生存分析和COX回归45页PPT

合集下载

生存分析与Cox回归解析

生存分析与Cox回归解析
生存分析与Cox回归
流行病与卫生统计学教研室 曹 明 芹
生存分析与Cox回归
生存资料概述
生存分析的基本概念 生存资料的统计描述 生存曲线的比较 Cox回归
2018/10/24
生存分析与Cox回归
2
一、生存资料概述
举例 某医师分别用中药、西药各治疗急性肝炎病人 40例,结果如下表,试问:哪种药物的治疗效果好?
2018/10/24
生存分析与Cox回归
4
一、生存资料概述
医学随访研究一般有两种
所有研究对象同时进入研究(观察起始时间相同)
例如,队列研究、动物的随访观察
被研究对象逐个进入研究(观察起始时间不同)
例如,临床随访研究
由于受经费和时间的限制,最终观察时间不能无限延长
2018/10/24
生存分析与Cox回归
2018/10/24
生存分析与Cox回归
19
3. 生存资料的数据形式
10年间346例大肠癌患者手术后的生存时间 患者编号 性别 年龄(岁) dtime 结局 生存时间(月) 1 1 32 10 1 11 2 2 48 12 0 10 3 2 26 6 1 37 4 1 55 3 0 25 5 2 58 8 0 9 … … … … … …
② 可用于时间未分组的资料,也可用于时间分组资料
③ 各组间生存时间的比较根据各组生存曲线的高低及中位生存时 间判断 ④ 需满足生存资料的基本要求,且各样本生存曲线不能交叉 ⑤ 生存曲线若出现交叉,则提示可能存在混杂因素,应采用分层
对数秩检验或Cox比例风险回归模型进行分析
2018/10/24
生存分析与Cox回归
1. 基本概念
完全数据提供了观察对象确切的生存时间,是生存分

生存数据分析 ppt课件

生存数据分析 ppt课件

2020/11/13
14
参数法可求出一个方程表示生存函数S(t)和时间t的 关系,画出的生存曲线是光滑的下降曲线。
非参数法只能得到某几个时间点上的生存函数, 再用直线联起来,画出的生存曲线是呈梯型的。
t(年)
s(t)
0
1
1
0.67
2
0.45
3
0.3
4
0.2
5
0.14
6
0.09
7
0.06
2020/11/13
8
第二节 描述生存时间分布规律的函数
• 一. 生存率(Survival Rate)
• 又称为生存概率或生存函数,它表示一个 病人的生存时间长于时间t的概率,用S(t) 表 示: s(t)=P(Tt)
• 如5年生存率: s(5)=P(T5)
• 以时间t为横坐标,S(t)为纵坐标所作的曲 线称为生存率曲线, 它是一条下降的曲线,下 降的坡度越陡,表示生存率越低或生存时间越 短,其斜率表示死亡速率。
15
一. 乘积极限法(Product-Limit Method)
• 简称为积限法或PL法,它是由统计学家Kaplan和Meier 于1958年首先提出的, 因此又称为Kaplan-Meier法, 是利用条件概率及概率的乘法原理计算生存率及其标 准误的。

设S(t)表示t年的生存率,s(ti/ti-1)表示活过ti-
2020/11/13
10
• §1.3 风险函数(Hazard Function)
• 用h(t)表示,其定义为:
• h(t)=lim(在时间t生存的病人死于区间 (t,△t)的概率/△t)
• 由于计算h(t)时,用到了生存到时间t,这

生存分析与Cox回归ppt课件

生存分析与Cox回归ppt课件

.Cox回归
9
1. 基本概念
生存时间(survival time)或失效时间(failure time) 生存时间指观察到的存活时间 常用符号 t 表示 生存时间是生存分析中的重要信息,必须准确 明确规定起始事件、终点事件 时间的测度单位(年、月、日)
.Cox回归
10
1. 基本概念
整个研究的观察时间 研究开始到研究结束的时间 因为有起始事件发生时间、终点事件发生时间、观察 开始时间、观察结束时间,生存资料数据分为完全数 据(complete data)和截尾数据(censored data)
1
eb1
Lp eb1b2 e0 eb2 eb1 e0 eb2 eb1 eb1
Cox 回归结构与原理示意图 (4 例肺癌)
1. Cox回归模型的一般形式
比值 h(t | x1, x2 ,..., x p ) h(t | x1, x2 ,..., xp )
RR h0(t) exp( x1, x2 ,..., x p ) h0(t) exp( x1, x2 ,..., xp )
.Cox回归
60
2. 回归系数的解释
相对危险度 RR: 两个风险函数(率)之比 (风险比) 当Xi为有无某危险因素时(0-1变量)
R R h h ( (tt,,X X 1 0 ) )h h 0 0 ( (tt) )e e x x p p ( ( 1 0 ) ) e x p ()
.Cox回归
8
1. 基本概念
举例 说明下列研究的起始事件与终点事件 ① 急性白血病患者进行骨髓移植后以是否复发来评价骨
髓移植效果 ② 职业性铅中毒的危险因素(开始职业性接触至出现铅
中毒症状) ③ 冠心病患者两次发病的时间间隔 ④ 大肠癌患者手术后存活情况(手术、死亡) ⑤ 接受健康教育对青少年戒烟到复吸的影响因素分析 ⑥ 接受某种保险方式后的中途退保分析

生存分析及COX回归

生存分析及COX回归

第十二章生存分析及COX回归在临床医学中, 对病人治疗效果的考查. 一方面可以看治疗结局的好坏,另一方面还可以通过治疗时间的长短来衡量。

例如某种疾病治愈的时间, 某癌症病人手术后的存活时间等, 把这类与时间有关的资料统称为生存资料。

生存资料一般通过随访收集,从某标准时刻(发病、手术或出院等)开始,按某种相等或不等时间间隔,对观察对象定期观察预定项目所得的资料,它的结局是死亡,治愈、复发、阳性等。

但在临床上,往往由于各种原因:(1)因迁移原因失去联系;(2)死于其他原因而造成失访;(3)预定终止结果迟迟不发生,致使在一定时期内,一部分病例得不到确切的生存期,但它们提供了其生存期长于观察期的信息,这种数据称为删失数据,也称截尾数据或终检值(censored data),包含终检值的数据即为不完全数据。

处理这类数据的统计分析方法称为生存分析。

它包括三个方面的内容1)生存过程的描述,主要是生存率的估计;2)生存过程的比较;3)影响因素的分析。

§12.1 生存率的估计生存率估计常用的有两种方法乘积极限法和寿命表法。

1乘积极限法又称Kaplan-Meier 法适用于小样本资料。

基本思想:将生存时间由小到大依次排列,在每个死亡点上,计算其期初人数、死亡人数、死亡概率、生存概率和生存率。

CHISS实现:点击重复测量→生存分析→乘积极限法应用举例:例12-1某疗法治疗白血病后的存活月数为: 2+,13,7+,11+,6,1,11,3,17,7。

试估计其生存率。

带“+”为存活终检值。

解步骤:1 进入数据模块此数据库已建立在CHISS\data文件夹中,文件名为:a9_0生存分析.DBF。

打开数据库点击数据→文件→打开数据库表找到文件名为:a9_0生存分析.DBF →确认2 进入统计模块进行统计计算点击重复测量→生存分析→乘积极限法时间变量: time 终检值指标:censor→确认3 进入结果模块查看结果点击结果乘积限估计法生存分析, 数据来自文件: C:\CHISS\Data\a9_0生存分析.DBF数据过滤条件:━━━━━━━━━━━━━━━━━━━秩观察死亡观察生存率次时间序号数生存率标准误(i) t(i) (j) n(i) S(j) Ss(j)───────────────────0 0 0 10 1.0000 ...1, 1 1 10 0.9000 0.09492, 2+ ... 9 ... ...3, 3 2 8 0.7875 0.13404, 6 3 7 0.6750 0.15515, 7 4 6 0.5625 0.16516, 7+ ... 5 ... ...7, 11 5 4 0.4219 0.17378, 11+ ... 3 ... ...9, 13 6 2 0.2109 0.172610, 17 7 1 0.0000 ...━━━━━━━━━━━━━━━━━━━注:删失数据为1。

【统计学】生存分析和COX回归

【统计学】生存分析和COX回归
H 对风险函数作图。横、纵坐标分别为t,H(t)。只适用于寿命 表法
小样本资料的乘积极限法 (Kaplan-Meier法 )
例14-4 某医师对11例脑瘤患者用甲法治疗,另9例脑瘤患者用 乙法治疗试估计两法的生存率,并比较两种疗法的生存率有无 差别。
甲法组:5 7* 13 13 23 30 30* 38 42 42 45*
乙法组:1 3 3 7 10 15 15 23 30
2020/11/19 Thursday
10
data ex14_1; do group='A','B'; input n; do i=1 to n; input t ; if t<0 then censor=0; else censor=1; t=abs(t); output; end; end; cards;
Stratum 1: group = A
Product-Limit Survival Estimates
t Survival 生存时间 生存率
数据为删失数据、截尾数据、终检数据(censored data)
2020/11/19 Thursday

1
❖生存率(survival rate) 又称累积生存概率,即个体活过时点t 的概率,用S(t)表示。

如果没有删失数据,生存率可以直接估计。
S (t )
t时刻存活的观察例数 期初总观察例数
如果有删失数据,则要分时段估计每个时段的生存概率pi(i=1,2,…,t),然后 根据概率乘法原理估计累积生存概率。
[ freq <变量名>;] /*指定频数变量名 */
PROC过程[选项]
1.method=方法 /*指定估计生存率所用的方法:*/

生存分析 PPT

生存分析 PPT

12
起始事件
疾病确诊
终点事件
死亡
疾病确诊
治疗开始 治疗开始
生存时间
随访时间
痊愈
死亡 痊愈
症状缓解
接触毒物 接触危险因素
疾病恶化
出现毒次吸烟(毒)
13
基本概念
(二)生存时间

特点:
1. 分布类型不易确定。 一般不服从正态分布,有时近似服从指数分布、Weibull分 布、Gompertz分布等,多数情况下往往不服从任何规则的 分布类型。
人开始职业性铅接触等。

终点事件(endpoint event):又称失效事件(failure event),
指研究者所关心的研究对象的特定结局。如患者死于癌
症、工人出现重症铅中毒症状等。
11
基本概念
(二)生存时间

定义:
广义的 生存时间(survival time):也称失效时间(failure time),指从某个起始事件开始到某个终点事件的发生 (出现反应)所经历的时间。
4
生存分析的历史与应用

17、18世纪:寿命表的提出及其应用。
1926年:Greenwood提出评价生存函数的误差的方法— Greenwood公式。
1958年:生存函数的计算方法—Kaplan-Meier法(乘积极限 法product-limit)的提出。 1960年代中叶:生存时间的组间比较方法的开发—广义 Wilcoxon秩和检验(Gehan,1965年);对数秩检验(log-rank test, 又称时序检验) [Mantel,1966年]。 1970年:将协变量的影响模型化—参数模型(假设生存时间 服从Weibull分布、对数正态分布等);半参数模型(比例风险 5 模型,又称Cox回归模型) [Cox,1972年]。

【医学统计学PPT】 Cox比例风险回归模型

【医学统计学PPT】 Cox比例风险回归模型

3. 参数解释
RR
hi (t) hj (t)
h0 (t) exp 1Xi1 h0 (t) exp 1X j1
2Xi2 2X j2
p X ip p X jp
• 在任何生存时间上,一组病人的危险度都是其
参照组危险度的倍数
• j 的流行病学含义:在其他协变量不变的情况
下,协变量Xj每改变一个测量单位时所引起的 相对危险度的自然对数的改变量。
• 基本Cox模型表达式为:
h(t, X)=h0(t) exp ( 1X1+ 2X2+...+p X p)
t:生存时间 X: 与生存时间有关的协变量 h(t,X):具有协变量X的个体在时刻t时的风险函数 h0(t):所有危险因素为0时的基础风险率,未知。 :Cox模型的回归系数,需要根据实际数据估计。
某恶性肿瘤的影响因素及量化值
变量
X1 X2 X3 X4 X5 X6 time
status
意义
量化值
年龄

性别
女0
男1
组织学类型 低分化0 高分化1
治疗方式
传统疗法0 新疗法1
淋巴结转移 否 0
是1
肿瘤浸润程度 未突破浆膜层0 突破浆膜层1
生存时间

结局
截尾0
死亡1
建立SPSS数据工作表
Analyze Survival Cox Regression
Cox Regression对话框
将生存时间变量time选入Time栏 ;将状态变量status 选入Status栏,并定义数值1表示完全数据;将预后
因素X1~X6选入Covariates栏;Method:选用 Forward:LR(似然比前进法)。

生存分析cox回归和sas应用总结课件

生存分析cox回归和sas应用总结课件

最大似然法
最大似然法
参数检验 F-test t-test
参数解释 回归系数b
似然比检验 Wald检验 score检验
优势比OR
似然比检验 Wald检验 score检验
RR
样本含量 至少变量数旳10倍
应用
原因分析 预测预报 Y
至少变量数旳20倍
原因分析 预测、鉴别P(Y=1)
非截尾例数至少变量 数旳10倍
SELECTION=自变量筛选措施 FORWARD/F: 按要求旳P值SLE从无到有依次选择变量进入模型 BACKWARD/B: 按要求旳P值SLS从具有全部变量旳模型开始,依次剔除变量
STEPWISE/S:按SLE旳原则依次选入变量,同步对模型中既有旳变量按SLS旳原则 剔除不明显旳变量 SCORE 采用最优子集选择法
模型检验,无效假设为β=0
Covariates Covariates Model Chi-Square
Without
With
106.176
83.260 22.916 with 2 DF (p=0.0001)似然比检验
.
.
29.715 with 2 DF (p=0.0001)比分检验
.
.
13.863 with 2 DF (p=0.0010) Wald检验
成百分比风险模型检验:((最大似然法迭代 )(似然比
模型参数旳检验:似然比、比分检验和Wald检验
PHREG过程旳语法格式如下: PROC PRREG [过程选项]; MODEL <生存时间变量*截尾指示变量(数值)>=<自变量名> /[模型选项]; STRATA <分层变量名列>; FREQ <变量名列>; BY <分组变量名列>; RUN;

生存分析医学PPT课件

生存分析医学PPT课件
10
生存分析的基本概念 3)风险函数
风险函数(Hazard Function) 用h(t)表示,其定义为: h(t)=lim(在时间t生存的病人死于区间(t,△t)的概率/△t) 由于计算 h(t) 时 , 用到了生存到时间 t, 这一条件 , 故上 式极限式中分子部分是一个条件概率。可将h(t)称为生存到 时间t的病人在时间t的瞬时死亡率或条件死亡速率或年龄别 死亡速率。当用t 作横坐标 ,h(t) 为纵坐标所绘的曲线 , 如递 增,则表示条件死亡速率随时间而增加 ,如平行于横轴 ,则表 示没有随时间而加速(或减少)死亡的情况。
3
生存分析的基本概念
2、截尾数据(Censored
data) 但往往有一部分人或中途失防,或到观 察结束时仍存活,对这些人无法知道准确的 生存时间,对于这样的观测值,只知道其生 存时间大于T,而不知道其准确的生存时间。 这种数据称为截尾数据(Censored data)。 它提供不完全信息。
4
7
生存分析的基本概念 5、生存时间函数
1)生存函数
生存概率又称为生存率(Survival Rate)或生存函数, 它表示一个病人的生存时间长于时间t的概率,用S(t) 表示: s(t)=P(Tt) 如5年生存率: s(5)=P(T5) 以时间t为横坐标,S(t)为纵坐标所作的曲线称为生存率曲线, 它是一条下降的曲线,下降的坡度越陡,表示生存率越低或生 存时间越短,其斜率表示死亡速率。
生存分析
第一节 第二节 引言 生存分析的基本概念
第三节
第四节 第五节
非参数生存分析
Cox模型 实例分析与计算机实现
1
第一节 引言 在医学研究中,常常用追踪的方式来研究事物 发展的规律。如,了解某药物的疗效,了解手术的 存活时间,了解某医疗仪器设备使用寿命等等。 对生存资料的分析称为生存分析。所谓生存资 料就是描述寿命或者一个发生时间的数据。更详细 的说一个人的生存时间的长短与许多因素有联系的, 研究因素与生存时间的联系有无及程度大小,称为 生存分析。 生存分析在医学科学研究中具有广泛而重要的 应用价值,它对人群寿命的研究,各种慢性疾病的 现场追踪研究,临床疗效试验和动物试验等研究中 随访资料的处理起着举足轻重的作用。

生存分析及cox比例风险模型ppt课件

生存分析及cox比例风险模型ppt课件

18
. sts test treat
failure _d: outcome analysis time _t: time
Log-rank test for equality of survivor functions
| Events
Events
treat | observed
expected
------+-------------------------
1
|
14
8.57
2
|
4
9.43
------+-------------------------
Total |
18
18.00
chi2(1) =
6.71
Pr>chi2 = 精选课件P0PT.0096
19
例8.8
某临床试验比较A,B两治疗方案对某病的
治疗效果,A组(group=0)12人,B组 (group=1)13人。病人分组后检验其肾功能 (kidney),功能正常者记为0,不正常者记 为1;治疗后生存时间为stime(天) ;问不同
stcoxkm [,by(分组变量) separate 绘图命 令选择项]
精选课件PPT
16
O bs er v ed v s . Pr edi c ted S ur v i v al Pr obabi li ti es By C ategor i es of tr eat
Observed: treat = 1 Predicted: treat = 1
No. of subjects =
25
Number of obs =
25
No. of failures =

生存分析讲PPT课件

生存分析讲PPT课件
(1) 死亡率 (mortality rate,death rate) 表示某单位时间内的死亡强度。
年死亡 m率 年 年平 内均 死人 亡 1口 人 000数 数 000
年平均人口数=(年初人口数+年末人口数)/2
19
(2) 死亡概率 ( mortality probability ) 指死于某时段内的可能性大小。 年死亡概q率 年 年初 内观 死察 亡例 人数 数
n0 n=no-d/2
(4) (5)
60
55
50
45
40
35
30
25
20
15
死亡 死亡 生存
率 概率 概率
m=d/n
(6) . 185 . 222 . 286 . 400 . 667
q=d/n0
(7) . 167 . 200 . 250 . 333 . 500
p=1-q
(n0-d)/n0
(8) . 833 . 800 . 750 . 667 . 500
48
β>0,RR>1,说明变量X增加时,危险率增加,即X是危 险因素。
β<0,RR<1,说明变量X增加时,危险率下降,即X是保 护因素。
β=0,RR=1,说明变量X增加时,危险率不变,即X是危 险无关因素。
49
三 参数估计与假设检验
① 参数估计 最大似然法
② 假设检验(模型中变量的剔除和引入) 似然比检验 得分检验 Wald检验
36
37
K-M法和Life table法比较
K-M 法
Life Table 法
基本思想 计算每一“结局事件”发生时点 将生存时间分为许多小的时间段,
的生存率,研究总体规律,寻找 计算段内生存率的变化,研究总体

Cox回归分析.ppt

Cox回归分析.ppt

病人
处理 性别 生存 结局 组号 (男=1) 天数 (死=1)
风险函数 (因人而异)
Name x1 x2 t
d h(t)=h0(t) e b1x1b2x2
王一 1 1 18 1
e h0(t) b1b2
黄二 0 0 48 1
h0(t)
张三 0 1 70 0
h0(t) eb2
李四 1 0 90 1
h0(t) eb1
风险率 (随时变化)
18 天
48 天
h0(18) eb1b2
90天
h0(18) e 0 h0(18) eb2
h0(18) eb1
h0(48) e 0 h0(48) eb2
Cox模型的 基本形式
利用生存率函数S(t,X)与 风险函数h(t,X)的关系可 导出
St, X exp
t 0
ht,
X
dt
exp
t 0
h0
t exp
X
dt

S0
t exp(
X
)
j
较好地解 决截尾值 的问题
反映了协变量X与生存函数的关系
Cox回归分析
随访资料的特点
① 分布类型不易确定。一般不服从正态分布,少数 情况下近似服从指数分布、Weibull分布、 Gompertz分布等,多数情况下往往是不服从任 何规则的分布类型。
② 影响因素多而复杂且不易控制。 ③ 根据研究对象的结局,生存时间数据可分为两种
类型:
完全数据(complete data) 截尾数据(截尾值、删失数据,censored data)

1 0


2 2

1 0

Cox回归模型【生存分析】

Cox回归模型【生存分析】

Cox回归模型【⽣存分析】参考:《复杂数据统计⽅法——基于R的应⽤》吴喜之在⽣存分析中,研究的主要对象是寿命超过某⼀时间的概率。

还可以描述其他⼀些事情发⽣的概率,例如产品的失效、出狱犯⼈第⼀次犯罪、失业⼈员第⼀次找到⼯作、青少年第⼀次吸毒等等。

⽣存函数S(t):S(t)=P(T>t)=1-P(T<=t),t>0T:表⽰寿命的随机变量t:特定时间综合⽣存函数图:⽤到包survival案例:⼝腔癌数据实验分成两组:TX=1:仅放疗TX=2:放疗+化疗#读取数据u=read.csv("pharynx1.csv")#因⼦化定性变量x=1:11(x=x[-c(5,11)]) #去掉第五个和第11个(定性变量的下标)for(i in x) u[,i]=factor(u[,i]) #把定性变量从数值型转换成因⼦型#回归分析a=lm(TIME~.,data=u)summary(a)R2和调整R2不⾼,结果不理想。

同时正态性条件不满⾜,所以检验得到的p-值也没有多⼤意义。

对TIME做指数变换,Box-Cox变换是统计建模中常⽤的⼀种数据变换,⽤于连续的响应变量不满⾜正态分布的情况。

MASS包中的boxcox()函数可以寻找λ。

#BOX-COX变换library(MASS)b=boxcox(TIME~.,data=u)I=which(b$y==max(b$y)) #which⽤于找到值在数组中的位置使对数似然最⼤的λ位置b$x[I]尝试⽤TIME的0.4次⽅作为因变量来拟合数据a=lm(TIME^0.4~INST+SEX+TX+AGE+COND+T.STAGE+N.STAGE+STATYS,data=u)b=step(a)summary(b)anova(b)shapiro.test(b$res)拟合并不好。

COX回归分析解析实用PPT学习教案

COX回归分析解析实用PPT学习教案

Likelihood Chi-square df
Sig.
Change From Previous Step
Chi-square df
Sig.
Change From Previous Block
Chi-square df
Sig.
45.145 14.783
6
.022 16.199
6
.013 16.199
Variables in the Equation
SE .421 .530
Wald 6.630 6.799
Cases available in analysis
Cases dropped
Event a Cens ored Total Cases with missing values Cases with non-positive t im e Censored cases before the earliest event in a s trat um Total
mean=18 ,median=14
7 8+ 25 35 + 50
? 当有截尾数据时,
第6页/共46页
Kaplanmeier生存率曲线图
第7页/共46页
第8页/共46页
第9页/共46页
三、Cox回归分析(Cox regression)
影响生存时间的长短不仅与 治疗措施有关, 还可能与病人的 体质, 年龄, 病情的轻重等多种 因素有关。如何找出它们之间的 关系呢?对生存资料不能用多元 线性回归分析。 1972年英国统计 学家Cox DR. 提出 第10页/共46页 了一种能处理 多因素生存分析数据的比例危险
B
SE
Wald
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
生存分析和COX回归
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往
相关文档
最新文档