专题:二次函数中的动点问题2(平行四边形存在性问题)
二次函数中动点及特殊四边形综合问题解析及训练
二次函数中动点与特殊四边形综合问题解析与训练一、知识准备:n物线与直线形的结合表形式之一是,以搪物线为载体,探时是否存在一些点,使其能构成某些特殊四边形,有以下常风的根本形式(1J搪物线上的点能否构成平行四边形〔2〕搪锄线上的点能否相成矩形,菱形,正方形(3)搪物线上的点能否成成梯形。
特珠四边形的性质与是解决这类问题的根底,而待定系数法,数形结合,分类时论是解决这类问题的关键二、二题精析(一)【抛物线上的点能否构成平行四边形】例一、如图,他枷线y = —/+公+。
与直线y = J%+2交于C,。
两点,其中点。
在丁轴上,7点。
的坐标为(3,—)。
点P是y轴右倒的抛物线上一就点,过点P作PEJ_x轴于点E,交2CD于点尸.(1)求槌物线的解析式;〔2〕假设点P的横坐标为机,当初为何值时,以O,C,P,尸为顶点的四边形是平行四边形?请说明理由。
〔3〕假设存在点P,使/PCF = 45。
,请直接写出相应的点P的坐标【解答】〔1〕∙.∙直线y = Jx+2经过点C,.∙.C(0,2)7∙.∙搪物线y = —炉+瓜+c经过点C(0,2), D (3,-)2 = c [ 7b =一/. 7 , ,〈 2—=—32 + 3/7 + c c〔2 〔。
= 27他物线的解析式为y = -∕+]χ+2〔2〕∙.∙点P的横坐标为团且在地物线上7 19.∙. P(m, 一"Γ + —m÷2), F(m, — m + 2)∙.∙p/〃 C。
,.•.当相=CO时,以。
,C,P,b为顶点的四边形是平行四边形7 1① 当0 v〃z<3 时,PF = -m2 + —m + 2-(-m + 2) = -m2 +3m2 2.∙. -m2 + 3/7? = 2 ,解得:m l=l,m2=2即当〃2 = 1或2时,四边形0。
尸是平行四边形1 7② 当m≥3 时,PF - (―m + 2)-(-m2 + — m + 2) = m2 -3m2 27 o _ ⅛tn ZB 3 + Jl 7 3 —∖∣17 r . ."r -3m= 2 ,解得:m1= ---,m, =--—〔舍去〕2-2即当叫二三普时,四边形OCFP是平行四边形〔3〕如图,当点P在。
(教学反思)二次函数综合(动点)问题平行四边形存在问题
《二次函数综合(动点)问题——平行四边形存在性问题》
教学反思
本节课是在学习二次函数y=ax2+bx+c的图像和性质及平行四边形性质的基础上来探究二次函数中动点问题与平行四边形模型的一节复习课;通过教学,让熟练掌握二次函数y=ax2+bx+c的图像和性质;熟练掌握平行四边形的性质;并会对平行四边形模型进行探究,分类讨论不同的情况;在整个教学中,我首先在学生掌握二次函数
y=ax2+bx+c的图像和性质的基础上,先脱离二次函数,再回到二次函数的情景中研究;先从简单入手探究平面直角坐标系中动点情况下平行四边形的存在问题,然后回到二次函数前提下的平行四边形存在问题。
利用几何画板,充分运用数形结合、转化、方程等数学思想来帮助解题。
在整个教学过程中培养了学生的处理图像综合运用的能力;让学生养成从特殊到一般,从简单到复杂的学习方法;形成对图形的处理能力,形成解题技巧,树立对解决此类问题的信心。
专题02二次函数中四边形的存在性问题-2023年中考数学毕业班二轮热点题型归纳与变式演练 (原卷版)
专题02 二次函数中四边形的存在性问题目录最新模考题热点题型归纳【题型一】 梯形存在性【题型二】 平行四边形存在性【题型一】 梯形存在性【典例分析】(2023杨浦区一模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0)、B(3,0).C(2,3)三点,且与y轴交于点D.(1)求该抛物线的表达式,并写出该抛物线的对称轴;(2)分别联结AD、DC,CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.【提分秘籍】梯形是相对限制较少的一类四边形,要使得一个四边形是梯形,只需要有其中一组对边平行,另一组对边不平行即可。
所以,在此类问题中,要么对点有较高的限制 (在某一直线上),要么对梯形形状有较高要求(等腰或直角)。
综合利用各个条件,才能求出最后的结果【变式演练】1.(2023青浦区一模)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x22﹣x的“不动点”的坐标;②向左或向右平移抛物线y=x22﹣x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.2.【2021年青浦二模】(12分)已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C,对称轴是直线x=1,顶点是点D.(1)求该抛物线的解析式和顶点D的坐标;(2)点P为该抛物线第三象限上的一点,当四边形PBDC为梯形时,求点P的坐标;(3)在(2)的条件下,点E为x轴正半轴上的一点,当tan(∠PBO+∠PEO)=时,求OE的长.【题型二】 平行四边形存在性【典例分析】(2022•宝山区二模)已知抛物线y=ax2+bx﹣2(a≠0)经过点A(1,0)、B(2,0),与y轴交于点C.(1)求抛物线的表达式;(2)将抛物线向左平移m个单位(m>2),平移后点A、B、C的对应点分别记作A1、B1、C1,过点C1作C1D⊥x轴,垂足为点D,点E在y轴负半轴上,使得以O、E、B1为顶点的三角形与△A1C1D相似,①求点E的坐标;(用含m的代数式表示)②如果平移后的抛物线上存在点F,使得四边形A1FEB1为平行四边形,求m的值.【提分秘籍】解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.已知定点的个数不同,选用的方法也不同,通常有以下两种情况:1、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.2、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.【变式演练】﹣与x轴1.【2021年杨浦二模】如图,已知在平面直角坐标系xOy中,直线y=x5相交于点A,与y轴相交于点B,抛物线y=ax2+6x+c经过A、B两点.(1)求这条抛物线的表达式;(2)设抛物线与x轴的另一个交点为C,点P是抛物线上一点,点Q是直线AB上一点,当四边形BCPQ是平行四边形时,求点Q的坐标;(3)在第(2)小题的条件下,联结QC,在∠QCB内作射线CD与抛物线的对称轴相交于点D,使得∠QCD=∠ABC,求线段DQ的长.2.(2021·上海宝山区·九年级一模)已知抛物线()20=+¹经过y ax bx a()1,3B-两点,抛物线的对称轴与x轴交于点C,点 D与点B关于抛A,()4,0物线的对称轴对称,联结BC、BD.(1)求该抛物线的表达式以及对称轴;(2)点E在线段BC上,当CED OBDÐÐ时,求点 E的坐标;=(3)点M在对称轴上,点N在抛物线上,当以点O、A、M、N为顶点的四边形是平行四边形时,求这个平行四边形的面积.﹣经过点A(﹣3.【2021年崇明二模】(12分)已知抛物线y=ax2+bx41,0),B(4,0),与y轴交于点C,点D是该抛物线上一点,且在第四象限内,联结AC、BC、CD、BD.(1)求抛物线的函数解析式,并写出对称轴;(2)当S△BCD=4S△AOC时,求点D的坐标;(3)在(2)的条件下,如果点E是x轴上的一点,点F是抛物线上一点,当点A、D、E、F为顶点的四边形是平行四边形,请直接写出点E的坐标.【题型三】 矩形的存在性【典例分析】【提分秘籍】二次函数中的矩形存在性问题相交于平行四边形的存在性问题而言,其难度更大。
中考数学压轴题攻略之二次函数中平行四边形存在问题
中考数学压轴题攻略之二次函数中平行四边形存在问题
二次函数综合题是中考每年必考的题型,存在性问题在二次函数综合题中也是一类重点问题,可谓是重中之重,所以广大考生一定要掌握此类题型的解法,做到心中有数,下笔有神。
下面以一道中考题为例,简单分析一下二次函数中平行四边形存在问题的解题思路。
题目
题目图像
第(1)、(2)题不是此次讲解的重点,所以我们就简单对一下答案
(1)(2)答案
(3)分析:从题目中可以看出这道题中平行四边形已经有了两个定点,属于“两定两动”的题型,这种问题可以将两个定点连接为线段,再按这条线段作为平行四边形的边和对角线两种情况进行分类讨论,即可解题。
点评:有时候解题利用平行四边形中心对称的性质会有奇效。
解决二次函数中平行四边形存在性问题
图2图3 图1 解决二次函数中平行四边形存在性问题1.1 线段中点坐标公式平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,221y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P =221x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +).1.2 平行四边形顶点坐标公式□ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D .证明: 如图2,连接AC 、BD ,相交于点E .∵点E 为AC 的中点,∴E 点坐标为(2C A x x +,2C A y y +). 又∵点E 为BD 的中点, ∴E 点坐标为(2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D .即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.2 一个基本事实,解题的预备知识如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C .3 两类存在性问题解题策略例析与反思 3.1 三个定点、一个动点,探究平行四边形的存在性问题例1 已知抛物线y=x 2-2x+a (a <0)与y 轴相交于点A ,顶点为M .直线y=21x-a 分别与x 轴、y 轴相交于B 、C 两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M ( ), N ( );(2)如图4,将△NAC 沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连接CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线y=x 2-2x+a (a <0)上是否存在一点P ,使得以P 、A 、C 、N 为顶点的四边形图4图5是平行四边形?若存在,求出点P 的坐标;若不存在,试说明理由.解:(1)M (1,a -1),N (a 34,-a 31);(2)a=-49;S 四边形ADCN =16189; (3)由已知条件易得A (0,a )、C (0,-a )、N (a 34,-a 31).设P (m ,m 2-2m +a ). ①当以AC 为对角线时,由平行四边形顶点坐标公式(解题时熟练推导出),得:②当以AN 为对角线时,得:③当以CN 为对角线时,得:反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解.这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论.3.2 两个定点、两个动点,探究平行四边形存在性问题例2 如图5,在平面直角坐标系中,抛物线A (-1,0),B (3,0),C (0,-1)三点.(1)求该抛物线的表达式;(2)点Q 在y 轴上,点P 在抛物线上,要使以点Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标.图6解 :(1)易求抛物线的表达式为y=132312--x x ; 由题意知点Q 在y 轴上,设点Q 坐标为(0,t );点P 在抛物线上,设点P 坐标为(m ,132312--m m ). ①当以AQ 为对角线时,②当以BQ 为对角线时③当以AB 为对角线时反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在x 轴(y 轴)或对称轴或某一定直线上.设出抛物线上的动点坐标,另一个动点若在x 轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y 轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关的公式.本例中点Q 的纵坐标t 没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的三条线段为对角线分类,分三种情况讨论.3. 如图6,在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.反思:该题中的点Q是直线y=-x上的动点,设动点Q的坐标为(s,-s),把Q看做定点,就可根据平行四边形顶点坐标公式列方程组了.4 问题总结这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类,分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组).这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想.【课后练习】1.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.2.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.3.已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.。
二次函数有关平行四边形的存在性问题
有关平行四边形的【2 】消失性问题一.常识与办法积聚:1.已知三个定点,一个动点的情形在直角坐标平面内肯定点M,使得以点M.A.B.C为极点的四边形是平行四边形,请直接写出点M的坐标.后盘算.(可应用三角形全等性质和平行四边形性质,精确求点的坐标)二.例题解析:如图,抛物线32++=bx ax y 与y 轴交于点C ,与x 轴交于A .B 两点,31tan =∠OCA ,6=∆ABC S . (1)求点B 的坐标; (2)求抛物线的解析式及极点坐标;(3)设点E 在x 轴上,点F 在抛物线上,假如A .C .E .F 组成平行四边形,要求出点E 的坐标.巩固演习:1. 已知抛物线322++-=x x y 与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C . 问坐标平面内是否消失点M ,使得以点M 和抛物线上的三点A.B.C 为极点的四边形是平行四边形?若消失,要求出点M 的坐标;若不消失,请解释来由.CAB Oyx2. 若点P 是x 轴上一点,以P .A .D 为极点作平行四边形,该平行四边形的另一极点E 在y 轴上,写出点P 的坐标.3.如图,抛物线223y x x =-++与x 轴订交于A .B 两点(点A 在点B 的左侧),与y 轴订交于点C ,极点为D .(1)直接写出A .B .C 三点的坐标和抛物线的对称轴;(2)衔接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为m ;并求出当m 为何值时,四边形PEDF 为平行四边形?4. 已知抛物线y =12x =离与x 轴,y 轴订交于两点,并且与直线订交于点.在抛物线22y x x a =-+(0a <)上是否消失一点P ,使得认为P A C N ,,,极点的四边形是平行四边形?若消失,求出P 点的坐标;若不消失,试解释来由.5.如图,已知抛物线)0(2≠++=a c bx ax y 的极点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A.B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 活动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D . (1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上, 问是否消失以A.P.E.F 为极点的平行四边形?若消失, 求点F 的坐标;若不消失,请解释来由.6. 如图,抛物线21y ax bx =++与x 轴交于两点A (-1,0),B (1,0),与y 轴交于点C .(1)求抛物线的解析式;(12+-=x y )(2)过点B 作BD ∥CA 与抛物线交于点D ,求四边形ACBD 的面积;四边形ACBD 的面积S =12AB •OC +12AB •DE 112123422=⨯⨯+⨯⨯=(也可直接求直角梯形ACBD的面积为4)(3)在x轴下方的抛物线上是否消失一点M,过M作MN⊥x轴于点N,使以A.M.N为极点的三角形与△BCD类似?若消失,则求出点M的坐标;若不消失,请解释来由.。
2018中考总复习专题-二次函数之平行四边形的存在性问题方法总结
M 1在几何中,平行四边形的判定方法有如下几条:①两组对边互相平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分;⑤两组对角相等。
在压轴题中,往往与函数(坐标轴)结合在一起,运用到④⑤的情况较少,更多的是从边的平行、相等角度来得到平行四边形。
1、 知识内容:已知三点后,其实已经固定了一个三角形(平行四边形的一半),如图△ABC .第四个点M 则有3种取法,过3个顶点作对边的平行线且取相等长度即可(如图中3个M 点).2、 解题思路:(1) 根据题目条件,求出已知3个点的坐标;知识结构知识精讲模块一:已知三点的平行四边形问题知识概述(2) 用一点及其对边两点的关系,求出一个可能点; (3) 更换顶点,求出所有可能的点;(4) 根据题目实际情况,验证所有可能点是否满足要求并作答.【例1】 如图,抛物线y =x 2+bx -c 经过直线y =x -3与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线的顶点为D . (1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使S △APC ︰S △ACD =5︰4的点P 的坐标;(3)点M 为平面直角坐标系上一点,写出使点M 、A 、B 、D 为平行四边形的点M 的坐标.例题解析【例2】如图,已知抛物线y=ax2+3ax+c与y轴交于点C,与x轴交于A、B两点(点A 在点B的左侧),点B的坐标为(1, 0),tan∠OBC=3.(1)求抛物线的解析式;(2)点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形,若存在,写出点P的坐标;(3)抛物线的对称轴与AC交于点Q,说明以Q为圆心,以OQ为半径的圆与直线BC的关系.1、 知识内容:在此类问题中,往往是已知一条边,而它的对边为动边,需要利用这组对边平行且相等列出方程,进而解出相关数值.更复杂的有,一组对边的两条边长均为变量,需要分别表示后才可列出方程进行求解. 2、 解题思路:(1) 找到或设出一定平行的两条边(一组对边); (2) 分别求出这组对边的值或函数表达式; (3) 列出方程并求解; (4) 返回题面,验证求得结果.【例3】 如图,抛物线254y x bx c =-++与y 轴交于点A (0,1),过点A 的直线与抛物线交于另一点B 5(3,)2,过点B 作BC ⊥x 轴,垂足为C .(1)求抛物线的表达式;(2)点P 是x 轴正半轴上的一动点,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N ,设OP 的长度为m . ①当点P 在线段OC 上(不与点O 、C 重合)时,试用含m 的代数式表示线段PM 的长度;②联结CM 、BN ,当m 为何值时,四边形BCMN 为平行四边形?知识精讲模块二:存在动边的平行四边形问题例题解析【例4】如图,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.【例5】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC 向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.【习题1】已知平面直角坐标系xOy(如图),一次函数334y x=+的图像与y轴交于点A,点M在正比例函数32y x=的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数334y x=+的图像上,且四边形ABCD是菱形,求点C的坐标.随堂检测【习题2】如图,菱形ABCD的边长为4,∠B=60°,F、H分别是AB、CD的中点,E、G 分别在AD、BC上,且AE=CG.(1)求证四边形EFGH是平行四边形;(2)当四边形EFGH是矩形时,求AE的长;(3)当四边形EFGH是菱形时,求AE的长.【作业1】如图,在平面直角坐标系xOy中,直线243y mx m=-与x轴、y轴分别交于点A、B,点C在线段AB上,且S△AOB=2S△AOC.(1)求点C的坐标(用含有m的代数式表示);(2)将△AOC沿x轴翻折,当点C的对应点C′恰好落在抛物线22 3y x mx m=++上时,求该抛物线的表达式;(3)设点M为(2)中所求抛物线上一点,当以A、O、C、M为顶点的四边形为平行四边形时,请直接写出所有满足条件的点M的坐标.课后作业【作业2】如图,点A(2, 6)和点B(点B在点A的右侧)在反比例函数的图像上,点C在y 轴上,BC//x轴,tan∠ACB=2,二次函数的图像经过A、B、C三点.(1)求反比例函数和二次函数的解析式;(2)如果点D在x轴的正半轴上,点E在反比例函数的图像上,四边形ACDE是平行四边形,求边CD的长.。
二次函数动点问题专题
二次函数动点问题专题一、因动点产生的面积问题1、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.cbxxy++-=2ABC2、如图,抛物线y=12x2+b x-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。
(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上一个动点,当CM+DM的值最小时,求m的值;(4)点P为直线BC下方抛物线上一动点,问当P在什么位置时,四边形ACPB 的面积最大,求出此时的P点坐标及最大面积。
3.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.4、(2015中大附中一模)如图,已知抛物线c bx ax y ++=2过点A (6,0),B (-2,0),C (0,-3).(1)求此抛物线的解析式;(2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠GQA =45º,求点Q 的坐标.5、(2016•越秀区一模)如图,已知抛物线y=x 2﹣(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点.(1)求m 的值;(2)求A 、B 两点的坐标;(3)当﹣3<x <1时,在抛物线上是否存在一点P ,使得△PAB 的面积是△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.二、因动点产生的等腰三角形存在性问题1、已知:如图抛物线a x x y +-=421过点A (0,3),抛物线1y 与抛物线2y 关于y 轴对称,抛物线2y 的对称轴交x 轴于点B ,点P 是x 轴上的一个动点,点Q 是第四象限内抛物线1y 上的一点。
专题:二次函数中的动点问题(平行四边形存在性问题)
二次函数中的动点问题(二)平行四边形的存在性问题一.技巧提炼如图1,点人(召,开)、3(忑,儿)、C(X3Os)是坐标平面内不在同一直线上的三点。
平面直角坐标系中是否存在点D,使得以A、B、C、D四点为顶点的四边形为平行四边形,如果存在,请求出点D的坐标。
如图2,过A、B、C分别作BC、AC、AB的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。
由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。
3、平面直角坐标系中直线和直线12:当h时k尸k2;当h丄I2时ki-k2=-14、二次函数中平行四边形的存在性问题:解题思路:(1)先分类(2)再画图(3)后计算二、精讲精练1、已知抛物线y=ax-+bx+c与x轴相交于A、E两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C点,且OA:OB:OC=1:3:3,AABC的面积为6,(如图1)(1)求抛物线的解析式:(2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由;(3)如图2,在直线BC±方的抛物线上是否存在一动点P,ABCP面枳最大?如果存在,求出最人面积,2、如图,己知抛物线经过A(-2,0),B(・3,3)及原点6顶点为C(1)求抛物线的函数解析式:(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标。
【变式练习】7如图,对称轴为直线x二一的抛物线经过点A(6,0)和B(0,4)・2(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四彖限,四边形0EAF是以0A为对角线的平行四边形, 求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形0EAF是否为菱形?②是否存在点E,使平行四边形0EAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.、方法规律1、平行四边形模型探究如图1,点&(內,开)、3(七,儿)、C(X3,”)是坐标平面内不在同一直线上的三点。
二次函数中平行四边形存在性问题
二次函数中平行四边形存在性问题解题原理:对角线互相平分的四边形是平行四边形1. 平行四边形顶点坐标公式平行四边形ABCD的顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),则:x1+x3=x2+x4;y1+y3=y2+y4.证明:如图,连接AC、BD,相交于点E.∵点E为AC的中点,∴E点坐标为(221xx+,231yy+). 又∵点E为BD的中点,∴E点坐标为(242xx+,242yy+).∴x1+x3=x2+x4;y1+y3=y2+y4.即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.2 解题的预备知识如右图,已知不在同一直线上的三点A、B、C,在平面内另找一个点D,使以A、B、C、D为顶点的四边形是平行四边形.答案有三种:以AB为对角线的□ACBD1,以AC为对角线的□ABCD2,以BC为对角线的□ABD3C.3 两类存在性问题解题策略第一步:把四个点的坐标表示出来(如果是动点用字母表示其坐标)第二步:分三种情况讨论对角线(如果四个点中有一组平行例1中PM//OB那么以PM为对角线是不存在的,就可以只讨论以PB、PO为对角线的情况)第三步:利用对角线两端点的横坐标、纵坐标之和分别相等列式。
题型1 有一组对边平行,探究平行四边形存在性问题例1.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.题型2 两个定点、两个动点,(或一个定点、三个动点)探究平行四边形存在性问题例2.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.习题巩固1.如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,1),过点A的直线与抛物线交于另一点B(3,),过点B作BC⊥x轴,垂足为C.点P是x轴正半轴上的一动点,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设OP的长度为m.(1)求抛物线的解析式;(2)连结CM,BN,当m为何值时,以B、C、M、N为顶点的四边形为平行四边形?2.抛物线:y=x2﹣x﹣与x轴交于A、B(A在B左侧),A(﹣1,0)、B(3,0),顶点为C(1,﹣2)在抛物线上找点P,在y轴上找点E,使以A、B、P、E为顶点的四边形是平行四边形,求点P、E的坐标.2.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M 作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.3.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC 面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.4.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B 恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.。
初中数学_二次函数专题复习—平行四边形存在性问题教学设计学情分析教材分析课后反思
《平行四边形存在性问题》教学设计执教者学情分析本节课是在已经进行过一轮复习,也适当做了一些往年的中考试卷,对于基础知识学生掌握的还是不错的,但对于综合性的题目却感觉困难,特别是动点问题。
对于这类问题存在以下几种情况:1、这类问题无论教师做了多大的努力,对学生来说都比较困难,所以一部分学生放弃作答。
2、一部分学生对动点问题从根本上不理解,勉强照猫画虎,写了不少但不得分。
3、学生对动点问题有一定认识,对分类能进行简单尝试, 但不完整。
针对以上情况,我希望通过本节课的学习,一方面帮助学生树立信心,让他们明白所谓的综合题都是由诸多小知识点组成的,所谓的动态问题可以变为“静”来解决,通过代数解决几何问题另一方面通过例题讲解让学生掌握解决这类题目的解题策略。
效果分析针对学生面临的困难:首先,我在教学时注意层次性,讲究循序渐进,由浅入深,由易到难,不要一步到位,逐步过渡。
其次,注意所选例题的典型性,选了最具代表性的两类动点问题产生的平行四边形形存在性问题,一类一个例题,这样就可由一题推及一类,让学生可触类旁通,达到举一反三的效果。
教学时注重这几个方面:1、利用几何画板动态画图,让学生体会点在运动过程中,图形会跟着发生变化。
在变化的过程中抓住某一瞬间,化“动”为“静”,使其构成平行四边形,再利用所学知识解决问题。
2、注重板书。
通过清晰的板书让学生一目明了如何分析平行四边形存在性问题。
3、注重数学思想方法的渗透。
数学思想方法是数学学科的精髓,是数学素养的重要内容之一,在数学教学和探究活动中始终体现这些数学思想方法,动点问题也不例外,因此,在数学教学中应特别注重这些思想方法的渗透,因为只有让学生充分掌握领会这种思维,才能更有效地运用所学知识,形成求解动点问题的能力。
动点问题中主要体现方程思想,数形结合思想,分类讨论思想等。
方程思想,大多数动点问题到最后都转化为方程形式,然后利用方程来求解。
数形结合思想,动点问题中,所研究的量的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
二次函数中的动点问题之平行四边形 教学设计
广东省中考数学疑难问题教学设计:二次函数中的动点问题之平行四边形一、教学内容的确定及前期思考:二次函数中的动点问题无疑会成为压轴题三位主角中的一个,而动点产生平行四边形的问题也经常出现,本人发现:无论是各种复习资料对这类题给出的解答方法,还是我听公开课时发现很多老师给出的解决方式都将简单问题复杂化了,而我们数学老师的任务应该是化繁为简,找出各个知识点之间的联系,充分利用我们熟悉的数学方法和数学思想去解决压轴题中的疑难问题,由此产生了将此类问题形成一篇教学设计的想法,并已长达两年之久。
二、教学目标分析:(一)通性通法:1、通过知识转化、类比、迁移的方式学会观察分析并找出线段的平移和点的坐标之间的关系,再利用形成平行四边形的动点的位置的特殊性(在抛物线上或在抛物线的对称轴上等),求出动点的坐标。
2、熟练掌握和应用函数模型、数形结合、分类讨论与整合、化归与转化等数学思想和方法。
(二)情感教育:能通过本节课化繁为简、化难为易的学习过程克服对压轴题的恐惧心理,增强学生解决压轴题的信心和勇气。
三、教学重点与难点分析:重点:掌握根据平移与点的坐标之间的关系规律来解决二次函数中动点产生平行四边形的问题。
1难点:首先是能利用平移画出大致图形,其次是能充分利用隐含的条件(如点在对称轴上就意味着已知横坐标等)来求出动点的坐标。
四、教学过程设计总流程如下:具体教学过程如下:(一)观看旧解,提出问题:环节一:展示疑难题图,引出课题设计意图:展示三道平行四边形和二次函数结合的题图,冲击学生的视觉,让学生的注意力一下子就集中到本节课要学习的题目类型上。
开场白设计:在压轴题中,我们经常会见到平行四边形和二次函数相依相伴的身影,这节课我们就一起来研究二次函数和平行四边形的那些事儿。
环节二:探讨平行四边形中暗含的平移知识(聊天引入)让我们先把平行四边形请过来做客吧!下面,给你们展示一道题以及这道题的解题过程,你知道答案是怎么做的吗?辅例 1、(选自练习册中的练习题)在直角坐标系中,已知: A(-1,0),B(3,0),C(0,2).以A、B、C、D 为顶点的四边形是平行四边形,求 D 点的坐标。
【二次函数专题二】平行四边形存在性问题探究
【⼆次函数专题⼆】平⾏四边形存在性问题探究专题导⼊导例:如图,在平⾯直⾓坐标系中,已知抛物线y=-x2-2x+3与x轴交于A,B两点,与y轴交于点C,顶点为P,如果以点P,A,C,D为顶点的四边形是平⾏四边形,则点D的坐标为.说明:我们知道不在同⼀直线上的三点A、B、C,在平⾯内另找⼀个点D,使以A,B,C,D为顶点的四边形是平⾏四边形.答案有三种,如图,以AB为对⾓线的□ACBD1,以AC为对⾓线的□ABCD2,以BC为对⾓线的□ABD3C.⽅法点睛⽅法指引:解平⾏四边形的存在性问题⼀般分三步:第⼀步:寻找分类标准;第⼆步:画图;第三步:计算.知识储备:[来源:Z|xx|]平⾏四边形顶点坐标公式:□ABCD的顶点坐标分别为A(x A,y A),B(x B,yB),C(x C,y C),D(x D,y D),则x A+x C=x B+x D;y A+y C=y B+y D.证明:∴xA+xC=xB+xD,yA+yC=yB+yD.即平⾏四边形对⾓线两端点的横坐标、纵坐标之和分别相等.【导例答案】P,A,C三点是确定的,过△PAC的三个顶点分别画对边的平⾏线,三条直线两两相交,产⽣3个符合条件的点D(如图4).D1(2, 7),D2(-4, 1),D3(-2, -1).典例精讲类型⼀:已知三个定点、⼀个动点,探究平⾏四边形的存在性问题例1 如图,抛物线y=x2-2x-3与x轴的负半轴交于A点,与y轴交于C点,顶点是M,经过C,M两点作直线与x轴交于点N.(1)直接写出点A,C,N的坐标.(2)在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平⾏四边形?若存在,求出点P的坐标;若不存在,请说明理由.分析(1)分别令________和________即可求得A,C两点的坐标,由抛物线的函数解析式即可求得顶点M的坐标,然后求出直线CM直线的函数解析式便可求得点N的坐标.(2)根据能导例的⽅法,先求出使得以点P,A,C,N为顶点的四边形为平⾏四边形的点P的坐标,然后逐⼀代⼊抛物线的函数解析式验证得符合条件的点P.类型⼆: 已知两个定点,探求限定条件下的另两个动点,使之构成平⾏四边形例2 如图,矩形OABC在平⾯直⾓坐标系中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的函数解析式.(2)求点D的坐标.(3)若点M在抛物线上,点N在x轴上,是否存在以点A,D,M,N为顶点的四边形是平⾏四边形?若存在,求出点N的坐标;若不存在,请说明理由.分析(1)由OA的长度确定出点A的坐标,再利⽤对称性得到顶点坐标,设出抛物线的顶点形式____________,将________的坐标代⼊求出a的值,即可确定出抛物线的函数解析式.(2)设直线AC的函数解析式为y=kx+b,将点A,C的坐标代⼊求出k与b的值,确定出直线AC的函数解析式,与____________联⽴即可求出点D的坐标.(3)存在,分两种情况考虑:①若AD为平⾏四边形的对⾓线,则有MD∥________,MD=________;②若AD为平⾏四边形的⼀边,则MN∥________,MN=________,此时通过画图可知有两种情况.专题过关1.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x 轴交于点H.(1)求抛物线的函数解析式;(2)求点D的坐标;(3)点M为x轴上⽅抛物线上的点,在对称轴l上是否存在⼀点N,使得以点D,P,M.N为顶点的四边形是平⾏四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+bx-3经过点A(2,-3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式.(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标.(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平⾏四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.3.如图,是将抛物线y=-x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的⼀个交点为A(-1,0),另⼀个交点为B,与y轴的交点为C.(1)求抛物线的函数解析式.(2)若点N为抛物线上⼀点,且BC⊥NC,求点N的坐标.(3)点P是抛物线上⼀点,点Q是⼀次函数y=3/2x+3/2的图象上⼀点,若四边形OAPQ为平⾏四边形,则这样的点P,Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.4.已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=1/2x-a分别与x轴、y 轴相交于B、C两点,并且与直线AM相交于点N.(1)填空:试⽤含a的代数式分别表⽰点M与N的坐标,则M( ), N( );(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连接CD,求a的值和四边形ADCN的⾯积;(3)在抛物线y=x2-2x+a(a<0)上是否存在⼀点P,使得以P、A、C、N为顶点的四边形是平⾏四边形?若存在,求出点P的坐标;若不存在,试说明理由.5.如图,直线AB:y=1/2x+2与x轴、y轴分别交于A,B两点,C是第⼀象限内直线AB上⼀点,过点C作CD⊥x轴于点D,且CD的长为7/2,P是x轴上的动点,N是直线AB上的动点.(1)直接写出A,B两点的坐标;(2)如图①,若点M的坐标为(0,-3/2),是否存在这样的P点.使以O,P,M,N为顶点的四边形是平⾏四边形?若有在,请求出P点坐标;若不存在,请说明理由.(3)如图②,将直线AB绕点C逆时针旋转交y轴于点F,交x轴于点E,若旋转⾓即∠ACE=45°,求△BFC的⾯积.。
中考数学复习二次函数中双动点及图形存在性问题解析版
专题10 动点类综合题目探究题型一:二次函数中三角形面积最值存及平行四边形存在性问题题型二:一次函数与圆结合及特殊三角形存在性问题题型三:二次函数中线段最值问题及特殊平行四边形存在性问题题型四:二次函数中给定动线段平方和最值存在性问题题型五:二次函数中给定动线段平方和最值存在性问题例5.(2019·金华)如图,在平面直角坐标系中,正方形OABC 的边长为4,边OA 、OC 分别在x 轴、y 轴的正半轴上,把正方形OABC 的内部及边上,横、纵坐标均为整数的点称为好点. 点P 为抛物线的顶点.(1)当m =0时,求该抛物线下方(包括边界)的好点个数;(2)当m =3时,求该抛物线上好点坐标;(3)若点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.【分析】(1)(2)分别作出图形,可求得好点的个数及坐标;(3)根据抛物线顶点坐标,作出图形,分析m 的取值范围.【答案】见答案.【解析】解:(1)当m =0时,二次函数的表达式为,画出如下函数图象, ()22y x m m =--++22y x =-+∵当x =0时,y =2; 当x =1时,y =1,∴抛物线经过点(0,2)和(1,1).∴好点有:(0,0),(0,1),(0,2),(1,0)和(1,1),共5个.(2)当m =3时,二次函数的表达式为, 画出函数图象,∵当x =1时,y =1; 当x =2时,y =4; 当x =4时,y =4. ∴该抛物线上存在好点,坐标分别是(1,1),(2,4)和(4,4).(3)∵抛物线顶点P 的坐标为(m ,m +2),故点P 在直线y=x +2上.由于点P 在正方形内部,则0<m <2.由图知:点E (2,1), F (2,2).∴当顶点P 在正方形OABC 内,且好点恰好存在8个时,抛物线与线段EF 有交点(点F 除外).2(3)5y x =--+当抛物线经过点E (2,1)时,, 解得:(舍去).当抛物线经过点F (2,2)时, ,解得:m 3=1,m4=4(舍去).时,顶点P 在正方形OABC 内,恰好存在8个好点. 题型六:二次函数中双动点及图形存在性问题2(2)2=1m m --++1m 2m 2(2)2=2m m --++1m <。
二次函数中的存在性问题(平行四边形)
一、已知两个定点,再找两个点构成平行四边形①确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等)1.已知,如图抛物线23(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧。
点B 的坐标为(1,0),OC=30B .(1)求抛物线的解析式;(2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值:(3)若点E 在x 轴上,点P 在抛物线上。
是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.2.已知抛物线:x x y 22121+-= (1)求抛物线1y 的顶点坐标.(2)将抛物线1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求抛物线2y 的解析式.(3)如下图,抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O (原点)、P 、M 、N 四点构成以OP 为一边的平行四边形,若存在,求出N 点的坐标;若不存在,请说明理由.②两定点连接的线段没确定为平行四边形的边时,则这条线段可能为平行四边形得边或对角线1.如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.2.已知:如图所示,关于x 的抛物线2(0)y ax x c a =++≠与x 轴交于点(20)A -,、点(60)B ,,与y 轴交于点C .(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式;(3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A M P Q 、、、为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.。
二次函数中因动点产生的平行四边形的存在性问题
二次函数中的平行四边形的存在性问题一、已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)在直角坐标平面内确定点M ,使得以点M 、A 、B 、C 为顶点的四边形是平行四边形,请写出点M 的坐标。
1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标;⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分 ⑵如图,连接PC ,∵点A 、B 的坐标分别是A (-1,0)、B (3,0), ∴AB =4.∴.AB PC 242121=⨯==在Rt △POC 中,∵O P =PA -OA =2-1=1, ∴.PO PC OC 3122222=-=-= ∴b =.3 ……………………3分 当01=-=,y x 时,,a a 032=+--∴.a 33=………………………4分 ∴.x x y 3332332++-= ………………5分 ⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB . 由⑵知,AB =4,∴|x |=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分. ②当以AB 为对角线时,点M 在x 轴下方. 过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°. ∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO. ∵OB =3,∴0N =3-1=2.∴点M的坐标为(2,M . ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123((2,M M M -.说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。
二次函数压轴题之平行四边形存在性问题
平行四边形存在性问题考虑到求证平行四边形存在,必先了解平行四边形性质: (1)对应边平行且相等; (2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中: (1)对边平行且相等可转化为:A B D CAB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D ,移动路径完全相同.y D -y Cx D -x Cy A -y Bx A -x BABC D(2)对角线互相平分转化为:2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD 的中点.DCBA【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D BA B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩, 2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩. 当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A 、B 、C 、D 满足“A +C =B +D ”,则四边形ABCD 是否一定为平行四边形?反例如下:D之所以存在反例是因为“四边形ABCD 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论: (1)四边形ABCD 是平行四边形:AC 、BD 一定是对角线.(2)以A 、B 、C 、D 四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.【题型分类】平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题. 1.三定一动已知A (1,2)B (5,3)C (3,5),在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形.D 3D 2D 1OyxCBA思路1:利用对角线互相平分,分类讨论:设D 点坐标为(m ,n ),又A (1,2)B (5,3)C (3,5),可得: (1)BC 为对角线时,531352m n +=+⎧⎨+=+⎩,可得()17,6D ;(2)AC 为对角线时,135253mn +=+⎧⎨+=+⎩,解得()21,4D -;(3)AB 为对角线时,153235mn +=+⎧⎨+=+⎩,解得()33,0D .当然,如果对这个计算过程非常熟悉的话,也不用列方程解,直接列算式即可. 比如:1=D B C A +-,2=D A C B +-,3D A B C =+-.(此处特指点的横纵坐标相加减)2.两定两动已知A (1,1)、B (3,2),点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 为顶点的四边形是平行四边形,求C 、D 坐标.【分析】设C 点坐标为(m ,0),D 点坐标为(0,n ),又A (1,1)、B (3,2). (1)当AB 为对角线时,130120m n +=+⎧⎨+=+⎩,解得43m n =⎧⎨=⎩,故C (4,0)、D (0,3);(2)当AC 为对角线时,130102m n +=+⎧⎨+=+⎩,解得21m n =⎧⎨=-⎩,故C (2,0)、D (0,-1);(3)当AD 为对角线时,103120m n +=+⎧⎨+=+⎩,解得21m n =-⎧⎨=⎩,故C (-2,0)、D (0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质: (1)对边平行且相等; (2)对角线互相平分.但此两个性质统一成一个等式: A C B D AC BD x x x x y y y y +=+⎧⎨+=+⎩,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.由图形性质可知未知量,由未知量可知动点设计,由动点设计可化解问题.【2019宜宾中考】如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C .(1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当△P AB 面积最大时,求点P 的坐标,并求△P AB 面积的最大值.【分析】(1)抛物线:223y x x =--,直线AB :3y x =-;(2)考虑EC ∥MN ,故若使点M 、N 、C 、E 是平行四边形,则EC =MN 即可,∵E (1,-2)、C (1,-4), ∴EC =2,设M 点坐标为(m ,m -3)(m >1),则N 点坐标为()2,23m m m --, 则MN =()()222333MN m m m m m =----=- 由题意得:232m m -=, 232m m -=,解得:1m =,2m =(舍), 对应P点坐标为⎝⎭; 232m m -=-,解得:32m =,41m =(舍). 对应P 点坐标为(2,-1).综上,P点坐标为⎝⎭或(2,-1). (3)铅垂法可解.【2018河南中考(删减)】如图,抛物线26y ax x c =++交x 轴于A 、B 两点,交y 轴于点C .直线5y x =-经过B 、C . (1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .当AM BC ⊥时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标.【分析】(1)265y x x=-+-;(2)考虑到AM∥PQ,故只需AM=PQ即可.过点A作BC的平行线,与抛物线交点即为P点,易得直线AP的解析式:1y x=-,联立方程:2651x x x-+-=-,解得:11x=(舍),24x=,故对应P点坐标为(4,3);作点A关于B点的对称点A',过点A'作BC的平行线,与抛物线的交点亦为题目所求P点,易求直线解析式:9y x=-,联立方程:2659x x x-+-=-,解得:1x,2x=.故对应P点坐标为⎝⎭、⎝⎭.综上所述,P点坐标为(4,3)、⎝⎭、⎝⎭.【2018郴州中考(删减)】如图,已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t . (1)求抛物线的表达式;(2)设抛物线的对称轴为l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(1)抛物线:223y x x =-++; (2)由题意可知CP 、DM 为对角线,考虑DM 在直线x =-1上,故CP 中点在直线x =-1上,∵点C 坐标为(0,3),故点P 横坐标为2,代入解析式得P (2,3), 易知M 点坐标为(1,6).【三定一动】(2018·恩施州中考删减)如图,已知抛物线交x 轴于A 、B 两点,交y 轴于C 点,A 点坐标为(1,0)-,2OC =,3OB =,点D 为抛物线的顶点. (1)求抛物线的解析式;(2)P 为坐标平面内一点,以B 、C 、D 、P 为顶点的四边形是平行四边形,求P 点坐标.【分析】(1)抛物线:224233y x x =-++;(2)设P 点坐标为(m ,n ),又B (3,0)、C (0,2)、D 813⎛⎫⎪⎝⎭,①若BC 为对角线,由题意得:3018023m n +=+⎧⎪⎨+=+⎪⎩,解得:223m n =⎧⎪⎨=-⎪⎩,故1P 的坐标为22,3⎛⎫- ⎪⎝⎭;②若BD 为对角线,由题意得:3108023m n +=+⎧⎪⎨+=+⎪⎩,解得:423m n =⎧⎪⎨=⎪⎩,故2P 坐标为24,3⎛⎫⎪⎝⎭;③若BP 为对角线,由题意得:3018023m n +=+⎧⎪⎨+=+⎪⎩,解得:2143m n =-⎧⎪⎨=⎪⎩,故3P 坐标为142,3⎛⎫- ⎪⎝⎭.综上所述,P 点坐标为22,3⎛⎫- ⎪⎝⎭、24,3⎛⎫ ⎪⎝⎭、142,3⎛⎫- ⎪⎝⎭.【两定两动:x 轴+抛物线】(2018·济宁中考删减)如图,已知抛物线2(0)y ax bx c a =++≠经过点(3,0)A ,(1,0)B -,(0,3)C -.(1)求该抛物线的解析式;(2)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.【分析】(1)抛物线:223y x x =--;(2)列方程组求:设P ()2,23m m m --、Q (),0n ,又B (-1,0)、C (0,-3),若BC 为对角线,由题意得:21003230m n m m -+=+⎧⎨-=--+⎩,解得:23m n =⎧⎨=-⎩或01m n =⎧⎨=-⎩(舍), 故对应的P (2,-3);若BP 为对角线,由题意得:21023003m n m m -=+⎧⎨--+=-⎩,解得:21m n =⎧⎨=⎩或01m n =⎧⎨=-⎩(舍),故对应的P (2,-3);若BQ 为对角线,由题意得:21000233n m m m -=+⎧⎨+=---⎩,解得:12m n ⎧=⎪⎨=+⎪⎩12m n ⎧=⎪⎨=-⎪⎩, 故对应的P ()1+、()1.综上所述,P 点坐标为(2,-3)、()1、()1.(2019·包头中考删减)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,连接BC . (1)求该抛物线的解析式,并写出它的对称轴;(2)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【分析】(1)抛物线:224233y x x =-++,对称轴:直线x =1;(2)设M 点坐标为224,233m m m ⎛⎫-++ ⎪⎝⎭,N 点坐标为()1,n ,又B (3,0)、C (0,2)若BC 为对角线,由题意得:23012402233m m m n +=+⎧⎪⎨+=-+++⎪⎩,解得:20m n =⎧⎨=⎩, 故M 点坐标为(2,2);若BN 为对角线,由题意得:23102402233m n m m +=+⎧⎪⎨+=-+++⎪⎩,解得:443m n =⎧⎪⎨=-⎪⎩,故M 点坐标为104,3⎛⎫- ⎪⎝⎭;若BM 为对角线,由题意得:23102420233m m m n +=+⎧⎪⎨-+++=+⎪⎩,解得:2163m n =-⎧⎪⎨=-⎪⎩,故M 点坐标为102,3⎛⎫-- ⎪⎝⎭.综上所述,M 点坐标为(2,2)、104,3⎛⎫- ⎪⎝⎭、102,3⎛⎫-- ⎪⎝⎭.(2019·咸宁中考删减)如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)已知E ,F 分别是直线AB 和抛物线上的动点,当B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.【分析】(1)抛物线:213222y x x =-++;(2)设E 点坐标为1,22m m ⎛⎫-+ ⎪⎝⎭,F 点坐标为213,222n n n ⎛⎫-++ ⎪⎝⎭,又B (0,2)、O (0,0),①若OB 为对角线,由题意得:2001130222222m nm n n +=+⎧⎪⎨+=-+-++⎪⎩,解得:1122m n ⎧=--⎪⎨=+⎪⎩或2222m n ⎧=-+⎪⎨=-⎪⎩故E点坐标为(2--或(2-+;②若OE 为对角线,由题意得:2001130222222m nm n n +=+⎧⎪⎨-+=-++⎪⎩,解得:3322m n ⎧=+⎪⎨=+⎪⎩4422m n ⎧=-⎪⎨=-⎪⎩故E点坐标为(2+或(2-;③若OF 为对角线,由题意得:2001310222222n mn n m +=+⎧⎪⎨-++=-+⎪⎩,解得:5522m n =⎧⎨=⎩, 故E 点坐标为(2,1).【两定两动:抛物线+抛物线】(2019·连云港中考删减)如图,在平面直角坐标系xOy 中,抛物线21:L y x bx c =++过点(0,3)C -,与抛物线2213:222L y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q分别是抛物线1L 、2L 上的动点. (1)求抛物线1L 对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标.备用图【分析】(1)1L 解析式:223y x x =--;(2)虽然两个动点均在抛物线上,仍可用设点坐标的方法求解.设P 点坐标为()2,23m m m --,Q 点坐标为213,222n n n ⎛⎫--+ ⎪⎝⎭,又C (0,-3)、A (2,-3),①若CA 为对角线,由题意得;2202133323222m nm m n n +=+⎧⎪⎨--=----+⎪⎩, 解得:35m n =-⎧⎨=⎩或02m n =⎧⎨=⎩(舍),故P 点坐标为(-3,12);②若CP 为对角线,由题意得:2202133233222m nm m n n +=+⎧⎪⎨-+--=---+⎪⎩, 解得:31m n =⎧⎨=⎩或43103m n ⎧=-⎪⎪⎨⎪=-⎪⎩,故P 点坐标为(3,0)或413,39⎛⎫- ⎪⎝⎭;③若CQ 为对角线,由题意得:22021********n mn n m m +=+⎧⎪⎨---+=-+--⎪⎩, 解得:11m n =-⎧⎨=⎩或02m n =⎧⎨=⎩(舍),故P 点坐标为(-1,0).综上所述,P 点坐标为(-3,12)、(3,0)、413,39⎛⎫- ⎪⎝⎭、(-1,0).【四动点构造】(2019·锦州中考删减)如图,在平面直角坐标系中,一次函数334y x =-+的图像与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式(2)F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.【分析】(1)抛物线:21334y x x =-++; (2)本题4个点皆为动点,使四边形DEGF 为平行四边形易,而使周长最大难.设E 点坐标为3,34m m ⎛⎫-+ ⎪⎝⎭,则D 点坐标为213,34m m m ⎛⎫-++ ⎪⎝⎭,设F 点坐标为213,34n n n ⎛⎫-++ ⎪⎝⎭,则G 点坐标为3,34n n ⎛⎫-+ ⎪⎝⎭,2213333444DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭, 2213333444FG n n n n n ⎛⎫=-++--+=-+ ⎪⎝⎭, 由DE =FG ,可得:2244m m n n -+=-+, ∵m ≠n ,∴4m n +=,过点G 作GH ⊥CD 交CD 于H 点,则()()555425442EG n m m m =-=-=-, 又24DE m m =-+, ∴22524523102DEGFCm m m m m ⎛⎫=-++-=-++ ⎪⎝⎭,当34m =时,四边形DEGF 是平行四边形且周长最大,此时G 点坐标为139,416⎛⎫⎪⎝⎭.。
二次函数中平行四边形的存在问题
二次函数与平行四边形存在性的问题一、三个定点,一个动点,探究平行四边形的存在性.例1:如图4,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(2,3a -),对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P 、A 、C 、N 为顶点的四边形为平行四边形?图4练习: 已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-与y 轴相交于C 点,与直线AM 相交于点N . (1) 填空:试用含a 的代数式分别表示点M 与N 的坐标,则()() ,M N ;(2) 如图6,在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?图6 图7二、两个定点、两个动点,探究平行四边形的存在性。
例2 (2009抚顺) 已知:如图8,关于x 的抛物线2(0)y ax x c a =++≠与x 轴交于点(20)A -,、点(60)B ,,与y 轴交于点C .(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式;(3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A M P Q 、、、为顶点的平行四边形?例3:(2009南平)如图12,已知抛物线:x x y 22121+-= (1)求抛物线1y 的顶点坐标.(2)将1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求2y 的解析式.(3)抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O 、P 、M 、N 四点构成以OP 为一边的平行四边形?图12练习:(浙江义乌)如图10,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)点G 是抛物线上的动点,在x 轴上是否存在点F ,使得以A 、C 、F 、G 这样四点为顶点的四边形是平行四边形?图10 图11变式练习: 图11,若已知Q (0,1)-,点G 是抛物线223y x x =--上的动点,在抛物线2112y x =-+上是否存在点F ,使得以Q 、C 、F 、G 四点为顶点的四边形是平行四边形?。
人教版初三数学上册二次函数中的平行四边形存在性问题两定两动型.doc
二次函数中的平行四边形存在性问题(两定两动型)教学设计旬阳县城关一中黄涛目标:1、通过典型例题及其变式训练,进一步巩固二次函数中的平行四边形及特殊平行四边形存在性问题的解题思路和方法,体会数形结合和分类讨论思想的应用过程。
2 、通过本节课的学习,感受一题多解的过程及方法,提高学生分析问题和解决问题的能力。
重点:解决平行四边形存在性问题的一般方法及思路。
难点:根据条件求平行四边形的顶点中动点坐标的求解。
过程:一、典型例题如图,抛物线经过A(﹣1,0),B(5,0),C(0, 5)三点.2(1)求抛物线的解析式;(2)点M为x 轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.问题1:如何用待定系数法确定适当的解析式形式?①抛物线上已知三点,可用一般式y=ax2+bx+c;②因为在已知的三点中,A、B两点为抛物线与x 轴交点,则可用交点式y=a(x-x 1)(x-x 2) 。
问题2:如何借助一定的方法通过画图的方式找到M、N点?先确认已知点A、C,连接A C,根据四边形顶点的无序性利用分类讨论思想分别以AC为边和以AC 为对角线两种情况进行作图讨论,作图依据平行四边形对边平行且相等的性质进行。
问题3:通过怎样的方法和手段获取点N的坐标?可利用以下四种方法或依据得出符合条件点N的坐标。
①依据对称性求点N坐标②利用三角形全等及数形结合思想求点N坐标③依据平行四边形对边平行且相等利用平移求点N坐标④依据抛物线解析式设点N坐标为(m,12m 2﹣2m﹣52),利用数形结合思想借助N点与C 点纵坐标相等的原则列得绝对值方程,将所有符合条件的点N 及其坐标完全覆盖得解,注意取舍(这是本题最简方法)。
解:(1)解法1:设抛物线的解析式为y=a(x+1)(x-5) (a≠0),将C(0, 52)代入得:a(0+1)(0-5)= 52解得:a= 1 2∴二次函数的解析式为:y= 1(x+1)(x-5) 即y=2 1x22﹣2x﹣52解法2:设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,5- )三点在抛物线上,2∴,解得.∴抛物线的解析式为:y= 12x2﹣2x﹣2﹣2x﹣52(2) 解法1:存在,理由如下:①以A C为边时,当N点位于x 轴下方时,若四边形ACNM为平行四边形,则 C N∥AM ∴N与C纵坐标相等∴点N与点C关于抛物线对称轴直线x=2 对称∴N(4, 52)当点N在x 轴上方时,如图,过点N2作N2D⊥x 轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC= 525 ,即N2点的纵坐标为2.∴1252m﹣2m﹣=252,解得x=2+ 或x=2﹣,∴N 2(2+ ,52 ),N 3(2﹣,52).②当AC为对角线时,根据 C N∥AM,过C点作x轴平行线与抛物线交点和N1 重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
x O
二次函数中的动点问题(二) 平行四边形的存在性问题
一、技巧提炼
1、二次函数y=ax 2
+bx+c 的图像和性质
a >0
a <0
图 象
开 口 对 称 轴 顶点坐标
最 值
当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减
性
在对称轴左侧
y 随x 的增大而
y 随x 的增大而
在对称轴右侧
y 随x 的增大而 y 随x 的增大而
2、平行四边形模型探究
如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。
平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。
A
B
C x
y
图1 图2
如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。
由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。
3、平面直角坐标系中直线和直线l2:
当l1∥l2时k1= k2;当l1⊥l2时k1·k2= -1
4、二次函数中平行四边形的存在性问题:
解题思路:(1)先分类(2)再画图(3)后计算
二、精讲精练
1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1)
(1)求抛物线的解析式;
(2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由;
(3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
2、(2013•黔西南州)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C
(1)求抛物线的函数解析式;
(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标。
【变式练习】
(2007•河南)如图,对称轴为直线x=2
7
的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;
(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?
②是否存在点E ,使平行四边形OEAF 为正方形若存在,求出点E 的坐标;若不存在,请说明理由.
四、方法规律
1、平行四边形模型探究
如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。
平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。
A
B
C x
y
图1 图2
以不在同一直线上的三点为顶点的平行四边形有三个。
由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。
2、平面直角坐标系中直线和直线l 2:
当l 1 ∥l 2时k 1= k 2; 当l 1 ⊥l 2时k 1·k 2= -1
五、实战训练
1、抛物线y =-(x +2)2
-3的顶点坐标是()
(A ) (2,-3); (B ) (-2,3); (C ) (2,3); (D ) (-2,-3)
2、已知抛物线()20y ax bx c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()
A 、a >0
B 、b <0
C 、c <0
D 、a +b +c >0
3、函数()20y ax a =-≠与()20y ax a =≠在同一平面直角坐标系中的图象可能是()
4、如图,一次函数)0(1≠+=k n kx y 与二次函数)0(2
2≠++=a c bx ax y 的图象相交于A (1-,5)、
B (9,2)两点,则关于x 的不等式c bx ax n kx ++≥+2
的解集为( )
A 、91≤≤-x
B 、91<≤-x
C 、91≤<-x
D 、1-≤x 或9≥x
5、出售某种手工艺品,若每个获利x 元,一天可售出(8)x -个,则当x 为多少元,一天出售该种手工艺品的总利润y 最大。
6、(2012•宜宾)如图,抛物线y=x 2
﹣2x+c 的顶点A 在直线l :y=x ﹣5上。
(1)求抛物线顶点A 的坐标;
(2)设抛物线与y 轴交于点B ,与x 轴交于点C .D (C 点在D 点的左侧),试判断△ABD 的形状; (3)在直线l 上是否存在一点P ,使以点P 、A 、B 、D 为顶点的四边形是平行四边形若存在,求点P 的
坐标;若不存在,请说明理由。
7、已知,如图A(-1,0),B(3,0),C(0,-3),抛物线y=ax2+bx+c经过A、B、C三点,点E为x轴上一个动点,过点B作直线CE的垂线,垂足为D,交y轴于N点.
(1)求这条抛物线的解析式;
(2)设点E(t,0),△BEN的面积为S,请求出S与t的函数关系式;
(3)已知点F是抛物线y=ax2+bx+c上的一动点,点G是坐标平面上的一动点,在点E的移动过程中,是否存在以点B、E、F、G四点为顶点的四边形是正方形,若存在,请求出E点的坐标,若不存在,请说明理由.。