生物化学第六章

合集下载

生物化学 第六章生物氧化

生物化学 第六章生物氧化

1生物化学第六章生物氧化生物化学第六章生物氧化1.相对浓度升高时可加速氧化磷酸化的物质是 A.FAD B.UTP C.NADPH D.NADP+ E.ADP2.线粒体中呼吸链的排列顺序哪个是正确的 A.NADH-FMN-CoQ-Cyt-O 2 B.ADH 2-NAD +-CoQ-Cyt-O 2 C.FADH 2-FAD-CoQ-Cyt-O 2 D.NADH-FAD-CoQ-Cyt-O 2 E.NADH-CoQ-FMN-Cyt-O 23.2H 经过琥珀酸氧化呼吸链传递可产生的ATP 数为 A.1.5 B.2.5 C.4 D.6 E.124.体内细胞色素C 直接参与的反应是 A.叶酸还原 B.糖酵解 C.肽键合成 D.脂肪酸合成 E.生物氧化5.大多数脱氢酶的辅酶是 A.NAD + B.NADP + C.CoA D.Cyt c E.FADH 26.电子按下列各途径传递,能偶联磷酸化的是 A.Cyt —Cytaa 3 B.CoQ--Cytb C.Cytaa 3—O 2D.琥珀酸--FADE.FAD —CoQ7.生命活动中能量的直接供体是 A.三磷酸腺苷 B.脂肪酸 C.氨基酸 D.磷酸肌酸 E.葡萄糖8.下列化合物不属高能化合物的是 A.1,3-二磷酸甘油酸 B.乙酰CoA C.AMPD.氨基甲酰磷酸E.磷酸烯醇式丙酮酸9.每mol 高能键水解时释放的能量大于 A.5KJB.20KJC.21KJD.40KJE.51KJ10.关于ATP在能量代谢中的作用,错误的是A.ATP是生物能量代谢的中心B.ATP可转变为其他的三磷酸核苷C.ATP属于高能磷酸化合物D.ATP与磷酸肌酸之间可以相互转变E.当ATP较富余时,磷酸肌酸将-P转移给ADP生成ATP11.氰化物中毒抑制的是A.细胞色素 bB.细胞色素cC.细胞色素clD.细胞色素aa3E.辅酶Q12.氰化物的中毒机理是A.大量破坏红细胞造成贫血B.干扰血红蛋白对氧的运输C.抑制线粒体电子传递链D.抑制呼吸中枢,使通过呼吸摄入氧量过低E.抑制ATP合酶的活性-.CO中毒是由于A.使体内ATP生成量减少B.解偶联作用C.使Cytaa3丧失传递电子的能力,呼吸链中断D.使ATP水解为ADP和Pi的速度加快E.抑制电子传递及ADP的磷酸化14.下列化合物中除哪一项外都是呼吸链的组成成分A.CoQB.CytbC.CoAD.NAD+E.aa315.生物体内ATP最主要的来源是A.糖酵解B.TCA循环C.磷酸戊糖途径D.氧化磷酸化作用E.糖异生16.通常生物氧化是指生物体内A.脱氢反应B.营养物氧化成H2O和CO2的过程C.加氧反应D.与氧分子结合的反应E.释出电子的反应17.下列有关氧化磷酸化的叙述,错误的是A.物质在氧化时伴有ADP磷酸北生成ATP的过程B.氧化磷酸化过程存在于线粒体内C.P/O可以确定ATP的生成数D.氧化磷酸化过程有两条呼吸链E.电子经呼吸链传递至氧都产生3分子ATP2生物化学第六章生物氧化18.体内CO2来自A.碳原子被氧原子氧化B.呼吸链的氧化还原过程C.有机酸的脱羧D.糖原的分解E.真脂分解19.线粒体氧化磷酸化解偶联是意味着A.线粒体氧化作用停止B.线粒体膜ATP酶被抑制C.线粒体三羧酸循环停止D.线粒体能利用氧,但不能生成ATPE.线粒体膜的钝化变性20.各种细胞色素在呼吸链中传递电子的顺序是A.a→a3→b→c1→c→1/2O2B.b→a→a3→c1→c→1/2O2C.c1→c→b→a→a3→1/2O2D.c→c1→aa3→b→1/2O2E.b→c1→c→aa3→1/2O221.细胞色素b,c1,c和P450均含辅基A.Fe3+B.血红素CC.血红素AD.原卟啉E.铁卟啉22.下列哪种蛋白质不含血红素A.过氧化氢酶B.过氧化物酶C.细胞色素bD.铁硫蛋白E.肌红蛋白23.劳动或运动时ATP因消耗而大量减少,此时A.ADP相应增加,ATP/ADP下降,呼吸随之加快B.ADP相应减少,以维持ATP/ADP恢复正常C.ADP大量减少,ATP/ADP增高,呼吸随之加快D.ADP大量磷酸化以维持ATP/ADP不变E.以上都不对24.人体活动主要的直接供能物质是A.葡萄糖B.脂肪酸C.磷酸肌酸D.GTPE.ATP25.氰化物中毒时,被抑制的是A.Cyt bB.Cyt C1C.Cyt CD.Cyt aE.Cyt aa326.肝细胞胞液中的NADH进入线粒体的机制是A.肉碱穿梭B.柠檬酸-丙酮酸循环C.α-磷酸甘油穿梭3生物化学第六章生物氧化D.苹果酸-天冬氨酸穿梭E.丙氨酸-葡萄糖循环27.能直接将电子传递给氧的细胞色素是A.Cyt aa3B.Cyt bC.Cyt c1D.Cyt cE.Cyt b128.生物氧化的底物是A.无机离子B.蛋白质C.核酸D.小分子有机物E.脂肪29.2,4-二硝基苯酚抑制细胞的功能,可能是由于阻断下列哪一种生化作用而引起A.NADH脱氢酶的作用B.电子传递过程C.氧化磷酸化D.三羧酸循环E.以上都不是30.呼吸链的各细胞色素在电子传递中的排列顺序是A.c1→b→c→aa3→O2B.c→c1→b→aa3→O2C.c1→c→b→aa3→O2D.b→c1→c→aa3→O2E.b→c→c1→aa3→O231.下列哪种物质抑制呼吸链的电子由NADH向辅酶Q的传递:A.抗霉素AB.鱼藤酮C.一氧化碳D.硫化氢E.氰化钾32.下列哪个不是呼吸链的成员之一:A.CoQB.FADC.生物素D.细胞色素CE.Cyt aa333.ATP从线粒体向外运输的方式是:A.简单扩散B.促进扩散C.主动运输D.外排作用E.内吞作用34.生物体直接的供能物质是:A.ATPB.脂肪C.糖D.周围的热能E.阳光4生物化学第六章生物氧化35.肌肉中能量的主要贮存形式是下列哪一种?A.ADPB.磷酸烯醇式丙酮酸C.cAMPD.ATPE.磷酸肌酸36.近年来关于氧化磷酸化的机制是通过下列哪个学说被阐述的?A.巴士德效应B.化学渗透学说C.华伯氏学说D.共价催化理论E.中间产物学说37.线粒体呼吸链的磷酸化部位可能位于下列哪些物质之间?A.辅酶Q和细胞色素bB.细胞色素b和细胞色素CC.丙酮酸和NAD+D.FAD和黄素蛋白E.细胞色素C和细胞色素aa338.代谢中产物每脱下两个氢原子经典型呼吸链时产生A.水和释放能量B.一分子水和三分子ATPC.一分子水和两分子ATPD.一分子水和两分子ATP或三分子ATPE.乳酸和水39.何谓P/O比值A.每消耗一摩尔氧所消耗无机磷的克原子数B.每消耗一摩尔氧所消耗的无机磷克数C.每合成一摩尔氧所消耗ATP摩尔数D.每消耗一摩尔氧所消耗无机磷摩尔数E.以上说法均不对40.有关电子传递链的叙述,错误的是A.链中的递氢体同时也是递电子体B.电子传递的同时伴有ADP的磷酸化C.链中的递电子体同时也是递氢体D.该链中各组分组成4个复合体E.A+D41.在离体肝线粒体悬液中加入氰化物,则1分子β—羟丁酸氧化的P/O比值为A.0B.1C.2D.3E.442.甲亢病人,甲状腺分泌增高,不会出现:A.ATP合成增多B.ATP分解增快C.耗氧量增多D.呼吸加快E.氧化磷酸化反应受抑制43.呼吸链中的递氢体是A.尼克酰胺B.黄素蛋白5生物化学第六章生物氧化C.铁硫蛋白D.细胞色素E. 苯醌44.氧化磷酸化的解偶联剂是A.异戊巴比妥B.寡霉素C.铁鳌合剂D.COE.二硝基酚45.细胞色素氧化酶的抑制剂是A.异戊巴比妥B.寡霉素C.铁鳌合剂D.COE.二硝基酚46.可与ATP合成酶结合的物质是A.异戊巴比妥B.寡霉素C.铁鳌合剂D.COE.二硝基酚47.β-羟丁酸脱下的氢经呼吸链传递,最终将电子传递给A.细胞色素aa3B.H2OC.H+D.O2E.H2O+O248.ATP合成部位在A.线粒体外膜B.线粒体内膜C.线粒体膜间腔D.线粒体基质E.线粒体内膜F1-F0复合体49.体内肌肉能量的储存形式是A.CTPB.ATPC.磷酸肌酸D.磷酸烯醇或丙酮酸E.所有的三磷酸核苷酸50.细胞色素在呼吸链中传递电子的顺序是A.a→a3→b→c1→cB.b→a→a3→c1→cC.b→c1→c→aa3D.c1→c→b→a→a3E.c→c1→aa3→b51.运动消耗大量ATP时A.ADP增加,ATP/ADP比值下降,呼吸加快B.ADP减少,ATP/ADP比值恢复正常C.ADP大量减少,ATP/ADP比值增高,呼吸加快D.ADP大量磷酸化,以维持ATP/ADP比值不变E.以上都不对6生物化学第六章生物氧化52.对氧化磷酸化有调节作用的激素是A.甲状腺素B.肾上腺素C.肾皮质素D.胰岛素E.生长素53.线粒体内膜两侧形成质子梯度的能量来源是A.ATP水解B.磷酸肌酸水解C.电子传递链在传递电子时所释放的能量D.磷酸烯醇式丙酮酸E.磷酸酐54.氰化物中毒致死的原因是A.抑制了肌红蛋白的Fe3+B.抑制了血红蛋白的Fe3+C.抑制了Cyt b中的Fe3+D.抑制了Cyt c中的Fe3+E.抑制了Cyt aa3中的Fe3+55.细胞色素在呼吸链中传递电子的顺序是A.a→a3→b→c→c1B.a3→b→c→c1→aC.b→c1→c→aa3D.b→c1→c→aa3E.c1→c→aa3→b56.通常,生物氧化是指生物体内A.脱氧反应B.营养物氧化成H2O和CO2的过程C.加氧反应D.与氧分子结合的反应E.释出电子的反应57.CO和氰化物中毒致死的原因是A.抑制Cytc中Fe3+B.抑制Cytaa3中Fe3+C.抑制Cytb中Fe3+D.抑制血红蛋白中Fe3+E.抑制Cytc1中Fe3+58.能使氧化磷酸化减慢的物质是A.ATPB.ADPC.CoASHD.还原当量E.琥珀酸59.有关P∕O比值的叙述正确的是A.是指每消耗1mol氧分子所消耗的无机磷的摩尔数B.是指每消耗1mol氧分子所消耗的ATP的摩尔数C.是指每消耗1mol氧原子所消耗的无机磷的摩尔数D.P∕O比值不能反映物质氧化时生成ATP的数目E.P∕O比值反映物质氧化时生成NAD﹢的数目60.各种细胞色素在呼吸链中的排列顺序是A.c→b1→c1→aa3→O2B.c→c1→b→aa3→O2C.c1→c→b→aa3→O27生物化学第六章生物氧化D.b→c1→c→aa3→O2E.c→b1→b→aa3→O261.线粒体外NADH经α-磷酸甘油穿梭作用进入线粒体进行氧化磷酸化,产生几分子ATPA.0B.1C.2D.3E.4-.CO中毒是由于A.使体内ATP生成量减少B.解偶联作用C.抑制电子传递及ADP的磷酸化D.使ATP水解为ADP和Pi的速度加快E.使Cytaa3丧失传递电子的能力,呼吸链中断63.正常生理条件下控制氧化磷酸化的主要因素是A.O2的水平B.ADP的水平C.线粒体内膜的通透性D.底物水平E.酶的活力64.2H经过琥珀酸氧化呼吸链传递可产生的ATP数为A.1.5B.3C.4D.6E.1265.2H经过NADH氧化呼吸链传递可产生的ATP数为A.2B.2.5C.4D.6E.1266.线粒体中呼吸链的排列顺序哪个是正确的A.NADH-FMN-CoQ-Cyt-O2B.FADH2-NAD+-CoQ-Cyt-O2C.FADH2-FAD-CoQ-Cyt-O2D.NADH-FAD-CoQ-Cyt-O2E.NADH-CoQ-FMN-Cyt-O267.氰化物中毒时被抑制的细胞色素是A.细胞色素b560B.细胞色素b566C.细胞色素c1D.细胞色素cE.细胞色素aa368.细胞色素aa3除含有铁以外,还含有A.锌B.锰C.铜D.镁E.钾8生物化学第六章生物氧化69.呼吸链存在于A.细胞膜B.线粒体外膜C.线粒体内膜D.微粒体E.过氧化物酶体70.呼吸链中可被一氧化碳抑制的成分是A.FADB.FMNC.铁硫蛋白D.细胞色素aa3E.细胞色素c71.下列哪种物质不是NADH氧化呼吸链的组分A.FMNB.FADC.泛醌D.铁硫蛋白E.细胞色素c72.哪种物质是解偶联剂A.一氧化碳B.氰化物C.鱼藤酮D.二硝基苯酚E.硫化氰73.ATP生成的主要方式是A.肌酸磷酸化B.氧化磷酸化C.糖的磷酸化D.底物水平磷酸化E.有机酸脱羧74.呼吸链中细胞色素排列顺序是A.b→c→c1→aa3→o2B.c→b→c1→aa3→o2C.c1→c→b→aa3→o2D.b→c1→c→aa3→o2E.c→c1→b→aa3→o275.有关NADH哪项是错误的A.可在胞液中形成B.可在线粒体中形成C.在胞液中氧化生成ATPD.在线粒体中氧化生成ATPE.又称还原型辅酶Ⅰ76.下列哪种不是高能化合物A.GTPB.ATPC.磷酸肌酸D.3-磷酸甘油醛E.1,3-二磷酸甘油酸77.由琥珀酸脱下的一对氢,经呼吸链氧化可产生A.1分子ATP和1分子水B.3分子ATPC.3分子ATP和1分子水9生物化学第六章生物氧化D.2分子ATP和1分子水E.2分子ATP和2分子水78.呼吸链中不具质子泵功能的是A.复合体ⅠB.复合体ⅡC.复合体ⅢD.复合体ⅣE.以上均不具有质子泵功能79.关于线粒体内膜外的H+浓度叙述正确的是A.浓度高于线粒体内B.浓度低于线粒体内C.可自由进入线粒体D.进入线粒体需主动转运E.进入线粒体需载体转运80.心肌细胞液中的NADH进入线粒体主要通过A.α-磷酸甘油穿梭B.肉碱穿梭C.苹果酸—天冬氨酸穿梭D.丙氨酸-葡萄糖循环E.柠檬酸-丙酮酸循环81.丙酮酸脱下的氢在哪个环节上进入呼吸链A.泛醌B.NADH-泛醌还原酶C.复合体ⅡD.细胞色素c氧化酶E.以上均不是82.关于高能磷酸键叙述正确的是A.实际上并不存在键能特别高的高能键B.所有高能键都是高能磷酸键C.高能磷酸键只存在于ATPD.高能磷酸键仅在呼吸链中偶联产生E.有ATP参与的反应都是不可逆的83.机体生命活动的能量直接供应者是A.葡萄糖B.蛋白质C.乙酰辅酶AD.ATPE.脂肪84.参与呼吸链递电子的金属离子是A.铁离子B.钴离子C.镁离子D.锌离子E.以上都不是85.离体肝线粒体中加入氰化物和丙酮酸,其P/O比值是A.2B.3C.0D.1E.486.离体线粒体中加入抗霉素A,细胞色素C1处于A.氧化状态10生物化学第六章生物氧化B.还原状态C.结合状态D.游离状态E.活化状态87.甲亢患者不会出现A.耗氧增加B.ATP生成增多C.ATP分解减少D.ATP分解增加E.基础代谢率升高88.下列哪种物质不抑制呼吸链电子传递A.二巯基丙醇B.粉蝶霉素AC.硫化氢D.寡霉素E.二硝基苯酚89.关于细胞色素哪项叙述是正确的A.均为递氢体B.均为递电子体C.都可与一氧化碳结合并失去活性D.辅基均为血红素E.只存在于线粒体90.不含血红素的蛋白质是A.细胞色素P450B.铁硫蛋白C.肌红蛋白D.过氧化物酶E.过氧化氢酶91.下列哪种酶以氧为受氢体催化底物氧化生成水A.丙酮酸脱氢酶B.琥珀酸脱氢酶C.SODD.黄嘌呤氧化酶E.细胞色素C氧化酶92.下列哪种底物脱下的一对氢经呼吸链氧化生成水,其P/O比值约为3A.琥珀酸B.脂酰辅酶AC.α-磷酸甘油D.丙酮酸E.以上均不是93.高能磷酸键的贮存形式是A.磷酸肌酸B.CTPC.UTPD.TTPE.GTP94.参与构成呼吸链复合体Ⅱ的是A.细胞色素aa3B.细胞色素b560C.细胞色素P45011生物化学第六章生物氧化D.细胞色素c1E.细胞色素c95.参与构成呼吸链复合体Ⅳ的是A.细胞色素aa3B.细胞色素b560C.细胞色素P450D.细胞色素c1E.细胞色素c96.可与ATP合酶结合的是A.氰化物B.抗霉素AC.寡霉素D.二硝基苯酚E.异戊巴比妥97.氧化磷酸化抑制剂是A.氰化物B.抗霉素AC.寡霉素D.二硝基苯酚E.异戊巴比妥98.氧化磷酸化解偶联剂是A.氰化物B.抗霉素AC.寡霉素D.二硝基苯酚E.异戊巴比妥99.细胞色素C氧化酶抑制剂是A.氰化物B.抗霉素AC.寡霉素D.二硝基苯酚E.异戊巴比妥100.体内细胞色素C直接参与的反应是A、叶酸还原B、糖酵解C、肽键合成D、脂肪酸合成E、生物氧化12生物化学第六章生物氧化。

人民卫生出版社《生物化学》第六章 生物氧化

人民卫生出版社《生物化学》第六章  生物氧化

⊿Gº’ = -nF ⊿Eº'
n:传递电子数;F:法拉第常数
➢ 合成1摩尔ATP 需能量约30.5kJ
偶联部位
NADH~CoQ CoQ~Cytc Cyta-a3~O2
电位变化 (∆E0')
0.36V 0.21V 0.53V
自由能变化 (∆G0')
69.5KJ/mol 40.5KJ/mol 102.3KJ/mol
三、NADH和FADH2是呼吸链的电子供体
1、NADH氧化呼吸链 NADH →复合体Ⅰ→CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
2、琥珀酸氧化呼吸链 琥珀酸 →复合体Ⅱ →CoQ →复合体Ⅲ→Cyt c →复合体Ⅳ→O2
呼吸链各组分的排列顺序的实验依据
➢ 标准氧化还原电位 ➢ 特异抑制剂阻断 ➢ 还原状态呼吸链缓慢给氧 ➢ 将呼吸链拆开和重组
生物氧化与体外氧化之不同点
生物氧化
➢ 反应环境温和,酶促反应逐步进 行,能量逐步释放,能量容易捕 获,ATP生成效率高。
体外氧化
➢ 能量突然释放。
➢ 通过加水脱氢反应使物质能间接 获得氧;脱下的氢与氧结合产生 H2O,有机酸脱羧产生CO2。
➢ 物质中的碳和氢直接氧 结合生成CO2和H2O 。
生物氧化的一般过程
胞液侧 4H+
2H+ 4H+ Cyt c
+
+++++ +
++
+
Q

--
NADH+H+
NAD+

-
延胡索酸
琥珀酸

Ⅲ- - -

生物化学第六章 糖类代谢

生物化学第六章 糖类代谢
O
H
OH
HO
H
HO
H
H
OH
OH
CH2OH
HO H OH
H
H
OH H
OH OH
核糖(ribose) ——戊醛糖
O
H
OH
H
OH
H
OH
OH
HOH 2C
O OH
H H
HH
HO
OH
2. 寡糖 能水解生成2-20个分子单糖的糖,各单
糖之间借脱水缩合的糖苷键相连。
常见的几种二糖有
麦芽糖 (maltose) 葡萄糖 — 葡萄糖 还原糖
ATP ADP
G-6-P
F-6-P
ATP ADP
F-1,6-2P
ⅱ放能阶段
⑨2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸
烯醇化酶
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
催化此反应的酶是烯醇化酶,它在结合底物前必 须先结合2价阳离子如Mg2+、Mn2+,形成复合物, 才能表现出活性。该酶的相对分子量为85000,氟 化物是该酶强烈的抑制剂,原因是氟与Mg2+和无 机磷酸结合形成一个复合物,取代了酶分子上 Mg2+的位置,从而使酶失活。
Glu
ATP ADP
G-6-P
F-6-P
ATP ADP
F-1,6-2P
ⅱ放能阶段
⑥3-磷酸甘油醛氧化成1,3-二磷酸甘油酸
生成1分子 NADH+H+

【生物化学】第六章 酶促反应动力学

【生物化学】第六章  酶促反应动力学
2
本章纲要
一、化学动力学基础 二、底物浓度对酶反应速度的影响 三、抑制剂对酶反应速度的影响 四、激活剂对酶反应速度的影响 五、温度对酶反应速度的影响 六、pH对酶反应速度的影响
一、化学动力学基础
了解反应速率及其测定 反应分子数和反应级数
一、化学动力学基础
㈠ 反应速率及其测定
单位时间内反应物的减少量或生成物的增加量用瞬时速率表示, 单位: 浓度/时间,研究酶反应速度以酶促反应的初速度为准。
第六章 酶促反应动力学
Enzyme kinetics
概述
研究酶促反应的速率以及影响此速率的各 种因素的科学,是酶工程中的重要内容
研究酶结构和功能的关系以及酶的作用机 制,需要动力学提供实验数据
发挥酶促反应的高效率,寻找最为有利的 反应条件
酶在代谢中的作用和某些药物的作用机制 具有理论研究的意义和实践价值
C是反应物的浓度变化, K为速率常数,是时间的倒数 基元反应:反应物分子在碰撞中一步直接转化为生成物分子的反应。
一、化学动力学基础
2. 反应级数:实验测得的表示反应速率与反应浓度之间关系的概念。 对于基元反应
1.一级反应单分子反应符合V=KC的反应
蔗糖+水
葡萄糖+果糖 V=KC蔗糖C水
由于水的浓度变化影响可忽略(非限制性因素)则V=KC蔗糖
二、底物浓度对酶反应速度的影响
㈠ 中间络合物学说
L.米歇利斯和L.M.门腾(1913)基于酶被底 物饱和的现象,提出“中间产物”学说:
酶与底物反应时,通过特异识别作用,先 形成酶底物复合物,然后再形成产物和酶分 子,酶分子重新结合底物。
该学说已得到大量实验证实
012345678
80
60

生物化学第六章 生物氧化(共77张PPT)

生物化学第六章 生物氧化(共77张PPT)

O O- P
O-
O O P O-
O-
NH2
N
N
焦磷酸
ATP(三磷酸腺苷) 千卡/摩尔
O O- P
O-
O O- P
O-
O O- P
O-
NN OCH2 O
HH
H
H
OH OH
(3)烯醇式磷酸化合物
COOH O CO PO CH2 O
磷酸烯醇式丙酮酸
千卡/摩尔
2.氮磷键型
O
NH
PO
C NH O
N CH3 C H 2C O O H
利用专一性电子传递抑制剂选择性的阻断呼吸 链中某个传递步骤,再测定链中各组分的氧化-还原 状态情况,是研究电子传递中电子传递体顺序的一 种重要方法。
2、常用的几种电子传递抑制剂及其作用部位
(1)鱼藤酮、安密妥、杀粉蝶菌素:其作用是阻断电子在NADH— Q还原酶内的传递,所以阻断了电子由NADH向CoQ的传递。
3.生成二氧化碳的氧化反应
(1)直接脱羧作用 氧化代谢的中间产物羧酸在脱羧酶的催化下,直接
从分子中脱去羧基。例如丙酮酸的脱羧。 (2)氧化脱羧作用
氧化代谢中产生的有机羧酸(主要是酮酸)在氧化脱
羧酶的催化下,在脱羧的同时,也发生氧化(脱氢)作用。 例如苹果酸的氧化脱羧生成丙酮酸。
第二节、生物能及其存在形式
4、复合体Ⅳ: 细胞色素c氧化酶
功能:将电子从细胞色素c传递给氧
复合体IV
还原型Cytc → CuA→a→a3→CuB
→O2
其中Cyt a3 和CuB形成的活性部位将电子交给O2。
复 合 体 Ⅳ 的 电 子 传 递 过 程
Cytc
e-
胞液侧

生物化学6第六章 三羧酸循环

生物化学6第六章 三羧酸循环

氨基酸
TCA中间产物
草酰乙酸
异生为葡萄糖
循环中间产物可为胞液中脂酸合成提供原料
柠檬酸-丙酮酸循环
乙酰CoA
合成脂酸
TCA循环中间产物可为非必需氨基酸合成提供碳架
谷氨酸脱氢酶
α-酮戊二酸 + NH4+
谷氨酸
NADH + H+
NAD+
3 添补反应补充TCA循环中间产物
参与其他代谢途径而消耗的TCA循环中间产 物必须及时补充,才能保持TCA循环顺利 进行。这类反应被称为添补反应 (anaplerotic reaction)。
共价修饰调节
二、TCA循环受底物、产物和调节酶活性调节 TCA循环的速度和流量主要受3种因素的调控:
底物的供应量 催化循环最初反应的酶的产物反馈别构抑制 产物堆积的抑制作用
1 TCA循环中有3个调节酶 TCA循环中催化3个不可逆反应的酶:
•柠檬酸合酶 •异柠檬酸脱氢酶 •α-酮戊二酸脱氢酶
乙酰CoA
此外,可由别的途径生成一些中间产物,如:
奇数碳链脂肪酸 某些氨基酸
琥珀酰CoA
α-酮戊二酸、 草酰乙酸
第四节 三羧酸循环的调控
一、丙酮酸脱氢酶复合体的活性变化可 影响乙酰CoA的生成
丙酮酸脱氢酶复合体的调节 别构调节
别构抑制剂:乙酰CoA、NADH、ATP 别构激活剂:AMP、 ADP、NAD+
2 不可能通过TCA直接从乙酰CoA合成草酰乙酸 或其他中间产物;同样,这些中间产物也不 可能直接在TCA循环中被氧化生成CO2和H2O。
3 TCA循环中的草酰乙酸主要来自丙酮酸的直接 羧化,也可通过苹果酸脱氢产生。无论何种 来源,其最终来源是葡萄糖。

生物化学第六章生物氧化

生物化学第六章生物氧化

(还原剂) (氧化剂)
可写成 A2+ B3+
A3+
B2+
2019/11/23
生物化学教研室
9
第三节 生成ATP的氧化体系
一、呼吸链的概念
代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所 催化的连锁反应逐步传递,最终与氧结合生成水。由 于此过程与细胞呼吸有关,所以将传递链称为呼吸链, 也叫电子传递呼吸链。
氧化酶,而其它均为不需氧脱氢酶。其中a与 a3很难分开,常写为aa3。
在微粒体中主要为细胞色素b5、p450。p450作用 与aa3类似 。
2019/11/23
生物化学教研室
19
细胞色素的结构
2019/11/23
生物化学教研室
20
呼吸链复合体
人线粒体呼吸链通过上述5大类成分形成4个复合体。
2019/11/23
P/O比值:每消耗1摩尔原子氧所消耗的无机磷 原子的摩尔数。
2019/11/23
生物化学教研室
39
2、氧化磷酸化的偶联机制
内模胞浆侧
化 学 渗 透 学 说内膜基侧2019/11/23
生物化学教研室
40
ATP合酶(复合体Ⅴ)
由F1和F0组成。 F1 在线粒体内膜基质 侧形成颗粒状突起, 催化ATP的生成。 F膜0镶中嵌。在当线H+粒顺体浓内度 梯度经回流时,γ 亚基发生旋转,3个 β 亚基构象变化, 由紧密结合型变为 开放型,释放ATP。
根据呼吸链各组分的标准氧化还原电位测定(电位越 低越容易失去电子)、利用呼吸链特异性的阻断剂测 定其氧化和还原状态的吸收光谱及离体线粒体各组分 的氧化顺序等实验,确定了呼吸链各组分的排列顺序, 并发现体内存在两条主要的呼吸链。

生物化学:第六章 脂质的分解与合成代谢

生物化学:第六章 脂质的分解与合成代谢

第六章脂质的分解与合成代谢(一)脂质的分解代谢1.脂肪水解:三酰甘油经三酰甘油脂肪酶、二酰甘油脂肪酶、单酰甘油脂肪酶的催化最后生成了甘油。

2.甘油代谢:甘油在甘油激酶的催化下,被磷酸化成3-磷酸甘油,然后氧化脱氢生成磷酸二羟丙酮。

其中第一步反应需要消耗ATP,而第二步反应可生成还原型辅酶Ⅰ。

3.脂肪酸分解的途径:主要有脂肪酸的α-氧化、脂肪酸的β-氧化、脂肪酸ω-氧化等4.脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA 和比原来少2 个碳原子的脂肪酸。

5.脂肪酸β-氧化的过程:脂肪酸的活化、脂肪酸的转运、β-氧化的历程。

6.脂肪酸的活化:脂肪酸的活化是指脂肪酸的羧基与CoA酯化成脂酰CoA的过程。

脂肪酸的活化需要ATP的参与。

每活化1分子脂肪酸,需要1分子ATP转化为AMP,即要消耗2个高能磷酸键。

这可以折算成需要2分子ATP水解成ADP。

7.脂肪酸的转运:脂肪酸的β-氧化作用通常是在线粒体的基质中进行的,而在细胞质中形成的脂酰CoA不能透过线粒体内膜,需依靠内膜上的载体肉碱携带,以脂酰肉碱的形式跨越内膜而进入基质。

8.β-氧化的历程:脂酰CoA进入线粒体后,经历多次β-氧化作用而逐步降解成多个二碳单位——乙酰CoA。

每次β-氧化作用包括四个步骤:脱氢、水化、再脱氢、硫解。

9.对于偶数碳饱和脂肪酸,β-氧化过程的化学计量:◆脂肪酸在β-氧化作用前的活化作用需消耗能量,即1分子ATP转变成了AMP,消耗了2个高能磷酸键,相当于2分子ATP。

(-2ATP)◆在β-氧化过程中,每进行一轮,使1分子FAD还原成FADH2、1分子NAD+还原成NADH,两者经呼吸链可分别生成1.5分子和2.5分子ATP,因此每轮b-氧化作用可生成4分子ATP。

(+4ATP)◆β-氧化作用的产物乙酰CoA可通过三羧酸循环而彻底氧化成CO2和水,同时每分子乙酰CoA可生成10分子ATP。

生物化学 第六章 生物氧化

生物化学   第六章 生物氧化

电子传递链(呼吸链)
琥珀酸 复 合 体 Ⅰ
2H
复合体Ⅱ FAD.H2 (Fe-S)
2H 2H 2e
2H NAD+
复 合 体 琥珀酸氧化呼吸链 Ⅳ
2e
FMN (Fe-S)
Q10
2H+
Cytb Cytc1 2e (Fe-S) 复合体Ⅲ H2O
Cytc
2e
aa3
2e
NADH氧化呼吸链
O2-
1 2 O2
第三节 ATP的生成
(二)呼吸链成分的排列
由以下实验确定 ① 标准氧化还原电位 ② 拆开和重组 ③ 特异抑制剂阻断 ④ 还原状态呼吸链缓慢给氧
呼吸链中各种氧化还原对的标准氧化还原电位 氧化还原对 NAD+/NADH+H+ FMN/ FMNH2 FAD/ FADH2 Cyt b Fe3+/Fe2+ Q10/Q10H2 Cyt c1 Fe3+/ Fe2+ Cyt c Fe3+/Fe2+ Cyt a Fe3+ / Fe2+ Cyt a3 Fe3+ / Fe2+ 1/2 O2/ H2O Eº (V) ' -0.32 -0.30 -0.06 0.04(或0.10) 0.07 0.22 0.25 0.29 0.55 0.82
故又称混合功能氧化酶(mixed-function oxidase) 或羟化酶(hydroxylase)。 上述反应需要细胞色素P450 (Cyt P450)参与。
微粒体氧代谢的意义
参与体内正常物质代谢,如羟化、合成等
参与体内生理活性物质的灭活及药物、毒
物解毒转化和代谢清除反应、保护机体

生物化学-第六章生物氧化-精选文档

生物化学-第六章生物氧化-精选文档
线粒体呼吸链
二.呼吸链分组成成分
1.烟酰胺脱氢酶类
S-2H NAD/NADP S NADH/NADPH
2.黄素脱氢酶类
NADH FMN NAD FMN2H
S-2H FAD S FAD2H
3.铁硫蛋白类 Fe3+ Fe2+
-----半胱------半胱----- S Fe S S S Fe S S
-----半胱------半胱-----
4.细胞色素类
细胞色素(简写为cyt. )是含铁的电子传递体,辅基为 铁卟啉的衍生物,铁原子处于卟啉环的中心,构成血红 素。各种细胞色素的辅基结构略有不同。线粒体呼吸链 中主要含有细胞色素a, a3,b, c 和c1等,组成它们的辅基 分别为血红素A、B和C。细胞色素a, b, c可以通过它们 的紫外-可见吸收光谱来鉴别。 细胞色素a, b, c 和c1是通过Fe3+ Fe2+ 的互 变起传递电子的作用的。 a3是通过Cu2+ Cu+ 的互 变起传递电子的作用的。
5.辅酶Q---泛醌 泛醌(简写为Q)或辅酶-Q(CoQ):它是电子传递链中 唯一的非蛋白电子载体。为一种脂溶性醌类化合物。
O CH3O CH3O O CH3 (CH2CH C CH2)nH CH3
n=6-10
NADH泛醌还原酶
NADHCoQ 还原酶 复合体
CoQ2H-CytC 还原酶复合体
1.呼吸链的组成成分 2.氧化磷酸化的机制
难点:
第一节、生物氧化概念及特点
一.生物氧化概念
有机物在生物体内彻底氧化生成CO2和H2O, 并放出能量的作用。也称细胞呼吸/组织呼吸。 包括物质分解和产能
O2 呼吸作用
细胞呼吸(微生物)

《生物化学(高职案例版)》第6章:糖代谢

《生物化学(高职案例版)》第6章:糖代谢
GDP+Pi GTP
异柠檬酸
NAD+ NADH+H+ NAD+
③ CO2

FAD
NADH+H+

⑤ CoASH CO2 CoASH
(2) 三羧酸循环的特点
TAC是1分子乙酰CoA彻底氧化的过程
• 四次脱氢,二次脱羧,一次底物水平磷酸 化。 生成1分子FADH2,3分子NADH+H+,2 分子CO2, 1分子GTP。 • 产能12分子ATP • 关键酶有:柠檬酸合酶
• 糖原储存的主要器官及其生理意义
肌肉:肌糖原,180 ~ 300g,主要供肌肉收缩所需
肝脏:肝糖原,70 ~ 100g,维持血糖水平
• 糖原的结构特点及其意义
1. 葡萄糖单元以α-1,4-糖苷 键 形成长链。 2. 约10个葡萄糖单元处形成分 枝,分枝处葡萄糖以α-1,6糖苷键连接,分支增加,溶 解度增加。 3. 每条链都终止于一个非还原 端.非还原端增多,以利于其
ATP
ADP
6-磷酸果糖
磷酸果糖激酶
1,6-二磷酸果糖
关键酶
⑷ 磷酸己糖裂解成2分子磷酸丙糖 磷酸二羟丙酮 E 1,6-二磷酸果糖 E 3-磷酸甘油醛
第一阶段特点:
1.能量变化 耗能:2ATP 2.有C链长短的变化(6C→3C)
2.磷酸丙糖转变为丙酮酸
(1)3-磷酸甘油醛氧化为1,3-二磷酸甘油酸
3-磷酸甘油酸
2-磷酸甘油酸 磷酸烯醇式丙酮酸
丙酮酸
(二)糖酵解反应的特点
⑴ 反应部位:胞液 终产物:乳酸 ⑵ 糖酵解是产能过程: 方式:底物水平磷酸化 净生成ATP数量:2ATP
(3) 关键酶:3个

生物化学第六章ATP

生物化学第六章ATP
细胞色素是一类以血红素(铁卟啉)为 辅基的催化电子传递的酶类,根据它们吸收 光谱不同而分类(a,b,c)。
• 细胞色素可存在于线粒体内膜,也可存在于
微粒体。
• 存在于线粒体内膜的细胞色素有Cyt aa3, Cyt b(b560,b562,b566),Cyt c,Cyt c1;
Cyt c是呼吸链唯一水溶性球状蛋白, 不包含在复合体中,可将获得的电子 传递到复合体Ⅳ。
磷酸化,生成ATP,又称为偶联磷酸化。
呼 吸 链
AH2
2H(2H++2e)
1 2 O2
H2O
氧化 偶 联
A ADP+Pi
能量 ATP 磷酸化
(一)氧化磷酸化的偶联部位
根据P/O比值
自由能变化: ⊿Gº '=-nF⊿Eº '
1. P/O 比值 指氧化磷酸化过程中,每消耗1摩尔O 的同时所消耗磷原子的摩尔数。 ADP+H3PO4 ATP
NADH+H+
NAD+
FMN
FMNH2
还原型Fe-S 氧化型Fe-S
Q
QH2
复合体Ⅰ的功能
3. 复合体Ⅱ(琥珀酸-泛醌还原酶)
复合体Ⅱ含三羧酸循环中的琥珀酸脱氢酶, 功能是将电子从琥珀酸传递到泛醌。
电子传递:
琥珀酸→ FAD;Fe-S1; Fe-S2 ; Fe-S3
→CoQ
3.复合体Ⅲ(泛醌-细胞色素C还原酶)

组成
递氢体和电子传递体(2H 2H+ + 2e)
递氢体或递电子体通常以复合体的形式存在
于线粒体内膜上。
线粒体
基质侧
胞液侧 膜间隙
(一)呼吸链的组成

生物化学第六章糖类代谢

生物化学第六章糖类代谢

一、单糖
单糖只含有一个羰基,不能再水解为更简单 的糖。最简单的单糖是甘油醛和二羟丙酮。
D-甘油醛
二羟丙酮
含有醛基的单糖叫醛糖,如甘油醛、葡萄糖、 核糖等;
含有酮基的单糖叫酮糖,如二羟丙酮、果糖、 核酮糖等。
单糖又根据C原子数分为三、四、五、六、 七碳糖,习惯也称为丙、丁、戊、己、庚糖。 例如三碳糖也称为丙糖,六碳糖称为己糖。
图6-4 乳糖的结构
三、多糖
(一)多糖的特征
多糖是由多个单糖通过糖苷键聚合成的高分 子聚合物。单糖数目随机而不固定,所以多 糖没有固定的分子质量和确定的物理常数。 多糖是自然界存在量最大的一类有机物质。 也是人类重要的食物来源和工业原料。
多糖一般难溶于水或根本不溶于水,也不 能形成晶体,没有甜味,旋光性不明显, 化学性质比较稳定,除了在一定条件下发 生降解反应外,很难发生氧化、还原、成 苷、成酯等反应,尤其是构成动植物骨架 的多糖如纤维素、几丁质等,化学性质更 为稳定。
麦芽糖是由两分子α–D葡萄糖缩合组成,为α (14)糖苷键连接。麦芽糖保留了半缩 醛羟基,属于还原糖(图6-3)。
生物体内麦芽糖含量极少,几乎测不到(包 括动物和植物),但并非不存在。植物种 子在萌发时贮藏的淀粉水解,麦芽糖含量 略有增多,然后迅速由麦芽糖酶水解为葡 萄糖。
图6-3 麦芽糖的结构
另一种是五肽,一般是五聚甘氨酸,将两条 多糖链上的四肽侧链之间以五肽桥连接 (图6-10)。革兰氏阳性菌与革兰氏阴性 菌的肽聚糖交联方式略有不同。
溶菌酶可作用于肽聚糖的多糖链,使多糖链 断裂导致菌体吸水膨胀破裂而杀死细菌。 青霉素类抗生素可抑制肽聚糖短肽之间的 交联,无法合成完整的细胞壁而发挥抑菌 作用。
(二)麦芽糖的降解

大学生物化学第六章生物氧化笔记划重点

大学生物化学第六章生物氧化笔记划重点

第六章生物氧化第一节名解:生物氧化:化学物质在生物体内的氧化分解。

能够传递氢离子、电子.称为递氢体eg. NAD+/NADP+线粒体内膜上能够传递电子. 称为递电子体eg.铁硫蛋白NAD+或NADP+和NADH或NADPH的转变:氧化还原反应时变化发生在五价氮和三价氮之间。

NAD+/NADP+:烟酰胺腺嘌呤二核苷酸递氢体:FAD/FMN:发挥功能部位是异咯嗪环泛醌(辅酶Q):脂溶性.由10个异戊二烯连接形成较长的疏水侧链递电子体:铁硫蛋白和细胞色素蛋白:Fe2+ →Fe3+ +e-铁原子和硫原子等量:Fe2S2或Fe4S4以铁卟啉(血红素)为辅基根据吸收光谱不同分类名解:电子传递体(呼吸链):线粒体内膜上按一定顺序排列的多种酶(蛋白复合体)通过催化连续的氧化还原反应将代谢物脱下的电子、氢(以NADH和FADH2形式)传递给O2,O2接受电子变为O2-并和H+结合成H2O.分布:线粒体内膜组成:递氢体和递电子体(一)呼吸链的组成1、复合体Ⅰ:NADH-泛醌还原酶功能:接受来自NADH + H+的电子并将其传递给泛醌电子传递:NADH→FMN→Fe-S→泛醌质子泵出:复合体Ⅰ具有质子泵功能,每传递2个e-可将4个H+从内膜基质到胞液侧2、复合体Ⅱ:没有质子泵功能功能:将e-从琥珀酸传递给泛醌3、复合体Ⅲ:具有质子泵功能.2个电子将4H+从内膜基质侧泵到胞液侧QH2→b562→b566→Fe-S→Cyt c1→Cyt c(呼吸链中唯一溶于水的球状蛋白)方法:Q循环(实现了双电子传递体泛醌与单电子传递体细胞色素之间的电子传递)4、复合体Ⅳ:细胞色素c氧化酶功能:有质子泵功能,每传递2个e-可使2个H+向胞液侧转移Cyt c→O2三、呼吸链类型1、NADH氧化呼吸链NADH→复合体Ⅰ→Q→复合体Ⅲ→Cyt c→复合体Ⅳ→O22、琥珀酸氧化呼吸链琥珀酸→复合体Ⅱ→Q→复合体Ⅲ→Cyt c→复合体Ⅳ→O2呼吸链各组分排列顺序由以下实验确定(略)第二节氧化磷酸化和ATP生成名解:氧化磷酸化(机体产生ATP的主要方式):代谢物脱下的氢生成NADH和FADH2,经电子传递链传递逐步失去电子被氧化生成H2O,并释放能量驱动ADP磷酸化生成ATP的过程,又称欧联磷酸化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
嘌呤分解中的脱氨作用
脱氨作用可以在核苷或核苷酸的水平 上进行。动物组织腺嘌呤脱氨酶含量 极少,而腺嘌呤核苷脱氨酶及腺嘌呤 核苷酸脱氨酶的活性较高,因此腺嘌 呤的脱氨分解主要在核苷或核苷酸水 平上进行。鸟嘌呤脱氨酶分布广,脱 氨分解主要在该酶的作用下进行。
13
嘌呤核苷酸分解的三级脱氨
14
鸟嘌呤脱氨
40
嘌呤核苷酸的从头合成原料 -D-ribose-5-P, ATP, Gln, Asp,
Gly,GTP,一碳单位, CO2等。 另需辅助因子:
Mg2+, Mn2+, NAD+, FH4
41
嘌呤环元素的来源
“一碳”
“一碳”
42
IMP合成的过程
合成中先生成IMP,继而合成 AMP和GMP。
(参看课P486/488图)
主要
10
嘌呤碱的分解
不同生物嘌呤碱的分解能力不同, 代谢产物也不同,人和猿类及一 些排尿酸的动物(鸟类、某些爬 行类和昆虫)嘌呤的代谢产物为 尿酸。而其他生物可以分解嘌呤 为多种不同产物。
11
嘌呤碱的分解
嘌呤碱的分解首先是在各种脱 氨酶的作用下脱去氨基 。Ade 和Gua分别生成次黄嘌呤和黄嘌 呤,进一步代谢生成尿酸。
24
痛风治疗
治疗痛风的原则是:合理的饮食控 制;充足的水分摄入;规律的生活 制度;适当的体育活动;有效的药 物治疗;定期的健康检查。
饮食治疗[每日嘌呤摄入量不超过 150mg]。
25
常见食物的嘌呤含量范围
每100克食物嘌呤含量小于50毫克为低嘌 呤的有: 五谷类:米、麦、高梁、玉米、马铃薯、 甘薯、面条、通心粉; 蛋 类:鸡蛋、鸭蛋、皮蛋; 奶 类:牛奶、乳酪、冰琪琳; 饮 料:汽水、巧克力、可可、咖啡、麦 乳精、果汁、茶、蜂蜜、果冻;以及各种 水果、蔬菜和油脂 等。
7
概述
生物体普遍存在的磷酸单酯酶或 核苷酸酶可催化核苷酸的水解, 而特异性强的磷酸单酯酶只能水 解3’-Nt或5’-Nt。 催化核苷水解的酶有2类,即核 苷磷酸化酶和核苷水解酶
8
局限,只对核 糖Ns发生作用
广泛存在, 反应可逆
核 苷 酸 及 核 苷 分 解
9
一、嘌呤核苷酸的降解
主要 主要
动物中基 本不发生
47
二、核苷酸的补救合成途径
嘌呤核苷酸的补救合成有两条途径: 第1种是通过特异的磷酸核糖转移酶的
作用,由PRPP提供磷酸核糖,使游离 的嘌呤碱发生磷酸核糖化作用而生成 嘌呤核苷酸。(较重要) 第2种是嘌呤核苷在5-羟基发生磷酸化 生成嘌呤核苷酸。
48
嘌呤核苷酸的补救合成
49
嘌呤核苷酸的补救合成的酶
65
脱氧核糖核苷酸的合成
除需还原酶外,还需另两种氧还蛋白 参与,即硫氧还蛋白(thioredoxin) 和谷氧还蛋白(glutaredoxin)。产 物为dNDP。 进一步在激酶的作用下形成相应的 dNTP。
21
痛风(Gout)
嘌呤碱分解代谢产生过多的尿酸,溶解 性很差,易形成尿酸钠结晶,沉积于 关节、软组织、软骨甚至肾脏等处, 也可形成尿酸的尿路结石。沉积于男 性关节腔的尿酸钠结晶被吞噬细胞吞 噬,尿酸钠通过氢键与溶酶体膜作用, 破坏溶酶体,释放的水解酶及蛋白因 子使局部生成较多致炎物质,引起痛 风性关节炎—痛风。
22
痛 风 的 尿 酸 钠 晶 体
23
痛风检测
诊断痛风最简便而有价值的实验室检查是血 尿酸测定。血尿酸升高是诊断痛风最直接的 实验室检查依据,也是确诊的必备条件。急 性发作期绝大多数病人血清尿酸含量升高。 一般采用尿酸酶法测定。除血尿酸测定外, 也可测定尿酸含量,关节腔穿刺检查,血、 尿常规检查,血沉检查,痛风石内容物检查, X线摄片检查。
44
由IMP合成AMP和GMP
腺苷琥珀
裂解酶
酸合成酶
脱氢酶
羽田杀菌素OHC-N(OH)-CH2-COOH
合成酶
45
嘌呤核苷酸合成的调节
46
核苷酸合成与疾病治疗
许多化疗试剂的靶是核苷酸合成途 径的酶。肿瘤细胞比绝大多数正常 细胞生长快,需要合成更多的核苷 酸作为DNA和RNA合成的前体,因此 较正常细胞对核苷酸合成抑制剂更 为敏感。一系列化疗试剂通过抑制 核苷酸合成途径的一个或多个酶起 作用。
从头合成首先合成UMP,然后由
它转变为其它嘧啶核苷酸。
合成的原料有氨基甲酰磷酸和天冬 氨酸
55
嘧啶环元素的来源
56
氨甲酰磷酸合成氨甲酰Asp
57
乳 清 酸 的 合 成
58
乳清酸合成UMP
59
由嘧
乳啶
清核
酸苷
合酸
成的
UTP CTP


程 合


60
UTP合成CTP
61
嘧 啶 核 苷 酸 合 成 的 调 节
人体组织中只有两种是嘌呤碱发生磷 酸核糖化的酶:
一是腺嘌呤磷酸核糖转移酶(APRT) 二是次黄嘌呤-鸟嘌呤磷酸核糖转移酶
(HGPRT); HGPRT较APRT活性 强。
50
嘌呤核苷酸的补救合成与疾病
HGPRT缺陷的男性儿童表现为一 种强制性的自残行为--自毁容貌 综合症,为先天性遗传疾病(缺 乏HGPRT),行为对立,侵略性 强,自咬手指、脚趾、嘴唇等, 智力低下。——莱-纳二氏(Lesch-
第六章
核苷酸代谢
1
教学目标
1、了解核酸的生物降解 2、熟悉核苷酸的降解 3、了解核苷酸代谢与疾病 4、了解嘌呤核苷酸的生物合成 5、了解嘧啶核苷酸的生物合成 6、了解脱氧核苷酸的生物合成
2
第一节
核苷酸的分解代谢
3
一、核酸的生物降解
食物中的核酸与蛋白质结合为 Nucleoprotein的形式,在胃中受 胃 酸 作 用 水 解 为 NA 和 Proteins , NA 在 小 肠 被 胰 Nuclease[ 包 括 DNase 、 RNase] 和 肠 液 中 多 核 苷 酸酶作用降解为单核苷酸,通过核 苷酸酶的进一步作用水解为核苷和 磷酸,被肠粘膜细胞吸收。
43
IMP
的 全 程 合 成
PRA: 5-磷酸核糖胺; GAR: 5-甘氨酰胺核苷酸; FGAR: 5-甲酰甘氨酰胺核苷 酸 FGAM: 5-甲酰甘氨眯核苷酸 ;AIR: 5-氨基咪唑核苷酸 CAIR: 5-氨基咪唑-4-羧基核苷酸 ;SAICAR: 5-氨基咪唑-4-甲酰胺 AICAR: 5-氨基咪唑-4-甲酰基核苷酸; FAICAR: 5-甲酰基咪唑-4-甲酰基核苷酸
Nyhan) 综合症(自毁容貌综合症)
Hale Waihona Puke 51自毁容貌综合症机理52
本节小结
1、飘呤核苷酸的从头合成 2、嘌呤核苷酸的补救合成 3、嘌呤核苷酸的生物合成调节 4、嘌呤核苷酸的生物合成与疾病
53
第二节
嘧啶核苷酸的生物合成
54
一、嘧啶核苷酸的从头合成
首先合成嘧啶环,然后与PRPP 中的磷酸核糖连接起来形成嘧啶 核苷酸。
尿囊素
产物
物嘌
尿囊酸
不呤
同核
尿素

氨[铵]

20
尿酸与疾病
嘌呤核苷酸的分解代谢主要在肝脏、小肠及肾脏 中进行。生理情况下嘌呤合成与分解处于相对 平衡状态,尿酸的生成与排泄也较恒定。正常 人血浆中尿酸含量约0.12-0.36mmol/L,男性平 均0.27mmol/L ,女性平均0.21mmol/L 。当体 内核酸大量分解(白血病、恶性肿瘤等)或食入 高嘌呤食物时,血中尿酸水平升高,超过 0.48mmol/L时,尿酸盐过饱和形成结晶,沉积 于关节、软组织、软骨及肾等处,而导致关节 炎、尿路结石及肾疾患,称为痛风症。
28
高嘌呤食物
① 豆类及蔬菜类:黄豆、扁豆、紫菜、香菇。 ② 肉类:肝(猪肝、牛肝、鸡肝、鸭肝、鹅肝)、 肠(猪肠、牛肠、鸡肠、鸭肠、鹅肠)、心(猪心、 牛心、鸡心、鸭心、鹅心)、肚与胃(猪肝、牛肝、 鸡胃、鸭胃、鹅胃)、肾(猪肾、牛肾)、肺脑、 胰、肉脯、浓肉汁、肉馅等。 ③ 水产类:鱼类(鱼皮、鱼卵、鱼干、沙丁鱼、风 尾鱼、鲭鱼、鲢鱼、乌鱼、鲨鱼、带鱼、吻仔鱼、 海鳗、扁鱼干、鲳鱼)、贝壳类(蛤蜊、牡蛎、蛤 子、蚝、淡菜、干贝)、虾类(草虾、金勾虾、小 虾、虾米)、海参。 ④ 其他:酵母粉、各种酒类(尤其是啤酒)。
62
乳清酸尿症 oroticaciduria
乳清酸尿症是一种常染色体隐性遗传病, 患者体内嘧啶核苷酸从头合成酶缺陷。该 病症分两种类型:一型缺乏乳清酸磷酸核 糖转移酶和乳清酸核苷酸脱羧酶;尿中排 出多量乳清酸。患者出现发育不良,巨幼 红细胞性贫血症。二型只缺乏乳清酸核苷 酸脱羧酶,尿中出现乳清酸核苷酸和少量 乳清酸。二者均易发生感染。
37
第二节
嘌呤核苷酸的生物合成
38
概述
可以通过两条完全不同的途径进行,
1、补救途径由现成的核苷或游离的碱 基、磷酸、戊糖在酶的作用下直接合 成Nt—Salvage Pathway
2、从头合成或由磷酸戊糖先和尚未完 成的Pu或Py环结合,在未完成的环上 添加必要的部分,然后闭合成环— De novo Synthesis。
39
一、嘌呤核苷酸的从头合成
碳14标记的HCOOH和氮15标记的氨基酸与 鸽肝匀浆物共培养,得到Pu环各元素 的来源,1950s由J.Buchanan和 G.Robert Greenberg提出 Hypoxanthine de novo synthesis 假说,并证明Hypoxanthine Nt是 Ade-Nt及Gua-Nt合成的前体。
26
常见食物的嘌呤含量范围
每100克食物中含50毫克—150毫克嘌呤 的为中嘌呤有: 肉 类:鸡肉、猪肉、牛肉、羊肉、鱼、 虾、螃蟹; 豆 类:黑豆、绿豆、红豆、花豆、碗 豆、菜豆、豆干、豆腐以及笋干、金针、 银耳、花生、腰果、芝麻等。
相关文档
最新文档