锐角三角函数小结与复习(最新编写)
锐角三角函数知识点归纳总结
锐角三角函数知识点归纳总结锐角三角函数是中学数学中的一门重要概念,涵盖了三角函数的绝大部分知识点。
掌握锐角三角函数是解决三角函数问题的关键,也是解决初等三角方程的基础。
本文将就锐角三角函数的相关知识点进行归纳总结,便于读者进行系统地学习和掌握。
一、正弦函数正弦函数是最基本的三角函数之一,在锐角三角函数中有着重要的地位。
正弦函数在数学中的表达式为sinx,其定义域为实数集合R,值域为闭区间[-1,1]。
具体来说,正弦函数在锐角三角形中,它的值等于对边长度与斜边长度的比值。
正弦函数在锐角三角函数中的性质:1. 周期性:sin(x+2kπ)=sinx,其中k为任意整数。
2. 对称性:sin(-x)=-sinx。
3. 奇偶性:sin(-x)=-sinx,sin(x+π)=-sinx。
4. 增减性:在区间[0,π/2]上,sinx单调递增;在区间[π/2,π]上,sinx单调递减。
5. 值域:正弦函数在[-π/2,π/2]上单调递增,值域为[-1,1]。
在求解三角函数的数值计算时,使用正弦函数的一般方法是将角度转换为弧度,然后采用计算器进行计算。
二、余弦函数余弦函数是一种最为常见的三角函数之一,通常在三角函数的解题中被广泛应用。
余弦函数在数学中的表达式为cosx,其定义域为实数集合R,值域为闭区间[-1,1]。
具体来说,余弦函数在锐角三角形中,它的值等于邻边长度与斜边长度的比值。
余弦函数在锐角三角函数中的性质:1. 周期性:cos(x+2kπ)=cosx,其中k为任意整数。
2. 对称性:cos(-x)=cosx。
3. 奇偶性:cos(-x)=cosx,cos(x+π)=-cosx。
4. 增减性:在区间[0,π/2]上,cosx单调递减;在区间[π/2,π]上,cosx单调递增。
5. 值域:余弦函数在[0,π]上单调递减,值域为[1,-1]。
三、正切函数正切函数是三角函数中的一种,通常用于解决三角函数运算或求解空间中的几何问题。
中考复习: 锐角三角函数
中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。
把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。
当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。
2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。
3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。
4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。
5、正、余弦的平方关系:sin 2α+ cos 2α=1。
二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。
1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。
锐角三角函数单元总结
第二十八章锐角三角函数单元总结【知识要点】知识点一锐角三角形锐角三角函数:如下图,在Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B)定义表达式取值范围关系正弦斜边的对边A A ∠=sin c a A =sin1sin 0<<A (∠A 为锐角)B A cos sin =B A sin cos =1cos sin 22=+A A 余弦斜边的邻边A A ∠=cos c b A =cos1cos 0<<A (∠A 为锐角)正切的邻边的对边A tan ∠∠=A A ba A =tan 0tan >A (∠A 为锐角)对边邻边斜边ACBba c 【正弦和余弦注意事项】1.sinA、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。
2.sinA、cosA 是一个比值(数值,无单位)。
3.sinA、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。
0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数30°45°60°αsin 212223αcos 232221αtan 3313正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
正切的增减性:当0°<α<90°时,tan α随α的增大而增大,知识点二解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.直角三角形五元素之间的关系: 1.勾股定理()2.∠A+∠B=90°3.sin A==4.cos A==5.tan A==【考查题型】考查题型一正弦典例1.(2020·陕西西安市·西北工业大学附属中学九年级期中)如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为()A .43B .34C .35D .45变式1-1.(2018·西城区·北京四中九年级期中)如图,在Rt ABC ∆中,90C = ∠,10AB =,8AC =,则sin A 等于()A .35B .45C .34D .43变式1-2.(2019·山东淄博市·九年级期中)如图,在Rt △ABC 中,∠C =90°,sin A =45,AC =6cm ,则BC 的长度为()A .6cmB .7cmC .8cmD .9cm考查题型二余弦典例2.(2020·福建省泉州市培元中学九年级期中)如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于()A .55B .255C 5D .23变式2-1.(2016·辽宁铁岭市·九年级期末)在ABC 中,C 90∠= ,AB 6=,1cosA 3=,则AC 等于()A .18B .2C .12D .118变式2-2.(2019·山东滨州市·九年级期末)如图,在平面直角坐标系中,点M 的坐标为M 52),那么cosα的值是()A B .23C .252D .53考查题型三正切典例3.(2020·广东深圳市·深圳中学八年级期中)如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为()A .12B .1C .33D 变式3-1.(2018·江苏苏州市·九年级期末)如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为().A .2B C D .1变式3-2.(2020·河北唐山市·九年级期末)如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若2tan 5BAC ∠=,则此斜坡的水平距离AC 为()A .75mB .50mC .30mD .12m考查题型四特殊角的三角函数值典例4.(2018·南昌市期末)点M(-sin 60°,cos 60°)关于x 轴对称的点的坐标是()A .(32,12)B .(-32,-12)C .(-32,12)D .(-12,-32)变式4-1.(2019·山东淄博市·九年级期中)下列式子错误的是()A .cos40°=sin50°B .tan15°•tan75°=1C .sin 225°+cos 225°=1D .sin60°=2sin30°变式4-2.(2018·河北唐山市·九年级期末)如果△ABC 中,sin A =cos B =22,则下列最确切的结论是()A .△ABC 是直角三角形B .△ABC 是等腰三角形C .△ABC 是等腰直角三角形D .△ABC 是锐角三角形考查题型五同角的三角函数典例5.(2018·山东潍坊市·九年级期末)在Rt △ABC 中,∠C =90°,sinA=45,则cosB 的值等于()A .35B .45C .34D .55变式5-1.(2018·浙江台州市·九年级期末)在Rt △ABC 中,cosA=12,那么sinA 的值是()A .22B .32C .33D .12变式5-2.(2018·湖南岳阳市·九年级期末)在Rt ABC 中,C 90∠= ,如果4cosA 5=,那么tanA 的值是()A .35B .53C .34D .43考查题型六解直角三角形典例6.(2020·东北师大附中明珠学校九年级期中)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为()A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα变式6-1.(2020·山东枣庄市·九年级期末)如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为()A .102B .3C .4D .104变式6-2.(2019·辽宁沈阳市·九年级期末)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为()A .11米B .(36﹣)米C .D .(36﹣考查题型七利用解直角三角形相关知识解决实际问题典例7.(2019·河南许昌市·九年级期末)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者.在消防车上点A 处测得点B 和点C 的仰角分别是45°和65°,点A 距地面2.5米,点B 距地面10.5米.为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数.参考数据:≈1.4)变式7-1.(2018·江苏无锡市·九年级期末)如图,为了测量出楼房AC的高度,从距离楼底C 处603D(点D与楼底C在同一水平面上)出发,沿斜面坡度为3的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,计算结果用根号表示,不取近似值).变式7-2.(2018·山西晋中市期末)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB 的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)。
锐角三角函数全章复习
B
D
C
专题二、锐角三角函数的性质
1.锐角三角函数的增减性: (1)当角度在00~900之间变化时, 正弦和正切值随角度的增大而增大; 余弦随角度的增大而减小。 (2)当∠A为锐角时, 0<sinA<1;0<cosA<1; tanA>0 2.互余两角的三角函数之间关系 ∠A为锐角时,sinA=cos(900-∠A) cosA=sin(900-∠A)
• 例4.若∠A为锐角,且 cosA≤0.5,则∠A的范围是( ) A.00<∠A≤600 B.600≤∠A<900 C.00<∠A≤300 D.300≤∠A<900
• 例5.当锐角A>450时,下列不等式 中不成立的是 ( )
2 A. sin A 2 2 B. cos A 2 C. t an A 1 D. t an A 1
• 例6.下列不正确的是(
A. sin 48 37 cos 41 21
0 / 0 / 2
)
B.RtABC中,C=90 ,则sin A sin B 1
0 2
C.RtABC中,C=90 ,则AB=ACsinB
0
1 D.RtABC中,C=90 ,则 sinB cosB tanB
0
专题三、解直角三角形及其应用
1.定义; 2.直角三角形边角关系; 3.解直角三角形的应用 (1)在测量距离方面的应用; (2)在工程建筑、航空、航海等 方面的应用.
• 例7.在△ABC中,
BC 1 3, B 60 ,
0
∠C=450,求AB的长
A
B
C
• 例8.A、B之间有条河,原来从A到B需 过桥CD:A→D→C→B。 A 现建桥EF,可沿直线AB 从A到B.已知 D ∠A=450, C ∠B=300,BC= E 11km,CD∥AB, F 则现在从A到B比 原来少走多少路程?
初中数学九年级知识点总结锐角三角函数
初中数学九年级知识点总结锐角三角函数初中数学九年级知识点总结锐角三角函数「篇一」相关的角:1、对顶角:一个角的'两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。
3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
角的性质1、对顶角相等。
2、同角或等角的余角相等。
3、同角或等角的补角相等。
初中数学九年级知识点总结锐角三角函数「篇二」1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:⑴矩形具有平行四边形的一切性质;⑵菱形的四条边都相等;⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
6、公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:①确定公因式。
②确定商式③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。
a叫被开方数。
9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。
九年级数学下册 第28章 锐角三角函数小结
2021/12/11
第三页,共十五页。
一、回顾思考
(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中 已知一条边和一个锐角(ruìjiǎo),或已知两边,能够解这个直角三角 形?
答:两个直角三角形全等的判定方法有:①两条直角边对应(duìyìng)相等 的两个直角三角形全等,②斜边和一条直角边对应(duìyìng)相等的两个直 角三角形全等,③有一个锐角和一条直角边对应(duìyìng)相等的两个直角 三角形全等,④有一个锐角和斜边对应(duìyìng)相等的两个直角三角形全 等. 由直角三角形全等的判定定理可知,一个直角三角形可以由它的三条 边和两个锐角这五个元素中的两个(其中至少有一个是边)唯一确定, 因此在直角三角形中已知一条边和一个锐角,或已知两边,能够解这 个直角三角形.
(3)综合运用所学知识解直角三角形,逐步培养学生分析问题、解决问题的能力.培养学生思维能力的灵活性.
(4)通过画示意图,将实际问题转化为数学问题,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.(难点)
(5)经历从实际问题中建立数学模型的过程,增强应用意识,体会数形结合思想的应用.(难点)
第十二页,共十五页。
三、典例剖析
4.解直角三角形的实际(shíjì)应用
【点评】此题作垂线(chuíxiàn)构造出直角三角形后,两个直角三角形均不具备可解的条件, 需要设未知数列方程求解.
2021/12/11
第十三页,共十五页。
四、归纳小结
请同学们回答下列问题: (1)通过对本章的学习(xuéxí),你认为本章的核心知识是什么?
(5)在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.
锐角三角函数《复习与小结》ppt
1. 巩固三角函数的概念,巩固用直角三角形边之 比来表示某个锐角的三角函数. 2. 熟记30°,45°, 60°角的三角函数值.会计 算含有特殊角的三角函数的值,会由一个特殊 锐角的三角函数值,求出它的对应的角度. 3.掌握直角三角形的边角关系,会运用勾股定理, 直角三角形的两锐角互余及锐角三角函数解直 角三角形. 4.会用解直角三角形的有关知识解决简单的实际 问题.
B
一.锐角三角函数的概念
对边与斜边的比叫做∠A 正弦:把锐角A的__________ a 的正弦,记作 sin A c A 邻边与斜边的比叫做∠A的 余弦:把锐角A的__________ 余弦,记作 cos A b
c
c
a
b
C
对边与邻边的比叫做∠A的 正切:把锐角A的__________ a 正切,记作 tan A
0
cosA = sinB
☆
应用练习
一.已知角,求值 (1)tan45°-sin60°cos30°
(2)2sin30°+3tan30°+tan45°
(3)cos245°+ tan60°cos30°
(4)2sin60°-3tan30°-(π-cos30°)+(-1)
2012
☆
应用练习
二.已知值,求角
1 2
3 2
3 3
2 2
2 2
3 2
1 2
1
3
锐角的三角函数值 有何变化规律呢?
三.解直角三角形
1.什么叫解直角三角形? 由直角三角形中,除直角外的已知元素,求出所 有未知元素的过程,叫做解直角三角形. 2.直角三角形中的边角关系:
(1)三边关系: a 2 b 2 c 2 (勾股定理)
锐角三角函数复习_小结与复习
这里 :AC= AB 2 BC 2 (17 k )2 (15k )2 =8K (K>0)
8 cosA= 17 15 cosB= 17
15 tanA= 8
8 sinB= 17
A
17K
B
8K
∟ C
15K
应用举例
通过这题练习,我们发现正弦和余弦有什 么关系呢?
sinA=cosB cosA=sinB
1 sin 30°= 2
sin 45°=
2 2
sin 60°=
3 2
B
探究 斜边c
∟
对 边 a
C
A
邻边b
我们把∠A的邻边与斜边的比叫做∠A的余弦, 记作cosA,即
A的邻边 b cos A 斜边 c
A的对边 a tan A A的邻边 b
把∠A的对边与邻边的比叫做∠A的正切, 记作tanA,即
┌ C
(1) tanA =
(2) tanB=
(BC ) ( AC)
BC
= CD (AD ) AC
= CD ( BD)
B D
A
C
什么叫解三角形?
在直角三角形中,已知三角形中的 二个元素(至少一条边),求另外三个 元素的过程叫做解直角三角形。
在Rt△ABC中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c。则 两角关系 A B 90
作业:
复习题4 A组第6、7题
课后训练:
《学法大视野》
P81~82 选做
江苏省思想政治教学研讨课 授课教师:范红军 《我国正处于社会主义初级阶段 》 指导教师:吴兆虎 陈 华 范学林
a c b c
a b
回顾
锐角三角函数知识点总结与复习
锐角三角函数知识点总结与复习1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 对边邻边A90B 90∠-︒=∠︒=∠+∠得由B A当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; (2)俯角:视线在水平线下方的角。
(3)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
:i h l=hlα4、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。
如图4:OA、OB、OC、OD的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向)。
锐角三角函数(通用8篇)
锐角三角函数(通用8篇)锐角三角函数篇1教学三维目标:一.学问目标:初步了解正弦、余弦、正切概念;能较正确地用siaa、cosa、tana表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能依据这些值说出对应的锐角度数。
二.力量目标:逐步培育同学观看、比较、分析,概括的思维力量。
三.情感目标:提高同学对几何图形美的熟悉。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaa、cosa、tana表示正弦,余弦,正切教学程序:一.探究活动1.课本引入问题,再结合特别角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaa= ,cosa= ,tana=3例1.求如图所示的rt ⊿abc中的siaa,cosa,tana的值。
4.同学练习p21练习1,2,3二.探究活动二1.让同学画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°归纳结果30°45°60°siaacosatana2. 求下列各式的值(1)sia 30°+cos30°(2)sia 45°- cos30°(3) +ta60°-tan30°abc三.拓展提高p82例4.(略)1. 如图在⊿abc中,∠a=30°,tanb= ,ac=2 ,求ab四.小结五.作业课本p85-86 2,3,6,7,8,10锐角三角函数篇2一、锐角三角函数正弦和余弦第一課时:正弦和余弦(1)教学目的1,使同学了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。
2,使同学了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
锐角三角函数复习与小结
(3)常用关系
在Rt△ABC中,∠C=90°,a,b,c分 别是∠A,∠B,∠C的对边. a2+b2=c2 ; 三边关系:______________
三角关系:∠A+ ∠B =90° 边角关系: ;
a A的对边 ① ∠A的正弦:sinA=___________ =____; 斜边 c
∠A的邻边 b ②∠A的余弦:cosA= = c ; 斜边 ∠A的对边 a ③∠A的正切:tanA= ∠A的邻边 = b .
;
2 5 ;
(四)坡度与坡角练习
1、斜坡的坡度是1 : 3 ,则坡角
__________ __ . 300
3、某人沿着坡度i=1: 25 米高。 面有________
3
的山坡走了50米,他离地
(五)解直角三角形在实际问题中的应用
1 . 如图,AB和CD是同一地面上的两座 相距36米的楼房,在楼AB的楼顶A点测 得楼CD的楼顶C的仰角为45°,楼底D 的俯角为30°.求楼CD的高(结果保留 根号)。
解:(1)由题意得∠ACB=45°,∠A=90°, ∴△ABC是等腰直角三角形, ∴AC=AB=600(米). (2)DE=AC=600 (米)
在Rt△BDE中,
tan∠BDE=
3 ∴BE=DE· tan30°= 600 3 = 200
BE DE
3 (米 )
∵CD=AE = AB-BE = 600 200
;
,cos45°=
1 ,cos60°= 2
;
,tan45°=
1
,tan60°=定义
在直角三角形中(除直角外)由已知条 件求出未知条件的过程叫做解直角三角形。
(2)直角三角形可解的条件:
锐角三角函数小结与复习
主讲:张聪华
1、锐角三角函数的概念 一、锐角三角函数 2、特殊角的三角函数值 3、三角函数之间的关系 二、解直角三角形
三、生活中的应用
1、锐角三角函数的概念
图 19.3.1
A的正弦
sin
A
A的对边 斜边
A的 余弦
cos
A
A的邻边 斜边
A的正切
tan
A
A的对边 A的邻边
2、特殊角的三角函数值
方法点拔:
1、根据题目情景建立数学模型,画出几何图形。 构建直角三角形(建模思想)
2、由已知条件,把条件转化到直角三角形中,得 到一个可求解的三角形。 转化已知条件(转化思想)
3、根据数量关系列出方程,求解未知直角三角形。 建立方程(方程思想)
自主练习:
1、(2007郴州中考题)如图,小明与小华爬山时遇到一 条笔直的石阶路,路的一侧设有与坡面AB平行的护栏MN (MN=AB).小明量得每一级石阶的宽为32cm,高为24cm, 爬到山顶后,小华数得石阶一共200级,如果每一级石阶的
的长是(A )
A.5 5 米
B.10米
C.15米
D.10 3 米
10、如图,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至 C 处,此时需把方向调整 到与出发时一致,则方向的调整应是(A )
A、右转80° B、左传80° C、右转100° D、左传100°
B
A
C
反思
我学会了什么? 我会应用吗?
a
b
a
sin A ;cos A ; tan A ;
c
c
b
sin B b ;cos B a ; tan B b .
初中九年级数学中考锐角三角函数知识点总结
九年级数学中,锐角三角函数是一个重要的知识点。
锐角三角函数是指对于锐角的正弦、余弦和正切函数。
下面我将对锐角三角函数的基本概念、性质和应用进行总结。
一、基本概念1.弧度和角度:角度是常用的角度度量单位,弧度是角度的另一种度量单位。
1个弧度对应360°/2π≈57.3°。
角度和弧度之间的关系式:弧度=角度×π/180°。
2.锐角:指角度小于90°的角。
3. 三角函数:对于一个锐角A,定义其正弦(sin A)为对边与斜边的比值,余弦(cos A)为邻边与斜边的比值,正切(tan A)为对边与邻边的比值。
二、性质1.正弦函数的性质:(1)对于锐角A,0 < A < 90°,sin A > 0;(2)sin A = sin (180° - A) = sin (A + 360°);(3)sin (90° - A) = cos A;(4)sin A ≠ 0,当且仅当A是锐角。
2.余弦函数的性质:(1)对于锐角A,0 < A < 90°,cos A > 0;(2)cos A = cos (180° - A) = cos (360° + A);(3)cos (90° - A) = sin A;(4)cos A ≠ 0,当且仅当A是锐角。
3.正切函数的性质:(1)对于锐角A,0 < A < 90°,tan A > 0;(2)tan A = tan (180° + A);(3)tan (90° - A) = 1/tan A;(4)tan A ≠ 0,当且仅当A是锐角。
4.三角函数的关系:(1)sin^2 A + cos^2 A = 1;(2)tan A = sin A / cos A。
三、应用1.解三角形:利用已知角的正弦、余弦和正切的值,可以求解未知边长或角度的三角形问题。
初中锐角三角函数知识点总结
锐角三角函数及其应用榆林第六中学 高启鹏一、锐角三角函数中考考点归纳考点一、锐角三角函数1、锐角三角函数的定义如图,在Rt △ABC 中,∠C 为直角,则∠A 为△ABC 中的一锐角,则有 ∠A的正弦:斜边的对边A A ∠=sin c a= ?∠A 的余弦:斜边的邻边A A ∠=cos cb = ∠A的正切:的邻边的对边A tan ∠∠=A A ba =2、特殊角的三角函数值(1)图表记忆法,(2)规律记忆法:30°、45°、60°角的正弦值的分母都是2,分子依次为1、2、3;30°、45°、60°角余弦值恰好是60°、45°、对边.AC?30°角的正弦值。
(3)口诀记忆法口诀是:“一、二、三,三、二、一,三、九、二十七,弦比二,切比三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值.弦比二、切比三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号,不能丢掉.如tan60°=tan45°1=.这种方法有趣、简单、易记.考点二、解直角三角形1、由直角三角形中的已知元素求出其他未知元素的过程,叫做解直角三角形。
2、解直角三角形的类型和解法如下表:)考点三、锐角三角函数的实际应用(高频考点)仰角、俯角、坡度(坡比)、坡角、方向角仰角、俯角在视线与水平线所成的锐角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角。
坡度(坡比)、坡角坡面的铅直高度h和水平宽度l的比叫坡度(坡比),用字母i表示;坡面与水平线的夹角α叫坡角,方向角?指北或指南的方向线与目标方向线所成的小于90°的锐角叫做方向角.注意:东北方向指北偏东45°方向,东南方向指南偏东45°方向,西北方向指北偏西45°方向,西南方向指南偏西45°方向.我们一般画图的方位为上北下南,左西右东.lhi==αtan二、锐角三角函数常见考法(一)、锐角三角函数以选择题的形式出现.例1、(2016•陕西)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()-A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【解析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D."在RT△ACD中,tan∠CAD===2,故答案为D.(二)、锐角三角函数以填空题的形式出现.例2、(2016•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈.(结果精确到)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【解析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.-【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈×≈故答案为:8,例3、(2015•陕西)如图,有一滑梯AB,其水平宽度AC为米,铅直高度BC 为米,则∠A的度数约为°(用科学计算器计算,结果精确到°).【考点】解直角三角形的应用-坡度坡角问题.【解析】直接利用坡度的定义求得坡角的度数即可.》【解答】解:∵tan∠A==≈,∴∠A=°,故答案为:°.【点评】本题考查了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.例4、(2014•陕西)用科学计算器计算:+3tan56°≈(结果精确到)【考点】计算器—三角函数;计算器—数的开方.【分析】先用计算器求出′、tan56°的值,再计算加减运算.【解答】解:≈,tan56°≈,…则+3tan56°≈+3×≈故答案是:.【点评】本题考查了计算器的使用,要注意此题是精确到.例5、(2014•陕西)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.【考点】旋转的性质【分析】利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.:【解答】解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,、DE==2﹣.故答案为:2﹣.【点评】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.(三)、锐角三角函数定义以解答题的形式出现例6、(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC 的值最小若存在,求出此时cos∠BPC的值;若不存在,请说明理由.|【考点】四边形综合题..【专题】综合题.【解析】(1)如图①,过A作AE⊥BC,可得出四边形AECF为矩形,得到EC=AD,BE=BC﹣EC,在直角三角形ABE中,求出AE的长,即为三角形BMC 的高,求出三角形BMC面积即可;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B 交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,求出即可;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ 交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O 与AD相切,根据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最小,cos∠BPC的值最小,连接OB,求出即可.【解答】解:(1)如图①,过A作AE⊥BC,(∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,则S △BMC=BC•AE=24;故答案为:24;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B 交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,;∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BE•tan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;(3)如图③所示,存在点P,使得cos∠BPC的值最小,|作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,^∴∠BPC最大,cos∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4﹣OQ,在Rt△BOQ中,根据勾股定理得:OQ2+62=(4﹣OQ)2,解得:OQ=,∴OB=,∴cos∠BPC=cos∠BOQ==,则此时cos∠BPC的值为.。
锐角三角函数小结与复习
小结与复习
活动一:知识再现
知识再现1: 锐角三角函数
定 义:
在Rt△ABC中,∠C=90°,a,b,c分别是∠A, ∠B,∠C的对边.
(1) ∠A的正弦:
∠B的正弦:
sinA
A的对边 斜边
a c
sin B
B的对边 斜边
b c
A
(2)∠A的余弦:
∠B的余弦:
cos A
A的邻边 斜边
b c
cos B
B的邻边 斜边
a c
b
c
(3)∠A的正切:
∠B的正切:
Ca
B
tan A
A的对边 A的邻边
a b
tan B
B的对边 B的邻边
b a
总 结:(∠A+ ∠B=90°)
sinA cosB cosA sin B
tan A • tan B ___1____
是__1_3_.9__米 ( 结 果 保 留3个 有 效 数 字 ,3 1.732)
10.在RtABC中,C 90, A 30, AC 3 3,则AB ___6___
7
11.在RtABC中,C 90, c 8, a 6,则最小内角的正切值为___3 ___
D
AD AB • sinB 8 2 4 2 2
C 30
AC 2 • AD 2 4 2 8 2
课堂小结:
锐 角 三 角 函 数
锐角三角函数
正弦 余弦 正切
特殊角的三角函数
解直角三角形
三边关系 两锐角关系 边角关系
中考数学-锐角三角函数小结与复习
中考数学锐角三角函数小结与复习知识结构基础知识1.直角三角形的边角关系:在Rt△ABC中,∠A+∠B=90°,a2+b2=c2,sinA=cosB=ac,cosA=sinB=bc,tanA=cotB=ab,cosA=tanB=ba.2.互余两角三角函数间的关系:如∠A+∠B=90°,那么sinA=cosB,cosA=sinB.3.同角三角函数间的关系:sin2A+cos2A=1,tanA·cotA=1,tanA=sin cos,cotcos sinA AAA A.4.特殊角的三角函数三角函数0°30°45°60°90°sinα0 1222321cosα 1 322212解直角三角形的基本类型解直角三角形的基本类型及其解法如下表:解直角三角形注意点1.尽量使用原始数据,使计算更加准确.2.有的问题不能直接利用直角三角形内部关系解题,•但可以添加合适的辅助线转化为解直角三角形的问题.3.一些较复杂的解直角三角形的问题可以通过列方程或方程组的方法解题.4.解直角三角形的方法可概括为“有弦(斜边)用弦(正弦、余弦),无弦有切(正切、余切),宁乘毋除,取原避中”其意指:当已知或求解中有斜边时,可用正弦或余弦;无斜边时,就用正切或余切;当所求元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求解时,则取原始数据,忌用中间数据.5.必要时按照要求画出图形,注明已知和所求,•然后研究它们置于哪个直角三角形中,应当选用什么关系式来进行计算.6.要把添加辅助线的过程准确地写在解题过程之中.7.解含有非基本元素的直角三角形(即直角三角形中中线、高、角平分线、•周长、面积等),一般将非基本元素转化为基本元素,或转化为元素间的关系式,再通过解方程组来解.应用题解题步骤度量工具、工程建筑、测量距离等方面应用题的解题步骤可概括为如下几步:第一步,审清题意,要弄清仰角、俯角、坡度、坡角、水平距离、垂直距离、水平等概念的意义.第二步,构造出要求解的直角三角形,对于非直角三角形的图形可作适当的辅助线把它们分割成一些直角三角形和矩形(包括正方形).第三步,选择合适的边角关系式,使运算尽可能简便,不易出错.第四步,按照题目中已知数的精确度进行近似计算,并按照题目要求的精确度确定答案及注明单位.思想方法总结1.转化思想转化思想贯穿于本章的始终.例如,利用三角函数定义可以实现边与角的转化,利用互余两角三角函数关系可以实现“正”与“余”的互化;利用同角三角函数关系可以实现“异名”三角函数之间的互化.此外,利用解直角三角形的知识解决实际问题时,首先要把实际问题转化为数学问题.2.数形结合思想本章从概念的引出到公式的推导及直角三角形的解法和应用,无一不体现数形结合的思想方法.例如,在解直角三角形的问题时,常常先画出图形,使已知元素和未知元素更直观,有助于问题的顺利解决.3.函数思想锐角的正弦、余弦、正切、余切都是三角函数,其中都蕴含着函数的思想.例如,任意锐角a与它的正弦值是一一对应的关系.也就是说,对于锐角a任意确定的一个度数,sina都有惟一确定的值与之对应;反之,对于sina 在(01)之间任意确定的一个值,锐角a 都有惟一确定的一个度数与之对应.4.方程思想在解直角三角形时,若某个元素无法直接求出,往往设未知数,根据三角形中的边角关系列出方程,通过解方程求出所求的元素.中考新题型例1 计算:(1)sin 230°-cos45°·tan60°(2)223tan 302(sin 451)21-︒+︒-- 分析:把特殊角的三角函数值代入计算即可.解:(1)sin30°-cos45°·tan60°=14-22×3=14-62(2)原式=2+1-3×(3)2+2 22(1)2-=2+1-1+2(1-2)=2 说明:熟记30°、45°、60°角的三角函数值,是解决这类问题的关键,•这类题也是中考考查的重点,在选择题和填空题中出现的更多.例2 如右图,已知缆车行驶线与水平线间的夹角α=30°,β=45°.•小明乘缆车上山,从A 到B ,再从B 到D 都走了200米(即AB=BD=200米),•请根据所给的数据计算缆车垂直上升的距离.(计算结果保留整数,以下数据供选用:sin47°≈0.7314,cos47•°≈0.6820,tan47°≈1.0724)分析:缆车垂直上升的距离分成两段:BC 与DF .分别在Rt △ABC 和Rt △DBF•中求出BC 与DF ,两者之和即为所求.解:在Rt△ABC中,AB=200米,∠BAC=α=30°,∴BC=AB·sinα=200sin30°=100(米).在Rt△BDF中,BD=200米,∠DBF=β47°,∴DF=BD·sinβ=200·sin47°≈200×0.7314=146.28(米).∴BC+DF=100+146.28=246.28(米).答:缆车垂直上升了246.28米.说明:解直角三角形在实际生活中的应用,是中考考查的重点,也是考查的热点.要解决好这类问题:一是要合理地构造合适的直角三角形;•二是要熟记特殊角的三角函数值;三是要有很好的运算能力和分析问题的能力.课时作业设计。
锐角三角函数 小结与复习
(3)当tan= 时,=_____;当cos= 时,=______。
(4)2sin30°-2cos60°+tan45°的结果是( )
A、2 B、 C、 D、1
(5)sin60°·cot30°+sin245°的结果是。
(6)计算 ·cot30°的结果是( )
C、45º<∠A≤60º D、60º<∠A<90º
5、同角的正弦和余弦、正切和余切的关系15ºtanβ=1,β=______
(3)tan18ºtan30ºtan72º=_______
(4)sin²35º+2tan60ºcot60º+cos²35º; (可补充sin²A+ cos²A=1)
3、请同学思考角度变化与锐角三角函数的关系?
当锐角α在00∽900之间变化时,正弦(切)值随着角度的增
大而增大;余弦(切)值随着角度的增大而减少。
4、请同学思考同角三角函数之间有哪些关系式?
平方关系:sin2A+cos2A=1;商数关系:sinA/cosA=tanA;
5、请同学思考互为余角的三角函数有哪些关系式?
A、1 B、 C、2 -3 D、
4、请学生口答:正弦和正切、余弦的变化规律。
(1)不查表,比较大小
sin sin ,tan tan ,cos cos ,
(2)选择题
下列等式成立的是 ( )
A、tan <1 B、sin >
C、tan < D、cos >
如果∠A为锐角,且cosA= ,那么 ( )
A、0º<∠A≤30º B、30º<∠A≤45º
教 学 重 点
锐角三角函数的定义,特殊角的三角函数值
教 学 难 点
锐角三角函数的定义,特殊角的三角函数值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课
题锐角三角函数小结与复习(2)课型复习教
学
目
标知识与技能通过复习学生能掌握角直角三角形中的边角关系式、三边关系等到基本关系式;过程与方法通过复习学生学会选取适当的关系式来直角三角形,能求边和角熟记坡度和坡度两个概念情感与态度培养学生独立思考、积极探索的思维品质,善于用数学知识解决身边的数学
问题,提高学习数学的热情和积极性
. 教学重点解直角三角形
教学难点如何选取三角函数关系式
教具准备
几何画板
教学
过程教师活动学生活动一、知识回顾、查漏补缺
(1)两锐角关系:两个锐角互余∠
A +∠
B =900;(2)三边关系:2
22c b a
(3)边角关系:斜边的对边
sin 斜边的邻边
cos 的邻边
的对边
tan 二、开门见山、直击焦点
在直角三角形中五个元素中已知两个元素
(至少有一个元素是边)就可求出
其中的另外三个元素;
三、易错知识、重点巩固
1、仰角、俯角
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.
仰角视线
俯角视线
水平线铅
垂
线l h
30
D
d l
30
2、坡度tan l h
i (坡角)
四、练习巩固、规律总结:
S ΔABC =1/2 absin α五、举例应用、当堂消化1、已知等腰三角形的两边长为4㎝和6㎝,设其底角为α,求sin α的值。
分析:本题难点是分类。
因没有告诉哪一条是底边,
哪一条是腰,故要考虑分类,(1)一种情况:4是底边,(2)另一种情况是6是底边。
2、在ΔABC 中,∠A =1050,∠C =450,a =8,求
b 、
c 的长。
分析:出现一般三角形时,要求边角或角均要求,
作高线后可构造直角三角形,从而通过解直角三角形来解决问题;
3、如图矩形ABCD 中(AD >AB )中,AB =a ,∠BDA =
,作AE 交BD 于E ,且AE =AB ,试用a 与
表示AD ,BE 。
a 30E
D
C B A 30
D C B A 30
D
B
C
A 六、学生练习、知识升华
(1)在ΔABC 中,∠C =900,sinA =52
,D 为AC 上一点,∠BDC =450,
DC =6,求AB 的长。
(2)在梯形ABCD 中,AD ∥BC ,AB =CD ,BD =3
3,∠DBC =300,∠BDC =900,求梯形ABCD 的面积;
(3)在Rt ΔABC 中,∠C =900,。
tan ∠DAC =
53,sinB =135,BD =9,
求AB 的长。
七、课堂小结、课外延伸
(1)本节课复习了解直角三角形的应用,在解直角三角形中如果出现或求斜边时往往考虑正弦和余弦;出现两条直角边时往往考虑用正切和余切;
(2)在一般三角形、四边形的有关问题时往往要转化为解直角三角形,来构造直角三角形解决;
(3)要记往一些概念特别是仰角、俯角、坡角和坡度等。
教学后记:。