析石墨烯基复合材料的性能主要包括力学性能、导电性能和热学性能等。
力学性能是衡量材料抗拉、抗压、抗弯等力学性能的指标。
石墨烯具有极高的强度和刚度,因此能够大幅提升复合材料的力学性能。
石墨烯基复合材料的强度和刚度通常随着石墨烯含量的增加而增加,但是当石墨烯含量过高时,由于石墨烯的堆叠导致复合材料的脆性增加。
导电性是衡量材料传导电流的性能指标。
石墨烯是一种具有优异导电性的材料,其导电性能主要取决于石墨烯的层数和形态。
石墨烯基复合材料通常具有较好的导电性能,且导电性能能够随着石墨烯含量的增加而增加。
热学性能是衡量材料导热性能的指标。
石墨烯具有很高的导热性能,因此能够显著提高复合材料的导热性能。
石墨烯基复合材料的导热性能通常随着石墨烯含量的增加而增加,但是石墨烯的堆叠也会对导热性能产生一定的影响。
除了上述性能分析,石墨烯基复合材料还具有其他一些特殊的性能。
石墨烯与再生纤维素复合纤维制备及性能研究

c a n me e t t h e n a t i o n a l s t a n d a r d r e q u i r e me n t s w h e n t h e c o n t e n t o f g r a p h i t e i s mo r e t h a n 3 % :a n d t h e t h e m a r l s t a b i l .
Pr e pa r a t i o n a nd Pr o pe r t i e s S t ud y o f Gr a p he n e / Re g e n e r a t e d Ce l l ul o s e
Co mp o s i t e Fi b e r
性 石 墨烯 与 再 生纤 维素 复 合 纤 维 具 有 良好 的 可 纺 性 , 既可纯纺 , 也 可混纺交织, 适合纺制各类梭织 、 针 织 纱. 具 有 广 阔 的 市 场前 景 关键词 : 石墨烯 ; 再生纤维素 ; 复合 纤 维 ; 制备 工艺 ; 防 紫 外 线性 能 ; 热 稳 定 性 中 图分 类 号 : T S 1 8 2 + . 5 文献标志码 : B 文章编号 : 1 0 0 0 — 4 0 3 3 ( 2 0 1 5 ) 0 6 — 0 0 0 6 — 0 3
针锻 工 业 。 2 0 1 5 年 第 6 期
石墨烯纳米复合材料及其应用

石墨烯纳米复合材料及其应用石墨烯是一种由碳原子构成的二维材料,具有极高的强度、导电性、热传导性和化学稳定性,所以被广泛地应用于各种领域中。
近年来,石墨烯与纳米复合技术的结合,使得新材料的性能得到了大幅度提升,而石墨烯纳米复合材料的研究也成为了材料科学领域的热门话题。
一、石墨烯纳米复合材料的制备方法1. 化学还原法化学还原法是目前使用最为广泛的方法之一,它利用还原剂将氧化石墨烯还原成石墨烯。
在此基础上,通过添加不同的纳米材料,可以制备出石墨烯复合材料。
化学还原法制备出的复合材料,具有制备简单,成本低廉等优点。
2. 机械合成法机械合成法是通过机械研磨的方法将不同原材料混合制备而成的。
该方法可同时制备出纳米复合材料和石墨烯基材。
机械合成法的优点是制备工艺简单,对原料的要求不高,且制备出的材料具有极好的分散性和稳定性。
3. 真空热蒸发法真空热蒸发法是利用高温真空条件下,将石墨烯和纳米材料掺杂在一起来制备纳米复合材料。
该方法可以制备出高质量、高纯度的石墨烯纳米复合材料。
二、石墨烯纳米复合材料的应用领域1. 电子器件石墨烯纳米复合材料可以制备出具有优异性能的电子器件。
由于石墨烯的高导电性和高透明性,因此可以制备出透明导电膜、柔性电极等新型电子组件。
此外,石墨烯与纳米金属粒子复合后,还可用于纳米传感器的制备。
2. 光电功能材料石墨烯与半导体纳米材料复合后,可以制备出光电功能材料。
石墨烯的高导电性、高透明性和优异的光学性能,可以提高太阳能电池、有机发光二极管和光电探测器等光电器件的性能,并且可以延长其使用寿命。
3. 生物医药材料石墨烯复合纳米材料在生物医药领域中也有着广泛的应用。
例如,石墨烯与纳米颗粒复合后,可以制备成高效的抗菌和抗病毒药物,同时具有良好的生物相容性。
此外,石墨烯还可以用于生物成像、癌症治疗等领域。
三、石墨烯纳米复合材料的优势1. 优异的物理性能石墨烯纳米复合材料具有石墨烯和纳米材料的优异性能,如高导电性、高透明性、优异的力学性能、高比表面积和化学稳定性等。
石墨烯及其复合材料的制备与应用

石墨烯及其复合材料的制备与应用第一章石墨烯的制备方法石墨烯,是一种由碳原子结构构成的碳材料,它被认为是材料领域中的一个热门话题。
石墨烯具有极为优秀的导电性、热导性、力学性能和化学稳定性等特征,具有广泛的应用前景。
目前,制备石墨烯的方法主要包括机械剥离法、化学气相沉积法、化学还原法等。
1.1 机械剥离法机械剥离法是最早被发现的一种石墨烯制备方法。
这种方法是通过机械剥离的方式,将多层石墨片中的单独层剥离出来,形成石墨烯。
机械剥离法可以简单地由实验室实现,但是它的局限是其产量非常低,得到的材料质量也较差。
1.2 化学气相沉积法化学气相沉积法是一种应用较为广泛的制备石墨烯的方法。
这种方法通常需要使用铜等物质作为基板,在升高温度下,将碳源分子和氢气混合物输送到基板表面。
碳源与氢气一起在基板上表面催化生长,形成石墨烯。
1.3 化学还原法化学还原法是一种常见的制备石墨烯的方法。
这种方法需要使用氧化石墨在还原剂的作用下,将石墨氧化物还原成石墨烯。
化学还原法的优点是制备过程相对简单,且在生产过程中使用的仪器和设备也较为常见。
第二章石墨烯的应用石墨烯的应用潜力极大,主要应用于电子学、化学、材料学、生物学等多个领域。
以下主要介绍石墨烯在电子领域、能源领域、生物领域和热管理领域中的应用。
2.1 电子领域石墨烯具有非常出色的电子性能,具有很大的应用前景。
石墨烯可以用于制作高速电子器件、柔性电子器件和纳米电子器件等。
同时,石墨烯也可以用于制作生物电子学和储存设备等。
2.2 能源领域石墨烯在能源领域有着广泛的应用,可以用于制作超级电容器、锂离子电池和超导体等。
石墨烯还可以被用作太阳能电池材料的附加层,提高了太阳能电池的转换效率。
2.3 生物领域石墨烯在生物领域应用也非常广泛。
它可以被用作药物传递系统,用于治疗癌症和其他疾病。
同时,石墨烯也可以用于生物传感器,用于检测生物分子和细胞等。
2.4 热管理领域石墨烯具有良好的热导性能,可以在热管理领域应用。
石墨烯纳米复合材料的制备及其应用研究

石墨烯纳米复合材料的制备及其应用研究摘要:石墨烯是一种新兴的二维碳纳米材料,具有完美的晶体结构和出色的物理和化学性能。
石墨烯独特的电、热、光学和机械性能,在电子、导热材料、气体传感器、光敏元件和环境科学中具有广泛的潜在应用。
由于其潜在的实际应用价值。
本文概述了石墨烯制备的方法,介绍了石墨烯电极材料、环境吸附材料领域的应用。
并进一步对石墨烯及其纳米复合材料的发展前景做出了分析。
关键词:石墨烯;纳米复合材料;制备石墨烯是纳米复合材料研究中相对重要的材料。
纳米石墨烯复合材料具有更高的制备要求。
目的是生产可用于生物、机械和其他生产领域的高质量、高性能材料,发挥纳米石墨烯复合材料的适用性。
目前,就石墨烯复合材料的制备而言,纳米复合材料的制备是主要的发展趋势。
在当今的各个领域,纳米石墨烯复合材料具有非常明显的优势,并具有良好的发展前景。
因此,纳米石墨烯复合材料的制备和应用也受到越来越多的关注。
一、石墨烯复合材料的制备(一)熔融共混法制备通过熔融共混法制备纳米石墨烯复合材料,实际上是借助高温和高剪切力,将石墨烯或氧化石墨烯分散在聚合物基质中。
由于在使用该方法的纳米石墨烯复合材料的制造过程中不需要溶剂,因此非常适用于极性和非极性聚合物。
研究表明,在以单层或多层形式均匀分布的PET(石墨烯)基质中,基质中可能会出现卷曲和皱褶。
以栅格的形式,大大提高了复合材料的导电性。
当PET基体的石墨烯含量达到3vol%时,复合材料的最大电导率可以达到2.11S/m,这与目前电磁屏蔽领域对石墨烯复合材料的需求一致。
通过这种制造方法,一些专家和学者已经制成了高导电复合材料,例如分离的石墨烯-多壁纳米管/超高分子量聚乙烯,它们的导电率非常高,并且其导电渗透率低,仅为0.039vot%[1]。
(二)溶液混合法制备通过溶液混合法制备纳米石墨烯复合材料,实际上是指在溶剂的作用下,将聚合物分子插入GO片材后,通过还原制备纳米石墨烯复合材料。
石墨烯的制备及其应用

石墨烯的制备及其应用石墨烯是一种单层的碳原子晶体,具有颠覆性的科技应用前景。
由于石墨烯具有极高的导电、导热性能及优异的力学性能,因此被广泛研究。
本文将介绍石墨烯的制备方法以及其在电子、机械、化学等领域的应用。
一、石墨烯的制备方法1. 机械剥离法:利用氧气等物理和化学剥离方式在石墨烯的表面使其自然剥离。
这种剥离方法简便易行,但是制备的石墨烯质量较低。
2. 化学气相沉积法:将甲烷等含碳气体通入高温下的石墨基底上,使其碳原子从气体中沉积在基底上,最终得到石墨烯。
该方法的制备质量较高,但实验条件复杂。
3. 化学还原法:利用还原剂还原氧化的氧化石墨烯,实现对石墨烯的制备。
该方法简单易行,但还原过程中易出现杂质的情况。
以上三种制备石墨烯的方法各具特点,研究者可以根据具体应用场景和制备要求选择相应的方法。
二、石墨烯的应用1. 电子领域:由于石墨烯对电子的传输特性很好,因此石墨烯可以作为电子器件的材料使用。
例如,石墨烯场效应晶体管可以用来构建微型高性能晶体管集成电路等微型电子器件。
2. 机械领域:石墨烯具有优异的力学性能,强度高,抗拉强度高达130GPa,可以作为高性能复合材料的增强材料。
例如,石墨烯可以与聚合物制作成复合材料,用于轮胎、飞机、汽车的外壳等领域。
3. 化学领域:石墨烯具有高表面积和良好的分子吸附性能,因此被广泛用于分离和催化反应等领域。
例如,石墨烯可以用作催化剂,在化学反应过程中发挥催化作用,促进反应的进行。
总之,石墨烯的制备和应用一直是研究人员关注的热点问题。
随着技术的不断发展和创新,石墨烯的制备方法越来越简单,制备质量也越来越好,其应用领域也在不断拓展。
相信在未来,石墨烯会在各个领域发挥越来越大的作用,为人类的生活带来更多的福利。
机械剥离法制备石墨烯及其在石墨烯陶瓷复合材料制备中的应用

总的来说,电化学法制备石墨烯及其复合材料是一个具有前景的研究领域。这 种方法具有环境友好、高效等优点,且能大规模生产。尽管电化学法在制备石 墨烯及其复合材料方面已经取得了一些显著的进展,但仍需要进一步的研究以 优化该工艺,
提高产率并降低成本。未来的研究应如何实现石墨烯及其复合材料的可持续、 大规模生产,以及如何进一步优化这些材料的性能以满足更多应用的需求。
展望未来,我们相信微波加热剥离法制备石墨烯的研究将不断深入。通过改进 实验条件和优化设备,可以进一步提高石墨烯的质量和产率,降低生产成本。 随着人们对石墨烯应用领域的不断拓展,微波加热剥离法制备石墨烯将在能源、 环保、材料等领域发挥更大的作用。
总之,微波加热剥离法为制备高质量、高产量的石墨烯提供了一种有效的途径。 尽管仍存在一些不足,但随着科技的不断进步,我们有理由相信这一方法将在 石墨烯的大规模制备中发挥越来越重要的作用。
未来的研究方向应如何提高机械剥离法的效率和产量,以实现石墨烯的大规模 工业化生产。此外,还应注意研究新型的石墨烯陶瓷复合材料体系,以发掘其 更多潜在的应用领域。我们也应该探索机械剥离法在其他新兴领域中的应用,
如二维材料家族的不断扩大和完善、柔性电子器件的制造等,以推动机械剥离 法在更多领域中的发展与应用。
这种复合材料的性能主要取决于石墨烯和陶瓷的特性以及它们的相互作用。由 于石墨烯具有很高的导电性和力学性能,因此可将石墨烯均匀地分散在陶瓷基 体中,以提高复合材料的整体性能。例如,石墨烯陶瓷复合材料在力学性能方 面展现出优异的强度和韧性,同时具有良好的导电性和热稳定性。
除了性能的提升外,石墨烯陶瓷复合材料还具有广泛的应用前景。例如,在能 源领域,可以利用石墨烯的导电性和陶瓷的稳定性来制备高性能的电池和超级 电容器。此外,石墨烯陶瓷复合材料还可应用于电子器件、传感器、生物医学 等领域。
石墨烯基材料及其应用技术研究

石墨烯基材料及其应用技术研究一、引言石墨烯是一种由碳原子组成的二维材料,具有高强度、高导热、高导电等优异性质。
近年来,石墨烯的研究领域不断拓展,尤其是基于石墨烯的材料开发和应用技术研究已成为研究热点。
本文将重点阐述石墨烯基材料及其应用技术研究的进展情况和发展前景。
二、石墨烯基材料的制备方法1.机械剥离法机械剥离法是一种制备石墨烯的传统方法,其原理是采用机械力将普通石墨材料从其表面剥离出单层石墨烯。
然而,这种方法制备的石墨烯质量较低,且剥离过程比较耗时,不适合大规模生产。
2.化学气相沉积法化学气相沉积法是一种将气态化合物在石墨或其他基底表面进行反应,使其沉积成薄层的方法。
该方法制备的石墨烯具有较高的质量和可控性,是一种重要的制备方法。
3.化学还原法化学还原法是将氧化石墨通过加热硫酸等还原剂还原成石墨烯的方法。
该方法成本较低,但由于还原过程中会生成大量副产物,制备的石墨烯质量较难控制。
4.化学剥离法化学剥离法是将氧化石墨通过酸处理、高温烘干等方式制备出单层石墨烯的方法。
该方法操作简便,但易造成环境污染。
三、石墨烯基材料的应用技术1.石墨烯波导石墨烯具有高导电性和高透明性的双重特性,可以用于制造光电器件,例如石墨烯波导。
石墨烯波导是一种基于石墨烯作为原材料制造的光导器件,具有低损耗、高速率等优点。
2.石墨烯场效应晶体管石墨烯场效应晶体管是一种可以控制电流的电子器件,其基本原理是将石墨烯作为半导体材料,利用电场调节石墨烯电荷载流子密度,从而控制器件的电阻变化。
3.石墨烯增强复合材料石墨烯具有高强度、高硬度等性质,可以加入到复合材料中,增强其力学性能。
例如,将石墨烯掺入金属或陶瓷基质材料中,可以显著提高其抗拉强度、硬度等性能。
4.石墨烯电池石墨烯电池是一种基于石墨烯制造的高性能电池,具有高能量密度、长寿命等优点。
石墨烯可以作为锂离子电池的电极材料,同时也可以用于其他类型的电池。
四、石墨烯基材料的市场应用前景石墨烯作为一种新兴材料,具有广阔的应用前景。
石墨烯纤维的制备与应用

石墨烯纤维的制备与应用杨俊杰;张扬;陈国印;陈少华;麻伍军;翁巍;朱美芳【期刊名称】《中国材料进展》【年(卷),期】2018(037)005【摘要】石墨烯是一种由碳原子以sp2杂化方式结合形成的单原子层厚度的二维纳米碳材料,具有优异的力学、电学、热学、磁学等性能,是当前研究的热点和焦点.石墨烯纤维是石墨烯纳米片层在一维受限空间的组装体,使得石墨烯在纳米尺度的优异性能遗传到宏观尺度,极大地拓展了石墨烯的应用领域.自2011年首次制备获得石墨烯纤维以来,至今为止已经开发了以湿法纺丝为代表的多种制备方法,并且石墨烯纤维已经在能量转换、能量存储、传感响应等领域取得了一系列应用.归纳整理了石墨烯纤维的制备方法和应用,同时总结了石墨烯纤维目前存在的问题以及未来发展的展望.【总页数】11页(P356-366)【作者】杨俊杰;张扬;陈国印;陈少华;麻伍军;翁巍;朱美芳【作者单位】东华大学材料科学与工程学院纤维材料改性国家重点实验室,上海201600;东华大学材料科学与工程学院纤维材料改性国家重点实验室,上海201600;东华大学材料科学与工程学院纤维材料改性国家重点实验室,上海201600;东华大学材料科学与工程学院纤维材料改性国家重点实验室,上海201600;东华大学材料科学与工程学院纤维材料改性国家重点实验室,上海201600;东华大学材料科学与工程学院纤维材料改性国家重点实验室,上海201600;东华大学材料科学与工程学院纤维材料改性国家重点实验室,上海201600【正文语种】中文【中图分类】TQ342+.74【相关文献】1.聚苯胺纳米纤维@还原氧化石墨烯纳米卷复合材料的制备及其在超级电容器中的应用 [J], 黄晓萍; 黄志锋; 苏炜华; 赵亚楠; 胡晓兰; 白华2.细菌纤维素基氮掺杂石墨烯柔性电极材料的制备及其应用 [J], 张素风; 周浩; 刘丽娜; 唐蕊华3.细菌纤维素基氮掺杂石墨烯柔性电极材料的制备及其应用 [J], 张素风; 周浩; 刘丽娜; 唐蕊华4.氧化石墨烯/二氧化钛/酸解纤维素复合材料的制备及其在印染废水处理中的应用[J], 曾安然;曾安蓉;陈汝盼5.石墨烯复合纤维的制备方法与应用分析 [J], 陈琛;韩燚;孙海燕;姚程凯;王勇霖;高超因版权原因,仅展示原文概要,查看原文内容请购买。