2020年中考数学一模试题(含答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.D
解析:D 【解析】 【分析】
由 a2 a 可确定 a 的范围,排除掉在范围内的选项即可.
【详解】
解:当 a ≥0 时, a2 a ,
当 a <0 时, a2 a ,
∵ a =1>0,故选项 A 不符合题意, ∵ a =0,故选项 B 不符合题意, ∵ a =﹣1﹣k,当 k<﹣1 时, a >0,故选项 C 不符合题意, ∵ a =﹣1﹣k2(k 为实数)<0,故选项 D 符合题意, 故选:D. 【点睛】
AB 上一点,当∠DCE=45°,BE=2 时,则 DE 的长为

24.修建隧道可以方便出行.如图: A , B 两地被大山阻隔,由 A 地到 B 地需要爬坡到山 顶 C 地,再下坡到 B 地.若打通穿山隧道,建成直达 A , B 两地的公路,可以缩短从 A 地 到 B 地的路程.已知:从 A 到 C 坡面的坡度 i 1: 3 ,从 B 到 C 坡面的坡角 CBA 45 , BC 4 2 公里.
16.若式子 x 3 在实数范围内有意义,则 x 的取值范围是_____.
17.若关于 x 的一元二次方程 kx2+2(k+1)x+k-1=0 有两个实数根,则 k 的取值范围是 18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运
货量不变,且甲、乙两车单独运完这批货物分别用 2a, a 次;甲、丙两车合运相同次数, 运完这批货物,甲车共运180 吨;乙、丙两车合运相同次数,运完这批货物乙车共运 270
所以﹣2m+9>0,解得 m< 9 , 2
当 x=3 时,x= 2m 9 =3,解得:m= 3 ,
2
2
所以 m 的取值范围是:m< 9 且 m≠ 3 .
2
2
故答案选 B.
9.B
解析:B
【解析】
【分析】
由 AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得
∠CAE=55°,最后根据三角形外角的性质即可求得答案.
∴(m+ 6m )× k =k, k 2m
解方程得 k=6,故选 D. 点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中 k=xy 位定值是解答 本题的关键.
2.B
解析:B 【解析】 【分析】 由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形, 细心观察即可求解. 【详解】 A、正方体的左视图与主视图都是正方形,故 A 选项不合题意; B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故 B 选项与题意相符; C、球的左视图与主视图都是圆,故 C 选项不合题意; D、圆锥左视图与主视图都是等腰三角形,故 D 选项不合题意; 故选 B. 【点睛】 本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
C. a6 a2 a3
D. a a3 a4
6.如图,把矩形 ABCD 沿 EF 翻折,点 B 恰好落在 AD 边的 B′处,若 AE=2,DE=6,∠ EFB=60°,则矩形 ABCD 的面积是( )
A.12
B.24
C.12 3
7.不等式 x+1≥2 的解集在数轴上表示正确的是( )
D.16 3
A.
B.
C.
D.
8.若关于 x 的方程 x m 3m =3 的解为正数,则 m 的取值范围是( ) x3 3x
A.m< 9 2
B.m< 9 且 m≠ 3
2
2
C.m>﹣ 9 4
D.m>﹣ 9 且 m≠﹣ 3
4
4
9.如图,AB∥CD,AE 平分∠CAB 交 CD 于点 E,若∠C=70°,则∠AED 度数为( )
则 EF 的长为______.
14.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的
概率是 0.2,摸出白球的概率是 0.5,那么摸出黑球的概率是 . 15.甲、乙两人在 1200 米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别 以不同的速度匀速前进,已知,甲出发 30 秒后,乙出发,乙到终点后立即返回,并以原来 的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离, x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中 y 与 x 函数关系,那么, 乙到达终点后_____秒与甲相遇.
B. 12
C. 18
D. 36
12.如图,将▱ABCD 沿对角线 BD 折叠,使点 A 落在点 E 处,交 BC 于点 F,若
ABD 48 , CFD 40 ,则 E 为 ( )
A.102 二、填空题
B.112
C.122
D. 92
13.如图,DE 为△ABC 的中位线,点 F 在 DE 上,且∠AFB=90°,若 AB=5,BC=8,
D.
3.如图,A,B,P 是半径为 2 的⊙O 上的三点,∠APB=45°,则弦 AB 的长为( )
A.2
B.4
4.菱形不具备的性质是( )
C. 2 2
D. 2
A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形 5.下列运算正确的是( )
A. a a2 a3
B. 3a2 6a2
6.D
解析:D 【解析】 如图,连接 BE, ∵在矩形 ABCD 中,AD∥BC,∠EFB=60°,
∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°. ∵把矩形 ABCD 沿 EF 翻折点 B 恰好落在 AD 边的 B′处, ∴∠BEF=∠DEF=60°. ∴∠AEB=∠AEF-∠BEF=120°-60°=60°.
解析:A
【解析】
试题解析:∵x+1≥2,
∴xห้องสมุดไป่ตู้1. 故选 A.
考点:解一元一次不等式;在数轴上表示不等式的解集.
8.B
解析:B
【解析】
【分析】
【详解】
解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,解得:x= 2m 9 , 2
已知关于 x 的方程 x m 3m =3 的解为正数, x3 3x
3.C
解析:C 【解析】 【分析】 由 A、B、P 是半径为 2 的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继 而求得答案. 【详解】 解:连接 OA,OB. ∵∠APB=45°, ∴∠AOB=2∠APB=90°. ∵OA=OB=2,
∴AB= OA2 OB2 =2 2 .
A.110°
B.125°
C.135°
D.140°
10.已知命题 A:“若 a 为实数,则 a2 a ”.在下列选项中,可以作为“命题 A 是假
命题”的反例的是( )
A.a=1
B.a=0
C.a=﹣1﹣k(k 为实数)
D.a=﹣1
﹣k2(k 为实数)
11.下列各式化简后的结果为 3 2 的是( )
A. 6
本题考查了二次根式的性质,
a2
a
a a
11.C
解析:C
【解析】
a0
,正确理解该性质是解题的关键.
a0
A、 6 不能化简;B、 12 =2 3 ,故错误;C、 18 =3 2 ,故正确;D、 36 =6,故错
误; 故选 C. 点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.
(1)求隧道打通后从 A 到 B 的总路程是多少公里?(结果保留根号) (2)求隧道打通后与打通前相比,从 A 地到 B 地的路程约缩短多少公里?(结果精确到 0.01)( 2 1.414 , 3 ≈1.732 )
25.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形 CDBF 的形状,并说明理由.
(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出 sinα 的值.
22.计算: 31 2 1 2sin45 (2 π)0 .
一月全月普通椅子的销售量多了 10 a%:实木椅子的销售量比第一月全月实木椅子的销售 3
量多了 a%,这一周两种椅子的总销售金额达到了 251000 元,求 a 的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
分析:设点 A 的坐标为(m, k ),则根据矩形的面积与性质得出矩形中心的纵坐标为 k ,
在 Rt△ABE 中,AB=AE•tan∠AEB=2tan60°=2 3 .
∵AE=2,DE=6,∴AD=AE+DE=2+6=8.
∴矩形 ABCD 的面积=AB•AD=2 3 ×8=16 3 .故选 D.
考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的
三角函数值.
7.A
吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________
元.(按每吨运费 20 元计算) 19.已知 a b b 1 0 ,则 a 1 __.
20.如图,在四边形 ABCD 中,E、F 分别是 AB、AD 的中点,若 EF=4,BC=10,CD=6,则 tanC=________.
故选 C.
4.B
解析:B 【解析】 【分析】根据菱形的性质逐项进行判断即可得答案. 【详解】菱形的四条边相等, 菱形是轴对称图形,也是中心对称图形, 菱形对角线垂直但不一定相等, 故选 B. 【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.
5.D
解析:D 【解析】 【分析】 【详解】 解:A、a+a2 不能再进行计算,故错误; B、(3a)2=9a2,故错误; C、a6÷a2=a4,故错误; D、a·a3=a4,正确; 故选:D. 【点睛】 本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.
2020 年中考数学一模试题(含答案)
一、选择题 1.如图,矩形 ABCD 的顶点 A 和对称中心均在反比例函数 y= k (k≠0,x>0)上,若矩
x
形 ABCD 的面积为 12,则 k 的值为( )
A.12
B.4
C.3
2.在下面的四个几何体中,左视图与主视图不相同的几何体是(
D.6 )
A.
B.
C.
23.(问题背景)
如图 1,在四边形 ABCD 中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点 E、F
分别是边 BC、CD 上的点,且∠EAF=60°,试探究图中线段 BE、EF、FD 之间的数量关
系.
小王同学探究此问题的方法是:延长 FD 到点 G,使 GD=BE,连结 AG,先证明
m
2m
求出中心的横坐标为 m+ 6m ,根据中心在反比例函数 y= k 上,可得出结果.
k
x
详解:设点 A 的坐标为(m, k ), m
∵矩形 ABCD 的面积为 12,
∴ BC
12 AB
12 k
12m k

m
∴矩形 ABCD 的对称中心的坐标为(m+ 6m , k ), k 2m
∵对称中心在反比例函数上,
三、解答题
21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作: (1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、 FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.
【详解】
∵AB∥CD,
∴∠BAC+∠C=180°,
∵∠C=70°,
∴∠CAB=180°-70°=110°,
又∵AE 平分∠BAC,
∴∠CAE=55°,
∴∠AED=∠C+∠CAE=125°, 故选 B. 【点睛】 本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解 题的关键.
△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是

(探索延伸)
如图 2,若在四边形 ABCD 中,AB=AD,∠B+∠D=180°,点 E、F 分别是边 BC、CD
上的点,且∠EAF= ∠BAD,上述结论是否仍然成立,并说明理由.
(学以致用)
如图 3,在四边形 ABCD 中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E 是边
相关文档
最新文档