九年级上册数学 新定义问题(含答案)

合集下载

数学九年级上册-二次函数中的新定义问题专项训练30道人教版解析版

数学九年级上册-二次函数中的新定义问题专项训练30道人教版解析版

专题22.7 二次函数中的新定义问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对新定义函数的理解!一.选择题(共10小题)1.(2022•市中区校级模拟)定义:在平面直角坐标系中,点P (x ,y )的横、纵坐标的绝对值之和叫做点P (x ,y )的勾股值,记[P ]=|x |+|y |.若抛物线y =ax 2+bx +1与直线y =x 只有一个交点C ,已知点C 在第一象限,且2≤[C ]≤4,令t =2b 2﹣4a +2020,则t 的取值范围为( )A .2017≤t ≤2018B .2018≤t ≤2019C .2019≤t ≤2020D .2020≤t ≤20212.(2022•市中区二模)定义:对于已知的两个函数,任取自变量x 的一个值,当x ≥0时,它们对应的函数值相等;当x <0时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y =x ,它的相关函数为.已知点M ,N 的坐标分别为,,连结y ={x(x ≥0)−x(x <0)(−12,1)(92,1)MN ,若线段MN 与二次函数y =﹣x 2+4x +n 的相关函数的图象有两个公共点,则n 的取值范围为( )A .﹣3≤n ≤﹣1或B .﹣3<n <﹣1或1<n ≤541<n ≤54C .﹣3<n ≤﹣1或D .﹣3≤n ≤﹣1或1≤n ≤541≤n ≤543.(2022•青秀区校级一模)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y =x 2﹣x +c (c 为常数)在﹣2<x <4的图象上存在两个二倍点,则c 的取值范围是( )A .﹣2<cB .﹣4<cC .﹣4<cD .﹣10<c <14<94<14<944.(2022秋•汉阳区期中)我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx ﹣2t 对于任意的常数t 恒有两个“好点”,则a 的取值范围为( )A .0<a <1B .0C .D .<a <1213<a <1212<a <15.(2022秋•和平区校级月考)对于实数a ,b ,定义运算“*”:a *b ,例如:4*2,因={a 2−ab(a ≥b)b 2−ab(a <b)为4>2,所以4*2=42﹣4×2=8.若函数y =(2x )*(x +1),则下列结论:①方程(2x )*(x +1)=0的解为﹣1和1;②关于x 的方程(2x )*(x +1)=m 有三个解,则0<m ≤1;③当x >1时,y 随x 的增大而增大;④直线y =kx ﹣k 与函数y =(2x )*(x +1)图象只有一个交点,则k =﹣2;⑤当x <1时,函数y =(2x )*(x +1)的最大值为1.其中正确结论的序号有( )A .②④⑤B .①②⑤C .②③④D .①③⑤6.(2022•莱芜区二模)定义:平面直角坐标系中,点P (x ,y )的横坐标x 的绝对值表示为|x |,纵坐标y 的绝对值表示为|y |,我们把点P (x ,y )的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的折线距离,记为|M |=|x |+|y |(其中的“+”是四则运算中的加法),若抛物线y =ax 2+bx +1与直线y =x 只有一个交点M ,已知点M 在第一象限,且2≤|M |≤4,令t =2b 2﹣4a +2022,则t 的取值范围为( )A .2018≤t ≤2019B .2019≤t ≤2020C .2020≤t ≤2021D .2021≤t ≤20227.(2022•岳阳模拟)在平面直角坐标系中,对于点P (m ,n )和点P ′(m ,n ′),给出如下新定义,若n ',则称点P ′(m ,n ′)是点P (m ,n )的限变点,例如:点P 1(1,4)的限={|n|(当m <0时)n−2(当m ≥0时)变点是P ′1(1,2),点P 2(﹣2,﹣1)的限变点是P ′2(﹣2,1),若点P (m ,n )在二次函数y =﹣x 2+4x +1的图象上,则当﹣1≤m ≤3时,其限变点P ′的纵坐标n '的取值范围是( )A .﹣1≤n '<3B .1≤n '<4C .1≤n '≤3D .﹣1≤n '≤48.(2022•自贡模拟)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l :y x +b 经过点M (0,),一组抛物线的顶点=1314B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…B n (n ,y n ) (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…A n +1(x n +1,0)(n 为正整数).若x 1=d (0<d <1),当d 为( )时,这组抛物线中存在美丽抛物线.A .或B .或C .或D .512712512111271211127129.(2022秋•诸暨市期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有交点时m 的最大值和最小值之差为( )A .5B .C .4D .7+1727−17210.(2022秋•亳州月考)定义:在平面直角坐标系中,过一点P 分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P 叫做和谐点,所围成的矩形叫做和谐矩形.已知点P 是抛物线y =x 2+k 上的和谐点,所围成的和谐矩形的面积为16,则k 的值可以是( )A .16B .4C .﹣12D .﹣18二.填空题(共10小题)11.(2022•芦淞区模拟)定义[a ,b ,c ]为函数y =ax 2+bx +c 的特征数,下面给出特征数位[2m ,1﹣m ,﹣1﹣m ]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(,);1383②当m =1时,函数图象截x 轴所得的线段长度等于2;③当m =﹣1时,函数在x 时,y 随x 的增大而减小;>14④当m ≠0时,函数图象经过同一个点.上述结论中所有正确的结论有 .(填写所有正确答案的序号)12.(2022秋•浦东新区期末)定义:直线与抛物线两个交点之间的距离称作抛物线关于直线的“割距”,如图,线段MN 长就是抛物线关于直线的“割距”.已知直线y =﹣x +3与x 轴交于点A ,与y 轴交于点B ,点B 恰好是抛物线y =﹣(x ﹣m )2+n 的顶点,则此时抛物线关于直线y 的割距是 .13.(2022•宣州区校级自主招生)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足﹣m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数y =﹣x 2+1(﹣2≤x ≤t ,t ≥0)的图象向上平移t 个单位,得到的函数的边界值n 满足n 时,则t 的取值范围是 .94≤≤5214.(2022秋•德清县期末)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y =ax 2﹣2ax +a +3与x 轴围成的区域内(不包括抛物线和x 轴上的点)恰好有8个“整点”,则a 的取值范围是 .15.(2022秋•鄞州区校级期末)定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B (3,0)、C (﹣1,3)都是“整点”.当抛物线y =ax 2﹣4ax +1与其关于x 轴对称的抛物线围成的封闭区域内(包括边界)共有9个整点时,a 的取值范围 .16.(2022秋•思明区校级期中)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:若y ′,则称点Q 为点P 的“可控变点”.={y(x ≥0)−y(x <0)请问:若点P 在函数y =﹣x 2+16(﹣5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是﹣16<y ′≤16,则实数a 的取值范围是 .17.(2022•徐汇区模拟)定义:将两个不相交的函数图象在竖直方向上的最短距离称为这两个函数的“和谐值”.如果抛物线y =ax 2+bx +c (a ≠0)与抛物线y =(x ﹣1)2+1的“和谐值”为2,试写出一个符合条件的函数解析式: .18.(2022•二道区校级模拟)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有公共点时m 的最大值是 .19.(2022•郫都区模拟)定义:由a ,b 构造的二次函数y =ax 2+(a +b )x +b 叫做一次函数y =ax +b 的“滋生函数”,一次函数y =ax +b 叫做二次函数y =ax 2+(a +b )x +b 的“本源函数”(a ,b 为常数,且a ≠0).若一次函数y =ax +b 的“滋生函数”是y =ax 2﹣3x +a +1,那么二次函数y =ax 2﹣3x +a +1的“本源函数”是 .20.(2022•亭湖区校级开学)定义{a ,b ,c }=c (a <c <b ),即(a ,b ,c )的取值为a ,b ,c 的中位数,例如:{1,3,2}=2,{8,3,6}=6,已知函数y ={x 2+1,﹣x +2,x +3}与直线yx +b 有3个交点时,=13则b 的值为 .三.解答题(共10小题)21.(2022•工业园区模拟)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”.例如,点(﹣1,1)是函数y =x +2的图象的“好点”.(1)在函数①y =﹣x +3,②y ③y =x 2+2x +1的图象上,存在“好点”的函数是 ;(填序号)=3x (2)设函数y (x <0)与y =kx +3的图象的“好点”分别为点A 、B ,过点A 作AC ⊥y 轴,垂足=−4x 为C .当△ABC 为等腰三角形时,求k 的值;(3)若将函数y =x 2+2x 的图象在直线y =m 下方的部分沿直线y =m 翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m 的值.22.(2022春•荷塘区校级期中)如图1,若关于x的二次函数y=ax2+bx+c(a,b,c为常数且a<0)与x轴交于两个不同的点A(x1,0),B(x2,0)(x1<0<x2),与y轴交于点C,抛物线的顶点为M,O是坐标原点.(1)若a =﹣1,b =2,c =3.①求此二次函数图象的顶点M 的坐标;②定义:若点G 在某一个函数的图象上,且点G 的横纵坐标相等,则称点G 为这个函数的“好点”.求证:二次函数y =ax 2+bx +c 有两个不同的“好点”.(2)如图2,连接MC ,直线MC 与x 轴交于点P ,满足∠PCA =∠PBC ,且的tan∠PBC =12,△PBC 面积为,求二次函数的表达式.1323.(2022春•海门市期中)定义:在平面直角坐标系xOy 中,若某函数的图象上存在点P (x ,y ),满足y =mx +m ,m 为正整数,则称点P 为该函数的“m 倍点”.例如:当m =2时,点(﹣2,﹣2)即为函数y =3x +4的“2倍点”.(1)在点A (2,3),B (﹣2,﹣3),C (﹣3,﹣2)中, 是函数y的“1倍点”;=6x (2)若函数y =﹣x 2+bx 存在唯一的“4倍点”,求b 的值;(3)若函数y =﹣x +2m +1的“m 倍点”在以点(0,10)为圆心,半径长为2m 的圆外,求m 的所有值.24.(2022•费县一模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”,例如,点(2,2)是函数y =2x ﹣2的图象的“等值点”.(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;y =5x ,y =x +2如果不存在,说明理由;(2)写出函数y =﹣x 2+2的等值点坐标;(3)若函数y =﹣x 2+2(x ≤m )的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1,W 2两部分组成的图象上恰有2个“等值点”时,请写出m 的取值范围.25.(2022春•武侯区校级月考)如图1,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),B (5,0)两点,与y 轴交于点C (0,﹣5).(1)求抛物线解析式;(2)如图2,作出如下定义:对于矩形DEFG,其边长EF=1,DE=2k(k为常数,且k>0),其矩形长和宽所在直线平行于坐标轴,矩形可以在平面内自由的平移,且EG所在直线与抛物线无交点,则称该矩形在“游走”,每一个位置对应的矩形称为“悬浮矩形”;对与每一个“悬浮矩形”,若抛物线上有一点P,使得△PEG的面积最小,则称点P是该“悬浮矩形”的核心点.①请说明“核心点”P不随“悬浮矩形”的“游走”而变化,并求出“核心点”P的坐标(用k表示);②若k=1,DF所在直线与抛物线交于点M和N(M在N的右侧),是否存在这样的“悬浮矩形”,使得△PMN是直角三角形,若存在,并求出“悬浮矩形”中对角线DF所在直线的表达式;若不存在,说明理由.v26.(2022•武侯区模拟)【阅读理解】定义:在平面直角坐标系xOy中,点P为抛物线C的顶点,直线l与抛物线C分别相交于M,N两点(其中点M在点N的右侧),与抛物线C的对称轴相交于点Q,若记S(l,C)=PQ•MN,则称S(l,C)是直线l与抛物线C的“截积”.【迁移应用】根据以上定义,解答下列问题:如图,若直线l的函数表达式为y=x+2.(1)若抛物线C的函数表达式为y=2x2﹣1,分别求出点M,N的坐标及S(l,C)的值;(2)在(1)的基础上,过点P作直线l的平行线l',现将抛物线C进行平移,使得平移后的抛物线C'的顶点P′落在直线l'上,试探究S(l,C')是否为定值?若是,请求出该定值;若不是,请说明理由;22(3)设抛物线C的函数表达式为y=a(x﹣h)2+k,若S(l,C)=6,MN=4,且点P在点Q的下方,求a的值.27.(2022•南关区校级模拟)在平面直角坐标系xOy中,对于点P给出如下定义:若点P到两坐标轴的距离之和等于3,则称点P为三好点.(1)在点R(0,﹣3),S(1,2),T(6,﹣3)中,属于三好点的是 (填写字母即可);(2)若点A在x轴正半轴上,且点A为三好点,直线y=2x+b经过点A,求该直线与坐标轴围成的三角形的面积;(3)若直线y=a(a>0)与抛物线y=x2﹣x﹣2的交点为点M,N,其中点M为三好点,求点M的坐标;(4)若在抛物线y=﹣x2﹣nx+2n上有且仅有两个点为三好点,直接写出n的取值范围.28.(2022秋•长沙期中)定义:在平面直角坐标系中,图形G 上的点P (x ,y )的横坐标x 和纵坐标y 的和x +y 称为点P 的“横纵和”,而图形G 上所有点的“横纵和”中最小的值称为图形的“极小和”.(1)抛物线y =x 2﹣2x ﹣2的图象上点P (1,﹣3)的“横纵和”是  ;该抛物线的“极小和”是 .(2)记抛物线y =x 2﹣(2m +1)x ﹣2的“极小和”为s ,若﹣2021≤s ≤﹣2020,求m 的取值范围.(3)已知二次函数y =x 2+bx +c (c ≠0)的图象上的点A (,2c )和点C (0,c )的“横纵和”相等,m 2求该二次函数的“极小和”.这个“极小和”是否有最大值?如果有,请求出这个最大值;如果没有,请说明理由.29.(2022•泰兴市二模)定义:在平面直角坐标系xOy 中,若P 、Q 的坐标分别为(x 1,y 1)、Q (x 2,y 2),则称|x 1﹣x 2|+|y 1﹣y 2|为若P 、Q 的“绝对距离”,表示为d PQ .【概念理解】(1)一次函数y =﹣2x +6图象与x 轴、y 轴分别交于A 、B 点.①d AB 为 ;②点N 为一次函数y =﹣2x +6图象在第一象限内的一点,d AN =5,求N 的坐标;③一次函数的图象与y 轴、AB 分别交于C 、D 点,P 为线段CD 上的任意一点,试说明:y =x +32d AP =d BP .【问题解决】(2)点P (1,2)、Q (a ,b )为二次函数y =x 2﹣mx +n 图象上的点,且Q 在P 的右边,当b =2时,d PQ =4.若b <2,求d PQ 的最大值;(3)已知P 的坐标为(1,1),点Q 为反比例函数(x >0)图象上一点,且Q 在P 的右边,y =3x d PQ =2,试说明满足条件的点Q 有且只有一个.30.(2022•开福区校级一模)定义:当x 取任意实数,函数值始终不小于一个常数时,称这个函数为“恒心函数”,这个常数称为“恒心值”.(1)判断:函数y =x 2+2x +2是否为“恒心函数”,如果是,求出此时的“恒心值”,如果不是,请说明理由;(2)已知“恒心函数”y =3|ax 2+bx +c |+2.①当a >0,c <0时,此时的恒心值为 ;②若三个整数a 、b 、c 的和为12,且,求a 的最大值与最小值,并求出此时相应的b 、c 的值;b a =c b (3)恒心函数y =ax 2+bx +c (b >a )的恒心值为0,且恒成立,求m 的取值范围.a +b +c a +b >m。

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。

2021.1北京初三数学期末分类汇编-新定义(含参考答案)

2021.1北京初三数学期末分类汇编-新定义(含参考答案)

(1)如图,⊙ O 半径为 2,与 x 轴, y 轴分别交于点 A , B ,点 P (2,3) .
①在点 P 视角下,⊙ O 的“宽度”为___________,线段 AB 的“宽度”为___________;
②点 M (m, 0) 为 x 轴上一点.若在点 P 视角下,线段 AM 的“宽度”为 2 ,求 m 的取值范
第10页
11.【房山】
定义:在平面直角坐标系 xOy 中,点 P 为图形 M 上一点,点 Q 为图形 N 上一点.若存在
OP = OQ ,则称图形 M 与图形 N 关于原点 O “平衡”.
(1)如图,已知⊙ A 是以 (1,0) 为圆心,2 为半径的圆,点 C (-1,0) ,D (-2,1) ,E (3,2) .
0)为圆心,1 为半径的圆,若图形 W 与△ABC 互为“友好图形”,直接写出 t 的取值范围.
第12页
13.【门头沟】 在平面直角坐标系 xOy 中,对于任意三点 A、B、C 我们给出如下定义:三点中横坐标的最
大值与最小值的差我们称为“横距”;三点中纵坐标的最大值与最小值的差我们称之为“纵
距”;若三点的横距与纵距相等,我们称这三点为“等距点”.

①抛物线 y = x2 ;
②双曲线 y = 1 ; x
③以 O 为圆心 1 为半径的圆.
(2)已知:图形 W 为以 O 为圆心,1 为半径的圆,图形 N 为直线 y = x + b ,若图形 W 与
图形 N 互为“友好图形”,求 b 的取值范围.
(3)如图,已知 A( − 3 ,2),B( − 3 ,-2),C( 3 3 ,-2),图形 W 是以(t,

②若点 P 在直线 y =kx + 3(k ≠ 0) 上,且点 P 是线段 AB 的非锐角等腰顶点,求 k 的取值范围;

中考数学复习《新定义及阅读理解型问题》测试题(含答案)

中考数学复习《新定义及阅读理解型问题》测试题(含答案)

中考数学复习《新定义及阅读理解型问题》测试题(含答案)题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x ⊗(-2)=2x -4-1的解是( ) A . x =4 B . x =5 C . x =6 D . x =72.对于实数a 、b ,我们定义符号max {a ,b}的意义为:当a≥b 时,max {a ,b}=a ;当a <b 时,max {a ,b}=b ;如max {4,-2}=4,max {3,3}=3.若关于x 的函数为y =max {x +3,-x +1},则该函数的最小值是( )A . 0B . 2C . 3D . 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( ) ①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大. 其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b)a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________.6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算. 现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0), 例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM·AB,BN 2=AN·AB,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________. 8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理. 阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹);(2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7,所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y =x -1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y =3x +9的位置关系并说明理由; (3)已知直线y =-2x +4与y =-2x -6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”. 【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形; (2)如图②,求证:∠OAB=∠OAE′. 【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________; (4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”); (5)图中,“叠弦角”的度数为__________(用含n 的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B 【解析】根据题意a ⊗b =1a -b 2,则 x ⊗(-2)=1x -(-2)2=1x -4,又∵x ⊗(-2)=2x -4-1,∴1x -4=2x -4-1,解得x =5,经检验x =5是原方程的根,∴原方程x ⊗(-2)=2x -4-1的解是x =5. 2. B 【解析】当x +3≥-x +1时,max{x +3,-x +1}=x +3,此时x ≥-1,∴y ≥2;当x +3<-x +1时,max{x +3,-x +1}=-x +1,此时x <-1,∴y >2.综上y 的最小值为2.3. B 【解析】①∵24=16,∴log 216=4,故①正确;②∵52=25,∴log 525=2,故②不正确;③∵2-1=12,∴log 212=-1,故③正确. 4. C 【解析】∵a @b =(a +b )2-(a -b )2,若a @b =0,则(a +b )2-(a -b )2=0,∴(a +b )2=(a -b )2, ∴a +b =±(a -b ),∴a =0或b =0,∴①正确;∵a @b =(a +b )2-(a -b )2,∴a @(b +c )=[a +(b +c )]2-[a -(b +c )]2=[a +(b +c )+a -(b +c )][a +(b +c )-(a -b -c )]=4ab +4ac ,∵a @b +a @c =(a +b )2-(a -b )2+(a +c )2-(a -c )2=a 2+2ab +b 2-a 2+2ab -b 2+a 2+2ac +c 2- a 2+2ac -c 2=4ab +4ac ,∴a @(b +c )=a @b +a @c ,∴②正确;∵a @b =(a +b )2-(a -b )2= a 2+2ab +b 2-a 2+2ab -b 2=4ab ,当a =b =0时,满足a @b =a 2+5b 2,∴③错误;若矩形的周长固定,设为2c ,则2c =2a +2b ,b =c -a ,a @b =(a +b )2-(a -b )2=4ab =4a (c -a )=-4(a -12c )2+c 2,∴当a =12c 时,4ab 有最大值是c 2,即a =b 时,a @b 的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32. 7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ),∴MB =MG . 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF是“匀称三角形”.理由如下:如解图②,第9题解图②连接AD、OD,∵AB是⊙O直径,∴AD⊥BC,∵AB=AC,∴D是BC中点,∵O是AB中点,∴OD是△ABC的中位线,∴OD∥AC.∵DF切⊙O于D点,∴OD⊥DF,∴EF⊥AF,过点B作BG⊥EF于点G,易证Rt△BDG≌Rt△CDF(AAS),∴BG=CF,∵BECF=53,∴BEBG=53,∵BG∥AF(或Rt△BEG∽Rt△AEF),∴BEBG=AEAF=53.在Rt△AEF中,设AE=5k,则AF=3k,由勾股定理得,EF=4k,∴AF+EF+AE3=3k+4k+5k3=4k=EF,∴△AEF是“匀称三角形”.10. (1)证明:∵m是一个完全平方数,∴m=p×q,当p=q时,p×q就是m的最佳分解,∴F(m)=pq=pp=1.(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2(y≤9),∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179,∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22.(2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2,又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切.(3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25,∴这两条直线之间的距离为2 5.12. (1)选择图①.证明:依题意得∠DAD′=60°,∠PAO =60°. ∵∠DAP =∠DAD′-∠PAD′=60°-∠PAD′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD′, ∴∠DAP =∠D′AO.∵∠D =∠D′,AD =AD′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO , 又∵∠PAO =60°,∴△AOP 是等边三角形. 选择图②.证明:依题意得∠EAE′=60°,∠PAO =60°. ∵∠EAP =∠EAE′-∠PAE′=60°-∠PAE′, ∠E ′AO =∠PAO -∠PAE′=60°-∠PAE′, ∴∠EAP =∠E′AO(ASA ). ∵∠E =∠E′,AE =AE′, ∴△EAP ≌△E ′AO , ∴AP =AO , 又∵∠PAO =60°, ∴△AOP 是等边三角形.第12题解图(2)证明:如解图,连接AC ,AD ′,CD ′. ∵AE ′=AB ,∠E′=∠B =180°×(5-2)5=108°,E ′D ′=BC ,∴△AE ′D ′≌△ABC(SAS ),∴AD ′=AC ,∠AD ′E ′=∠ACB , ∴∠AD ′C =∠ACD′, ∴∠OD ′C =∠OCD′, ∴OC =OD′,∴BC -OC =E′D′-OD′,即BO =E′O. ∵AB =AE′,∠B =∠E′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD′中,⎩⎪⎨⎪⎧OA =OABA =D′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D′AO , 由(1)知∠D′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO ,∵∠EAB=15×180°×(5-2)=108°,∴∠PAE+∠BAO=48°,同理可证得∠OAB=∠PAE,∴∠OAB=12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO所在的直线绕点A逆时针旋转60°后,AO=AP,且∠PAO =60°,故△AOP是等边三角形.(5)60°-180°n(n≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n边形的内角度数减去60°之后再除以2,即∠OAB=180°(n-2)n-60°2,化简得∠OAB=60°-180°n(n≥3).13. 解:(1)由题意得n=1,∴抛物线y=x2-2x+1=(x-1)2,顶点为Q(1,0),将(1,0)代入y=mx+1,得m=-1,∴m=-1,n=1.(2)由题意设“路线”L的解析式为y=a(x-h)2+k,∵顶点Q的坐标在y=6x和y=2x-4上,∴⎩⎪⎨⎪⎧k=6hk=2h-4,解得h=-1或3,∴顶点Q的坐标为(-1,-6)或(3,2),∴y=a(x+1)2-6或y=a(x-3)2+2,又∵“路线”L过P(0,-4),代入解得a=2(顶点为(-1,-6)),a=-23(顶点为(3,2)),∴y=2(x+1)2-6或y=-23(x-3)2+2,即y=2x2+4x-4或y=-23x2+4x-4.(3)由题可知抛物线顶点坐标为(-3k2-2k+12a,4ak-(3k2-2k+1)24a),设带线l:y=px+k,代入顶点坐标得p=3k2-2k+12,11 ∴y =3k 2-2k +12x +k , 令y =0,则带线l 交x 轴于点(-2k 3k 2-2k +1,0),令x =0,则带线l 交y 轴于点(0,k), ∵k ≥12>0, ∴3k 2-2k +1=3(k -13)2+23>0, ∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k +3, 令t =1k ,∵12≤k ≤2,∴12≤t ≤2,∴S =1t 2-2t +3,∴1S =t 2-2t +3=(t -1)2+2,故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。

北京市中考数学专题突破十:新定义问题(含答案)

北京市中考数学专题突破十:新定义问题(含答案)

北京市中考数学专题突破十:新定义问题(含答案)专题突破(十)新定义问题新定义题型的构造注重学生数学思考的过程及不同认知阶段特征的表现.其内部逻辑构造呈现出比较严谨、整体性强的特点.其问题模型可以表示为阅读材料、研究对象、给出条件、需要完成认识.而规律探究、方法运用、学习策略等则是“条件”隐形存在的“魂”.这种新定义问题虽然在构造方式上“五花八门”,但是经过整理也能发现它们存在着一定的规律.新定义题型是北京中考最后一题的热点题型.“该类题从题型上看,有展示全貌,留空补缺的;有说明解题理由的;有要求归纳规律再解决问题的;有理解新概念再解决新问题的,等等.这类试题不来源于课本且高于课本,结构独特.北京第25题分析北京第29题分析年份20142015考点新定义问题——先学习后判断,函数综合给出新定义,学习,应用1.[2015·北京]在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P 关于⊙O的反称点的定义如下:若在射线..CP上存在一点P′,满足CP+CP′=2r,则称P′为点P 关于⊙C的反称点,如图Z10-1为点P及其关于⊙C的反称点P′的示意图.(1)当⊙O的半径为1时.①分别判断点M (2,1),N (32,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其坐标;②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围.(2)当⊙C 的圆心在x 轴上,且半径为1,直线y =-33x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围.图Z10-12.[2014·北京]对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1.(1)分别判断函数y=1x(x>0)和y=x+1(-4<x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=-x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(-1≤x≤m,m≥0)的图象向下平移m个单位长度,得到的函数的边界值是t,当m在什么范围时,满足34≤t≤1?图Z10-23.[2013·北京] 对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F (2 3,0). (1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是________;②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O 的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.图Z10-34.[2012·北京]在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图Z10-4(a)中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (-12,0),B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值.(2)已知C 是直线y =34x +3上的一个动点, ①如图(b),点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标.②如图(c),E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.图Z10-41.[2015·平谷一模]b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=-x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=-x+4是闭区间[1,3]上的“闭函数”.(1)反比例函数y=2015x是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y=x2-2x-k是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).2.[2015·东城一模]定义符号min⎩⎨⎧⎭⎬⎫a,b的含义为:当a ≥b 时,min ⎩⎨⎧⎭⎬⎫a ,b =b ;当a <b 时,min ⎩⎨⎧⎭⎬⎫a ,b =a .如:min ⎩⎨⎧⎭⎬⎫1,-2=-2,min ⎩⎨⎧⎭⎬⎫-1,2=-1.(1)求min ⎩⎨⎧⎭⎬⎫x 2-1,-2;(2)已知min{x 2-2x +k ,-3}=-3,求实数k 的取值范围;(3)已知当-2≤x ≤3时,min{x 2-2x -15,m (x +1)}=x 2-2x -15.直接写出实数m 的取值范围.3.[2015·海淀二模] 如图Z10-5(a ),在平面直角坐标系xOy 中,已知点A (-1,0),B (-1,1),C (1,0),D (1,1),记线段AB 为T 1,线段CD 为T 2,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与T 1,T 2都有公共点,则称点P 是T 1-T 2联络点.例如,点P (0,12)是T 1-T 2联络点.(1)以下各点中,________是T 1-T 2联络点(填出所有正确的序号);①(0,2);②(-4,2);③(3,2). (2)直接在图(a )中画出所有T 1-T 2联络点所组成的区域,用阴影部分表示.(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为T 1-T 2联络点,①若r =1,求点M 的纵坐标; ②求r 的取值范围.图Z10-54.[2015·门头沟一模]如图Z10-6,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a >0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A和点B,如果△AMB为等腰直角三角形,我们把抛物线上A、B两点之间的部分与线段AB围成的图形称为该抛物线的准蝶形,顶点M称为碟顶,线段AB的长称为碟宽.图Z10-6(1)抛物线y=12x2的碟宽为________,抛物线y=ax2(a>0)的碟宽为________.(2)如果抛物线y=a(x-1)2-6a(a>0)的碟宽为6,那么a=________.(3)将抛物线y n=a n x2+b n x+c n(a n>0)的准蝶形记为F n(n=1,2,3,…),我们定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.如果F n与F n-1的相似比为12,且F n的碟顶是F n-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的函数解析式.②请判断F1,F2,…,F n的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的函数解析式;如果不是,说明理由.图Z10-75.[2015·朝阳一模]定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.(1)若P(1,2),Q(4,2).①在点A(1,0),B(52,4),C(0,3)中,PQ的“等高点”是________;②若M(t,0)为PQ的“等高点”,求PQ的“等高距离”的最小值及此时t的值.(2)若P(0,0),PQ=2,当PQ的“等高点”在y轴正半轴上且“等高距离”最小时,直接写出点Q的坐标.图Z10-86.[2015·通州一模] 如图Z10-9,在平面直角坐标系中,已知点A (2,3),B (6,3),连接A B.若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”.(1)判断点D (75,195)是否是线段AB 的“邻近点”.________(填“是”或“否”);(2)若点H(m,n)在一次函数y=x-1的图象上,且是线段AB的“邻近点”,求m的取值范围;(3)若一次函数y=x+b的图象上至少存在一个邻近点,直接写出b的取值范围.图Z10-97.[2015·海淀一模]在平面直角坐标系xOy 中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b ′=⎩⎨⎧b ,a ≥1,-b ,a<1,则称点Q 为点P 的限变点.例如:点⎝⎛⎭⎫2,3的限变点的坐标是⎝⎛⎭⎫2,3,点⎝⎛⎭⎫-2,5的限变点的坐标是⎝⎛⎭⎫-2,-5.(1)①点⎝⎛⎭⎫3,1的限变点的坐标是________; ②在点A ⎝⎛⎭⎫-2,-1,B ⎝⎛⎭⎫-1,2中有一个点是函数y =2x 的图象上某一个点的限变点,这个点是________.(2)若点P 在函数y =-x +3(-2≤x ≤k ,k >-2)的图象上,其限变点Q 的纵坐标b ′的取值范围是-5≤b ′≤2,求k 的取值范围.(3)若点P 在关于x 的二次函数y =x 2-2tx +t 2+t 的图象上,其限变点Q 的纵坐标b ′的取值范围是b ′≥m 或b ′<n ,其中m >n .令s =m -n ,求s 关于t 的函数解析式及s 的取值范围.图Z10-108.[2015·西城一模]给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C(-2,3)和射线OA之间的距离为________.(2)如果直线y=x和双曲线y=kx之间的距离为2,那么k=________.(可在图Z10-11(a)中进行研究)(3)点E的坐标为(1,3),将射线OE绕原点O逆时针旋转60°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图(b)中画出图形M,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE,OF组成的图形记为图形W,抛物线y=x2-2与图形M的公共部分记为图形N,请直接写出图形W和图形N之间的距离.图Z10-11参考答案北京真题体验1.解:(1)①点M (2,1)关于⊙O 的反称点不存在.点N (32,0)关于⊙O 的反称点存在,反称点N ′(12,0).点T(1,3)关于⊙O的反称点存在,反称点T′(0,0).②如图①,直线y=-x+2与x轴、y轴分别交于点E(2,0),点F(0,2).设点P的横坐标为x.(i)当点P在线段EF上,即0≤x≤2时,0<OP≤2,∴在射线OP上一定存在一点P′,使得OP +OP′=2,∴点P关于⊙O的反称点存在,其中点P与点E或点F重合时,OP=2,点P关于⊙O的反称点为O,不符合题意,∴0<x<2.(ii)当点P不在线段EF上,即x<0或x>2时,OP>2,∴对于射线OP上任意一点P′,总有OP+OP′>2,∴点P关于⊙O的反称点不存在.综上所述,点P的横坐标x的取值范围是0<x<2.(2)若线段AB上存在点P,使得点P关于⊙C 的反称点P′在⊙C的内部,则1<CP≤2.依题意可知点A的坐标为(6,0),点B的坐标为(0,2 3),∠BAO=30°.设圆心C的坐标为(x,0).①当x<6时,过点C作CH⊥AB于点H,如图②,∴0<CH≤CP≤2,∴0<CA≤4,∴0<6-x≤4,∴2≤x<6,并且,当2≤x<6时,CB>2,CH≤2,∴在线段AB上一定存在点P,使得CP=2,∴此时点P关于⊙C的反称点为C,且点C 在⊙C的内部,∴2≤x<6.②当x≥6时,如图③.∴0≤CA≤CP≤2,∴0≤x-6≤2,∴6≤x≤8.并且,当6≤x≤8时,CB>2,CA≤2,∴在线段AB上一定存在一点P,使得CP=2,∴此时点P关于⊙C的反称点为C,且点C 在⊙C的内部,∴6≤x≤8.综上所述,圆心C的横坐标x的取值范围是2≤x≤8.2.解:(1)y=1x(x>0)不是有界函数.y =x +1(-4<x ≤2)是有界函数,边界值为3.(2)对于y =-x +1,y 随x 的增大而减小, 当x =a 时,y =-a +1=2,a =-1, 当x =b 时,y =-b +1.⎩⎨⎧-2≤-b +1<2,b >a ,∴-1<b ≤3.(3)由题意,函数平移后的表达式为y =x 2-m (-1≤x ≤m ,m ≥0).当x =-1时,y =1-m ;当x =0时,y =-m ;当x =m 时,y =m 2-m .根据二次函数的对称性,当0≤m ≤1时,1-m ≥m 2-m .当m >1时,1-m <m 2-m .①当0≤m ≤12时,1-m ≥m .由题意,边界值t =1-m .当34≤t ≤1时,0≤m ≤14,∴0≤m≤1 4.②当12<m≤1时,1-m<m. 由题意,边界值t=m.当34≤t≤1时,34≤m≤1,∴34≤m≤1.③当m>1时,由题意,边界值t≥m,∴不存在满足34≤t≤1的m值.综上所述,当0≤m≤14或34≤m≤1时,满足34≤t≤1.3.解:(1)①如图(a)所示,过点E作⊙O的切线,设切点为R.∵⊙O的半径为1,∴RO=1.∵EO=2,∴∠OER=30°,根据切线长定理得出⊙O的左侧还有一个切点,使得组成的角等于30°,∴E 点是⊙O 的关联点.∵D (12,12),E (0,-2),F (2 3,0), ∴OF >EO ,DO <EO ,∴D 点一定是⊙O 的关联点,而在⊙O 上不可能找到两点与点F 的连线的夹角等于60°,故在点D ,E ,F 中,⊙O 的关联点是D ,E .②由题意可知,若P 刚好是⊙C 的关联点, 则点P 到⊙C 的两条切线PA 和PB 之间所夹的角为60°,由图(b)可知∠APB =60°,则∠CPB =30°.连接BC ,则PC =BC sin ∠CPB=2BC =2r , ∴若点P 为⊙C 的关联点,则需点P 到圆心的距离d 满足0≤d ≤2r .由上述证明可知,考虑临界点位置的P 点,则点P 到原点的距离OP =2×1=2,如图(c),过点O 作l 轴的垂线OH ,垂足为H ,∵∠GFO =30°,∴∠OGF =60°,OG =2,可得点P1与点G重合.过点P2作P2M⊥x轴于点M,可得∠P2OM=30°,∴OM=OP2cos30°=3,从而若点P为⊙O的关联点,则P点必在线段P1P2上,∴0≤m≤ 3.(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应是线段EF的中点.考虑临界情况,如图(d),即恰好点E,F为⊙K的关联点时,则KF=2KN=12EF=2,此时,r=1,故若线段EF上的所有点都是某个圆的关联点,则这个圆的半径r的取值范围为r≥1.4.解:(1)①点B 的坐标是(0,2)或(0,-2). ②点A 与点B 的“非常距离”的最小值为12.(2)①∵C 是直线y =34x +3上的一个动点,∴设点C 的坐标为(x 0,34x 0+3),∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为87,此时C (-87,157).②E (-35,45).-35-x 0=34x 0+3-45, 解得x 0=-85,则点C 的坐标为(-85,95),点C 与点E 的“非常距离”的最小值为1.北京专题训练1.解:(1)反比例函数y =2015x 是闭区间[1,2015]上的“闭函数”.理由如下:反比例函数y=2015x在第一象限,y随x的增大而减小,当x=1时,y=2015;当x=2015时,y=1,即图象过点(1,2015)和(2015,1),∴当1≤x≤2015时,有1≤y≤2015,符合闭函数的定义,∴反比例函数y=2015x是闭区间[1,2015]上的“闭函数”.(2)由于二次函数y=x2-2x-k的图象开口向上,对称轴为直线x=1,∴二次函数y=x2-2x-k在闭区间[1,2]内,y随x的增大而增大.当x=1时,y=1,∴k=-2.当x=2时,y=2,∴k=-2.即图象过点(1,1)和(2,2),∴当1≤x≤2时,有1≤y≤2,符合闭函数的定义,∴k=-2.(3)因为一次函数y=kx+b⎝⎛⎭⎫k≠0是闭区间⎣⎡⎦⎤m ,n 上的“闭函数”,根据一次函数的图象与性质,有: (Ⅰ)当k >0时,图象过点(m ,m )和(n ,n ),∴⎩⎨⎧mk +b =m ,nk +b =n , 解得⎩⎨⎧k =1,b =0,∴y =x .(Ⅱ)当k <0时,图象过点(m ,n )和(n ,m ),∴⎩⎨⎧mk +b =n ,nk +b =m , 解得⎩⎪⎨⎪⎧k =-1,b =m +n ,∴y =-x +m +n ,∴一次函数的解析式为y =x 或y =-x +m +n .2.解:(1)∵x 2≥0, ∴x 2-1≥-1. ∴x 2-1>-2.∴min ⎩⎨⎧⎭⎬⎫x 2-1,-2=-2.(2)∵x 2-2x +k =⎝⎛⎭⎫x -12+k -1,∴⎝⎛⎭⎫x -12+k -1≥k -1.∵min{x2-2x+k,-3}=-3,∴k-1≥-3.∴k≥-2.(3)-3≤m≤7.3.解:(1)②③(2)所有联络点所组成的区域为图(a)中阴影部分(含边界).(3)①∵点M在y轴上,⊙M上只有一个点为T1-T2联络点,阴影部分关于y轴对称,∴⊙M与直线AC相切于(0,0)或与直线BD 相切于(0,1),如图(b)所示.又∵⊙M的半径r=1,∴点M的坐标为(0,-1)或(0,2).经检验:此时⊙M与直线AD,BC无交点,⊙M上只有一个点为T1-T2联络点,符合题意.∴点M的坐标为(0,-1)或(0,2).∴点M的纵坐标为-1或2.②阴影部分关于直线y=12对称,故不妨设点M位于阴影部分下方.∵点M在y轴上,⊙M上只有一个点为T1-T2联络点,阴影部分关于y轴对称,∴⊙M与直线AC相切于O(0,0),且⊙M 与直线AD相离.过点M作ME⊥AD于点E,设AD与BC 的交点为F,如图(c).∴MO=r,ME>r,F(0,1 2).在Rt△AOF中,∠AOF=90°,AO=1,OF=1 2,∴AF=AO2+OF2=52,sin∠AFO=AOAF=2 55.在Rt△FEM中,∠FEM=90°,FM=FO+OM=r+12,sin∠EFM=sin∠AFO=2 5 5,∴ME=FM·sin∠EFM=5(2r+1)5.∴5(2r+1)5>r.又∵r>0,∴0<r<5+2.4.解:(1)4 2a (2)13(3)①∵F 1的碟宽∶F 2的碟宽=2∶1, ∴2a 1∶2a 2=21. ∵a 1=13,∴a 2=23.又∵由题意得F 2的碟顶坐标为(1,1), ∴y 2=23⎝⎛⎭⎫x -12+1. ②F 1,F 2,…,F n 的碟宽的右端点在一条直线上;其解析式为y =-x +5.5.解:(1)A 、B(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长.∵P (1,2),∴P ′(1,-2).设直线P ′Q 的函数解析式为y =kx +b , 根据题意,有⎩⎨⎧k +b =-2,4k +b =2,解得⎩⎪⎨⎪⎧k =43,b =-103.∴直线P ′Q 的函数解析式为y =43x -103.当y =0时,解得x =52,即t =52.根据题意,可知PP ′=4,PQ =3,PQ ⊥PP ′, ∴P ′Q =PP ′2+PQ 2=5. ∴“等高距离”最小值为5.(3)Q (4 55,2 55)或Q (-4 55,2 55).6.解:(1)是(2)∵点H (m ,n )是线段AB 的“邻近点”,点H (m ,n )在直线y =x -1上,∴n =m -1.直线y =x -1与线段AB 交于(4,3). ①当m ≥4时,有n =m -1≥3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是n -3,∴0≤n -3≤1,∴4≤m ≤5.②当m ≤4时,有n =m -1,∴n ≤3. 又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是3-n ,∴0≤3-n ≤1,∴3≤m ≤4, 综上所述,3≤m ≤5.(3)如图①,②,-3-2≤b ≤1+ 2.7.解:(1)①(3,1) ②点B(2)依题意,y =-x +3(x ≥-2)的图象上的点P 的限变点必在函数y =⎩⎨⎧-x +3,x ≥1,x -3,-2≤x <1的图象上.∴b ′≤2,即当x =1时,b ′取最大值2. 当b ′=-2时,-2=-x +3.∴x =5.当b ′=-5时,-5=x -3或-5=-x +3. ∴x =-2或x =8.∵-5≤b ′≤2,由图象可知,k 的取值范围是5≤k ≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t>1,b′的取值范围是b′≥m或b′≤n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m =t;当x<1时,y的值小于-[(1-t)2+t],即n =-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1).当t=1时,s取最小值2.∴s的取值范围是s≥2.8.解:(1)313(2)-1(3)①如图,过点O分别作射线OE,OF的垂线OG,OH,则图形M为:y轴正半轴,∠GOH的边及其内部的所有点(图中的阴影部分).说明:(图形M也可描述为:y轴正半轴,直线y=33x下方与直线y=-33x下方重叠的部分(含边界)②4 3.。

中考数学专题复习新定义问题

中考数学专题复习新定义问题

中考数学专题复习新定义问题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(,B C ''分别是,B C 的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233,,,,,,A B C B C B C 的横、纵坐标都是整数.在线段112233,,B C B C B C 中,O 的以点A 为中心的“关联线段”是______________;(2)ABC 是边长为1的等边三角形,点()0,A t ,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,1,2AB AC ==.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.2.在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是 ;在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线323y x =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.3.在⊙ABC 中,D ,E 分别是ABC 两边的中点,如果DE 上的所有点都在⊙ABC 的内部或边上,则称DE 为⊙ABC 的中内弧.例如,下图中DE 是⊙ABC 的一条中内弧.(1)如图,在Rt⊙ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出⊙ABC 的最长的中内弧DE ,并直接写出此时DE 的长;(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在⊙ABC 中,D E ,分别是AB AC ,的中点. ⊙若12t =,求⊙ABC 的中内弧DE 所在圆的圆心P 的纵坐标的取值范围; ⊙若在⊙ABC 中存在一条中内弧DE ,使得DE 所在圆的圆心P 在⊙ABC 的内部或边上,直接写出t 的取值范围.4.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ). 已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC );(2)记函数y kx =(11x -≤≤,0k ≠)的图象为图形G ,若d (G ,ABC )1=,直接写出k 的取值范围;(3)T 的圆心为T (t ,0),半径为1.若d (T ,ABC )1=,直接写出t 的取值范围.5.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当⊙O 的半径为2时,⊙在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 中,⊙O 的关联点是_______________. ⊙点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围. (2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.6.在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).⊙若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;⊙点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式; (2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.7.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(32,0),T(1,3)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣33x+23与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C 的横坐标的取值范围.参考答案:1.(1)22B C ;(2)3t =±;(3)当min 1OA =时,此时3BC =;当max 2OA =时,此时62BC =. 【解析】 【分析】(1)以点A 为圆心,分别以112233,,,,,AB AC AB AC AB AC 为半径画圆,进而观察是否与O 有交点即可;(2)由旋转的性质可得AB C ''△是等边三角形,且B C ''是O 的弦,进而画出图象,则根据等边三角形的性质可进行求解;(3)由BC 是O 的以点A 为中心的“关联线段”,则可知,B C ''都在O 上,且1,2AB AB AC AC ''====,然后由题意可根据图象来进行求解即可.【详解】解:(1)由题意得:通过观察图象可得:线段22B C 能绕点A 旋转90°得到O 的“关联线段”,1133,B C B C 都不能绕点A 进行旋转得到; 故答案为22B C ;(2)由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C ''△是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C''与y轴的交点为D,连接OB',易得B C y''⊥轴,⊙12B D DC''==,⊙2232OD OB B D''=-=,2232AD AB B D''=-=,⊙3OA=,⊙3t=;当点A在y轴的正半轴上时,如图所示:同理可得此时的3OA=,⊙t3=-;(3)由BC是O的以点A为中心的“关联线段”,则可知,B C''都在O上,且1,2AB AB AC AC''====,则有当以B'为圆心,1为半径作圆,然后以点A为圆心,2为半径作圆,即可得到点A的运动轨迹,如图所示:由运动轨迹可得当点A也在O上时为最小,最小值为1,此时AC'为O的直径,⊙90AB C''∠=︒,⊙30AC B''∠=︒,⊙cos303BC B C AC'''==⋅︒=;由以上情况可知当点,,A B O'三点共线时,OA的值为最大,最大值为2,如图所示:连接,OC B C''',过点C'作C P OA'⊥于点P,⊙1,2OC AC OA''===,设OP x=,则有2AP x=-,⊙由勾股定理可得:22222C P AC AP OC OP'''=-=-,即()222221x x--=-,解得:14x=,⊙154C P'=,⊙34B P OB OP ''=-=, 在Rt B PC ''中,2262B C B P C P ''''=+=, ⊙62BC =; 综上所述:当min 1OA =时,此时3BC =;当max 2OA =时,此时62BC =.【点睛】本题主要考查旋转的综合、圆的基本性质、三角函数及等边三角形的性质,熟练掌握旋转的性质、圆的基本性质、三角函数及等边三角形的性质是解题的关键. 2.(1)平行,P 3;(2)32;(3)233922d ≤≤【解析】 【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE⊙AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由1d OE OF =-得到1d 的最小值;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O内找到与之平行,且长度为1的弦即可.平移距离2d 的最大值即点A ,B 点的位置,由此得出2d 的取值范围. 【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线323y x =+上,平移之后与圆相交,得到的弦为CD ,CD⊙AB ,过点O 作OE⊙AB 于点E ,交弦CD 于点F ,OF⊙CD ,令0y =,直线与x 轴交点为(-2,0),直线与x 轴夹角为60°,⊙2sin 603OE ︒==. 由垂径定理得:221322OF OC CD ⎛⎫=-= ⎪⎝⎭,⊙132d OE OF =-=;(3)线段AB的位置变换,可以看作是以点A32,2⎛⎫⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可;点A到O的距离为2235222AO⎛⎫=+=⎪⎝⎭.如图,平移距离2d的最小值即点A到⊙O的最小值:53122-=;平移距离2d的最大值线段是下图AB的情况,即当A1,A2关于OA对称,且A1B2⊙A1A2且A1B2=1时.⊙B2A2A1=60°,则⊙OA2A1=30°,⊙OA2=1,⊙OM=12, A2M=32,⊙MA=3,AA2=22339 322⎛⎫+=⎪⎪⎝⎭,⊙2d的取值范围为:233922d≤≤.【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.3.(1)π;(2)⊙P的纵坐标1py≥或12Py≤;⊙02t<≤.【解析】【分析】(1)由三角函数值及等腰直角三角形性质可求得DE=2,最长中内弧即以DE为直径的半圆,DE的长即以DE为直径的圆周长的一半;(2)根据三角形中内弧定义可知,圆心一定在DE的中垂线上,,⊙当12t=时,要注意圆心P在DE上方的中垂线上均符合要求,在DE下方时必须AC与半径PE的夹角⊙AEP满足90°≤⊙AEP<135°;⊙根据题意,t的最大值即圆心P在AC上时求得的t值.【详解】解:(1)如图2,以DE 为直径的半圆弧DE ,就是△ABC 的最长的中内弧DE ,连接DE ,⊙⊙A=90°,AB=AC=22,D ,E 分别是AB ,AC 的中点,22114,42sin sin 4522︒∴=====⨯=AC BC DE BC B , ⊙弧DE 122ππ=⨯=; (2)如图3,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 垂直平分线FP ,作EG⊙AC 交FP 于G ,⊙当12t =时,C (2,0),⊙D (0,1),E (1,1),1,12⎛⎫ ⎪⎝⎭F , 设1,2P m ⎛⎫ ⎪⎝⎭由三角形中内弧定义可知,圆心线段DE 上方射线FP 上均可,⊙m≥1, ⊙OA=OC ,⊙AOC=90°⊙⊙ACO=45°,⊙DE⊙OC⊙⊙AED=⊙ACO=45°作EG⊙AC 交直线FP 于G ,FG=EF=12根据三角形中内弧的定义可知,圆心在点G 的下方(含点G )直线FP 上时也符合要求; 12∴m 综上所述,12m或m≥1. ⊙图4,设圆心P 在AC 上,⊙P 在DE 中垂线上,⊙P 为AE 中点,作PM⊙OC 于M ,则PM=323,2⎛⎫∴ ⎪⎝⎭P t , ⊙DE⊙BC⊙⊙ADE=⊙AOB=90°,222221(2)41∴=+=+=+AE AD DE t t⊙PD=PE ,⊙⊙AED=⊙PDE⊙⊙AED+⊙DAE=⊙PDE+⊙ADP=90°,⊙⊙DAE=⊙ADP12∴===AP PD PE AE 由三角形中内弧定义知,PD≤PM1322∴AE ,AE≤3,即2413+t ,解得:2t02>∴<t t【点睛】此题是一道圆的综合题,考查了圆的性质,弧长计算,直角三角形性质等,给出了“三角形中内弧”新定义,要求学生能够正确理解新概念,并应用新概念解题.4.(1)2;(2)10k -≤<或01k <≤;(3)4t =-或0422t -≤≤或422t =+.【解析】【详解】分析:(1)画出图形,根据“闭距离”的概念结合图形进行求解即可.(2)分0k <和0k >两种情况,画出示意图,即可解决问题.(3)画出图形,直接写出t的取值范围.详解:(1)如下图所示:⊙B(2-,2-),C(6,2-)⊙D(0,2-)⊙d(O,ABC)2OD==(2)10k-≤<或01k<≤(3)4t=-或0422t≤≤-或422t=+.点睛:属于新定义问题,考查点到直线的距离,圆的切线的性质,认真分析材料,读懂“闭距离”的概念是解题的关键.5.(1)⊙P 2、P 3,⊙-322≤x≤-22或22 ≤x≤322;(2)-2≤x≤1或2≤x≤22 . 【解析】【详解】试题分析:(1)⊙由题意得,P 只需在以O 为圆心,半径为1和3两圆之间即可,由23,OP OP 的值可知23,P P 为⊙O 的关联点;⊙满足条件的P 只需在以O 为圆心,半径为1和3两圆之间即可,所以P 横坐标范围是-322 ≤x≤-22 或22 ≤x≤322; (2).分四种情况讨论即可,当圆过点A , CA=3时;当圆与小圆相切时;当圆过点 A ,AC=1时;当圆过点 B 时,即可得出.试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12, ⊙⊙的关联点为2P 和3P .⊙根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意; ⊙ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=22(0)(0)1x x -+--= ,解得22x =± ,当OP=3时,由距离公式可得,OP=22(0)(0)3x x -+--= ,229x x +=,解得322x =±, ⊙ 点的横坐标的取值范围为-322 ≤x≤-22 或22 ≤x≤322(2)⊙y=-x+1与轴、轴的交点分别为A、B两点,⊙ 令y=0得,-x+1=0,解得x=1,令得x=0得,y=0,⊙A(1,0) ,B (0,1) ,分析得:如图1,当圆过点A时,此时CA=3,⊙ 点C坐标为,C ( -2,0)如图2,当圆与小圆相切时,切点为D,⊙CD=1 ,又⊙直线AB所在的函数解析式为y=-x+1,⊙ 直线AB与x轴形成的夹角是45°,⊙ RT⊙ACD中,CA=2,⊙ C点坐标为(1-2,0)⊙C点的横坐标的取值范围为;-2≤cx≤1-2,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点B 时,连接BC ,此时BC =3,在Rt⊙OCB中,由勾股定理得OC=23122-=,C点坐标为(22,0).⊙ C点的横坐标的取值范围为2≤cx≤22;⊙综上所述点C的横坐标的取值范围为-322≤cx≤-22或22≤cx≤322.【点睛】本题考查了新定义题,涉及到的知识点有切线,同心圆,一次函数等,能正确地理解新定义,正确地进行分类讨论是解题的关键.6.(1)⊙2;⊙1y x =- 或1y x =-+;(2)1≤m≤5 或者51m -≤≤-.【解析】【详解】试题分析:(1)⊙易得S=2;⊙得到C 的坐标可以为(3,2)或者(3,-2),设AC 的表达式为y=kx+b ,将A 、C 分别代入AC 的表达式即可得出结论;(2)若⊙O 上存在点N ,使MN 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 相切,求出M 的坐标,即可得出结论.试题解析:(1)⊙S=2×1=2;⊙C 的坐标可以为(3,2)或者(3,-2),设AC 的表达式为y=kx+b ,将A 、C分别代入AC 的表达式得到:0{23k b k b =+=+或0{23k b k b=+-=+,解得:1{1k b ==-或1{1k b =-=,则直线AC 的表达式为1y x =- 或1y x =-+;(2)若⊙O 上存在点N ,使MN 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 有交点,即存在N ,当k=-1时,极限位置是直线与⊙O 相切,如图1l 与2l ,直线1l 与⊙O 切于点N ,ON=2,⊙ONM=90°,⊙1l 与y 交于1P (0,-2).1M (1m ,3),⊙13(2)0m --=-,⊙1m =-5,⊙1M (-5,3);同理可得2M (-1,3); 当k=1时,极限位置是直线3l 与4l (与⊙O 相切),可得3M (1,3), 4M (5,3). 因此m 的取值范围为1≤m≤5或者51m -≤≤-.考点:一次函数,函数图象,应用数学知识解决问题的能力.7.(1)①见解析;②0<x <2;(2)圆心C 的横坐标的取值范围是2≤x≤8.【解析】【详解】试题分析:(1) ⊙根据反称点的定义画图得出结论;⊙⊙CP≤2r =2 CP 2≤4, P (x ,-x +2), CP 2=x 2+(-x +2)2=2x 2-4x +4≤,2x 2-4x≤0, x (x -2)≤0,⊙0≤x≤2,把x =2和x=0代入验证即可得出,P (2,0),P′(2,0)不符合题意P (0,2),P′(0,0)不符合题意,⊙0<x <2(2)求出A ,B 的坐标,得出OA 与OB 的比值,从而求出⊙OAB=30°,设C (x ,0) ⊙当C 在OA 上时,作CH⊙AB 于H ,则CH≤CP≤2r =2,⊙AC≤4,得出 C 点横坐标x≥2. (当x =2时,C 点坐标(2,0),H 点的反称点H′(2,0)在圆的内部);⊙当C 在A 点右侧时,C 到线段AB 的距离为AC 长,AC 最大值为2,⊙C 点横坐标x≤8,得出结论.试题解析: (1)解:⊙M (2,1)不存在,3,02N ⎛⎫ ⎪⎝⎭存在,反称点1,02N ⎛⎫' ⎪⎝⎭(1,3)T 存在,反称点T′(0,0)⊙⊙CP≤2r =2 CP 2≤4, P (x ,-x +2), CP 2=x 2+(-x +2)2=2x 2-4x +4≤4 2x 2-4x≤0, x (x -2)≤0,⊙0≤x≤2,当x =2时,P (2,0),P′(2,0)不符合题意当x =0时,P (0,2),P′(0,0)不符合题意,⊙0<x <2 (2)解:由题意得:A (6,0),()0,23B ,⊙3OA OB=,⊙⊙OAB =30°,设C (x ,0)⊙当C 在OA 上时,作CH⊙AB 于H ,则CH≤CP≤2r =2,⊙AC≤4, C 点横坐标x≥2. (当x =2时,C 点坐标(2,0),H 点的反称点H′(2,0)在圆的内部)⊙当C 在A 点右侧时,C 到线段AB 的距离为AC 长,AC 最大值为2,⊙C 点横坐标x≤8 综上所述:圆心C 的横坐标的取值范围2≤x≤8.考点:定义新运算;一次函数的图象和性质;二次函数的图象和性质;圆的有关性质,解直角三角形;答案第15页,共15页。

中考数学压轴选择填空专题——新定义问题(有答案)

中考数学压轴选择填空专题——新定义问题(有答案)

新定义问题例题精讲例 1.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数 y=14(x −4)2的图象与两坐标轴所围成的图形最接近的面积是( ) A. 5 B. 225 C. 4 D. 17﹣4π 【答案】 A【解析】【解答】解:如图,设抛物线与坐标轴的交点为A 、B ,则有: A (4,0),B (0,4);作直线l∥AB ,易求得直线AB :y=﹣x+4,所以设直线l :y=﹣x+h ,当直线l 与抛物线只有一个交点(相切)时,有: ﹣x+h=14(x ﹣4)2 ,整理得:14x 2﹣x+4﹣h=0, ∥=1﹣4×14(4﹣h )=0,即h=3;所以直线l :y=﹣x+3;设直线l 与坐标轴的交点为C 、D ,则C (3,0)、D (0,3),因抛物线的图象与两坐标轴所围成的图形面积大于S ∥OCD 小于S ∥OAB S ∥OCD =12×3×3=4.5. S ∥OAB =12×4×4=8, 故抛物线的图象与两坐标轴所围成的图形面积在4.5<S <8的范围内,选项中符合的只有A , 故选A .例2.定义一种对正整数n 的“F”运算: ①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为 n2k (其中k 是使 n2k 为奇数的正整数),并且运算重复进行. 例如,取n=26,那么当n=26时,第2016次“F 运算”的结果是________.【答案】 62【解析】【解答】解:根据题意,得 当n=26时,第1次的计算结果是262=13,第2次的计算结果是13×3+5=44, 第3次的计算结果是 4422 =11, 第4次的计算结果是11×3+5=38, 第5次的计算结果是382 =19,第6次的计算结果是19×3+5=62, 第7次的计算结果是622=31,第8次的计算结果是31×3+5=98, 第9次的计算结果是982=49,第10次的计算结果是49×3+5=152, 第11次的计算结果是15223=19,以下每6次运算一循环,∥(2016﹣4)÷6=335…2,∥第2016次“F 运算”的结果与第6次的计算结果相同,为62, 故答案为:62.例3.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①, ①×3得3S=3+32+33+…+32018+32019 ②, ②﹣①得2S=32019﹣1,S=32019−12.运用上面计算方法计算:1+5+52+53+…+52018=________. 【答案】52019−14【解析】【解答】设S=1+5+52+53+…+52018 ①, 则5S=5+52+53+54…+52019②, ②﹣①得:4S=52019﹣1,所以S= 52019−14,故答案为:52019−14.例4.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S= √14[a 2b 2−(a 2+b 2−c 22)2] .现已知∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为________. 【答案】1【解析】【解答】解:∥S= √14[a 2b 2−(a 2+b 2−c 22)2] ,∥∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为: S= √14(12+22−(√5)22)=1,故答案为:1.例5.设双曲线 y =kx (k >0) 与直线 y =x 交于 A , B 两点(点 A 在第三象限),将双曲线在第一象限的一支沿射线 BA 的方向平移,使其经过点 A ,将双曲线在第三象限的一支沿射线 AB 的方向平移,使其经过点 B ,平移后的两条曲线相交于点 P , Q 两点,此时我称平移后的两条曲线所围部分(如图中(k>0)的眸径为6时,k的值为阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”当双曲线y=kx________.【答案】【解析】【解答】解:∥双曲线是关于原点成中心对称,点P、Q关于原点对称和直线AB对称∥四边形PAQB是菱形∥PQ=6∥PO=3根据题意可得出∥APB是等边三角形∥在Rt∥POB中,OB=tan30°×PO=√3×3= √33设点B的坐标为(x,x)∥2x2=3x2= 3=k2故答案为:32习题练习一、单选题1.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)2.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.√5−12B.√5+12C.1D.03.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+ 1x(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是1x,矩形的周长是2(x+ 1x );当矩形成为正方形时,就有x= 1x(0>0),解得x=1,这时矩形的周长2(x+ 1x)=4最小,因此x+ 1x (x>0)的最小值是2.模仿张华的推导,你求得式子x2+9x(x>0)的最小值是()A.2B.1C.6D.104.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,√2C.1,1,√3D.1,2,√35.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S= 610−15,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A.a2014−1a−1B.a2015−1a−1C.a2014−1aD.a2014﹣16.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∥MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2 √2)D.(50°,2 √2)7.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.68.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC∥BD;②AO=CO= 12AC;③∥ABD∥∥CBD,其中正确的结论有()A.0个B.1个C.2个D.3个9.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.3510.对于两个不相等的实数a、b ,我们规定符号Max{a ,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x} =2x+1x的解为().A.1﹣√2B.2﹣√2C.1+ √2或1﹣√2D.1+ √2或﹣111.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③12.宽与长的比是√5−12(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH∥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH13.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.23B.1 C.43D.5314.已知点A在函数y1=−1x(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上,若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.只有1对或2对B.只有1对C.只有2对D.只有2对或3对15.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距√5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.1616.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= 12x2的解为()#N.A. 0或 √2B. 0或2C. 1或 −√2D. √2 或﹣ √2 二、填空题17.对非负实数x“四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n ﹣ 12 ≤x <n+ 12 ,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若( 12x −1 )=4,则实数x 的取值范围是9≤x <11;④当x≥0,m 为非负整数时,有(m+2013x )=m+(2013x );⑤(x+y )=(x )+(y );其中,正确的结论有________(填写所有正确的序号).18.若x 是不等于1的实数,我们把11−x称为x 的差倒数,如2的差倒数是11−2=﹣1,﹣1的差倒数为11−(−1)=12,现已知x 1=﹣ 13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2017=________.19.在∥ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截∥ABC ,使截得的三角形与∥ABC 相似,我们不妨称这种直线为过点P 的∥ABC 的相似线,简记为P (l x )(x 为自然数).(1)如图①,∥A=90°,∥B=∥C ,当BP=2PA 时,P (l 1)、P (l 2)都是过点P 的∥ABC 的相似线(其中l 1∥BC ,l 2∥AC ),此外,还有________条;(2)如图②,∥C=90°,∥B=30°,当BPBA =________时,P (l x )截得的三角形面积为∥ABC 面积的14 .20.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号) ①当x=1.7时,[x]+(x )+[x )=6; ②当x=﹣2.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.21.阅读理解:如图1,∥O 与直线a 、b 都相切,不论∥O 如何转动,直线a 、b 之间的距离始终保持不变(等于∥O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c ,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c ,d 之间的距离等于2cm ,则莱洛三角形的周长为________cm .22.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是∥ABC 的“和谐分割线”,∥ACD为等腰三角形∥CBD和∥ABC相似,∥A =46°,则∥ACB的度数为________.答案解析部分一、单选题1.【答案】C【解析】【解答】解:∥f(﹣6,7)=(7,﹣6),∥g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.2.【答案】A【解析】【解答】解:在同一坐标系xOy中,画出函数二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x= 1+√52或1−√52,∥A(1−√52,√5−12),B(1+√52,−1−√52).观察图象可知:①当x≤ 1−√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为√5−12;②当1−√52<x<1+√52时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为√5−12;③当x≥ 1+√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为−1−√52.综上所示,min{﹣x2+1,﹣x}的最大值是√5−12.故选:A.3.【答案】C【解析】【解答】解:∥x>0,∥在原式中分母分子同除以x,即x 2+9x=x+ 9x,在面积是9的矩形中设矩形的一边长为x,则另一边长是9x,矩形的周长是2(x+ 9x);当矩形成为正方形时,就有x= 9x,(x>0),解得x=3,这时矩形的周长2(x+ 9x)=12最小,因此x+ 9x(x >0)的最小值是6.故答案为:C 4.【答案】D【解析】【解答】解:A 、∥1+2=3,不能构成三角形,故选项错误; B 、∥12+12=( √2 )2 , 是等腰直角三角形,故选项错误;C 、底边上的高是 (√32) = 12 ,可知是顶角120°,底角30°的等腰三角形,故选项错误;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确. 故选:D . 5.【答案】B【解析】【解答】解:设S=1+a+a 2+a 3+a 4+…+a 2014 , ① 则aS=a+a 2+a 3+a 4+…+a 2014+a 2015 , ②, ②﹣①得:(a ﹣1)S=a 2015﹣1, ∥S= a 2015−1a−1,即1+a+a 2+a 3+a 4+…+a 2014= a 2015−1a−1.故答案为:B . 6.【答案】 A【解析】【解答】解:如图,设正六边形的中心为D ,连接AD ,∥∥ADO=360°÷6=60°,OD=AD , ∥∥AOD 是等边三角形, ∥OD=OA=2,∥AOD=60°, ∥OC=2OD=2×2=4,∥正六边形的顶点C 的极坐标应记为(60°,4). 故选:A .7.【答案】 C【解析】【解答】如图所示,∥ (a +b)2=21 ,∥ a 2+2ab +b 2 =21,∥大正方形的面积为13,2ab=21﹣13=8,∥小正方形的面积为13﹣8=5.故答案为:C . 8.【答案】 D【解析】【解答】解:在∥ABD 与∥CBD 中, {AD =CD AB =BC DB =DB, ∥∥ABD∥∥CBD (SSS ), 故③正确; ∥∥ADB=∥CDB ,在∥AOD 与∥COD 中,{AD =CD∠ADB =∠CDB OD =OD,∥∥AOD∥∥COD (SAS ),∥∥AOD=∥COD=90°,AO=OC , ∥AC∥DB ,故①②正确; 故选D9.【答案】 C【解析】【解答】解:列表得:∥与7组成“中高数”的概率是:1230=25 .故选C .10.【答案】 D【解析】【分析】根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可.【解答】当x <﹣x , 即x <0时,所求方程变形得:﹣x= ,去分母得:x 2+2x+1=0,即x=﹣1;当x >﹣x , 即x >0时,所求方程变形得:x= ,即x 2﹣2x=1,解得:x=1+或x=1﹣(舍去), 经检验x=﹣1与x=1+都为分式方程的解.故选:D .11.【答案】C【解析】【解答】解:①根据题意得:a@b=(a+b )2﹣(a ﹣b )2 ∥(a+b )2﹣(a ﹣b )2=0,整理得:(a+b+a ﹣b )(a+b ﹣a+b )=0,即4ab=0, 解得:a=0或b=0,正确;②∥a@(b+c )=(a+b+c )2﹣(a ﹣b ﹣c )2=4ab+4aca@b+a@c=(a+b )2﹣(a ﹣b )2+(a+c )2﹣(a ﹣c )2=4ab+4ac , ∥a@(b+c )=a@b+a@c 正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∥a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∥a2+b2+2ab≥4ab,∥4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∥a@b最大时,a=b,故④正确,故选C.12.【答案】D【解析】【解答】解:设正方形的边长为2,则CD=2,CF=1 在直角三角形DCF中,DF= √12+22= √5∥FG= √5∥CG= √5﹣1∥ CGCD = √5−12∥矩形DCGH为黄金矩形故选D.13.【答案】D【解析】【解答】解:由题意得:{y=2x−1y=−x+3,解得:{x=43y=53,当2x﹣1≥﹣x+3时,x≥ 43,∥当x≥ 43时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为53;当2x﹣1<﹣x+3时,x<43,∥当x<43时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为53;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x= 43所对应的y的值,如图所示,当x= 43时,y= 53,故答案为:D.14.【答案】A【解析】【解答】解:设A(a,−1a ),根据题意点A关于坐标原点对称的点B(-a,1a)在直线y 2 = k x + 1 + k上,∥1a=-ak+1+k,整理得:ka2-(k+1)a+1=0 ①,即(a-1)(ka-1)=0,∥a-1=0或ka-1=0,则a=1或ka-1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=1k,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上所述,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.15.【答案】B【解析】【解答】解:如图1,连接AC,CF,则AF=3 √2,∥两次变换相当于向右移动3格,向上移动3格,又∥MN=20 √2,∥20 √2÷3 √2= 203,(不是整数)∥按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∥从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.16.【答案】A【解析】【解答】解:当1≤x<2时,12x2=1,解得x1= √2,x2=﹣√2;当x=0,12x2=0,x=0;当﹣1≤x <0时, 12x 2=﹣1,方程没有实数解;当﹣2≤x <﹣1时, 12 x 2=﹣1,方程没有实数解; 所以方程[x]= 12 x 2的解为0或 √2 .二、填空题17.【答案】 ①③④【解析】【解答】解:①(1.493)=1,正确;②(2x )≠2(x ),例如当x=0.3时,(2x )=1,2(x )=0,故②错误; ③若( 12x −1 )=4,则4﹣ 12 ≤ 12 x ﹣1<4+ 12 ,解得:9≤x <11,故③正确;④m 为整数,故(m+2013x )=m+(2013x ),故④正确;⑤(x+y )≠(x )+(y ),例如x=0.3,y=0.4时,(x+y )=1,(x )+(y )=0,故⑤错误; 综上可得①③正确. 故答案为:①③④ 18.【答案】−13【解析】【解答】解:由题意可得, x 1=﹣ 13 ,x 2= 11−(−13)=34 ,x 3=11−34=4 ,x 4= 11−4=−13 , 2017÷3=672…1, ∥x 2017= −13 , 故答案为: −13 . 19.【答案】 1 ;12或34或√34【解析】【解答】(1)存在另外 1 条相似线.如图1所示,过点P 作l 3∥BC 交AC 于Q ,则∥APQ∥∥ABC ; 故答案为:1;(2)设P (l x )截得的三角形面积为S ,S=14S ∥ABC , 则相似比为1:2.如图2所示,共有4条相似线:①第1条l 1 , 此时P 为斜边AB 中点,l 1∥AC ,∥BP BA =12;②第2条l 2 , 此时P 为斜边AB 中点,l 2∥BC ,∥BP BA =12;③第3条l 3 , 此时BP 与BC 为对应边,且BP BA =12, ∥BP BA=BPBC COS30o=√34;④第4条l 4 , 此时AP 与AC 为对应边,且AP AC =12, ∥AP AB=APAC sin30o=14, ∥BP BA =34.故答案为:12或12或√34.20.【答案】②③【解析】【解答】解:①当x=1.7时, [x]+(x )+[x )=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时, [x]+(x )+[x )=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x <1.5时, 4[x]+3(x )+[x ) =4×1+3×2+1 =4+6+1=11,故③正确;④∥﹣1<x <1时,∥当﹣1<x <﹣0.5时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当﹣0.5<x <0时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当x=0时,y=[x]+(x )+x=0+0+0=0,当0<x <0.5时,y=[x]+(x )+x=0+1+x=x+1,当0.5<x <1时,y=[x]+(x )+x=0+1+x=x+1,∥y=4x ,则x ﹣1=4x 时,得x= −13;x+1=4x 时,得x= 13;当x=0时,y=4x=0,∥当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误, 故答案为:②③. 21.【答案】2π【解析】【解答】解:如图3,由题意知AB=BC=AC=2cm , ∥∥BAC=∥ABC=∥ACB=60°,∥ AB̂ 在以点C 为圆心、2为半径的圆上, ∥ AB̂ 的长为 60⋅π⋅2180= 2π3, 则莱洛三角形的周长为2π3×3=2π,故答案为:2π.22.【答案】113°或92°.【解析】【解答】∥△BCD ∼△BAC , ∥∥BCD=∥A=46°,∥△ACD 为等腰三角形,∥ADC>∥BCD , ∥∥ADC>∥A , ∥AC ≠CD ,①当AC=AD 时,∥ACD=∥ADC=12(180°-46°)=67°, ∥∥ACB=67°+46°=113°.②当DA=DC 时,∥ACD=∥A=46°,。

(人教版)2023年九年级中考数学第一轮复习:新定义型问题

(人教版)2023年九年级中考数学第一轮复习:新定义型问题

(人教版)2023年九年级中考数学第一轮复习:新定义型问题一、选择题(本大题共10小题,每小题4分,满分40分)1. (2022·天津·一模)定义运算:a@b=a(1-b).若a,b 是方程()2300x x m -=<的两根,则b@b-a@a 的值为( )A.0B.1C.2D.与m 有关2. (2021内蒙古乌兰察布)定义新运算“⨂”,规定:a ⨂b =a-2b.若关于x 的不等式x ⨂m >3的解集为x >-1,则m 的值是( )A.-1B.-2C.1D.23. 7.(2021•包头)定义新运算“⨂”,规定:a ⨂b =a-2b.若关于x 的不等式x ⨂m >3的解集为x >-1,则m 的值是( )A.-1B.-2C.1D.24. (2020•河南)定义运算:m ☆n =mn 2﹣mn ﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为( )A.有两个不相等的实数根;B.有两个相等的实数根;C.无实数根;D.只有一个实数根5. (2021·怀化中考)定义a ⊕b =2a +1b,则方程3⊕x =4⊕2的解为( ) A.x =15 B.x =25 C.x =35 D.x =456. (2021•永州)定义:若10x=N,则x =log 10N,x 称为以10为底的N 的对数,简记为lgN,其满足运算法则:lgM+lgN =lg(M •N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2•lg5+lg5的结果为( )A.5B.2C.1D.07. (2021甘肃威武定西平凉)对于任意的有理数a,b,如果满足32b a 3b 2a++=+,那么我们称这一对数a,b 为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n-1)]=( )A.-2B.-1C.2D.38. (2021•济南)新定义:在平面直角坐标系中,对于点P(m,n)和点P ′(m,n ′),若满足m ≥0时,n ′=n-4;m <0时,n ′=-n,则称点P ′(m,n ′)是点P(m,n)的限变点.例如:点P 1(2,5)的限变点是P 1′(2,1),点P 2(-2,3)的限变点是P 2′(-2,-3).若点P(m,n)在二次函数y =-x 2+4x+2的图象上,则当-1≤m ≤3时,其限变点P ′的纵坐标n'的取值范围是( )A.-2≤n ′≤2B.1≤n ′≤3C.1≤n ′≤2D.-2≤n ′≤39. (2021·荆州中考)定义新运算“※”:对于实数m,n,p,q.有[m,p]※[q,n]=mn +pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x 的方程[x 2+1,x]※[5-2k,k]=0有两个实数根,则k 的取值范围是( )A.k <54 且k ≠0B.k ≤54C.k ≤54且k ≠0 D.k ≥54 10. (2021湖南永州)定义:若10x =N,则x =log 10N,x 称为以10为底的N 的对数,简记为lgN,其满足运算法则:lgM+lgN =lg(M •N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2•lg5+lg5的结果为( )A.5B.2C.1D.0二、填空题(本大共8小题,每小题5分,满分40分)11. (2022·江苏盐城)规定a*b=2a ×2b ,例如:1*2=21×22=23=8,若2*(x+1)=64,则x 的值为_____.12. (2020毕节地区)对于两个不相等的实数a 、b,定义一种新的运算如下,0a a a a b *b b b +=+(>)﹣,如:323*2532+==﹣,那么6*(5*4)= . 13. (2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP =2,当正方形绕着点O 旋转时,则点P 到正方形的最短距离d 的取值范围为 .14. (2021浙江台州模拟)定义一种新运算:a ※b =()3()a b a b b a b -⎧⎨<⎩,则2※3﹣4※3的值______. 15. (2021山东乐陵模拟)对于x 、y 定义一种新运算“*”:x y ax by *=-,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:1110*=,2116*=,那么23*=_______.16. (2021•呼和浩特)若把第n 个位置上的数记为x n ,则称x 1,x 2,x 3,…,x n 有限个有序放置的数为一个数列A.定义数列A 的“伴生数列”B 是:y 1,y 2,y 3,…,y n ,其中y n 是这个数列中第n 个位置上的数,n =1,2,…,k 且y n =⎩⎨⎧≠=++1n 1-n 1n 1-n x x 1x x 0,,并规定x 0=x n ,x n+1=x 1.如果数列A 只有四个数,且x 1,x 2,x 3,x 4依次为3,1,2,1,则其“伴生数列”B 是 .17. (2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为 .18. (2021四川凉山)阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550-1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707-1783年)对数的定义:一般地,若a x =N(a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 39可以转化为指数式32=9.我们根据对数的定义可得到对数的一个性质:log a (M •N)=log a M+log a N(a >0,a ≠1,M >0,N >0),理由如下:设log a M =m,log a N =n,则M =a m ,N =a n ,∴M •N =a m •a n =a m+n ,由对数的定义得m+n =log a (M •N).又∵m+n =log a M+log a N,∴log a (M •N)=log a M+log a N.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①log 232= ,②log 327= ,③log 71= ;(2)求证:log a NM =log a M-log a N(a >0,a ≠1,M >0,N >0); (3)拓展运用:计算log 5125+log 56-log 530.三、解答题(本大题共6道小题,每小题6-12分)19. (6分)(2021•北京)在平面直角坐标系xOy 中,⊙O 的半径为1.对于点A 和线段BC,给出如下定义:若将线段BC 绕点A 旋转可以得到⊙O 的弦B ′C ′(B ′,C ′分别是B,C 的对应点),则称线段BC 是⊙O 的以点A 为中心的“关联线段”.(1)如图,点A,B 1,C 1,B 2,C 2,B 3,C 3的横、纵坐标都是整数.在线段B 1C 1,B 2C 2,B 3C 3中,⊙O 的以点A 为中心的“关联线段”是 ;(2)△ABC 是边长为1的等边三角形,点A(0,t),其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;(3)在△ABC 中,AB =1,AC =2.若BC 是⊙O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.20. (6分)(2020•遂宁)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x+c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x+c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x+1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x+1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x+3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x+n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y =2(x ﹣1)(x+3)的图象与x 轴交于A 、B 两点,与y 轴交于点C,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x+3)互为“旋转函数”.21. (8分)(2021湖南衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.4图象上的“雁点”坐标;(1)求函数y=x(2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M 在点N的左侧).当a>1时.①求c的取值范围;②求∠EMN的度数;(3)如图,抛物线y=-x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=-x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.22. (10分)(2021湖南长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.(1)若点A(1,r)与点B(s,4)是关于x的“T函数”y=的图象上的一对“T点”,则r=,s=,t=(将正确答案填在相应的横线上);(2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;(3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y =mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1-x1)-1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.23. (12分)(2021山东枣庄)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB =AD,CB =CD,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD 的对角线AC,BD 交于点O.猜想:AB 2+CD 2与AD 2+BC 2有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt △ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE,连结CE,BG,GE.已知AC =4,AB =5,求GE 的长.24. (12分)(2020湖北随州模拟)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”. 已知抛物线22343yx x 2333与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N,若△AMN 为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. yxAB CO M。

新定义与阅读理解问题 九年级数学专项训练(含解析)

新定义与阅读理解问题 九年级数学专项训练(含解析)

新定义与阅读理解问题一、单选题A.1B.4C.6D()(A.113︒B.92二、填空题16.定义一种新的运算:a☆三、解答题17.若定义一种运算:a b∆()(32-=--+⨯-2Δ32(3)23参考答案:1.A【分析】本题考查了有理数的混合运算,理解题中的新定义是解此类题的关键.根据题中的新定义计算即可求出4-※2的值.【详解】解:根据新定义得:4-※22422=-⨯+84=-+4=-,故选:A 2.B【分析】本题考查了新运算,解一元一次方程,掌握新运算正确计算是解题的关键,根据()310312x ⎡⎤+⨯=⎣⎦★,()336x +⨯=-解方程即可.【详解】解:根据新定义得()31012x =★★()310312x ⎡⎤+⨯=⎣⎦★()3104x +=★()36x =-★()336x +⨯=-5x =-故选:B 3.D【分析】据提供的“F ”运算,对正整数n 分情况(奇数、偶数)循环计算,由于449n =为奇数应先进行F ①运算,发现从第4次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第201次是奇数,这样循环计算一直到第201次“F ”运算,得到的结果为8.本题主要考查了新定义运算,有理数的混合运算.熟练掌握“F ”运算法则,找到结果存在的规律,根据有理数的混合运算求出答案,是解题的关键.【详解】解:第一次:344951352⨯+=,故选:A.8.C【分析】本题主要考查了等腰三角形的性质、相似三角形的性质等知识带你,由10.12x =,22x =-【分析】本题考查有理数的混合运算,新定义问题,根据已知公式得出24420x +=,解之可得答案.【详解】解:420x ⊗= ,24420x ∴+=,即2416x =,解得:12x =,22x =-.故答案为:122,2x x ==-.11.5【分析】此题考查了解一元一次方程和平方根解方程.根据题中的新定义分两种情况化简已知等式,求出x 的值即可.【详解】解:当4x ≥时,则1629x +=,解得13x =,不符合题意;当4x <时,则2429x +=,解得15=x ,25x =-(舍去),综上,x 的值为5.故答案为:5.12.3-【分析】本题考查了一次函数图象上点的坐标特征,根据“衍生函数”的定义,找出一次函数21y x =-+的“衍生函数”是解题的关键.【详解】解:由定义知,一次函数21y x =-+的“衍生函数”为()()210210x x y x x ⎧-+≥⎪=⎨+<⎪⎩,∵点()2,P m -在一次函数的“衍生函数”图象上,20x =-<,∴()2213m =⨯-+=-.故答案为:3-.13.1【分析】本题考查了解一元一次方程.理解题意,正确的列一元一次方程是解题的关键.由题意知,()3434341a =⨯+++※,3420=※,即()3434120a ⨯+++=,计算求解即可.【详解】解:由题意知,()3434341a =⨯+++※,3420=※,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,过C时,且在等腰直角三角形∴当O、、过点O分别作弦CG CF DE。

中考数学专题复习新定义问题(二)

中考数学专题复习新定义问题(二)

中考数学专题复习新定义问题(二)学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.对于平面直角坐标系xOy 中的图形W ,给出如下定义:点P 是图形W 上任意一点,若存在点Q ,使得∠OQP 是直角,则称点Q 是图形W 的“直角点”.(1)已知点A ()6,8,在点Q 1()0,8,Q 2()4,2-,Q 3()8,4中,______是点A 的“直角点”;(2)已知点()3,4B -,()4,4C ,若点Q 是线段BC 的“直角点”,求点Q 的横坐标n 的取值范围;(3)在(2)的条件下,已知点(),0D t ,()1,0E t +,以线段DE 为边在x 轴上方作正方形DEFG .若正方形DEFG 上的所有点均为线段BC 的“直角点”,直接写出t 的取值范围.2.对于平面内的点M ,如果点P ,点Q 与点M 所构成的MPQ 是边长为1的等边三角形,则称点P ,点Q 为点M 的一对“关联点”,进一步地,在MPQ 中,若顶点M ,P ,Q 按顺时针排列,则称点P ,点Q 为点M 的一对“顺关联点”;若顶点M ,P ,Q 按逆时针排列,则称点P ,点Q 为点M 的一对“逆关联点”.已知(1,0)A ,(1)在33(0,0),(0,1),(2,0),,22O B C D ⎛⎫- ⎪⎝⎭中,点A 的一对关联点是____,它们为点A的一对___关联点(填“顺”或“逆”);(2)以原点O 为圆心作半径为1的圆,已知直线:3l y x b =+.∠若点P 在∠O 上,点Q 在直线l 上,点P ,点Q 为点A 的一对关联点,求b 的值; ∠若在∠O 上存在点R ,在直线l 上存在两点()11,T x y 和()22,S x y ,其中12x x >,且点T ,点S 为点R 的一对顺关联点,求b 的取值范围.3.在平面直角坐标系xOy 中,对于图形Q 和∠P ,给出如下定义:若图形Q 上的所有的点都在∠P 的内部或∠P 的边上,则∠P 的最小值称为点P 对图形Q 的可视度.如图1,∠AOB 的度数为点O 对线段AB 的可视度. (1)已知点N (2,0),在点12(0,3)3M ,2(1,3)M ,3(2,3)M 中,对线段ON 的可视度为60º的点是______.(2)如图2,已知点A (-2,2),B (-2,-2),C (2,-2),D (2,2),E (0,4). ∠直接写出点E 对四边形ABCD 的可视度为______°;∠已知点F (a ,4),若点F 对四边形ABCD 的可视度为45°,求a 的值.4.对于平面内点P和∠G,给出如下定义:T是∠G上任意一点,点P绕点T旋转180°后得到点P',则称点P'为点P关于∠G的旋转点.下图为点P及其关于∠G的旋转点P'的示意图.在平面直角坐标系xOy中,∠O的半径为1,点P(0,-2).(1)在点A(-1,0),B(0,4),C(2,2)中,是点P关于∠O的旋转点的是;=+上存在点P关于∠O的旋转点,求b的取值范围;(2)若在直线y x b(3)若点D在∠O上,∠D的半径为1,点P关于∠D的旋转点为点P',请直接写出点P'的横坐标x P'的取值范围.5.在平面直角坐标系xOy 中,对于∠M 内的一点P ,若在∠M 外存在点P ',使得2MP MP '=,则称点P 为∠M 的二倍点.(1)当∠O 的半径为2时, ∠在1(1,0)T ,2(1,-1)T ,333(,)22-T 三个点中,是∠O 的二倍点的是 ; ∠已知一次函数2y kx k =+与y 轴的交点是(0,)A a ,若一次函数在第二象限的图象上的所有点都是∠O 的二倍点,求a 的取值范围.(2)已知点(,0)M m ,1(0,)2-B ,1(1,)2C -,∠M 的半径为2,若线段BC 上存在点P为∠M 的二倍点,直接写出m 的取值范围 .6.在平面直角坐标系xOy 中,12,,,k A A A ⋯是k 个互不相同的点,若这k 个点横坐标的不同取值有m 个,纵坐标的不同取值有n 个,p m n =+,则称p 为这k 个点的“特征值”,记为12,,,k A A A p ⋯=.如图1,点(1,1),(1,2),,123M N T M N 〈〉=+=.(1)如图2,圆C 的圆心为(0,3),半径为5,与x 轴交于A ,B 两点. ∠,T A B 〈〉=________,,,T A B C 〈〉= _________;∠直线(0)y b b =≠与圆C 交于两点D ,E ,若,,,6T A B D E 〈〉=,求b 的取值范围; (2)点128,,,A A A ⋯到点O 的距离为1或2,且这8个点构成中心对称图形,128,,,6T A A A ⋯=,若抛物线2(0)y ax bx c a =++>恰好经过128,,,A A A ⋯中的三个点,并以其中一个点为顶点,直接写出a 的所有可能取值.7.在∠ABC中,点P是∠BAC的角平分线AD上的一点,若以点P为圆心,P A为半径的∠P与∠ABC的交点不少于...4个,点P称为∠ABC关于∠BAC的“劲度点”,线段P A 的长度称为∠ABC关于∠BAC的“劲度距离”.(1)如图,在∠BAC平分线AD上的四个点1P、2P、3P、4P中,连接点A和点的线段长度是∠ABC关于∠BAC的“劲度距离”.(2)在平面直角坐标系中,已知点M(0,t),N(4,0).∠当t=5时,求出∠MON关于∠MON的“劲度距离”1d的最大值.∠如果222d≤≤内至少有一个值是∠MON关于∠MON的“劲度距离”,请直接写出t 的取值范围.8.在平面直角坐标系xOy中,若点P和点1P关于y轴对称,点1P和点2P关于直线l对称,则称点2P是点P关于y轴,直线l的完美点.(1)如图1,点(2,0)A-.∠若点B是点A关于y轴,直线1:4l x=的完美点,则点B的坐标为__________ ;∠若点(5,0)C是点A关于y轴,直线2:l x a=的完美点,则a的值为__________;(2)如图2,∠O的半径为1.若∠O上存在点M,使得点M'是点M关于y轴,直线3:l x b=的完美点,且点M'在函数2(0)y x x=>的图象上,求b的取值范围;(3)(),0E t是x轴上的动点,∠E的半径为2,若∠E上存在点N,使得点N'是点N关于y轴,直线4:32l y x=+的完美点,且点N'在y轴上,直接写出t的取值范围.9.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:若在图形G上存在两个点M,N,且MN=2,使得以P,M,N为顶点的三角形为等边三角形,则称P为图形G的“正点”.已知A(2,0),B(0,23).(1)在点1C(-1,3),2C(0,0),3C(2,3)中,线段AB的“正点”是;(2)直线(1)3y k x=-+(0k≠)上存在线段AB的“正点”,求k的取值范围;(3)以(),0T t(0t<)为圆心,27为半径作∠T,若线段AB上总是存在∠T的“正点”,直接写出t 的取值范围.10.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ),特殊地,当图形M 与图形N 有公共点时,规定d (M ,N )=0已知点()(2,00)2(30)0()2A B C D m -,,,,,,. (1)∠求d (点O ,线段AB );∠若d (线段CD ,直线AB )=1,直接写出m 的值;(2)∠O 的半径为r ,若d (∠O ,线段AB )≤1,直接写出r 的取值范围; (3)若直线3y x b =+上存在点E ,使d (E ,ABC )=1,直接写出b 的取值范围.11.对于平面直角坐标系xOy 中的一点P 和C ,给出如下的定义:若C 上存在一个点A ,连接P A ,将射线P A 绕点P 顺时针旋转90°得到射线PM ,若射线PM 与C 相交于点B ,则称P 为C 的直角点. (1)当O 的半径为1时,∠在点(0,0)D 、(1,1)E -、(2,2)F 中,O 的直角点是 .∠已知直线l :y x b =+,若直线l 上存在O 的直角点,求b 的取值范围.(2)若(,0)Q q ,Q 的半径为1,直线332y x q =-+ 上存在Q 的直角点,直接写出q 的取值范围.参考答案:1.(1)Q1,Q3;(2)4222n-≤≤+;(3)-3+21-31732t t≤≤-≤≤或【解析】【分析】(1)在平面直接坐标系中画出相关点的坐标,根据定义就可以判断出结果.(2)根据题意画出点Q的位置轨迹,观察图形,满足题意有两种情况,分别计算即可.(3)根据题意画图,并结合第二问,发现当正方形在以OB和OC为直径的圆的相交部分的时候,是不满足题意的,所以找到个边界点,即可解题【详解】解:(1)Q1,Q3,如下图:(2)∠∠OQP=90°,∠点Q在以OP为直径的圆上(O,P两点除外)如图1,以OB为直径作M,作//MH x轴,交M于点H(点H在点M左侧).∠点B的坐标为(-3,4),∠M 的半径为52,点M 的坐标为3,22⎛⎫- ⎪⎝⎭.∠35422H x =--=-.如图2,以OC 为直径作M ',作M H ''∠x 轴,交M '于点H '(点H '在点M '右侧). ∠点C 的坐标为(4,4),∠M '的半径为22,点M '的坐标为(2,2). ∠222H x '=+. ∠n 的取值范围是4222n -≤≤+. (3)正方形1的左下端点为左边界,此时13t =-.正方形2的右上端点在右边圆上,圆心坐标为()2,2 ,则满足关系式:()()22121222t +-+-=,化简得:2260t t --=,解得:121717t t =+=-(舍),. 正方形3的左端点在左边圆上,圆心坐标为3,22⎛⎫- ⎪⎝⎭,此时满足关系式:()22351222t ⎛⎫++-= ⎪⎝⎭,化简得:2+330t t -=, 解得:3432132122t t -+--==,(舍), 正方形4的右下端点在右边圆上,是右边界,143t t +==,. 综上所说:满足题意的解集是:-3+21-31732t t ≤≤-≤≤或.【点睛】本题是新定义题型的考查,能够根据题意画出相关图形,分类讨论是解题关键. 2.(1)C ,D ,逆(或D ,C ,顺);(2)∠0b =,3-或23-;∠2323b --≤≤-.【解析】【分析】(1)根据两点间距离公式,分别求出AO 、AB 、AC 、AD 、OD 的长,根据“关联点”及“顺关联点”的定义即可得答案;(2)∠根据“关联点”的定义可得1AP AQ PQ ===,可得∠QP A =60°,根据∠O 半径及点A 坐标可得OA=OP=AP ,可得∠OAP 是等边三角形,根据等边三角形点性质可得∠OAP =∠POA =60°,113,22P ⎛⎫ ⎪ ⎪⎝⎭,213,22P ⎛⎫- ⎪ ⎪⎝⎭,可得Q 1(0,0),根据∠QP A =∠POA =60°,可得PQ //OA ,即可得出点Q 的横坐标和纵坐标,即可得Q 2、Q 3坐标,把Q 1、Q 2、Q 3坐标代入直线l 解析式求出b 值即可;∠作RH ST ⊥于点H ,则32RH =,根据圆的性质分别求出b 的最大值和最小值即可得答案. 【详解】(1)∠(1,0)A ,33(0,0),(0,1),(2,0),,22O B C D ⎛⎫- ⎪⎝⎭, ∠AO =1,AB =2,AC =1,AD =1,OD=3,∠∠ACD 是等边三角形,∠C 、D 是点A 的“关联点”,∠点A 、C 、D 按顺时针排列,∠C 、D 是点A 的“顺关联点”,故答案为:C ,D ,顺(或D ,C ,逆)(2)∠如图.∠点P ,点Q 为点A 的一对“关联点”,∠APQ 为等边三角形,1AP AQ PQ ===,∠∠QP A =60°,∠以原点O 为圆心作半径为1的圆,点P 在∠O 上,OA =1,∠OA=OP=AP ,∠∠OAP 是等边三角形,∠∠OAP =∠POA =60°,113,22P ⎛⎫ ⎪ ⎪⎝⎭,213,22P ⎛⎫- ⎪ ⎪⎝⎭, ∠Q 1(0,0),∠点Q 在直线l 上,∠b 1=0,∠∠QP A =∠POA =60°,∠PQ //OA ,∠点Q 横坐标为12+1=32, ∠1AP AQ PQ ===,∠点Q 纵坐标为32±, ∠233333,,,2222Q Q ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当233,22Q ⎛⎫ ⎪⎝⎭时,33322b +=,解得:3b =-; 当333,22Q ⎛⎫- ⎪⎝⎭时,33322b +=-,解得:23b =-. 综上所述,0b =,3-或23-.∠如图.∠点T,点S为点R的一对顺关联点,∠RTS为正三角形,1RT=,//RT x轴,点T和点S在直线:3l y x b=+上.作RH ST⊥于点H,则32RH=,当b取最大值时,111R H l⊥,1111312OH OR R H=-=-,此时11223b OH==-.当b取最小值时,222R H l⊥,2222312OH OR R H=+=+,此时222(23)23b OH=-=-+=--.综上所述,b的取值范围为2323b--≤≤-.【点睛】本题考查等边三角形点判定与性质、圆点性质及一次函数图象上点点坐标特征,正确理解“关联点”点概念是解题关键.3.(1)M1,M2;(2)∠90;∠232+或232【解析】【分析】(1)结合勾股定理,等边三角形的判定和性质以及锐角三角函数求角的度数,从而作出判断;(2)∠根据等腰直角三角形的判定和性质求解;∠根据可视度的定义结合勾股定理分情况讨论求解【详解】解:(1)∠点N (2,0),点12(0,3)3M ,2(1,3)M ,3(2,3)M 中, ∠M 3N ∠x 轴,∠332tan 3ON M M N ∠==,112tan 3233ON M OM ∠=== ∠360M ∠≠︒,160M ∠=︒()222132OM =+=,()222132M N =+=∠∠2OM N 是等边三角形∠2=60OM N ∠︒ ∠对线段ON 的可视度为60º的点是M 1,M 2故答案为:M 1,M 2.(2)∠连接EA ,ED由题意可得AG =EG =2,DG =GE =2∠∠AGE 和∠EDG 均为等腰直角三角形∠∠AED =90°∠点E 对四边形ABCD 的可视度为90°故答案为:90;∠解:由题意可知,四边形ABCD是正方形,点F在直线y=4上.如图所示,点F对正方形ABCD的可视度为45°,当点F是以点D为圆心,4为半径的圆和直线y=4的交点时,过点D作DN∠EF于点N,则有DN=2,DF=4,可得NF=23.∠a=232+.当点F是以点A为圆心,4为半径的圆和直线y=4的交点时,同理可得,a=232.综上,a的值为232+或232.【点睛】本题考查解直角三角形已经图形与坐标,理解题意,利用数形结合思想解题是关键.4.(1)点B,点C;(2)222222b-≤≤+;(3)44'-≤≤px【解析】【分析】(1)根据题意结合图即可得出旋转点;(2)使直线y x b =+分别与圆相切时,求出b 的取值范围;(3)考虑全两种情况即可得出取值范围.【详解】(1)点B ,点C ;(2)由题意可知,点P 关于∠O 的旋转点形成的图形为以点G (0,2)为圆心,以2个单位长度为半径的∠G .当直线y x b =+与∠G 相切时:如图1,求得:222b =+,如图2,求得:222b =-.因为直线y x b =+上存在点P 关于∠O 的旋转点,所以,222222b -≤≤+.图1图2(3) 当∠D 的圆心在(-1,0)(1,0)时,p x ' 取最小和最大值,∴ P '的横坐标x P '的取值范围44'-≤≤p x .【点睛】此题考查了圆与一次函数图像的知识,解题的关键是能够灵活运用直线与圆相切的特点,进而求解.5.(1)∠2T ,3T ;∠2323a <≤;(2)153122m -<<-或315122m <<+ 【解析】【分析】(1)∠根据圆的二倍点的含义判断即可;∠由于圆的半径为2,根据二倍点的含义,则这些点与圆心O 的距离大于1,当直线与半径为1的圆相切时,可求得一次函数解析式中的k 值,从而可求得a 的值;当直线y =kx +2k 与y 轴的交点也是O 与y 轴的交点时,可得a 的值,根据题意最后可确定a 的取值范围; (2)当2MC <且1MB > 或<2MB 且1MC >时,才满足条件,由此可求得m 的取值范围.【详解】(1)∠∠OT 1=1,122OT '=,但此时1T '点在圆上,不合题意,故T 1不是二倍点; ∠OT 2=22112+=,22333322OT ⎛⎫⎛⎫=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,而22222OT '=>,32232OT '=>,∠2T ,3T 是二倍点.故答案为:2T ,3T∠当2x =-时,0y =,∠一次函数2y kx k =+过定点()2,0-,如图1,当一次函数2y kx k =+的图象与半径为1的O 相切时,可得33k =,则233a =.如图2当一次函数2y kx k =+的图象与y 轴的交点也是O 与y 轴的交点时,可得2a =.∠由题意可知2323a <≤. (2)当2MC <且1MB > 或<2MB 且1MC >时,线段BC 上存在点P 为∠M 的二倍点,即221(1)44114m m ⎧-+<⎪⎪⎨⎪+>⎪⎩或221(1)14144m m ⎧-+>⎪⎪⎨⎪+<⎪⎩, 解得:315122m <<+或153122m -<<-. 故答案为:153122m -<<-或315122m <<+. 【点睛】本题是一个新定义问题,涉及直线与圆的位置关系,一次函数的图象,解一元二次不等式组等知识,解题的关键是数形结合.6.(1)∠3,5;∠28b -<<且0b ≠,6b ≠;(2)1或2或14.【解析】【分析】(1)∠先写出A ,B 的坐标,然后根据题意即可求解;∠D ,E 两点都在直线(0)y b b =≠上,而A ,B 两点都在直线0y =上,因此A ,B ,D ,E 四点纵坐标不同的取值有2个,要使得,,,6T A B D E 〈〉=,则A ,B ,D ,E 四点横坐标不同的取值必须有4个,此时这四个点的横坐标均不能相同,由对称性,当6b =时,D ,E 分别为(4,6)-和(4,6),其横坐标分别与A ,B 的横坐标相同,不符合题意;由图可知,直线y b =与C 要有公共点,则28b -<<,答案可解;(2)根据题意画出图形,抛物线2(0)y ax bx c a =++>,所以0a >,抛物线开口向上,因为抛物线经过三个点,且抛物线呈对称,分析抛物线可能经过的点,进行分类讨论即可解得答案.【详解】(1)∠由图可知()()()4,0,4,0,0,3A B C -,根据题意可得:,213T A B 〈〉=+=,,,325T A B C 〈〉=+=,故答案为:3,5;∠解:D ,E 两点都在直线(0)y b b =≠上,而A ,B 两点都在直线0y =上,因此A ,B ,D ,E 四点纵坐标不同的取值有2个,要使得,,,6T A B D E 〈〉=,则A ,B ,D ,E 四点横坐标不同的取值必须有4个,于是此时这四个点的横坐标均不能相同.由对称性,当6b =时,D ,E 分别为(4,6)-和(4,6),其横坐标分别与A ,B 的横坐标相同,不符合题意;由图可知,直线y b =与C 要有公共点,则28b -<<;综上所述,b 的取值范围是28b -<<且0b ≠且6b ≠.(2)∠T <A 1,A 2,…,A 8>=6, ∠这8个点横坐标的不同取值的个数与纵坐标的不同取值的个数之和为6.∠点A 1,A 2,…A 8到点O 的距离为1或2,且这8个点构成中心对称图形,∠这8个点构成的图形如下图所示:它们的坐标分别为:A 1(-1,1),A 2(0,1),A 3(1,1),A 4(-1,0),A 5(1,0),A 6(-1,-1),A 7(0,-1),A 8(1,-1).∠抛物线y =ax 2+bx +c (a >0),∠抛物线开口向上.∠抛物线y =ax 2+bx +c (a >0)恰好经过A 1,A 2,…A 8中的三个点,并以其中一个点为顶点,∠根据抛物线为轴对称图形可得:抛物线经过A1,A3,A7或A4,A5,A7.∠抛物线经过A1,A3,A7时,11.1a b ca b cc-+=⎧⎪++=⎨⎪=-⎩解得:21abc=⎧⎪=⎨⎪=-⎩抛物线经过或A4,A5,A7时,1a b ca b cc-+=⎧⎪++=⎨⎪=-⎩解得:11abc=⎧⎪=⎨⎪=-⎩或这8个点构成的图形如下图所示:它们的坐标分别为:123214214(,),(,)4444A A--,34521432143214(,),(,),(,)444444A A A--6782142143214(,),(,),(,).444444A A A----∠抛物线y=ax2+bx+c(a>0)恰好经过A1,A2,…A8中的三个点,并以其中一个点为顶点,∠根据抛物线为轴对称图形可得:抛物线经过A1,A3,A6或A4,A2,A7.∠抛物线经过A1,A3,A6时,A6为顶点,经过A1,A3,设抛物线解析式为2214().44y x =+- 将A 3坐标代入得:142214().4444a =+- 解得:14.a =抛物线经过A 2,A 4,A 7时,A 7为顶点,经过A 2,A 4,设抛物线解析式为2214().44y x =-- 将A 4坐标代入得:21432214().4444=-- 解得:14.a =综上,a 的值为1或2或14【点睛】本题考查了二次函数的综合运用,解题的关键是进行分类讨论.7.(1)23,P P ;(2)∠22;∠52t -≤≤-或25t ≤≤.【解析】【分析】(1)以AP 为半径,以点P 为圆心作圆,观察图形,结合题意即可解答;(2)∠作∠MON 的角平分线OE ,ON 的垂直平分线PF ,OE 和PF 相交于点P ,此时∠P 过点N ,线段OP 的长度是∠MON 关于∠MON 的“劲度距离”最大值.由此求解即可;∠由题意可知圆心都在直线y =x 上,再分当t >0和t <0时两种情况求t 的取值范围即可.【详解】(1)以AP 为半径,以点P 为圆心作圆,则23P P 、符合要求.故答案为:23P P、;(2)∠作∠MON的角平分线OE,ON的垂直平分线PF,OE和PF相交于点P,此时∠P 过点N,线段OP的长度是∠MON关于∠MON的“劲度距离”最大值.易知,OE的函数表达式为y=x,PF的函数表达式为x=2,从而可得其交点坐标为P(2,2).∠1d=OP=22;∠由题意可知,圆心都在直线y=x上,∠当t>0时,当d最大为22时,圆P经过点N,此时和∠一样,点M在(0,5)处,即t=5;当d最小为2时,圆P经过点M,此时点P的纵坐标为1122OM t=,所以点P的坐标(12t,12t),再由OP=2可得22211()()(2)22t t+=,解得t=2;∠当t>0时,t的取值范围为25t≤≤.∠同理,当t<0时,t的取值范围为52t-≤≤-.综上所述t的取值范围为52t-≤≤-或25t≤≤.【点睛】本题时一次函数和圆的综合题,正确理解题意是解决问题的关键.8.(1)∠(6,0),∠3.5;(2)1524b-<≤;(3)234234t-≤≤+.【解析】【分析】(1)∠根据点坐标的轴对称变换规律即可得;∠先求出点A 关于y 轴,直线2:l x a =的完美点,再根据点C 的坐标建立方程,求解即可得;(2)先根据完美点的定义、待定系数法求出点M 所在直线的解析式为24y x b =+,再找出两个临界位置∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切;∠直线24(0)y x b y =+>恰好经过点(1,0),分别利用相似三角形的判定与性质、一次函数的性质求出b 的值即可得;(3)如图(见解析),先确定点N '在E '上运动,再利用待定系数法求出直线1E E '的解析式,从而求出点,K E '的坐标,然后求出E '与y 轴相切时的t 值即可得出答案. 【详解】解:(1)∠(2,0)A -, ∴点A 关于y 轴对称的点坐标为(2,0),又点(2,0)关于直线1:4l x =对称坐标为(6,0),(6,0)B ∴, 故答案为:(6,0);∠(2,0)A -, ∴点A 关于y 轴对称的点坐标为(2,0),又点(2,0)关于直线2:l x a =对称坐标为(22,0)a -,点(5,0)C 是点A 关于y 轴,直线2:l x a =的完美点,225a ∴-=,解得 3.5a =,故答案为:3.5;(2)如图,设点M 关于y 轴的对称点为''M ,由完美点的定义得:点M 所在直线与点M '所在直线2(0)y x x =>平行,则设点M 所在直线的解析式为2(0)y x c y =+>,设点M '的坐标为(,2)M m m ',则(2,2)M b m m ''-,(2,2)M b m m -+,将点(2,2)M b m m -+代入2y x c =+得:2(2)2b m c m -++=,解得4c b =,则点M 所在直线的解析式为24y x b =+,因此,有两个临界位置:∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切;∠直线24(0)y x b y =+>恰好经过点(1,0),∠直线24(0)y x b y =+>与位于x 轴上方的半圆O 相切,如图,设直线24(0)y x b y =+>与x 轴交于点B ,与y 轴交于点A ,则(0,4),(2,0),0A b B b b ->,224,2,25OA b OB b AB OA OB b ∴===+=,由圆的切线的性质得:OM AB ⊥,1OM =,在AOB 和OMB △中,90AOB OMB ABO OBM ∠=∠=︒⎧⎨∠=∠⎩, AOB OMB ∴~,OA AB OM OB ∴=,即42512b b b=, 解得54b =, ∠直线24(0)y x b y =+>恰好经过点(1,0), 将点(1,0)代入得:240b +=,解得12b =-, 点M '在函数2(0)y x x =>的图象上,不含原点(0,0)O ,b ∴的值不能取12-,则b 的取值范围为1524b -<≤;(3)如图,设点E关于y轴的对称点为1E,点1E关于直线4:32l y x=+的对称点为E',连接1E E',交直线4l于点K,则E'的半径为2,当点N在E上运动时,点N'在E'上运动,要使点N'在y轴上,则E'与y轴相切或相交即可,(,0)E t,1(,0)E t∴-,14E E l'⊥,∴设直线1E E'的解析式为33y x n=-+,将点1(,0)E t -代入得:303t n +=,解得33n t =-, 则直线1E E '的解析式为3333y x t =--, 联立333332y x t y x ⎧=--⎪⎨⎪=+⎩,解得234324t x t y ⎧--=⎪⎪⎨-+⎪=⎪⎩, 2332(,)44t t K ---+∴, 又点K 是线段1E E '的中点,2332(,)22t t E --+'∴, 当E '与y 轴相切时,2322t -=, 解得234t =+或234t =-,综上,满足条件的t 的取值范围为234234t -≤≤+.【点睛】本题考查了点坐标的轴对称变换规律、圆的切线的性质、相似三角形的判定与性质等知识点,较难的是题(2)(3),正确找出相应的临界位置是解题关键.9.(1)1C ,2C ;(2)03k <≤;(3)6243t -≤≤-或20t ≤<-【解析】【分析】(1)按照定义分别判断所给点能否与已知点构成等边三角形即可;(2)根据正点的定义,可以判断满足条件的正点连线是正六边形的两条边,结合直线(1)3y k x =-+过定点()1,3,进一步判断的范围即可; (3)根据正点的定义,画出满足题意的圆,根据图形进行计算,即可.【详解】解:过点O 作OD ∠AB ,∠2C (0,0),A (2,0),B (0,23),∠AB =22(20)(023)-+-=4,∠OD=22334OA OBAB⨯⨯==,∠在线段AB上存在存在两个点M,N,且MN=2,使得以2C,M,N为顶点的三角形为等边三角形,即:2C是线段AB的“正点”.同理:1C是线段AB的“正点”.故答案是:1C,2C;(2)如图,线段AB的“正点”在线段OC和'C D上.且六边形BCOAD'C是正六边形,∠直线(1)3y k x=-+(0k≠)过定点()1,3,是正六边形的中心坐标也是()1,3,∠直线(1)3y k x=-+(0k≠)绕着中心(1,3)旋转.又∠直线(1)3y k x=-+(0k≠)过点O和C'时,k=3,过点C和D时,k=0,∠03k<≤.(3)如下图:在∠T上取线段MN,使MN=2,往圆外作等边三角形MNE,在MN上取中点D,连接TN,ED,TD,则ED∠MN,TD∠MN,T,D,E三点共线,∠DE=22213-=,TD=()2227133-=,∠大圆的半径=3+33=43,同理:小圆半径=33-3=23,当大圆或小圆与线段AB有交点时,线段AB上存在∠T的“正点”,若大圆过点B时,则TB=43,∠AB=4,OB=23,∠OT=()()2243236-=,∠tan∠OBT=OT OBOB OA==tan∠OAB,即:∠OBT=∠OAB,∠∠ABT=∠OBT+∠ABO=∠OAB+∠ABO=90°,∠此时AB与大圆相切于点B,t=-6,若大圆过点A时,AT=43,此时,t=2-43,若小圆与线段AB相切于点C时,∠ATC=∠ABO=30°,TC=23,∠AT =TC ÷cos30°=23÷32=4,此时,t =-2, 若小圆经过B 点时,圆心与点O 重合时,t =0,综上,243t -6≤≤-或20t ≤<-.【点睛】本题是新定义题型,考查动点轨迹为圆时的综合数据处理,以及等边三角形的性质,锐角三角函数相关知识点,能够根据题意画出图形是解题关键.10.(1)∠3;∠232m =-;(2)31231r -≤≤+;(3)232232b --≤≤+【解析】【分析】(1)∠根据题意作图,由三角形的面积公式及“闭距离”的定义即可求解;∠根据题意作图,根据含30°的直角三角形的性质即可求出D 点坐标,故可求解; (2)根据题意作图,由d (∠O ,线段AB )≤1,分情况讨论即可求解;(3)根据题意作图,找到d (∠O ,线段AB )=1的点,再根据解直角三角形、一次函数的解析式求解方法求出b 的值,故可求解.【详解】(1)∠如图,作OH ∠AB ,∠()0)2023(A B -,,, ∠AO =2,BO =23,AB =()222234+= 根据三角形的面积公式可得1122AO BO AB OH ⋅=⋅ ∠OH =22334⨯= ∠d (点O ,线段AB )=3;∠∠AO =2,BO =23,AB =()222234+=∠AB =2AO ,∠∠ABO =30°如图,作HD ∠AB ,∠d (线段CD ,直线AB )=1,∠DH =1∠BD =2HD =2∠DO =BO -BD =232-∠D(232-,0)∠m=232-;Array(2)如图,OH∠AB,交∠O于M点,BI=1当d(∠O,线段AB)≤1当HM≤1时,由(1)可得OH=3∠31r≥-当BI≤1时,此时IO=BI+OB=231+∠231r≤+故若d(∠O,线段AB)≤1时,r的取值范围为31231-≤≤+;r(3)∠ d (E ,ABC )=1,如图,作CM ∠直线3y x b =+于M 点,此时CM =1设直线3y x b =+与x 轴交于K 点,则∠CKM =60°∠CK =CM ÷cos60°=233∠K (2+233,0),代入3y x b =+得232330b ⎛⎫=+⨯+ ⎪ ⎪⎝⎭ 解得b =232如图,作BG ∠直线3y x b =+于G 点,此时BG =1设直线3y x b =+与y 轴交于N 点,则∠GNB =90°-60°=30°∠BN =2BG =2∠N (0,232+),代入3y x b =+得32320b +=⨯+解得b =232+∠存在点E ,使d (E ,ABC )=1,∠b 的取值范围是232232b --≤≤+.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意作图,由“闭距离”的定义及解直角三角形、圆的性质特点进行求解.11.(1)∠D ,E ;∠22b -≤≤;(2)464633q -≤≤ 【解析】【分析】(1)∠如图,由定义可得:,A B 都在O 上,且90,APB ∠=︒ 再分别画出图形,即可得到答案;∠由定义可知,如图O 的直角点,分布在以O 为圆心以2为半径的圆上或圆内,结合∠可得直线的两个极限位置,从而可得答案;(2)先求解332y x q =-+与,x y 轴的交点坐标,再求解60,ONK QNM ∠=︒=∠ 再分两种情况讨论:情况1:q >0时,结合∠画出图形求解463q =,再利用对称性得到.情况2:q <0时, 463q =-,从而可得答案. 【详解】 解:(1)∠如图,由定义可得:,A B 都在O 上,且90,APB ∠=︒当,P D 重合时,则()0,0P ,此时1,AP BP ==故D是O的直角点,如图,同理可得;()1,1E-是O的直角点,当()2,2F时,AFB∠<90,︒F∴不是O的直角点,故答案为:D,E;∠由定义可知,如图O的直角点,分布在以O为圆心以2为半径的圆上或圆内由∠可得:当直线y x b=+过()1,1E-时,11,b∴=-+2,b∴=当直线y x b=+过()1,1E'-时,11,b∴-=+2,b∴=-所以22b -≤≤;(2) 332y x q =-+, 当0x =,则3,2y q =当0,y = 则330,2x q -+= .2q x ∴= 所以直线与x 轴交点为N (,0)2q ,与y 轴的交点30,,2K q ⎛⎫ ⎪ ⎪⎝⎭32tan 3.2q OK ONK q ON∴∠=== 60,ONK QNM ∴∠=︒=∠情况1:q >0时,如图Q (半径为2)与直线332y x q =-+相切时, ∠2QM =,60QNM ∠=︒,∠26sin 603QM QN ==︒, ∠2623q ON QN ===, ∠463q =.情况2:q <0时,根据对称性,463q =-, ∠q 的取值范围为464633q -≤≤ 【点睛】 本题考查的是自定义题,同时考查了旋转的性质,圆的基本性质,圆的切线的性质定理,求解一次函数的解析式,锐角三角函数的应用,掌握数形结合的方法是解题的关键.。

初中数学新定义题型习题1含答案

初中数学新定义题型习题1含答案

新定义题型习题1一.解答题(共23小题)1.阅读与理解:已知关于x的方程kx=5﹣x有正整数解,求整数k的值.解:kx+x=5,(k+1)x=5,x=因为关于x的方程kx=5﹣x,有正整数解,所以为正整数,因为k为整数,所以k+1=1或k+1=5,所以k=0或k=4;探究与应用:应用上边的解题方法,已知关于x的方程kx=6+x有正整数解,求整数k 的值.2.已知方程(2a+1)x=3ax﹣2有正整数解,求整数a的值.3.设m为整数,且关于x的一元一次方程(m﹣5)x+m﹣3=0.(1)当m=2时,求方程的解;(2)若该方程有整数解,求m的值.4.已知关于x的方程ax+=的解是正整数,求正整数a的值,并求出此时方程的解.5.已知关于x的方程4(x﹣2)=ax的解为正整数,求整数a的所有可能取值.6.若有理数a,b满足条件:(m是整数),则称有理数a,b为一对“共享数”,其中整数m是a,b的“共享因子”.(1)下列两对数中:①3和5,②6和8,是一对“共享数”的是______;(填序号)(2)若7和x是一对“共享数”,且“共享因子”为2,求x的值;(3)探究:当有理数a,b满足什么条件时,a,b是一对“共享数”.7.阅读下列材料,规定一种运算=ad﹣bc.例如=2×5﹣3×4=10﹣12=﹣2,按照这种运算的规定,请解答下列问题:(1)=______,=______(只填结果);(2)若=0,求x的值.(写出解题过程)8.请阅读下列材料:让我们来规定一种运算:=ad﹣bc,例如:=2×5﹣3×4=10﹣12=﹣2.按照这种运算的规定,请回答下列的问题:(1)求的值;(2)若=,试用方程的知识求x的值.9.对于任意有理数,我们规定:=ad﹣bc.例如=1×4﹣2×3=﹣2(1)按照这个规定,当a=3时,请你计算:;(2)按照这个规定,若=1,求x的值.10.设a,b,c,d为有理数,现规定一种新的运算:=ad﹣bc,当=10时,求代数式2(x﹣2)﹣3(x+1)的值.11.定义一种新运算“⊗”,规定:a⊗b=a﹣2b,除新运算“⊗”外,其它运算完全按有理数和整式的运算进行.(1)直接写出b⊗a的结果为______(用含a、b的代数式表示);(2)化简:[(2x+y)⊗(x﹣y)]⊗3y;(3)解方程:2⊗(1⊗x)=⊗x12.对于任意有理数a和b,我们规定:a*b=a2﹣2ab,如3*4=32﹣2×3×4=﹣15.(1)求(﹣5)*6的值;(2)若(﹣3)*x=10,求x的值.13.我们定义一种新的运算“⊗”,并且规定:a⊗b=a2﹣2b.例如:2⊗3=22﹣2×3=﹣2,2⊗(﹣a)=22﹣2(﹣a)=4+2a.请完成以下问题:(1)求(﹣3)⊗2的值;(2)若3⊗(﹣x)=2⊗x,求x的值.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2﹣2ab+b.如:2☆(﹣3)=2×(﹣3)2﹣2×2×(﹣3)+(﹣3)=27(1)求(﹣4)☆7的值;(2)若(1﹣3x)☆(﹣4)=32,求x的值.15.若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣2)※x=﹣1+x,求x的值.16.用“⊗”规定一种新运算:对于任意有理数a和b,规定a⊗b=ab2+2ab+a.如:1⊗3=1×32+2×1×3+1=16(1)求2⊗(﹣1)的值;(2)若(a+1)⊗3=32,求a的值;(3)若m=2⊗x,n=(x)⊗3(其中x为有理数),试比较m、n的大小.17.用“※”定义一种新运算:对于任意有理数a和b,规定a※b=ab2+2ab+a.如:1※2=1×22+2×1×2+1=9(1)(﹣2)※3=______;(2)若※3=16,求a的值;(3)若2※x=m,(x)※3=n(其中x为有理数),试比较m,n的大小.18.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:若对任意有理数x、y,运算“⊕”满足x⊕y=y⊕x,则称此运算具有交换律.x⊕y=(1)试求1⊕(﹣1)的值;(2)试判断该运算“⊕”是否具有交换律,说明你的理由;(3)若2⊕x=0,求x的值.19.(1)先化简,再求值:已知代数式A=(3a2b﹣ab2),B=(﹣ab2+3a2b),求5A﹣4B,并求出当a=﹣2,b=3时5A﹣4B的值.(2)对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).规定:(a,b)★(c,d)=ad﹣bc,如:(1,2)★(3,4)=1×4﹣2×3=﹣2根据上述规定解决下列问题:①有理数对(5,﹣3)★(3,2)=______.②若有理数对(﹣3,x•1)★(2,2x+1)=15,则x=______.③若有理数对(2,x﹣1)★(k,2x+k)的值与x的取值无关,求k的值.20.我们规定x的一元一次方程ax=b的解为b﹣a,则称该方程是“差解方程”,例如:3x =4.5的解为4.5﹣3=1.5,则该方程3x=4.5就是“差解方程”,请根据上述规定解答下列问题:(1)已知关于x的一元一次方程4x=m是“差解方程”,则m=______.(2)已知关于x的一元一次方程4x=ab+a是“差解方程”,它的解为a,则a+b=______.(3)已知关于x的一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,求代数式﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]的值.21.我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“奇异方程”.例如:2x=4的解为x=2=4﹣2,则该方程2x=4是“奇异方程”.请根据上述规定解答下列问题:(Ⅰ)判断方程5x=﹣8______(回答“是”或“不是”)“奇异方程”;(Ⅱ)若a=3,有符合要求的“奇异方程”吗?若有,求b的值;若没有,请说明理由.(Ⅲ)若关于x的一元一次方程2x=mn+m和﹣2x=mn+n都是“奇异方程”,求代数式﹣2(m+11)+4n+3[(mn+m)2﹣m]﹣的值.22.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程5x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣3x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.23.定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.新定义题型习题1参考答案与试题解析一.解答题(共23小题)1.解:kx=6+x,kx﹣x=6,(k﹣1)x=6,x=因为关于x的方程kx=6+x有正整数解,所以为正整数,因为k为整数,所以k﹣1=6或k﹣1=3或k﹣1=2或k﹣1=1,解得k=7或k=4或k=3或k=2.故整数k的值为7或4或3或2.2.解:(2a+1)x=3ax﹣2,移项,合并同类项得:(﹣a+1)x=﹣2,因为方程有解,所以(﹣a+1)≠0,即x=,因为方程有正整数解,且a取整数,所以a﹣1=1或a﹣1=2,解得:a=2或a=3,答:整数a的值为2或3.3.解:(1)当m=2时,原方程为﹣3x﹣1=0,解得,,(2)当m≠5时,方程有解,,∵方程有整数解,且m是整数,∴m﹣5=±1,m﹣5=±2,解得,m=6或m=4或m=7或m=3.4.解:由ax+=,得ax+9=5x﹣2,移项、合并同类项,得:(a﹣5)x=﹣11,系数化成1得:x=﹣,∵x是正整数,∴a﹣5=﹣1或﹣11,∴a=4或﹣6.又∵a是正整数.∴a=4.则x=﹣=11.综上所述,正整数a的值是4,此时方程的解是x=11.5.解:去括号,得:4x﹣8=ax,移项、合并同类项,得:(4﹣a)x=8,系数化成1得:x=,∵x是正整数,∴4﹣a=8或4或2或1,∴a=﹣4或0或2或3.即整数a的所有可能取值为﹣4或0或2或3.6.解:(1)根据题中的新定义得:+=+2,即3和5是一对“共享数”;+=+,即6和8不是一对“共享数”,故答案为:①;(2)根据题中的新定义得:+=+2,去分母得:14+2x=7+x+8,解得:x=1.7.解:(1)根据题中的新定义得:原式=6+10=16,原式=﹣2x﹣3(x﹣3)=﹣2x﹣3x+9=﹣5x+9;故答案为:16;﹣5x+9;(2)依题意得:2(x+3)﹣5x=0,去括号得:2x+6﹣5x=0,解得:x=2,则x的值为2.8.解:(1)根据题中的新定义得:原式=3﹣28=﹣25;(2)根据题中的新定义化简得:2x+x﹣=,移项合并得:3x=2,解得:x=.9.解:(1)当a=3时,=2a×5a﹣3×4=10a2﹣12=10×32﹣12=90﹣12=78(2)∵=1,∴4(x+2)﹣3(2x﹣1)=1,去括号,可得:4x+8﹣6x+3=1,移项,合并同类项,可得:2x=10,解得x=5.10.解:根据题中的新定义运算方法得:6x﹣4(3x﹣2)=10,去括号得:6x﹣12x+8=10,解得:x=,∴2(x﹣2)﹣3(x+1)=2x﹣4﹣3x﹣3=﹣x﹣7=﹣()﹣7=.∴代数式2(x﹣2)﹣3(x+1)的值是.11.解:(1)根据题意得:b⊗a=b﹣2a;故答案为:(b﹣2a);(2)根据题中的新定义得:原式=[(2x+y)﹣2(x﹣y)]⊗3y=(x+3y)⊗3y=x+3y﹣6y=x﹣3y;(3)已知等式利用题中的新定义化简得:2⊗(1⊗x)=2﹣2(1﹣2x)=﹣2x,解得:x=.12.解:(1)根据题意得:(﹣5)*6=(﹣5)2﹣2×(﹣5)×6=85,(2)根据题意得:(﹣3)*x=(﹣3)2﹣2×(﹣3x)=10,整理得:9+6x=10,解得:x=.13.解:(1)根据题中的新定义得:原式=9﹣4=5;(2)已知等式利用题中的新定义化简得:9+2x=4﹣2x,移项合并得:4x=﹣5,解得:x=﹣.14.解:(1)根据题意得:(﹣4)☆7=(﹣4)×72﹣2×(﹣4)×7+7=﹣133,(2)根据题意得:(1﹣3x)☆(﹣4)=(1﹣3x)×(﹣4)2﹣2×(1﹣3x)×(﹣4)+(﹣4)=32,整理得:16(1﹣3x)+8(1﹣3x)﹣4=32,解得:x=﹣.15.解:(1)(﹣2)※3=(﹣2)2+2×(﹣2)×3=4﹣12=﹣8;(2)∵(﹣2)※x=﹣1+x,∴(﹣2)2+2×(﹣2)×x=﹣1+x,即4﹣4x=﹣1+x,解得:x=1.16.解:(1)2⊗(﹣1)=2×(﹣1)2+2×2×(﹣1)+2=2﹣4+2=0,(2)(a+1)⊗3=(a+1)×32+2(a+1)×3+(a+1)=16(a+1)=32,解得:a=1,(3)m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+x=4x,m﹣n=2x2+2>0,即m>n.17.解:(1)原式=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32,故答案为:﹣32.(2)因为※3=×32+2××3+=8a+8,所以8a+8=16,解得a=1;(3)根据题意,得m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+x=4x,则m﹣n=2x2+2>0,所以m>n.18.解:(1)1⊕(﹣1)=2×1+3×(﹣1)﹣7=2﹣3﹣7=﹣8答:1⊕(﹣1)的值为﹣8.(2)该运算具有交换律理由:分三种情况当x>y时,x⊕y=2x+3y﹣7,y⊕x=3y+2x﹣7,此时x⊕y=y⊕x当x=y时,x⊕y=2x+3y﹣7,y⊕x=2y+3x﹣7,此时x⊕y=y⊕x当x<y时,x⊕y=3x+2y﹣7,y⊕x=2y+3x﹣7,此时x⊕y=y⊕x所以该运算“⊕”具有交换律(3)当x≤2时,2⊕x=0,2×2+3x﹣7=0解得x=1当x>2时,2⊕x=03×2+2x﹣7=0解得x=(舍去)答:x的值为1.19.解:(1)∵A=(3a2b﹣ab2),B=(﹣ab2+3a2b),∴5A﹣4B=5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=36+18=54;(2)①根据题中的新定义得:原式=10+9=19;②根据题中的新定义得:﹣3(2x+1)﹣2x=15,去括号得:﹣6x﹣3﹣2x=15,移项合并得:﹣8x=18,解得:x=﹣;③根据题中的新定义化简得:2(2x+k)﹣k(x﹣1)=4x+2k﹣kx+k=(4﹣k)x+3k,由结果与x取值无关,得到4﹣k=0,即k=4.故答案为:①19;②﹣20.解:(1)由题意可知x=m﹣4,由一元一次方程可知x=,∴m﹣4=,解得m=;故答案为:;(2)由题意可知x=ab+a﹣4,由一元一次方程可知x=,又∵方程的解为a,∴=a,ab+a﹣4=a,解得a=,b=3,∴;故答案为:.(3)∵一元一次方程4x=mn+m和﹣2x=mn+n都是“差解方程”,∴mn+m=,mn+n=﹣,两式相减得,m﹣n=.∴﹣3(m+11)+4n+2[(mn+m)2﹣m]﹣[(mn+n)2﹣2n]=﹣5(m﹣n)﹣33,=﹣5×﹣33+2×,=,=﹣.21.解:(Ⅰ):∵5x=﹣8,∴x=﹣,∵﹣8﹣5=﹣13,﹣,∴5x=﹣8不是奇异方程;故答案为:不是;(Ⅱ)∵a=3,∴x=b﹣3,∴,∴,即b=时有符合要求的“奇异方程”;(Ⅲ)且由题可知:mn+m=4,mn+n=﹣,两式相减得,m﹣n=,∴﹣2(m+11)+4n+3[(mn+m)2﹣m]﹣=﹣5(m﹣n)﹣22+3(mn+m)2﹣(mn+n)2,==﹣,=﹣.22.解:(1)∵关于x的一元一次方程5x=m是“和解方程”,∴5+m是方程5x=m的解.∴5(5+m)=m∴m=﹣.(2)∵关于x的一元一次方程﹣3x=mn+n是“和解方程”,∴mn+n﹣3是方程﹣3x=mn+n的解.又∵x=n是它的解,mn+n﹣3=n.∴mn=3.把x=n代入方程,得﹣3n=mn+n.∴﹣3n=3+n.∴﹣4n=3.n=﹣.∴m=﹣4.23.解:(1)方程2x﹣4=x+1的解为x=5,将x=﹣5代入方程5x+m=0得m=25;(2)另一解为﹣n.则n﹣(﹣n)=8或﹣n﹣n=8,∴n=4或n=﹣4;(3)方程2x+3m﹣2=0的解为,方程3x﹣5m+4=0的解为,则,解得m=2.所以,两解分别为﹣2和2.。

数学专题1——新定义问题 (吴 翔)

数学专题1——新定义问题   (吴   翔)

数学专题1——新定义问题【专题诠释】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.【经典例题】类型一:规律题型中的新定义例1.(2009山东枣庄,18,4分)定义:a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= .【分析】:理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.【解】:解:根据差倒数定义可得:2111311413a a ===-+, 321143114a a ===-- 431111143a a ===---. 显然每三个循环一次,又2009÷3=669余2,故a 2009和a 2的值相等.【评注】:此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律.类型二:运算题型中的新定义例2.(2011毕节地区,18,3分)对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a b a b a b a b +=+(>)﹣,如:323*2532+==﹣, 那么6*(5*4)= .【分析】:本题需先根据已知条件求出5*4的值,再求出6*(5*4)的值即可求出结果. 【评注】:本题主要考查了实数的运算,在解题时要先明确新的运算表示的含义是本题的关键.例3.(2010重庆江津区,15,4分)我们定义abad bc cd=-,例如错误!未指定书签。

中考数学专题复习新定义问题【含解析】

中考数学专题复习新定义问题【含解析】

新定义问题【专题点拨】新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模;3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 .【解题策略】具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决【典例解析】类型一:规律题型中的新定义例题1:(2015•永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数) B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)【解析】:根据“定义[x]为不超过x的最大整数”进行计算【解答】:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.变式训练1:(2015•山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2)D. (—2013,2)类型二:运算题型中的新定义例题2:(2016·四川宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000= .【解析】实数的运算.先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.变式训练2:(2016四川省乐山市第16题)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y′),给出如下定义:若(0)(0)y x y y x ≥⎧'=⎨-<⎩,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数3y x =+图象上点M 的“可控变点”,则点M 的坐标为 ;(2)若点P 在函数216y x =-+(5x a -≤≤)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是1616y '-≤≤,则实数a 的取值范围是 .类型三: 探索题型中的新定义例题3:(2016山西省第10题)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【解析】考点:黄金分割的识别【解答】:由作图方法可知DF=5CF ,所以CG=CF )15(-,且GH=CD=2CF ,从而得出黄金矩形CG=CF )15(-,GH=2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形。

中考数学 专题复习二 新定义运算、新概念问题-人教版初中九年级全册数学试题

中考数学 专题复习二 新定义运算、新概念问题-人教版初中九年级全册数学试题

新定义运算、新概念问题【专题思路剖析】“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能,因此越来越受到全国各地命题者的青睐,已经成为了近几年数学中考试题中的一道亮丽风景线。

因对“新概念”试题的研究及突破对教师的教学和学生都具有很高的价值。

新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,,,,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能,因此越来越受到全国各地命题者的青睐,已经成为了近几年数学中考试题中的一道亮丽风景线。

因对“新概念”试题的研究及突破对教师的教学和学生都具有很高的价值。

【典型例题赏析】 类型1:新定义点例题1:(2015年某某B 第23题10分)如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做 “和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;[来。

(2) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x(14x ≤≤,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】略,能被11整除;y=2x(1≤x ≤4) 【解析】试题分析:根据“和谐数”的定义写出数字,然后设“和谐数”的形式为abcd ,则根据题意得出a=d ,b=c ,然后将这个四位数除以11,将其化成代数式的形式,用a 和b 来表示c 和d ,然后得出答案,进行说明能被11整除;首先设三位“和谐数”为zyx ,根据定义得出x=z ,然后根据同上的方法进行计算. 试题解析:⑴、四位“和谐数”:1221,1331,1111,6666…(答案不唯一) 任意一个四位“和谐数”都能被11整数,理由如下:设任意四位“和谐数”形式为:abcd ,则满足:最高位到个位排列:,,,a b c d 个位到最高位排列:,,,d c b a 由题意,可得两组数据相同,则:,a d b c == 则1000100101000100101001110911011111111abcd a b c d a b b a a ba b +++++++====+为正整数 ∴ 四位“和谐数”abcd 能被11整数 又∵,,,a b c d 为任意自然数, ∴任意四位“和谐数”都可以被11整除考点:新定义题型、代数的应用、一次函数的应用.【变式练习】(2015年某某舟,24,12分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)概念理解:如图1,在四边形ABCD 中,添加一个条件,使得四边形ABCD 是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;②如图2,小红画了一个Rt △ABC ,其中∠ABC=90°,AB=2,BC=1,并将Rt △ABC 沿∠B 的平分线'BB 方向平移得到'''A B C ,连结''AA BC ,. 小红要使平移后的四边形''ABC A 是“等邻边四边形”,应平移多少距离(即线段'BB 的长)? (3)应用拓展:如图3,“等邻边四边形”ABCD 中,AB=AD ,∠BAD+∠BCD=90°,AC ,BD 为对角线,2AC =.试探究BC ,CD ,BD 的数量关系.【答案】解:(1)DA AB =(答案不唯一). (2)①正确.理由如下:∵四边形的对角线互相平分,∴这个四边形是平行四边形.∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等.[中*%国教育^出版#网] ∴这个四边形是菱形.②∵∠ABC=90°,AB=2,BC=1,∴5AC =. ∵将Rt △ABC 平移得到'''A B C ,∴''BB AA =,'AB ∥AB ,''2,''1,''5A B AB B C BC A C AC ====== i )如答图1,当'2AA AB ==时,''2BB AA AB ===; ii )如答图2,当'''5AA A C ==''''5BB AA A C ===;iii )如答图3,当'''5A C BC ==''C B 交AB 于点D ,则''C B AB ⊥.∵'BB 平分ABC ∠,∴01'452ABB ABC ∠==.设'B D BD x ==,则'1,'2C D x BB =+= .在'Rt BC D ∆中,222''BD C D BC +=,∴()22215x x ++=,解得121,2x x==- (不合题意,舍去).∴'22BB x ==.iv )如答图4,当'2BC AB ==时,同ii )方法,设'B D BD x ==, 可得222''BD C D BC +=,即()22212x x ++=,解得12171722x x -+--== .∴142'22BB x -==.综上所述,要使平移后的四边形''ABC A 是“等邻边四边形”,应平移2或5或2或1422-的距离.(3)BC ,CD ,BD 的数量关系为2222BC CD BD +=.如答图5,∵AB AD =,∴将ADC 绕点A 旋转到ABF . ∴ADC ABF ≌.∴,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== .∴,1AC ADBAD CAF AF AB ∠=∠==.∴ACF ABD ∽.∴2CF ACBD AB ==.∴2CF BD =∵0360BAD ADC BCD ABC ∠+∠∠+∠=+, ∴()000036036090270ABC ADC BAD BCD ∠+∠=-∠∠=-=+.∴0270ABC ABF ∠+∠=.∴090CBF ∠=.∴()2222222BC CD CF BDBD +===.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用. 【分析】(1)根据定义,添加AB BC =或BC CD =或CD DA =或DA AB =即可(答案不唯一). (2)根据定义,分'2AA AB ==,'''5AA A C ==,'''5A C BC ==,'2BC AB ==四种情况讨论即可.(3)由AB AD =,可将ADC 绕点A 旋转到ABF ,构成全等三角形:ADC ABF ≌,从而得到,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== ,进而证明ACF ABD ∽得到2CF BD =,通过角的转换,证明090CBF ∠=,根据勾股定理即可得出2222BC CD BD +=.类型2:新定义图形例题1:(2015•某某某某,第24题14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)概念理解如图1,在四边形ABCD 中,添加一个条件使得四边形ABCD 是“等邻边四边形”.请写出你添加的一个条件. (2)问题探究①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。

2023年中考数学专题《 函数中的新定义问题》试卷含答案解析

2023年中考数学专题《 函数中的新定义问题》试卷含答案解析

考点1 一次函数新定义问题【例1】.定义:我们把一次函数y =kx +b (k ≠0)与正比例函数y =x 的交点称为一次函数y =kx +b (k ≠0)的“不动点”.例如求y =2x ﹣1的“不动点”:联立方程,解得,则y =2x ﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y =3x +2的“不动点”为 (﹣1,﹣1) ;(2)若一次函数y =mx +n 的“不动点”为(2,n ﹣1),求m 、n 的值;(3)若直线y =kx ﹣3(k ≠0)与x 轴交于点A ,与y 轴交于点B ,且直线y =kx ﹣3上没有“不动点”,若P 点为x 轴上一个动点,使得S △ABP =3S △ABO ,求满足条件的P 点坐标.解:(1)联立,解得,∴一次函数y =3x +2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y =mx +n 的“不动点”为(2,n ﹣1),∴n ﹣1=2,∴n =3,∴“不动点”为(2,2),∴2=2m +3,解得m =﹣;(3)∵直线y =kx ﹣3上没有“不动点”,∴直线y =kx ﹣3与直线y =x 平行,∴k =1,例题精讲∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,∴S△ABP=×|t﹣3|×3,S△ABO=×3×3,∵S△ABP=3S△ABO,∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是 0<a<9 .解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2 反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m= ﹣2 ,a= 3 ,b= 4 ;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为 x<0或x>4. .解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB 的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是 ;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是 2 ,点O与双曲线C1之间的距离是 ;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∵DH⊥BC,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S 为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF 和△SWG 是等腰直角三角形,∴SW =SG ,WF =OW ,∴SF =SW +WF =SG +OW =a +(b ﹣a )=(a +b ),∵EF====,∵OF =OW =(b ﹣a ),∴OE =(b ﹣a )+,设b ﹣a =m (m >0),则OE =m +≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE =2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3 二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y =﹣(|x |﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质: 函数图象关于y轴对称 ;②方程﹣(|x|﹣1)2=﹣1的解为: x=﹣2或x=0或x=2 ;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是 ﹣1<m<0 .(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是( )A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是 y=x ;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是  .解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,又∵S△GFE=GI•(x E﹣x F),设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为( )A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为 (,)或(﹣,﹣) .解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是 y=﹣2x﹣1 .解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是 C .A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;。

中考数学专题复习《新定义问题》专项检测(含答案)

中考数学专题复习《新定义问题》专项检测(含答案)

新定义问题1. 定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A. [x ]=x (x 为整数)B. 0≤x -[x ]<1C. [x +y ]≤[x ]+[y ]D. [n +x ]=n +[x ](n 为整数)2.对于两个不相等的实数a ,b ,我们规定符号max{a ,b }表示a ,b 中较大的数,如:max{2,4}=4.按照这个规定,方程max{x ,-x }=2x +1x的解为( )A. 1- 2B. 2- 2C. 1-2或1+ 2D. 1+2或-13.定义运算:a ⊗b =a (1-b ).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③(a ⊗a )+(b ⊗b )=2ab ;④若a ⊗b =0,则a =0或b =1.其中结论正确的序号是( )A. ①④B. ①③C. ②③④D. ①②④4. 对于实数m ,n ,定义一种运算“※”:m ※n =m 2-mn -3.下列说法错误的是( )A. 0※1=-3B. 方程x ※2=0的根为x 1=-1,x 2=3C. 不等式组⎩⎪⎨⎪⎧1※t <0(-3)※t <0无解D. 函数y =x ※(-2)的顶点坐标是(1,-4)5. 用“♥”定义一种新运算.对于任意实数m ,n 和抛物线y =ax 2,当y =ax 2♥(m ,n )后都可以得到y =a (x -m )2+n .当y =2x 2♥(3,4)后都可以得到y =2(x -3)2+4.函数y =x 2♥(1,n )得到的函数如图所示,n=________. 第5题图6. 4个数a ,b ,c ,d 排列成⎪⎪⎪⎪⎪⎪⎪⎪a b c d ,我们称之为二阶行列式.规定它的运算法则为:⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若⎪⎪⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x =________.7. 新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”.若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1x -1+1m =1的解为________.8. 对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数..时,若n -12≤x <n +12,则x n =,如0.460,3.674==给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是9≤x <11; ④当x ≥0,m 为非负整数时,有20132013m x m x +=+;⑤x y x y +=+.其中,正确的结论有________(填写所有正确的序号). 9.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”. 以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号)①方程x 2-x -2=0是倍根方程;②若(x -2)(mx +n )=0是倍根方程,则4m 2+5mn +n 2=0; ③若点(p ,q )在反比例函数y =2x的图象上,则关于x 的方程px 2+3x +q =0是倍根方程;④若方程ax 2+bx +c =0是倍根方程,且相异两点M (1+t ,s ),N (4-t ,s )都在抛物线y =ax 2+bx +c 上,则方程ax 2+bx +c =0的一个根为54.10.在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:若y ′=⎩⎪⎨⎪⎧y (x ≥0)-y (x <0),则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(-1,3)的“可控变点”为点(-1,-3).(1)若点(-1,-2)是一次函数y =x +3图象上点M 的“可控变点”,则点M 的坐标为________.(2)若点P 在函数y =-x 2+16(-5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是-16≤y ′≤16,则实数a 的取值范围是________. 【答案】专题四 新定义问题1. C 【解析】对于A 选项,取x =2,[2]=2,成立;对于B 选项,取x =3.5,3.5-[3.5]=3.5-3=0.5<1,成立;对于C 选项,x =2.5,y =3.5,则[x +y ]=[6]=6,[x ]+[y ]=2+3=5,6>5,故选项C 错误;对于D 选项,n =2,x =3.5, [2+3.5]=[5.5]=5,2+[3.5]=2+3=5,成立.故答案选择C.2. D 【解析】分类讨论:(1)当x >-x ,即x >0时,max{x ,-x }=x ,即x =2x +1x,∴x 2-2x -1=0,解得x 1=1-2<0(舍去),x 2=1+2;(2)当x <-x ,即x <0时,max{x ,-x }=-x ,即-x =2x +1x,∴x 2+2x +1=0,解得x 1=x 2=-1<0,符合题意.综上所述,符合题意的方程的解是1+2或-1. 3. A 【解析】合题意;B. 方程x ※2=0即为x 2-2x -3=0,解得x 1=-1,x 2=3,正确,故本选项不符合题意;C.不等式组⎩⎪⎨⎪⎧1※t <0(-3)※t <0即为⎩⎪⎨⎪⎧1-t -3<09+3t -3<0,即⎩⎪⎨⎪⎧t >-2t <-2无解,正确,故本选项不符合题意;D. 函数y =x ※(-2)即为y =x 2+2x -3=(x +1)2-4,顶点坐标为(-1,-4),错误,故本选项符合题意.5. 2 【解析】根据题意得y =x 2♥(1,n )是函数y =(x -1)2+n ;由图象得此函数的顶点坐标为(1,2),∴此函数的解析式为y =(x -1)2+2.∴n =2.6. 1 【解析】根据新定义规定的算法:⎪⎪⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,即(x +3)2-(x -3)2=12,整理得12x =12,解得x =1.7. x =53 【解析】根据“关联数”[3,m +2]所对应的一次函数是正比例函数,得到y =3x +m +2为正比例函数,即m +2=0,解得m =-2,则分式方程为1x -1-12=1,去分母得:2-(x -1)=2(x -1),去括号得:2-x +1=2x -2,解得x =53,经检验x =53是分式方程的解.8. ①③④ 【解析】9. ②③【解析】10. (-1,2);-5≤a≤4 2 【解析】(1)根据“可控变点”定义知它们的横坐标不变,∴M点的横坐标为-1.当横坐标为负数时,它们的纵坐标互为相反数.∴M(-1,2);(2)当P点的横坐标为负数时,其纵坐标的取值范围是-9≤y<16,则其“可控变点”的纵坐标为-16<y′≤9,符合-16≤y′≤16这一条件.当P点横坐标为非负数时,y′=y,因此只要y=-x2+16≥-16,即0≤x≤42,∴-5≤a≤4 2.。

2020九年级数学中考复习 新定义专题训练 含答案解析

2020九年级数学中考复习 新定义专题训练 含答案解析

2020九年级数学中考复习新定义专题训练一.选择题(共2小题)1.已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k ≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对2.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1二.填空题(共5小题)3.定义一种新运算:新定义运算a*b=a×(a﹣b)3,则3*4的结果是.4.已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.5.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为.6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,min{﹣2,﹣3}=﹣3,若min{(x+1)2,x2}=1,则x=.7.已知有理数a≠1,我们把为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是三.解答题(共8小题)8.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.9.若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.10.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.11.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)=(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+2x(x<0),f(﹣1)=+(﹣2)=﹣1,f(﹣2)=+(﹣4)=﹣(1)计算:f(﹣3)=,f(﹣4)=;(2)猜想:函数f(x)=+2x(x<0)是函数(填“增”或“减”);(3)请仿照例题证明你的猜想.12.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离“,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0.直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1,求出b的取值范围.13.在平面直角坐标系中,将一个点(横坐标与纵坐标不相等,且均不为0)的横坐标与纵坐标互换后得到的点叫做这个点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”(填“都能”或“都不能”)在一个反比例函数的图象上;(2)M、N是一对“互换点”,若点M的坐标为(2,﹣5),求直线MN的表达式;(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y =﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.14.在平面直角坐标系xOy中,点A(0,6),点B在x轴的正半轴上.若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X 矩形”.下图为点P,Q的“X矩形”的示意图.(1)若点B(4,0),点C的横坐标为2,则点B,C的“X矩形”的面积为.(2)点M,N的“X矩形”是正方形,①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围.15.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.2020年04月22专题新定义参考答案与试题解析一.选择题(共2小题)1.已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k ≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对【分析】根据“友好点”的定义知,函数y1图象上点A(a,﹣)关于原点的对称点B (﹣a,)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0 有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解答】解:设A(a,﹣),由题意知,点A关于原点的对称点B(﹣a,)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=1或a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.【点评】本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.2.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1【分析】由函数的不动点概念得出x1、x2是方程x2+2x+c=x的两个实数根,由x1<1<x2知△>0且x=1时y<0,据此得,解之可得.【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c =x的两个不相等实数根,且x1<1<x2,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根,且x1<1<x2,知△>0,令y=x2+x+c,画出该二次函数的草图如下:则,解得c<﹣2,故选:B.【点评】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c的不等式.二.填空题(共5小题)3.定义一种新运算:新定义运算a*b=a×(a﹣b)3,则3*4的结果是﹣3.【分析】根据a*b=a×(a﹣b)3,可以求得所求式子的值.【解答】解:∵a*b=a×(a﹣b)3,∴3*4=3×(3﹣4)3=3×(﹣1)3=3×(﹣1)=﹣3,故答案为:﹣3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4.已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为2.【分析】利用两平行线间的距离定义,在直线y=x上任意取一点,然后计算这个点到直线y=x﹣4的距离即可.【解答】解:当x=0时,y=x=0,即点(0,0)在直线y=x上,因为点(0,0)到直线y=x﹣4的距离为:d===2,因为直线y=x和y=x﹣4平行,所以这两条平行线之间的距离为2.故答案为2.【点评】此题考查了两条直线相交或平行问题,弄清题中求点到直线的距离方法是解本题的关键.考查了学生的阅读理解能力以及知识的迁移能力.5.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为x=3.【分析】首先根据题意可得y=x+m﹣2,再根据正比例函数的解析式为:y=kx(k≠0)可得m的值,把m的值代入关于x的方程,再解分式方程即可.【解答】解:根据题意可得:y=x+m﹣2,∵“关联数”[1,m﹣2]的一次函数是正比例函数,∴m﹣2=0,解得:m=2,则关于x的方程变为+=1,解得:x=3,检验:把x=3代入最简公分母2(x﹣1)=4≠0,故x=3是原分式方程的解,故答案为:x=3.【点评】此题主要考查了解分式方程,以及正比例函数,关键是求出m的值,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定注意要验根.6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,min{﹣2,﹣3}=﹣3,若min{(x+1)2,x2}=1,则x=1或﹣2.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:当(x+1)2<x2,即x<﹣时,方程为(x+1)2=1,开方得:x+1=1或x+1=﹣1,解得:x=0(舍去)或x=﹣2;当(x+1)2>x2,即x>﹣时,方程为x2=1,开方得:x=1或x=﹣1(舍去),综上,x=1或﹣2,故答案为:1或﹣2【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握运算法则是解本题的关键.7.已知有理数a≠1,我们把为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是﹣7.5【分析】求出数列的前4个数,从而得出这个数列以﹣2,,,依次循环,且﹣2+=﹣,再求出这100个数中有多少个周期,从而得出答案.【解答】解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,∴这个数列以﹣2,,,依次循环,且﹣2+=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣))﹣2=﹣=﹣7.5,故答案为﹣7.5.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三.解答题(共8小题)8.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.【分析】(1)先直接利用“极数”的意义写出三个,设出四位数n的个位数字和十位数字,进而表示出n,即可得出结论;(2)先确定出四位数m,进而得出D(m),再再根据完全平方数的意义即可得出结论.【解答】解:(1)根据“极数”的意义得,1287,2376,8712,任意一个“极数”都是99的倍数,理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴百位数字为(9﹣x),千位数字为(9﹣y),∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),∵x是0到9的整数,y是0到8的整数,∴100﹣10y﹣x是整数,∴99(100﹣10y﹣x)是99的倍数,即:任意一个“极数”都是99的倍数;(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)∴m=99(100﹣10y﹣x),∵m是四位数,∴m=99(100﹣10y﹣x)是四位数,即1000≤99(100﹣10y﹣x)<10000,∵D(m)==3(100﹣10y﹣x),∴30≤3(100﹣10y﹣x)≤303∵D(m)完全平方数,∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,∴3(100﹣10y﹣x)只有36,81,144,225这四种可能,∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.【点评】此题主要考查了完全平方数,新定义的理解和掌握,整除问题,掌握新定义和熟记300以内的完全平方数是解本题的关键.9.若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.【分析】(1)先求出二次函数的顶点坐标,再把求得的顶点坐标代入一次函数解析式求得P,进而求得一次函数与坐标轴的交点坐标,再根据三角形面积公式进行计算得结果;(2)根据函数y=x2+2x+n与x轴两个交点间的距离为4,列出n的方程求得n,再求出二次函数的顶点坐标,再将其顶点坐标代入一次函数解析式中求得m.【解答】解:∵y=x2﹣4,∴其顶点坐标为(0,﹣4),∵y=x2﹣4是y=﹣x+p的伴随函数,∴(0,﹣4)在一次函数y=﹣x+p的图象上,∴﹣4=0+p.∴p=﹣4,∴一次函数为:y=﹣x﹣4,∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),∴直线y=﹣x+p与两坐标轴围成的三角形的两直角边都为|﹣4|=4,∴直线y=﹣x+p与两坐标轴围成的三角形的面积为:.(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=﹣2,x1x2=n,∴,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴,解得,n=﹣3,∴函数y=x2+2x+n为:y=x2+2x﹣3=(x+1)2﹣4,∴其顶点坐标为(﹣1,﹣4),∵y=x2+2x+n是y=mx﹣3(m≠0)的伴随函数,∴﹣4=﹣m﹣3,∴m=1.【点评】本题是一个新定义阅读题,主要考查了新定义,二次函数的性质,一次函数的性质,求一次函数与坐标轴的交点,求二次函数与x轴的交点,三角形的面积,根与系数的关系,关键是根据新定义,求出二次函数的顶点坐标,代入一次函数中便可得结果.10.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)AC=BD,理由为:连接PD,PC,如图1所示,根据PE、PF分别为AD、BC的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB,利用SAS得到三角形ACB与三角形DPB全等,利用全等三角形对应边相等即可得证;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,由S四边形ACBD′=S△ACE﹣S△BED′,求出四边形ACBD′面积;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′面积即可.【解答】解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴P A=PD,PC=PB,∴∠P AD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠P AD,∠APC=2∠PBC,即∠P AD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE==,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.【点评】此题属于几何变换综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,垂直平分线定理,等腰三角形性质,以及矩形的判定与性质,熟练掌握判定与性质是解本题的关键.11.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)=(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+2x(x<0),f(﹣1)=+(﹣2)=﹣1,f(﹣2)=+(﹣4)=﹣(1)计算:f(﹣3)=﹣,f(﹣4)=﹣;(2)猜想:函数f(x)=+2x(x<0)是增函数(填“增”或“减”);(3)请仿照例题证明你的猜想.【分析】(1)根据题目中函数解析式可以解答本题;(2)由(1)结论可得;(3)根据题目中例子的证明方法可以证明(1)中的猜想成立.【解答】解:(1)∵f(x)=+2x(x<0),∴f(﹣3)=+2×(﹣3)=﹣,f(﹣4)=+2×(﹣4)=﹣故答案为:﹣,﹣;(2)∵﹣4<﹣3,f(﹣4)<f(﹣3)∴函数f(x)=+2x(x<0)是增函数,故答案为:增;(3)设x1<x2<0,∵f(x1)﹣f(x2)=+2x1﹣﹣2x2=(x1﹣x2)(2﹣)∵x1<x2<0,∴x1﹣x2<0,x1+x2<0,∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴函数f(x)=+2x(x<0)是增函数.【点评】本题考查函数的概念,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的性质解答.12.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离“,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=1;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0.直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1,求出b的取值范围.【分析】(1)根据新定义,转化为实际是求点D到点A的距离,当k=1时,求d(L,△ABC)实际是求两条平行线之间的距离,通过作垂线,转化为直角三角形用勾股定理求得;(2)若d(L,△ABC)=0就是求直线L与三角形ABC由公共点,可以先考虑仅有一个公共点时k的值,然后根据一次函数的性质,求得k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1就是求W到三角形ABC的距离小于或等于1,可以先求距离为1时的b的值,然后根据一次函数的性质,求得b的取值范围.【解答】解:(1)一次函数y=kx+2的图象与y轴交点D(0,2),d(点D,△ABC)表示点D到△ABC的最小距离,就是点D到点A的距离,即:AD=2﹣1=1,∴d(点D,△ABC)=1当k=1时,直线y=x+2,此时直线L与AB所在的直线平行,且△ABC和△DOE均是等腰直角三角形,d(L,△ABC)表示直线L到△ABC的最小距离,就是图中的AF,在等腰直角三角形ADF中,AD=1,AF=1×=d(L,△ABC)=故答案为:1,;(2)若d(L,△ABC)=0.说明直线L:y=kx+2与△ABC有公共点,因此有两种情况,即:k>0或k<0,仅有一个公共点时如图所示,即直线L 过B点,或过C点,此时可求出k=2或k=﹣2,根据直线L与△ABC有公共点,∴k≥2或k≤﹣2,答:若d(L,△ABC)=0时.k的取值范围为:k≥2或k≤﹣2.(3)函数y=x+b的图象W与x轴、y轴交点所围成的三角形是等腰直角三角形,并且函数y=x+b的图象与AB平行,当d(W,△ABC)=1时,如图所示:在△AGM中,AG=GM=1,则AM=,OM=1+,M(0,1+);即:b=1+;同理:OQ=OP=1+,Q(0,﹣1﹣),即:b=﹣1﹣,若d(W,△ABC)≤1,即b的值在M、N之间∴﹣1﹣≤b≤1+答:若d(W,△ABC)≤1,b的取值范围为﹣1﹣≤b≤1+.【点评】理解新定义的意义,将新定义的问题转化为数学问题是解决问题的关键,用特殊情况下计算结果,依据函数的性质进而推算出结果,是常用的方法,同时注意分类讨论的数学思想方法.13.在平面直角坐标系中,将一个点(横坐标与纵坐标不相等,且均不为0)的横坐标与纵坐标互换后得到的点叫做这个点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”都能(填“都能”或“都不能”)在一个反比例函数的图象上;(2)M、N是一对“互换点”,若点M的坐标为(2,﹣5),求直线MN的表达式;(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y =﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【分析】(1)根据乘法满足交换律即可求解;(2)根据“互换点”的意义求出点N的坐标,再利用待定系数法求出直线MN的表达式;(3)根据反比例函数图象上点的坐标特征可设A(k,﹣),由“互换点”的意义可得B(﹣,k),利用待定系数法求出直线AB的解析式,再将A、B的坐标代入y=x2+bx+c,即可求出此抛物线的表达式.【解答】解:(1)任意一对“互换点”都能在一个反比例函数的图象上.理由如下:设A(a,b)在反比例函数y=的图象上,则k=ab.根据“互换点”的意义,可知A(a,b)的“互换点”是(b,a).∵ba=ab=k,∴(b,a)也在反比例函数y=的图象上.故答案为:都能;(2)∵M、N是一对“互换点”,点M的坐标为(2,﹣5),∴N(﹣5,2).设直线MN的表达式为:y=kx+b,∴,解得:,∴直线MN的表达式为y=﹣x﹣3;(3)∵点A在反比例函数y=﹣的图象上,∴设A(k,﹣),∵A,B是一对“互换点”,∴B(﹣,k),设直线AB的解析式为y=mx+n,∵直线AB经过点P(,),∴,解得,∴A(2,﹣1),B(﹣1,2),或A(﹣1,2),B(2,﹣1).将A、B两点的坐标代入y=x2+bx+c,得,解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数、一次函数、二次函数图象上点的坐标特征,待定系数法求一次函数、二次函数的解析式,方程组的解法,理解“互换点”的意义是解题的关键.14.在平面直角坐标系xOy中,点A(0,6),点B在x轴的正半轴上.若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X 矩形”.下图为点P,Q的“X矩形”的示意图.(1)若点B(4,0),点C的横坐标为2,则点B,C的“X矩形”的面积为6.(2)点M,N的“X矩形”是正方形,①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围0<r<3﹣或r>.【分析】(1)根据点A、B的坐标,利用待定系数法可求出直线AB的函数表达式,代入x=2即可求出点C的坐标,再利用矩形的面积公式即可求出点B,C的“X矩形”的面积;(2)①根据正方形的性质可得出∠ABO=45°,结合点A的坐标可得出点B的坐标及直线AB的函数表达式,由点M到y轴的距离为3可得出点M的坐标,再由正方形的面积结合点M的坐标即可得出点N的坐标,进而可得出经过点N的反比例函数的表达式;②找出⊙O与点M,N的“X矩形”相交的最小、最大值,由此即可得出结论.【解答】解:(1)设直线AB的函数表达式为y=kx+b(k≠0),将A(0,6)、B(4,0)代入y=kx+b,得:,解得:,∴直线AB的函数表达式为y=﹣x+6.当x=2时,y=﹣x+6=3,∴点C的坐标为(2,3),∴点B,C的“X矩形”的面积=(4﹣2)×(3﹣0)=6.故答案为:6.(2)①∵点M,N的“X矩形”是正方形,∴∠ABO=45°,∴点B的坐标为(6,0),直线AB的函数表达式为y=﹣x+6.∵点M到y轴的距离为3,∴点M的坐标为(3,3).∵点M,N的“X矩形”的面积为4,∴点N的横坐标为3﹣2=1或3+2=5,∴点N的坐标为(1,5)或(5,1).∴经过点N的反比例函数的表达式为y=.②如图1,取AB的中点E,当点E为MN的中点时,⊙O与点M,N的“X矩形”相交有最小值,此时r=OE﹣MN=3﹣,∴0<r<3﹣;如图2,当点N与点B重合(或点M与点A重合)时,⊙O与点M,N的“X矩形”相交有最大值,∵MN=3,∴BF=MN=.在Rt△OBF中,OB=6,BF=,∴OF==,∴r>.故答案为:0<r<3﹣或r>.【点评】本题考查了待定系数法求一次(反比例)函数解析式、矩形的面积、正方形的性质以及勾股定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出直线AB 的函数表达式;(2)①根据正方形的性质找出直线AB的函数表达式;②画出图形,利用数形结合解决问题.15.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【分析】(1)AB=AC,AD是△ABC的角平分线,又AD⊥BC,则∠ADB=90°,则∠F AB与∠EBA互余,即可求解;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)证明△DBQ∽△ECN,即可求解.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.【点评】本题为四边形综合题,涉及到直角三角形中线定理、三角形相似等知识点,这种新定义类题目,通常按照题设顺序逐次求解,较为容易.。

九年级数学上册第2章小专题8_古代数学问题及新定义问题(北师大版)

九年级数学上册第2章小专题8_古代数学问题及新定义问题(北师大版)

小专题8古代数学问题及新定义问题类型1古代数学问题1.《九章算术》卷九“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈. 问户高、广各几何?”译文:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?(1丈=10尺,1尺=10寸).设长方形门的宽为x尺,可列方程为 .2.《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会. 问甲、乙行各几何?”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为7步/秒,乙的速度为3步/秒.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲走了步.3.印度古算书中有这一首诗:“一群猴子分两队,高高兴兴在游戏.八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮.告我总数共多少,两队猴子在一起.”你能解决这个问题吗?4.(教材P39“读一读”变式)阅读材料,回答下列问题:阿尔·花拉子密(约780~约850),著名数学家、天文学家、地理学家,是代数与算术的整理者,被誉为“代数之父”.他用以下方法求得一元二次方程22350+-=的解:x x将边长为x的正方形和边长为1的正方形,外加两个长方形,长为x、宽为1,拼合在一起的面积就是22111x x+-=变形得+⨯⨯+⨯,而由22350x x221=351x+的正方形面积为36.+++(如图所示),即右边边长为1x x所以2则.+==(1)36,5x x运用上述方程构造出符合方程2890+-=的一个正根的正方形.x x5.《算学宝鉴》全称《新集通证古今算学宝鉴》,完成于明嘉靖三年(1524年),王文素著,全书12本42卷,近50万字,代表了我国明代数学的最高水平.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,只云阔不及长十二步,问长阔各几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽各是多少步?类型2 新定义问题6.(南阳宛城区期末)在实数范围内定义一种运算“○×”,其规则为a ○×225b a b a =--,则方程(2)x +×0=的所有解的和为 . 7.对于实数,p q 我们用符号min {,p q }表示,p q 两数中较小的数,如min {1,2}=1,因此,min {}= ;若min {22(1),x x -}=1,则x = . 8.(乐山中考)对于函数n m y x x =+,我们定义11n m y nx mx --'=+(m ,n 为常数).例如42y x x =+,则342y x x '=+.已知:3221(1)3y x m x m x =+-+ . (1)若方程y '=0有两个相等的实数根,则m 的值为 .(2)若方程14y m '=-有两个正数根,则m 的取值范围为 .参考答案1. 222( 6.8)10x x ++=2. 24.53.解:设有x 只猴子,由题意,得2112=8x x +(),整理,得2647680x x -+=,解得12=16=48x x ,.答:这群猴子的总数为16只或48只.4.略5.解设矩形长为x 步,则宽为12x -()步.依题意,得12=864x x -(),解得12=36=24x x ,﹣(舍去)∴12=24x -.答:该矩形长36步,宽24步.6. 17. 21-或8.(1) 12 (2)3142m m ≤且≠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新定义问题1.(大兴18期末28)一般地,我们把半径为1的圆叫做单位圆,在平面直角坐标系xOy 中,设单位圆的圆心与坐标原点O 重合,则单位圆与x 轴的交点分别为(1,0),(-1,0),与y 轴的交点分别为(0,1),(0,-1).在平面直角坐标系xOy 中,设锐角α的顶点与坐标原点O 重合,α的一边与x 轴的正半轴重合,另一边与单位圆交于点P 11(,)x y ,且点P 在第一象限.(1)1x =_ __ (用含α的式子表示);1y =____ _ (用含α的式子表示); (2)将射线OP 绕坐标原点O 按逆时针方向旋转90︒后与单位圆交于点22(,)Q x y .①判断1y 2与的数量关系,并证明;x②12y y +的取值范围是:_ ___.28.(1)cos α;……………………………….……………………….1分sin α;……………………..……………………………………2分(2)①12y x 与的数量关系是:1y 2=-x ;……………….…3分证明:过点P 作PF ⊥x 轴于点F ,过点Q 作QE ⊥x 轴于点E .90PFO QEO ∴∠=∠=︒90POF OPF ∴∠+∠=︒ PO OQ ⊥90POF QOE ∴∠+∠=︒ QOE OPF ∴∠=∠ PO OQ ==1∴△QOE ≌△OPF …………………………………………5分 .PF OE ∴=11(,)P x y , Q 22(,)x y12∴=y x∵Q 在第二象限,P 在第一象限 ∴1y >0, 2x <0∴1y =2-x …………………………………………………6分②121+y y <≤分2.(东城18期末28)对于平面直角坐标系xOy中的点M和图形G,若在图形G上存在一点N,使M,N两点间的距离等于1,则称M为图形G的和睦点.(1)当⊙O的半径为3时,在点P1(1,0),P2),P3(72,0),P4(5,0)中,⊙O的和睦点是________;(2)若点P(4,3)为⊙O的和睦点,求⊙O 的半径r的取值范围;(3)点A在直线y=﹣1上,将点A向上平移4个单位长度得到点B,以AB为边构造正方形ABCD,且C,D两点都在AB右侧.已知点E22,若线段OE上的所有点都是正方形ABCD的和睦点,直接写出点A的横坐标Ax的取值范围.3.(昌平18期末28)对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≥,则称1d 为点P 的最大距离;若12d d <,则称为点P 的最大距离.例如:点P (3-,4)到到x 轴的距离为4,到y 轴的距离为3,因为3 < 4,所以点P 的最大距离为4.(1)①点A (2,5-)的最大距离为 ;②若点B (a ,2)的最大距离为5,则a 的值为 ;(2)若点C 在直线2y x =--上,且点C 的最大距离为5,求点C 的坐标;(3)若⊙O 上存在..点M ,使点M 的最大距离为5,直接写出⊙O 的半径r 的取值范围.28.解:(1)①5……………………… 1分②5±……………………… 3分 (2)∵点C 的最大距离为5,∴当5x <时,5y =±,或者当5y <时,5x =±. ………………4分2d分别把5x =±,5y =±代入得: 当5x =时,7y =-,当5x =-时,3y =,当5y =时,7x =-,当5y =-时,3x =,∴点C (5-,3)或(3,5-).……………………… 5分 (3)552r ≤≤…………………………………7分4.(朝阳18期末28)在平面直角坐标系xOy 中,点A (0, 6),点B 在x 轴的正半轴上. 若点P ,Q 在线段AB 上,且PQ 为某个一边与x 轴平行的矩形的对角线,则称这个矩形为点P ,Q 的“X 矩形”. 下图为点P ,Q 的“X 矩形”的示意图. (1)若点B (4,0),点C 的横坐标为2,则点B ,C 的“X 矩形”的面积为 . (2)点M ,N 的“X 矩形”是正方形,①当此正方形面积为4,且点M 到y 轴的距离为3时,写出点B 的坐标,点N 的坐标及经过点N 的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r 的⊙O 与它没有交点,直接写出r 的取值范围 .备用图5.(海淀18期末27)对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C 交于点Q (点Q 可以与点P 重合),且12PAQA≤≤,则点P 称为点A 关于⊙C 的“生长点”. 已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P的坐标________; (2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan 2BAO ∠=,求点B 的纵坐标t 的取值范围;(3)直线3y x b =+与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在点A 关于⊙O的“生长点”,直接写出b 的取值范围是_____________________________.27.解:(1)(2,0)(答案不唯一). ………………1分 (2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,且使得1tan 2OAM ∠=,并在AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N '',则由题意,线段MN 和M N ''上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴ ∠MHA =90°,即∠OAM +∠AMH =90°. ∵ AC 是⊙O 的直径,∴ ∠AMC =90°,即∠AMH +∠HMC =90°. ∴ ∠OAM =∠HMC .∴ 1tan tan 2HMC OAM ∠=∠=. ∴12MH HC HA MH ==. 设MH y =,则2AH y =,12CH y =, ∴ 522AC AH CH y =+==,解得45y =,即点M 的纵坐标为45.又由2AN AM =,A 为(-1,0),可得点N 的纵坐标为85,故在线段MN 上,点B 的纵坐标t 满足:4855t ≤≤. ……………3分由对称性,在线段M N ''上,点B 的纵坐标t 满足:8455t -≤≤-.……………4分∴ 点B 的纵坐标t 的取值范围是8455t -≤≤-或4855t ≤≤.(3)41b -≤≤-或14b ≤≤ ………………7分6.(石景山18期末28)在平面直角坐标系xOy 中,点P 的坐标为),(11y x ,点Q 的坐标为),(22y x ,且21x x ≠,21y y ≠,若PQ 为某个等腰三角形的腰,且该等腰三角形的底边与x 轴平行,则称该等腰三角形为点P ,Q 的“相关等腰三角形”.下图为点P ,Q 的“相关等腰三角形”的示意图....(1)已知点A 的坐标为)1,0(,点B 的坐标为)0,3(-,则点A ,B 的“相关等腰三角形”的顶角为_________°;(2)若点C 的坐标为)3,0(,点D 在直线34=y 上,且C ,D 的“相关等腰三角形”为等边三角形,求直线CD 的表达式;(3)⊙O 的半径为2,点N 在双曲线xy 3-=上.若在⊙O 上存在一点M ,使得点M 、N 的“相关等腰三角形”为直角三角形,直接写出点N 的横坐标N x 的取值范围.28. (本小题满分8分)解:(1)120º; …………………………………………………………………2分 (2)∵C ,D 的“相关等腰三角形”为等边三角形,底角为60°,底边与x 轴平行,∴直线CD 与x 轴成60°角,与y 轴成30°角,通过解直角三角形可得D 的坐标为)343(,或)343(,-,进一步得直线CD 的表达式为33+=x y 或33+-=x y . …………………………………………5分(3)31N x -≤≤-或13N x ≤≤. ……………………8分7.(西城18期末28)在平面直角坐标系xOy 中,A ,B 两点的坐标分别为(2,2)A ,(2,2)B -.对于给定的线段AB 及点P ,Q ,给出如下定义:若点Q 关于AB 所在直线的对称点Q '落在△ABP 的内部(不含边界),则称点Q 是点P 关于线段AB 的内称点.(1)已知点(4,1)P -.①在1(1,1)Q -,2(1,1)Q 两点中,是点P 关于线段AB 的内称点的是____________; ②若点M 在直线1y x =-上,且点M 是点P 关于线段AB 的内称点,求点M 的横坐标M x 的取值范围;(2)已知点(3,3)C ,⊙C 的半径为r ,点(4,0)D ,若点E 是点D 关于线段AB 的内称点,且满足直线DE 与⊙C 相切,求半径r 的取值范围.8.(丰台18期末28)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C 外一点P 到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”. (1)当⊙O 的半径为1时,①在点P 1(12,P 2(0,-2),P 30)中,⊙O 的“离心点”是 ;②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B .如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.28.解:(1)①2P ,3P ; ……2分②设P (m ,-m +3),则()5322=+-+m m . …3分解得11=m ,22=m . ……4分 故1≤m ≤2. ……6分(2)圆心C 纵坐标C y 的取值范围为:521-≤C y <51-或3<C y ≤4. ……8分9.(怀柔18期末28)在平面直角坐标系xOy 中,点P 的横坐标为x ,纵坐标为2x ,满足这样条件的点称为“关系点”.(1)在点A (1,2)、B (2,1)、M (,1)、N (1,)中,是“关系点”的 ; (2)⊙O 的半径为1,若在⊙O 上存在“关系点”P ,求点P 坐标; (3)点C 的坐标为(3,0),若在⊙C 上有且只有一个......“关系点”P ,且“关系点”P 的横坐标满足-2≤x≤2.请直接写出⊙C 的半径r 的取值范围.28.解:(1)A 、M . ……………………………………………………………………………………2分 (2)过点P 作PG ⊥x 轴于点G …………………………………………………………………3分 设P (x ,2x )∵OG 2+PG 2=OP 2 ………………………………………………………………………………4分 ∴x 2+4x 2=1 ∴5x 2=1 ∴x 2=∴x =∴P (,)或P (,)……………………………………………………5分(3)r =或…………………………………………………………7分4117≤<r10.(平谷18期末28)在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.(1)以O为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”;(2)点M,N是一对“互换点”,点M的坐标为(m,n),且(m>n),⊙P经过点M,N.①点M的坐标为(4,0),求圆心P所在直线的表达式;②⊙P的半径为5,求m-n的取值范围.28.解:(1)答案不唯一,如:(4,3),(3,4); (2)(2)①连结MN,∵OM=ON=4,∴Rt△OMN是等腰直角三角形.过O作OA⊥MN于点A,∴点M,N关于直线OA对称. (3)由圆的对称性可知,圆心P在直线OA上. (4)∴圆心P所在直线的表达式为y=x. (5)②当MN为⊙P直径时,由等腰直角三角形性质,可知m-n=52 (6)当点M,N重合时,即点M,N横纵坐标相等,所以m-n=0; (7)∴m-n的取值范围是0<m-n≤52 (8)11.(密云18期末28)已知在平面直角坐标系xOy 中的点P 和图形G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点. (1)当O 的半径为1时,①点11(,0)2P ,2P ,3(0,3)P 中,O 的关联点有_____________________. ②直线经过(0,1)点,且与y 轴垂直,点P 在直线上.若P 是O 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.备用图 备用图28.(1)12P P 、 ………………2分(2)如图,以O 为圆心,2为半径的圆与直线y=1交于12,P P 两点.线段12PP 上的动点P (含端点)都是以O 为圆心,1为半径的圆的关联点.故此33x -≤≤…………………………………………………………6分(3)由已知,若P 为图形G 的关联点,图形G 必与以P 为圆心1为半径的圆有交点. 正方形ABCD 边界上的点都是某圆的关联点∴ 该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O 为圆心,3为半径的圆;符合题意的半径最小的圆是以O 为圆心,1 为半径的圆.综上所述,2213r ≤≤ .………………………………………………..8分12.(门头沟18期末28)以点P 为端点竖直向下的一条射线PN ,以它为对称轴向左右对称摆动形成了射线1PN ,2PN ,我们规定:12N PN ∠为点P 的“摇摆角”, 射线PN 摇摆扫过的区域叫作点P 的“摇摆区域”(含1PN ,2PN ). 在平面直角坐标系xOy 中,点(2,3)P .(1)当点P 的摇摆角为60︒时,请判断(0,0)O 、(1,2)A 、(2,1)B 、(230)C 属于点P 的摇摆区域内的点是______________________(填写字母即可);(2)如果过点(1,0)D ,点(5,0)E 的线段完全在点P 的摇摆区域内,那么点P 的摇摆角至少为_________°;(3)⊙W 的圆心坐标为(,0)a ,半径为,如果⊙W 上的所有点都在点P 的摇摆角为60︒ 时的摇摆区域内,求a 的取值范围.备用图28.(本小题满分8分)解:(1)点B ,点C ; …………………………………………2分 (2)90°………………………………………………………3分 (3)当⊙W 运动到摇摆角的内部,与PF 左边的射线相切时如图28-1∵点(2,3)P 的摇摆角为60° ∴30KPF ∠=︒,3PF =在Rt △PFK 中, tan tan 30KFKPF PF∠=∠︒=在可求得KF = ∵30KPF ∠=︒, ∴60PKF ∠=︒在Rt △PFK 中, sin sin 60QW QKF KW∠=∠︒=,可求得233KW =∴212332333OW OF KF KW =-+== 当⊙W 运动到摇摆角的内部,与PF 右边的射线相切时如图28-2 同理可求得133OW ∴1123333a ≤≤说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

相关文档
最新文档