人教版八年级下册-函数-练习题
人教版初中八年级数学下册第十九章《一次函数》经典题(含答案解析)
一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时; ③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t 或4.5.A .1B .2C .3D .42.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A .小明到达球场时小华离球场3150米B .小华家距离球场3500米C .小华到家时小明已经在球场待了8分钟D .整个过程一共耗时30分钟3.下列图象中,不表示y 是x 的函数的是( )A .B .C.D.4.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<32B.32<x<6 C.32<x<4 D.0<x<35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20210x yy x+-=⎧⎨-+=⎩B.20210x yy x-+=⎧⎨+-=⎩C.20210x yy x-+=⎧⎨--=⎩D.2010x yy x++=⎧⎨+-=⎩6.如图,A、M、N三点坐标分别为A(0,1),M(3,4),N(5,6),动点P从点A 出发,沿y轴以每秒一个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒,若点M、N分别位于l的异侧,则t的取值范围是()A .611t <<B .510t <<C .610t <<D .511t <<7.已知点()1,4P 在直线2y kx k =-上,则k 的值为( ) A .43B .43-C .4D .4-8.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .9.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定10.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-11.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D .12.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④13.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量14.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5 15.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <-二、填空题16.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.17.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.18.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.19.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.20.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -+-+=_________.21.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.22.如表,y 是x 的一次函数,则m 的值为_____________.x 1-0 1 y 3m23.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.24.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.25.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.26.新冠疫情爆发以来,某工厂响应号召,积极向疫情比较严重的甲地区捐赠口罩、消毒液等医疗物资,在工厂装运完物资准备前往甲地的A 车与在甲地卸完货准备返回工厂的B 车同时出发,分别以各自的速度匀速驶向目的地,出发6小时时A 车接到工厂的电话,需要掉头到乙处带上部分检验文件(工厂、甲地、乙在同一直线上且乙在工厂与甲地之间),于是,A 车掉头以原速前往乙处,拿到文件后,A 车加快速度迅速往甲地驶去,此时,A 车速度比B 车快32千米/小时,A 车掉头和拿文件的时间忽略不计,如图是两车之间的距离y (千米)与B 车出发的时间x (小时)之间的函数图象,则当A 车到达甲地时,B 车离工厂还有_____千米.三、解答题27.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.28.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积.29.青甘杨作为杨树的一种是我国东北和西北防护林以及用材林的主要树种之一,具有生长快、适应性强、分布广等特点.青甘杨树苗的高度与其生长年数之间的关系如下表所示:(树苗原高是90cm )生长年数n/年12345青甘杨树苗高度/cmh125160195230(1)第5年树苗可能达到的高度为_______cm.(2)请用含n的代数式表示高度h.(3)根据(2)中的结论,请计算生长了11年后的青甘杨可能达到的高度.30.综合与探究如图1,一次函数162y x=-+的图象交x轴、y轴于点A,B,正比例函数12y x=的图象与直线AB交于点(),3C m.(1)求m的值并直接写出线段OC的长;(2)如图2,点D在线段OC上,且与O,C不重合,过点D作DE x⊥轴于点E,交线段CB于点F.请从A,B两题中任选一题作答.我选择题____题.A.若点D的横坐标为4,解答下列问题:①求线段DF的长;②点P是x轴上的一点,若PDF的面积为CDF面积的2倍,直接写出点P的坐标;B.设点D的横坐标为a,解答下列问题:①求线段DF的长,用含a的代数式表示;②连接CE,当线段CD把CEF△的面积分成1:2的两部分时,直接写出a的值.。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。
新人教版八年级下数学《函数》练习题
新人教版八年级下数学《函数》练习题新人教版八年级下数学《函数》练题19.1 函数19.1.1 变量与函数课前预要点感知1:在一个变化过程中,数值发生的量叫做变量,数值始终不变的量叫做常量。
预练1-1:如果直角三角形两锐角的度数分别为x、y,其关系式为y=90-x,其中变量为x,常量为90.要点感知2:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
预练2-1:如果球的体积为V,半径为R,则V=πR^3.其中自变量是R,函数是V。
要点感知3:函数自变量的取值范围既要满足函数关系式,又要满足实际问题。
预练3-1:甲乙两地相距100km,一辆汽车以每小时40km的速度从甲地开往乙地,t小时与乙地相距s km,s与t的函数解析式是s=40t,自变量t的取值范围是0≤t≤2.5.当堂训练知识点1:变量与常量1.圆周长公式C=2πR中,下列说法正确的是(B)R是变量,2、π、C为常量。
2.写出下列各问题中的数量关系,并指出各个关系式中,哪些是常量?哪些是变量?1)购买单价为5元的钢笔n支,共花去y元;变量是n,常量是5.2)全班50名同学,有a名男同学,b名女同学;变量是a、b,常量是50.3)汽车以60km/h的速度行驶了t h,所走过的路程为s km;变量是t,常量是60.知识点2:函数的有关概念3.下列关系式中,一定能称y是x的函数的是(B)y=3x-1.4.若93号汽油售价7.85元/升,则付款金额y(元)与购买数量x(升)之间的函数关系式为y=7.85x,其中x是自变量,y是的函数。
5.当x=2和x=-3时,分别求下列函数的函数值。
1)y=(x+1)(x-2);当x=2时,y=0;当x=-3时,y=20.2)y=2x^2-3x+2;当x=2时,y=8;当x=-3时,y=29.知识点3:函数的解析式及自变量的取值范围6.(云南中考)函数y=(x-2)/x的自变量x的取值范围为(x≠2)。
人教版八年级数学下册《函数》同步练习题
人教版八年级下册 19.1《函数》同步练习题一.选择题(共 10 小题)1.在圆周长的计算公式 C =2πr 中,变量有()A .C ,πB .C ,rC .C ,π,rD .C ,2π,r2.一个圆柱的高 h 为 10cm ,当圆柱的底面半径 r 由小到大变化时,圆柱的体积 V 也发生了 变化,在这个变化过程中()A .r 是因变量,V 是自变量C .r 是自变量,h 是因变量B .r 是自变量,V 是因变量D .h 是自变量,V 是因变量3.下列平面直角坐标系中的图象,不能表示 y 是 x 的函数是()A .B .C .D .4.变量 x 、y 有如下的关系,其中 y 是 x 的函数的是()A .y=8xB .|y |=xC .y =D .x = y5.函数 y =+(x ﹣5) 中自变量 x 的取值范围是()A .x ≥3 且≠5B .x >3 且 x ≠5C .x <3 且 x ≠5D .x ≤3 且 x ≠56.在平面直角坐标系中,点 P (x ,y )在第一象限内,且 x +y =8,点 A 的坐标为(6,0).设 △OPA 的面积为 S ,S 与 x 之间的函数关系式是()A .S =﹣x +8(0<x <8)C .S =﹣3x +12(0<x <4)B .S =﹣3x +24(0<x <8)D .S =﹣ x +8(0<x <8)7.如图,射线l 、l 分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关甲 乙系,则他们行进的速度关系是( )A .甲比乙快B .乙比甲快C .甲、乙同速D .不一定2 4﹣28.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如 下表),下列说法错误的是()温度/℃声速 m /s﹣20318﹣10324330103362034230348A .在这个变化中自变量是温度,因变量是声速B .当温度每升高 10C ,声速增加 6m /sC .当空气温度为 20℃,5s 的时间可以传播 1740mD .温度越高声速越快9.如图所示的图象(折线A BCDE )描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离 s (千米)与行驶时间 t (时)之间的函数关系,根据图中提供的信息,给出 下列说法:①汽车共行驶了 140 千米;②汽车在行驶途中停留了 1 小时;③汽车在整个行驶过程中的平均速度为 30 千米/时;④汽车出发后 6 小时至 9 小时之间行驶的速度在逐渐减小.其 中正确的说法共有()A .1 个B .2 个C .3 个D .4 个10.如图是一个运算程序的示意图,若输出 y 的值为 2,则输入 x 的值可能为()A .3B .±1C .1 或 3D .±1 或 3二.填空题(共 3 小题)11.函数的定义域是 .12.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数 m 与球队数 n 之间的 关系式.13.某市统计局统计了今年第一季度每月人均 GDP 的增长情况,并绘制了如图所示的统计图,下列结论:①1 月份的人均 GDP 增长率最高;②2 月份的人均 GDP 比 1 月份低; ③这三个月的人均 GDP 都在增长,其中正确的结论序号是.三.解答题(共 5 小题)14.在一次实验中,马达同学把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹 簧的长度 y 与所挂物体质量 x 的一组对应值.所挂物体质量 x /kg弹簧长度y /cm1 2 3 4 518 20 22 24 26 28(1)上表反应了哪两个变量之间的关系,并指出谁是自变量,谁是因变量.(2)当悬挂物体的重量为 3 千克时,弹簧长;不挂重物时弹簧长 .(3)弹簧长度 y 与所挂物体质量 x 之间的关系可以用式子表示为: . (4)求挂 10kg 物体时弹簧长度及弹簧长 36cm 时所挂物体的重量.15.已知△ABC 的面积是 12cm ,BC =6cm ,在BC 边上有一动点 P ,连接 P ,设BP 为 xcm △.△ ABP 的面积为 ycm ,(1)求 y 与 x 之间的关系式(2)用表格表示当从 1 到 6 时(每次增加 1),y 的对应值.(3)当 x =0 时,y 的值等于多少?此时说明了什么?2216.小李骑摩托车在一条笔直的公路上行驶,摩托车离出发地的距离s(千米)和行驶时间t(小时)之间关系的图象如图所示.根据图象回答下列问题:(1)在上述变化过程中,自变量是什么?因变量是什么?(2)摩托车共行驶了多少千米?(3)摩托车在行驶过程中休息了多久?(4)摩托车在整个行驶过程中的平均速度是多少?(5)用自己的语言描述摩托车的行驶情况.17.已知动点P以每秒2cm的速度沿如图甲所示的边框按从B→C→D→E→F→A的路径匀速移动,相应的△ABP 的面积S关于时间t的图象如图乙所示,若AB=6cm,试回答下列问题:(1)求出图甲中BC的长和多边形ABCDEF的面积;(2)直接写出图乙中a和b的值.18.如图(1),已知点A(4,0),点P(x,y)在第一象限,且x+y=6.△设OPA面积为S(1)求S关于x的函数关系式,并写出x的取值范围.(2)当S=6时,求P点的坐标;(3)在图(2)中画出S关于x的函数图象.参考答案一.选择题(共 10 小题)1.【解答】解:圆的周长计算公式是 c =2πr ,C 和 r 是变量,2、π 是常量,故选:B .2.【解答】解:一个圆柱的高 h 为 10cm ,当圆柱的底面半径 r 由小到大变化时,圆柱的体 积 V 也发生了变化,在这个变化过程中r 是自变量,V 是因变量,故选:B .3.【解答】解:A 、能表示 y 是 x 的函数,故此选项不合题意;B 、不能表示 y 是 x 的函数,故此选项符合题意;C 、能表示 y 是 x 的函数,故此选项不合题意;D 、能表示 y 是 x 的函数,故此选项不合题意;故选:B .4.【解答】解:A 、y=8x ,y 不是 x 的函数,故此选项错误;B 、|y |=x ,y 不是 x 的函数,故此选项错误;C 、y = ,y 是 x 的函数,故此选项正确;D 、x = y ,y 不是 x 的函数,故此选项错误;故选:C .5.【解答】解:依题意有 x ﹣3>0 且 x ﹣5≠0,解得:x >3 且 x ≠5.故选:B .6.【解答】解:∵点 P (x ,y )在第一象限内,且 x+y =8,∴y =8﹣x (0<x <8).∵点 A 的坐标为(6,0),点O 的坐标为(0,0),∴S = OP •y = ×6y =﹣3x +24(0<x <8).故选:B .7.【解答】解:根据图象越陡峭,速度越快;可得甲比乙快.故选:A .2 48.【解答】解:A、∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;B、∵324﹣318=6(m/s),330﹣324=6(m/s),336﹣330=6(m/s),342﹣336=6(m/s),348﹣342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项B正确;C、∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;D、∵根据数据表,可得温度越高,声速越快,∴选项D正确.故选:C.9.【解答】解:汽车从出发地到目的地走了140千米,又回到出发地因而共行驶了280千米,故①错误;汽车在行驶途中停留了4﹣3=1小时,故②正确;汽车在整个行驶过程中的平均速度为:280÷(9﹣1)=35(千米/时),故③错误;汽车出发后6小时至9小时之间行驶的速度不变,故④错误.综上所述,正确的只有②.故选:A.10.【解答】解:当x+1=2时,x=1,不符合x≤0;2当x+1=2时,x=±1,此时x=1符合;当=2时,x=3,此时符合;∴x=3或x=1,故选:C.二.填空题(共3小题)11.【解答】解:依题得:,解得.故答案为:.12.【解答】解:m = n (n ﹣1)= n ﹣ n ,故答案为:m = n﹣ n13.【解答】解:①由纵坐标看出 1 月份的增长率是 10%,2 月份的增长率是 5%,3 月份的 增长率是 3%,故①说法正确;②2 月份比 1 月份增长 5%,故②说法错误;③1 月份的增长率是 10%,2 月份的增长率是 5%,3 月份的增长率是 3%,故③说法正 确;故答案为:①③.三.解答题(共 5 小题)14.【解答】解:(1)上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量 是自变量,弹簧长度是因变量;(2)当所挂物体重量为 3 千克时,弹簧长 24cm ;当不挂重物时,弹簧长 18cm ; 故答案为:24cm ;18cm ;(3)弹簧长度 y 与所挂物体质量 x 之间的关系可以用式子表示为:y =2x +18(x ≥0); 故答案为:y =2x +18(x ≥0);(4)当 x =10kg 时,y =2x +18=2×10+18=38cm ;当 y =36cm 时,即 36=2x+18, ∴x =9,即挂 10kg 物体时弹簧长度是 38kg ,弹簧长 36cm 时所挂物体的重量是 9kg .15.【解答】解:(1)△ABC 的面积是 12cm ,BC =6cm ,则在 BC 边上的高为 4cm ,∴△ABP 的面积为:y = x ×4=2x ,(0≤x ≤6)(2)用表格表示:(3)当 x =0 时,y =0,说明此时点 P 与点 B 重合.16.【解答】解:(1)根据定义:行驶时间 t 为自变量,摩托车离出发地的距离 s 为因变量;(2)从图象可以看出:摩托车共行驶的距离 s 最大为 120 千米,即摩托车共行驶了 240 千米;(3)摩托车在行驶过程中休息,t 从 1.5 到 2,共 0.5 个小时;2 2 2(4)摩托车在整个行驶过程中,行驶的总时间为4 小时,距离为 240 千米,故平均速度 为 240÷4=60(千米/小时);(5)摩托车以 60 千米/小时行驶了 1.5 小时,然后休息 0.5 小时,再以 60 千米/小时行驶 了 1 小时到达目的地,最后以 80 千米/小时的速度返回.17.【解答】解:(1)由图象可得 BC =4×2=8cm ,CD =2×2=4cm ,DE =3×2=6cm ,EF =6﹣4=2cm ,∴多边形 ABCDEF 的面积=6×8+6×2=60cm ,(2)由题意可得:a =18.【解答】解:∵S = OA •y6×8=24,b = =17= ×4×(6﹣x )=12﹣2x .其中 0<x <6;(2)当 S =6 时,12﹣2x =6, 解得 x =3.把 x =3 代入 x +y =6,得 y =3,∴P 点的坐标为(3,3); (3)如图,即为 S 关于 x 的函数图象.2 P。
人教版八年级下册-函数-练习题
八年级下册函数习题一.选择题(共15小题)1.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个2.下列图象中,不能表示函数关系的是()A.B.C.D.3.下列关系中,y不是x函数的是()A.y=﹣B.y=C.y=x2D.|y|=x4.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数5.如图中的每次个图是由若干盆花组成的四边形图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数是S,按此规律推断,S与n的函数关系式是()A.S=n2B.S=4n C.S=4n﹣4D.S=4n+46.当x=0时,函数y=2x2+1的值是()A.1B.0C.3D.﹣17.函数y=的自变量x的取值范围是()A.x≥﹣2B.x≥﹣2且x≠﹣1C.x≠﹣1D.x>﹣18.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.9.小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A.B.C.D.10.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是()A.B.C.D.11.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B﹣C﹣D的路线向点D运动.设△ABP 的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为()A.B.C.D.12.下列函数中,是正比例函数的是()A.y=﹣8x B.y=C.y=5x2+6D.y=﹣0.5x﹣113.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2B.b=1C.a≠2且b=1D.a,b可取任意实数14.当k>0时,正比例函数y=kx的图象大致是()A.B.C.D.15.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2二.填空题(共12小题)16.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,_________ 随_________ 变化而变化,其中自变量是_________ ,因变量是_________ .17.下列:①y=x2;②y=2x+1;③y2=2x(x≥0);④y=(x≥0),具有函数关系(自变量为x)的是_________ .18.按图示的运算程序,输入一个实数x,便可输出一个相应的实数y,写出y与x之间的函数关系式:y=_________ .19.某人购进一批苹果到集贸市场零售,已知卖出苹果的数量x与售价y之间的关系如下表,写出x表示y的关系式.数量x(kg)1234售价y(元)2+0.14+0.26+0.38+0.420.函数中,自变量x的取值范围是_________ .21.函数y=中,自变量x的取值范围是_________ .22.在函数中,自变量x的取值范围是_________ .23.函数y=+中自变量x的取值范围是_________ .24.函数,当x=3时,y= _________ .25.若函数y=(2﹣m)x|m﹣1|是正比例函数,则常数m的值是_________ .26.若函数是正比例函数,则常数m的值是_________ .27.若函数y=(k﹣1)x|k|是正比例函数,则k= _________ .三.解答题(共3小题)28.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离S(m)与时间t(s)的数据如下表:时间t(s)1234…距离S(m)281832…(1)这一变化过程中的自变量,因变量各是什么?(2)写出用t表示s的关系.(3)求第6秒时,小球滚动的距离为多少m?(4)小球滚动200m用了多长时间?29.为了迎接深圳第26届大运会,小明在某周末上午9时骑自行车离开家去绿道锻炼,15时回家,已知自行车离家的距离s(km)与时间t(h)之间的关系如图所示.根据图象回答下列问题:(1)小明骑自行车离家的最远距离是_________ km;(2)小明骑自行车行驶过程中,最快的车速是_________ km/h,最慢的车速是_________ km/h;(3)途中小明共休息了_________ 次,共休息了_________ 小时;(4)小明由离家最远的地方返回家时的平均速度是_________ km/h.一.选择题(共15小题)1.(2012•河池)下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个解答:解:第一个图象,对每一个x的值,都有唯一确定的y值与之对应,是函数图象;第二个图象,对每一个x的值,都有唯一确定的y值与之对应,是函数图象;第三个图象,对给定的x的值,有两个y值与之对应,不是函数图象;第四个图象,对给定的x的值,有两个y值与之对应,不是函数图象.综上所述,表示y是x的函数的有第一个、第二个,共2个.故选B.2.下列图象中,不能表示函数关系的是()A.B.C.D.解答:解:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.选项C,对于一个x有两个y与之对应,故不是函数图象,故选C.3.下列关系中,y不是x函数的是()A.y=﹣B.y=C.y=x2D.|y|=x解答:解:A、y=﹣,是一次函数,故此选项不合题意;B、y=,是反比函数,故此选项不合题意;C、y=x2,是二次函数,故此选项不合题意;D、|y|=x,x每取一个值,y有两个值与其对应,则y不是x函数,符合题意.故选:D.4.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数解答:解:A、y=(x)2=x2,y是x的函数,故本选项错误;B、每一个学生对应一个身高,y是x的函数,故本选项错误;C 、y=π(x)2=πx2,y是x的函数,故本选项错误;D 、y=±,每一个x的值对应两个y值,y不是x的函数,故本选项正确.故选D.5.(2010•广元)如图中的每次个图是由若干盆花组成的四边形图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数是S,按此规律推断,S与n的函数关系式是()A.B.S=4n C.S=4n﹣4D.S=4n+4 S=n2解答:解:第1个图形中,每条边上有2盆花,共有4×2﹣4=4盆花,第2个图形中,每条边上3盆花,共有4×3﹣4=8盆花,…∴S=4n﹣4,故选C.6.(2003•湖州)当x=0时,函数y=2x2+1的值是()A.1B.0C.3D.﹣1解答:解:当x=0时,函数y=2×02+1=1.故选A.7.(2006•黄石)函数y=的自变量x的取值范围是()A.x≥﹣2B.x≥﹣2且x≠﹣1C.x≠﹣1D.x>﹣1解答:解:由题意得:x+1≠0,解得x≠﹣1,故选C.8.(2013•玉林)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.解答:解:因为水面高度开始增加的慢,后来增加的快,所以容器下面粗,上面细.故选B.9.(2013•湘西州)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A.B.C.D.解答:解:小芳的爷爷点的形成分为三段:①漫步到公园,此时y随x的增大缓慢增大;②打太极,y随x的增大,不变;③跑步回家,y随x的增大,快速减小,结合图象可得选项C中的图象符合.故选C.10.(2013•绥化)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A 运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是()A.B.C.D.解答:解:∵长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y随点P走过的路程s之间的函数关系图象可以分为4部分,∴P点在AB上,此时纵坐标越来越小,最小值是1,P点在BC上,此时纵坐标为定值1.当P点在CD上,此时纵坐标越来越大,最大值是2,P点在AD上,此时纵坐标为定值2.故选D.11.(2012•营口)如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B﹣C﹣D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为()A.B.C.D.解答:解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,y=x,当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C.故选C.12.(2012•南充)下列函数中,是正比例函数的是()A.y=﹣8x B.y=C.y=5x2+6D.y=﹣0.5x﹣1解答:解:A、y=﹣8x是正比例函数,故本选项正确;B、y=,自变量x在分母上,不是正比例函数,故本选项错误;C、y=5x2+6,自变量x的指数是2,不是1,不是正比例函数,故本选项错误;D、y=﹣0.5x﹣1,是一次函数,不是正比例函数,故本选项错误.故选A.13.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2B.b=1C.a≠2且b=1D.a,b可取任意实数解答:解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.14.(2011•湘西州)当k>0时,正比例函数y=kx的图象大致是()A.B.C.D.解答:解:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.故选A.15.(2009•衢州)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2解答:解:根据k<0,得y随x的增大而减小.故选C.二.填空题(共12小题)16.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.解答:解:“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是:时间,因变量是:温度.故答案是:温度、时间、时间、温度.7.下列:①y=x2;②y=2x+1;③y2=2x(x≥0);④y=(x≥0),具有函数关系(自变量为x)的是①②.解答:解:∵对于x的每一个取值,y都有唯一确定的值,∴①y=x2;②y=2x+1当x取值时,y有唯一的值对应;故具有函数关系(自变量为x)的是①②.故答案为:①②.18.按图示的运算程序,输入一个实数x,便可输出一个相应的实数y,写出y与x之间的函数关系式:y= y=5x+6 .解答:解:由题意可知:y=(x+2)×5﹣4,即y=5x+6.19.某人购进一批苹果到集贸市场零售,已知卖出苹果的数量x与售价y之间的关系如下表,写出x表示y的关系式.数量x(kg)1234售价y(元)2+0.14+0.26+0.38+0.4解答:解:∵(2+0.1)÷1=2.1;(4+0.2)÷2=2.1;(6+0.3)÷3=2.1;…∴可知y=2.1x.20.(2013•营口)函数中,自变量x的取值范围是x≠5.解答:解:根据题意得,x﹣5≠0,解得x≠5.故答案为:x≠5.21.(2013•岳阳)函数y=中,自变量x的取值范围是x≥﹣2 .解答:解:根据题意得:x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.22.(2013•云南)在函数中,自变量x的取值范围是x≥﹣1且x≠0.解答:解:根据题意得:x+1≥0且x≠0解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠023.(2004•哈尔滨)函数y=+中自变量x的取值范围是3<x≤5.解答:解:根据题意得:,解得:3<x≤5.24.(2011•宁德)函数,当x=3时,y= ﹣3 .解答:解:当x=3时,y==﹣3.故答案为:﹣3.25.若函数y=(2﹣m)x|m﹣1|是正比例函数,则常数m的值是0 .解答:解:由题意得:2﹣m≠0,|m﹣1|=1,解得:m=0,故答案为:0.26.若函数是正比例函数,则常数m的值是 2 .解答解:由正比例函数的定义可得:m2﹣3=1,且m+2≠0,解得:m=±2.m=2故答案为2.27.若函数y=(k﹣1)x|k|是正比例函数,则k= ﹣1 .解答:解:∵根据正比例函数的定义,可得:k﹣1≠0,|k|=1,k=﹣1.故答案为:﹣1.三.解答题(共3小题)28.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离S(m)与时间t(s)的数据如下表:时间t(s)1234…距离S(m)281832…(1)这一变化过程中的自变量,因变量各是什么?(2)写出用t表示s的关系.(3)求第6秒时,小球滚动的距离为多少m?(4)小球滚动200m用了多长时间?解答:解:(1)滚动的距离s是因变量,时间t是自变量;(2)由表格可得s=2t2;(3)当t=6时,s=2×62=72(m);(4)当s=200时,t=10.29.为了迎接深圳第26届大运会,小明在某周末上午9时骑自行车离开家去绿道锻炼,15时回家,已知自行车离家的距离s(km)与时间t(h)之间的关系如图所示.根据图象回答下列问题:(1)小明骑自行车离家的最远距离是35 km;(2)小明骑自行车行驶过程中,最快的车速是20 km/h,最慢的车速是10 km/h;(3)途中小明共休息了 2 次,共休息了 1.5 小时;(4)小明由离家最远的地方返回家时的平均速度是17.5 km/h.。
人教版初中八年级数学下册第十九章《一次函数》经典习题(含答案解析)
一、选择题1.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm2.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .53.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300km B .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km4.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-5.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .36.在数轴上,点A 表示-2,点B 表示4.,P Q 为数轴上两点,点Р从点A 出发以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发以每秒2个单位长度的速度向左运动,点Q 到达原点О后,立即以原来的速度返回,当点Q 回到点B 时,点Р与点Q 同时停止运动.设点Р运动的时间为x 秒,点Р与点Q 之间的距离为y 个单位长度,则下列图像中表示y 与x 的函数关系的是( )A .B .C.D.7.如图,在四边形ABCD中,AD∥BC,∠B=60°,∠D=90°,AB=4,AD=2,点P从点B出发,沿B→A→D→C的路线运动到点C,过点P作PQ⊥BC,垂足为Q.若点P运动的路程为x,△BPQ的面积为y,则表示y与x之间的函数关系图象大致是()A.B.C.D.8.科学家就蟋蟀鸣叫的次数与室外温度的数量关系做了如下记录:蟋蟀每分钟鸣叫的次数温度/°F1447615278160801688217684)A.178 B.184 C.192 D.2009.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是()A .①②③B .①②④C .③④D .①③④ 10.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-11.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( )A .B .C .D .12.关于x 的一次二项式ax+b 的值随x 的变化而变化,分析下表列举的数据,若ax+b =11,则x 的值是( ) x ﹣1 0 1 1.5 ax+b﹣3﹣112A .3B .﹣5C .6D .不存在13.关于函数(3)y k x k =-+,给出下列结论: ①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-; ③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<. 其中正确结论的序号是( ) A .①②③B .①③④C .②③④D .①②③④14.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-15.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个二、填空题16.已知关于x ,y 的二元一次方程组1,mx y y nx -=⎧⎨=⎩的解是1,2x y =⎧⎨=⎩则直线1y mx =-与直线y nx =的交点坐标是______;17.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_. 18.函数1y x =-中自变量x 的取值范围是________.19.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.20.如图,在平面直角坐标系中,点()1,1P a -在直线22y x =+与直线24y x =+之间(不在两条直线上),则a 的取值范围是_________.21.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.22.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 23.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.24.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.25.已知一个一次函数的图象过点(1,2)-,且y 随x 的增大而减小,则这个一次函数的解析式为__________.(只要写出一个)26.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________.三、解答题27.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.28.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值.(2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.29.已知一次函数y kx b =+的图象经过点(1,2)和(1,6)-. (1)求这个一次函数的表达式.(2)若这个一次函数的图象与x 轴交于A ,与y 轴交于点B ,求ABOS的值.30.某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?x≥时,求y与x之间的函数关系式;(2)当20(3)种植时间为多少天时,总用水量达到3500米3.。
人教版数学八年级下册 第十九章 一次函数 习题练习(附答案)
人教版数学八年级下册第十九章一次函数习题练习(附答案)一、选择题1.函数y=kx+2经过点(1,3),则y=0时,x=()A.-2 B. 2 C. D. ±22.下列函数的解析式中是一次函数的是()A.y=1−x B.y=15x+1 C.y=x2+1 D.y=√x3.自由下落物体下落的高度h与下落的时间t之间的关系为h=12g t2(g=9.8 m/s2),在这个变化中,变量为()A.h,t B.h,g C.t,g D.t4.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x5.园林队在某公园进行绿化,中间休息了一段时间,绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A. 40平方米B. 50平方米 C. 65平方米D. 80平方米6.某地电话拨号入网有两种收费方式:A计时制:每分0.05元;B包月制:每月50元.此外,每一种上网方式都得加收通信费每分钟0.02元.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算?()A.计时制B.包月制 C.两种一样D.不确定7.已知函数y=kx-1,且y随x的增大而减小,则它的图象是()A.B.C.D.8.甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中,错误的是()A.s是变量B.t是变量 C.v是变量D.s是常量9.如图,扇形OAB上有一动点P,P从点A出发,沿⌒AB、线段BO、线段OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是 ()A.B.C.D.10.某人准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是()A.①②③④B.①③④C.①②④D.①②③二、填空题11.三角形的面积公式中S=12ah其中底边a保持不变,则常量是________,变量是________.12.下列函数中,是一次函数的是________.①y=8x2,②y=x+1,③y=8x ,④y=2x+1.13.y+2与x+1成正比例,且当x=1时,y=3,则当x=2时,y=______.14.已知关于x的函数y=(m+3)x|m|-3+2n-6是x的正比例函数,则mn=________.15.已知一次函数y=kx+b(k≠0)图象过点(0,2),y随x增大而减小,且与两坐标轴围成的三角形面积为2,则一次函数的解析式为________.16.如图所示,△ABC的底边BC上的高是6 cm,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.在这个变化过程中,常量是__________________.17.已知函数y=2x2a+2b是x的正比例函数,则a+b=________.18.先完成下列填空,再在平面直角坐标系中画出下面函数的图象(不必再列表):正比例函数y=2x过(0,________)和(1,________)19.已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤1,且y随3x的减小而减小,则k的值为________.三、解答题20.设函数y=(m-2)x2-|m|+m-1,当m为何值时,y是x的正比例函数?21.在平面直角坐标系中,直线AB经过A(2,3)、B(-3,-2)两点,求直线AB所对应的函数解析式.22.当k为何值时,函数y=(k2+2k)x k2+k-1是x的正比例函数?.求:23.已知函数y=x−32x+1(1)当x=1和x=-1时的函数值;(2)当x为何值时,函数y分别等于1,-1.24.一辆小汽车在高速公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用T表示时间,V表示速度,那么随着T的变化,V的变化趋势是什么?(3)当T每增加1秒,V的变化情况相同吗?在哪1秒钟,V的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.答案解析1.【答案】A【解析】先把点的坐标代入函数解析式求出k值,得到函数解析式,再求当y=0时的自变量x的值.根据题意1×k+2=3,解得k=1,故函数解析式为y=x+2,当y=0时,x+2=0,解得x=-2,故选A.2.【答案】B【解析】A.是反比例函数,故此选项错误;B.是一次函数,故此选项正确;C.是二次函数,故此选项错误;D.不是一次函数,故此选项错误;故选B.3.【答案】A【解析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h,t,故选A.4.【答案】B【解析】A.设路程是s,则根据题意知,s=xy,时间y和速度x是反比例函数关系.故本选项错误;B.根据题意,知10=2(x+y),即y=-x+5,符合一次函数的定义.故本选项正确;C.根据题意,知y=πx2,这是二次函数,故本选项错误;D.根据题意,知x2+y2=25,这是双曲线方程,故本选项错误,故选B.5.【答案】A【解析】根据图象可得,休息后园林队2小时绿化面积为130-50=80平方米,每小时绿化面积为80÷2=40(平方米).故选A.6.【答案】B【解析】根据题意,设上网时间为x 小时,计时制y =(0.05+0.02)·60x =4.2x ; 包月制y =50+0.02·60x =50+1.2x ; 当x =20时,计时制费用y =4.2×20=84(元); 包月制费用y =50+1.2×20=74(元), 所以一个月内上网的时间为20小时,采用包月制较为合算,故选B.7.【答案】B【解析】∵一次函数y =kx -1,且y 随着x 的增大而减小,∴k <0,又∵b =-1<0,∴此一次函数图形过第二、三、四象限,故选B.8.【答案】A【解析】甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足vt =s ,在这个变化过程中常量是距离s ,变量是时间t 和速度v ,故选A.9.【答案】D【解析】因为①当点P 在弧AB 上运动时,y =OP 为定值,其长为扇形的半径的长;②当P 点由B 向O 点运动时,y =OP 的长逐渐减小为0;③当点P 由点O 开始向点A 运动时,y =OP 的长逐渐增大为扇形的半径的长,所以选项D 符合题意.10.【答案】C【解析】①yB =0.95x +50(1-95%)=0.95x +2.5,正确;②根据题意yA =a +(x -a )×90%=0.9x +0.1a =0.9x +10,所以a =100;③当累计购物大于50时上没封顶,选择乙商场一定优惠显然不对;④当yA <yB 时,即0.9x +10<0.95x +2.5,解得x >150.所以当累计购物超过150元时,选择甲商场一定优惠些,故选C.11.【答案】12,a ;S ,h【解析】根据变量是指在一个变化过程中数值发生改变的量,常量是指在程序的运行过程中数值保持不变的量,可得答案.S =12ah ,其中底边a 保持不变,则常量是12,a ,变量是h 、S ,故答案为12,a ;S ,h .12.【答案】②【解析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数.只有②符合一次函数的定义,所以答案为②.13.【答案】112【解析】根据题意设y +2=k (x +1)(k ≠0),将x =1,y =3代入得:5=2k ,即k =52,∴y +2=52(x +1), 将x =2代入得:y +2=52×3,即y =112. 故答案为112.14.【答案】±12 【解析】依据正比例函数的定义得到2n -6=0,|m |-3=1,然后可求得m 、n 的值,最后依据有理数的乘法法则进行求解即可.∵关于x 的函数y =(m +3)x |m|-3+2n -6是正比例函数,∴{m +3≠0|m|−3=12n −6=0,解得n =3,m =±4.∴mn =±12.故答案为±12. 15.【答案】y =-x +2【解析】∵一次函数y =kx +b (k ≠0)图象过点(0,2),y 随x 增大而减小,且与两坐标轴围成的三角形面积为2,∴12OB ×2=2,∴B (2,0)∵y =kx +b 的图象过点(0,2),(2,0),∴{2k +b =0,b =2,解得{k =−1,b =2,, ∴此一次函数的解析式为y =-x +2.16.【答案】6 cm【解析】直接利用常量与变量的定义分别得出答案.在这个变化过程中,常量是:6 cm.故答案为 6 cm.17.【答案】12【解析】根据正比例函数定义可得2a =1,2b =0,再解可得a 、b 的值,然后可得a +b 的值. 由题意得:2a =1,2b =0,解得a =12,b =0,a +b =12,故答案为12.18.【答案】0 2【解析】当x =0时,y =2x =0,∴正比例函数y =2x 过(0,0);当x =1时,y =2x =1,∴正比例函数y =2x 过(1,2).故正比例函数y =2x 过(0,0)和(1,2).图象为19.【答案】-19【解析】易知k <0时,y 随x 的增大而减小,∴当x =-3时,y =13,代入正比例函数y =kx 得:13=-3k解得k =-19.20.【答案】解 ∵函数y =(m -2)x 2-|m|+m -1是x 的正比例函数,∴{m −2≠02−|m|=1m −1=0,解得m =1.【解析】根据正比例函数的定义列出关于m 的不等式组,求出m 的取值范围即可. 21.【答案】解 设直线AB 解析式为y =kx +b ,把点A (2,3)和点B (-3,-2)代入得{2k +b =3①,−3k +b =−2②, ①-②得5k =5,即k =1,把k =1代入①得b =1,则直线AB 所对应的解析式为y =x +1.【解析】设直线AB 解析式为y =kx +b ,把A 与B 坐标代入求出k 与b 的值,即可确定出直线AB 所对应的函数解析式.22.【答案】解 由题意得:k 2+k -1=1且k 2+2k ≠0,解得k =1.【解析】根据正比例函数的定义可得k 2+k -1=1且k 2+2k ≠0,再解即可.23.【答案】解 (1)x =1时,y =1−32×1+1=-23,x =-1时,y =−1−32×(−1)+1=4;(2)y =1时,x−32x+1=1,解得x =-4,y =-1时,x−32x+1=-1,解得x =23.【解析】(1)把自变量x 的值代入函数关系式进行计算即可得解;(2)把函数值代入函数关系式解方程求解即可得到自变量x 的值.24.【答案】解 (1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用T 表示时间,V 表示速度,那么随着T 的变化,V 的变化趋势是V 随着T 的增大而增大;(3)当T 每增加1秒,V 的变化情况不相同,在第9秒时,V 的增加最大;(4)120×1003600=1003≈33.3米/秒,由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.【解析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出V 的变化趋势;(3)根据表中的数据可得出V 的变化情况以及在哪1秒钟,V 的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
人教版八年级数学下册第十九章 一次函数练习(含答案)
第十九章 一次函数一、单选题1.函数21y x =+中自变量x 的取值范围是( ) A .x ≠﹣1B .x >﹣1C .x ≠1D .x ≠0 2.如图,李老师骑自行车上班,最初以某一速度匀速行进,路途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )A .B .C .D .3.经过以下一组点可以画出函数2y x =图象的是( )A .(0,0)和(2,1)B .(1,2)和(1,2)--C .(1,2)和(2,1)D .(1,2)-和(1,2) 4.下列函数的图象不经过...第一象限,且y 随x 的增大而减小的是( ) A .y x =- B .1y x =+ C .21y x =-+ D .1y x =- 5.下列命题的逆命题...为假命题的是 ( ) A .有两角互余的三角形是直角三角形B .如果0k >,那么直线y kx =经过一、三象限C .如果0a =,那么点(,)A a b 在坐标轴上D .三边分别相等的两个三角形全等 6.把直线y =-x +2向上平移a 个单位后,与直线y =2x +3的交点在第二象限,则a 的取值范围是( )A .a >1B .72-<a <0C .72-<a <1D .a <17.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x << 8.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定 9.甲、乙两人沿相同的路线由A 到B 匀速行进,A 、B 两地间的路程为16km ,他们行进的路程S (km )与甲出发后的时间t (h )之间的函数图象如图所示,则下列判断错误的是()A .乙比甲晚出发1hB .甲比乙晚到B 地2 hC .乙的速度是8km/hD .甲的速度是4km/h10.如图,在△ABC 中,点O 是∠ABC 和∠ACB 两个内角平分线的交点,过点O 作EF ∥BC 分别交AB ,AC 于点E ,F ,已知△ABC 的周长为8,BC =x ,△AEF 的周长为y ,则表示y 与x 的函数图象大致是( )A .B .C .D .二、填空题11.变量y 与x 之间的函数关系式是2112y x =-,则当自变量2x =-时,函数y =_____________.12.已知一次函数-3y x m =+的图形经过了A (x 1,1),B (x 2,-2),C (x 3,3),则x 1,x 2,x 3的大小关系为________.13.如图,直线l :y=1x +分别交x 轴、y 轴于点A 和点A 1,过点A 1作A 1B 1⊥l ,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴,交直线l 于点A 2;过点A 2作A 2B 2⊥l ,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线l 于点A 3;依此规律...若图中阴影△A 1OB 1的面积为S 1,阴影△A 2B 1B 2的面积S 2,阴影△A 3B 2B 3的面积S 3...,则S n =__________.14.如图,在平面直角坐标系xOy 中,(1,1)A ,(2,2)B ,直线32y x b =-+与线段AB 有公共点,则b 的取值范围是________.三、解答题15.已知动点P 以每秒2 cm 的速度沿图(1)的边框按从B ⇒C ⇒D ⇒E ⇒F ⇒A 的路径移动,相应的△ABP 的面积S 与时间t 之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:(1)图(1)中的BC 长是多少?(2)图(2)中的a 是多少?(3)图(1)中的图形面积是多少?(4)图(2)中的b 是多少?16.如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC V 的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC V 的面积相等,请直接写出点P 的坐标.17.已知一次函数1(1)21y a x a =--+,其中1a ≠.(1)若点11,2⎛⎫- ⎪⎝⎭在y 1的图象上.求a 的值: (2)当23x -剟时.若函数有最大值2.求y 1的函数表达式; (3)对于一次函数2(1)(1)2y m x =+-+,其中1m ≠-,若对- -切实数x ,12y y < 都成立,求a ,m 需满足的数量关系及 a 的取值范围.18.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶.设慢车行驶的时间x(h),两车之的距离为y(km),图中的折线表示y与x之间的函数关系.(1)求慢车和快车的速度;(2)求线段BC所表示的y与x的函数关系式,并写出自变量x的取值范围;(3)第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地.请直接写出第二列快车出发后经过多少小时与慢车相遇,相遇时他们距甲地的距离.19.为了加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机,经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元(2)该市明年计划采购A型、B型一体机1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?答案1.A2.C3.A4.A5.C6.C7.D8.B9.C10.A11.112.312x x x <<13116()9n - 14.552b ≤≤ 15.(1)8cm(2)24cm 2(3)60cm 2(4) 17s16.(1)(10)D ∴,(2)362y x =-(3)193322ADC S ∴=⨯⨯-=V (4)P (6,3) 17.(1) 12a =;(2) 37y x =-或3142y x =-+;(3)2a m =+且2a >-且1a ≠.18.(1)150km h ,75km h;(2)225900y x =-(46x ≤≤ );(3)经过2小时与慢车相遇,相遇时他们距甲地的距离为300km19.(1)今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元;(2)该市明年至少需投入1800万元才能完成采购计划。
人教版数学八年级下册:第十九章 一次函数 专题练习(附答案)
第十九章一次函数专题练习小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A B C D 4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A B C D 类型3动点问题中判断函数图象5.如图,在矩形ABCD 中,AB =3,BC =4,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,△ADP 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A B C D 6.如图,点P 是菱形ABCD 边上的动点,它从点A 出发沿A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A B C D类型4 从函数图象中获取信息7.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是( )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为 .小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( )A B C D5.如图,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A(1,-2),则k = ,b = .6.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为 .7.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 .8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y 随x 的增大而增大. 请你根据他们的叙述构造满足上述性质的一个函数: .9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为.11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.12.已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)y的值随x值的增大而;(3)求图象与x轴的交点A,与y轴的交点B的坐标;(4)在(3)的条件下,求出△AOB的面积.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b ――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ; ④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1 k 2,且b 1 b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为 ; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为 ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是 .2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为 ; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k = .思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.小专题(四)一次函数与坐标轴围成的三角形【教材母题】点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象;(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.小专题(五)一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg时需付行李费2元,行李质量为50 kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数关系式;(2)求旅客最多可免费携带行李的质量.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?参考答案:小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( B )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( C )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是(B)A B CD4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( C )A B CD类型3动点问题中判断函数图象5.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( D )A B CD6.如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( A )A B C D类型4从函数图象中获取信息7.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( D )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为7.小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( D ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( C )A .第一象限B .第二象限C .第三象限D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( C )A .第一象限B .第二象限C .第三象限D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( A )A B C D5.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,-2),则k=2,b=-4.6.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.7.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x 的增大而减小,则k所有可能取得的整数值为-1.8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y随x的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数:y=2x-1(答案不唯一).9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是m>n.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为(2n-1,2n-1).11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.解:(1)∵正比例函数y =kx 经过点(5,-10), ∴-10=5k ,解得k =-2. ∴这个函数的解析式为y =-2x.(2)将x =4代入y =-2x ,得y =-8≠-2, ∴点A(4,-2)不在这个函数图象上. (3)∵k =-2<0, ∴y 随x 的增大而减小. ∵x 1>x 2,∴y 1<y 2.12.已知一次函数y =2x +4.(1)在如图所示的平面直角坐标系中,画出函数的图象; (2)y 的值随x 值的增大而增大;(3)求图象与x 轴的交点A ,与y 轴的交点B 的坐标; (4)在(3)的条件下,求出△AOB 的面积.解:(1)函数图象如图所示. (3)A(-2,0),B(0,4). (4)由(3)可知,OA =2,OB =4, ∴S △AOB =12OA·OB=12×2×4=4.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ;④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1=k 2,且b 1≠b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为y =2x +2; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为y =-x ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是(0,4).2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为y =2x -9; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k =-34.思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.解:(1)直线y =-2x +4与x 轴的交点坐标为(2,0),与y 轴的交点坐标为(0,4). 设关于x 轴对称的直线解析式为y =mx +n ,则该直线经过点(2,0),(0,-4), ∴直线解析式为y =2x -4.设关于y 轴对称的直线解析式为y =sx +t ,则该直线经过点(-2,0),(0,4), ∴直线解析式为y =2x +4.(2)直线y =kx +b 关于x 轴对称的直线解析式为y =-kx -b ,关于y 轴对称的直线解析式为y =-kx +b.小专题(四) 一次函数与坐标轴围成的三角形【教材母题】 点P(x ,y)在第一象限,且x +y =8,点A 的坐标为(6,0).设△OPA 的面积为S.(1)用含x 的式子表示S ,写出x 的取值范围,画出函数S 的图象; (2)当点P 的横坐标为5时,△OPA 的面积为多少? (3)△OPA 的面积能大于24吗?为什么?解:(1)∵点A 和点P 的坐标分别是(6,0),(x ,y), ∴S =12×6×y =3y.∵x +y =8,∴y =8-x. ∴S =3(8-x)=24-3x. ∴S =-3x +24. ∵点P 在第一象限,∴x >0,y >0,即x >0,8-x >0.∴0<x <8. 图象如图所示.(2)当x =5时,S =-3×5+24=9. (3)不能.理由:令S >24,则-3x +24>24.解得x <0. ∵由(1),得0<x <8, ∴△OPA 的面积不能大于24.在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l 1在平面直角坐标系中,直线l 1与y 轴交于点A ,点B(-3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)已知直线l 2:y =x +b 经过点B ,与y 轴交于点E ,求△ABE 的面积.解:(1)由题意,得点C 的坐标为(-2,1). 设直线l 1的解析式为y =kx +c , ∵点B(-3,3),C(-2,1)在直线l 1上,∴⎩⎪⎨⎪⎧-3k +c =3,-2k +c =1.解得⎩⎪⎨⎪⎧k =-2,c =-3. ∴直线l 1的解析式为y =-2x -3.(2)把点B 的坐标代入y =x +b ,得3=-3+b , 解得b =6.∴y =x +6.∴点E 的坐标为(0,6). ∵直线y =-2x -3与y 轴交于点A , ∴A 的坐标为(0,-3).∴AE =6+3=9. ∵B(-3,3),∴S △ABE =12×9×|-3|=13.5.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.解:(1)当x =0时,y =-13x +1=1.∴点B 的坐标为(0,1). 当y =0时,-13x +1=0,解得x =3.∴点A 的坐标为(3,0). 过点C 作CE ⊥x 轴,垂足为E ,∵△ABC 为等腰直角三角形,∠BAC =90°, ∴∠BAO +∠CAE =90°,AB =CA. 又∵∠BAO +∠ABO =90°, ∴∠ABO =∠CAE.在△ABO 和△CAE 中,⎩⎨⎧∠AOB =∠CEA ,∠ABO =∠CAE ,AB =CA ,∴△ABO ≌△CAE(AAS). ∴AE =BO =1,CE =AO =3. ∴OE =AO +AE =4. ∴点C 的坐标为(4,3).(2)过点P 作PF ⊥x 轴,垂足为F , 设直线BC 的解析式为y =kx +b(k ≠0). 将B(0,1),C(4,3)代入y =kx +b ,得 ⎩⎨⎧b =1,4k +b =3,解得⎩⎪⎨⎪⎧k =12,b =1. ∴直线BC 的解析式为y =12x +1.∴S =12OA·PF =12×3×(12x +1)=34x +32(0<x <4).(3)不能.理由如下: 当S =92时,34x +32=92,解得x =4. ∵0<x <4,∴△OPA 的面积不能等于92.小专题(五) 一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg 时需付行李费2元,行李质量为50 kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数关系式;(2)求旅客最多可免费携带行李的质量.解:(1)设y 与x 的函数关系式为y =kx +b.将(20,2),(50,8)代入y =kx +b ,得⎩⎨⎧20k +b =2,50k +b =8,解得⎩⎪⎨⎪⎧k =15,b =-2.∴当行李的质量x 超过规定时,y 与x 之间的函数关系式为y =15x -2. (2)当y =0时,15x -2=0, 解得x =10.答:旅客最多可免费携带行李10 kg.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.解:(1)设销售甲种特产x 吨,则销售乙种特产(100-x)吨,根据题意,得10x +(100-x)×1=235,解得x =15.∴100-x =85.答:这个月该公司销售甲、乙两种特产分别为15吨、85吨.(2)设利润为w 元,销售甲种特产a 吨,根据题意,得w =(10.5-10)a +(1.2-1)×(100-a)=0.3a +20.∵0≤a ≤20,∴当a =20时,w 取得最大值,w 最大=26.答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意,得⎩⎨⎧x +y =100,4 000x +1 000y =160 000,解得⎩⎪⎨⎪⎧x =20,y =80. 答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨.由m ≤3(100-m),解得m ≤75,利润w =1 000m +400(100-m)=600m +40 000,∵600>0,∴w 随m 的增大而增大.∴m =75时,w 有最大值为85 000元.4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元.根据题意,得⎩⎨⎧20x +15y +7 000=24 000,10x -5y +1 000=2 000,解得⎩⎪⎨⎪⎧x =400,y =600.答:甲种办公桌每张400元,乙种办公桌每张600元.(2)设甲种办公桌购买a 张,则乙种办公桌购买(40-a)张,购买的总费用为M 元, 则M =400a +600(40-a)+2×40×100=-200a +32 000,∵a ≤3(40-a),∴a ≤30.∵-200<0,∴M 随a 的增大而减小.∴当a =30时,M 取得最小值,最小值为26 000元.答:购买甲、乙两种办公桌分别为30张、10张时,费用最少,为26 000元.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?解:(1)设每一个篮球的进价是x 元,则每一个排球的进价是90%x 元,依题意,得 3 600x +10=3 60090%x, 解得x =40.经检验,x =40是原方程的解.90%x =90%×40=36.答:每一个篮球的进价是40元,每一个排球的进价是36元.(2)设文体商店计划购进篮球m 个,总利润y 元,则y =(100-40)m +(90-36)(100-m)=6m +5 400.依题意,得⎩⎪⎨⎪⎧0<m <100,100-m ≥3m. 解得0<m ≤25且m 为整数.∵k =6>0,∴y 随m 的增大而增大.∴m =25时,y 最大,这时y =6×25+5 400=5 550.100-25=75(个).答:该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5 550元.6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?解:(1)y 甲=0.8x.y 乙=⎩⎪⎨⎪⎧x (0<x<2 000),0.7x +600(x ≥2 000). (2)当0<x<2 000时,0.8x<x ,到甲商店购买更省钱;当x ≥2 000时,若到甲商店购买更省钱,则0.8x<0.7x +600,解得x<6 000;若到乙商店购买更省钱,则0.8x>0.7x +600,解得x>6 000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6 000.故当购买金额按原价小于6 000元时,到甲商店购买更省钱;当购买金额按原价大于6 000元时,到乙商店购买更省钱;当购买金额按原价等于6 000元时,到甲、乙两商店购买一样.7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A 与终点B 之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y 与x 的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?解:(1)由图可得,起点A 与终点B 之间相距3 000米.(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点.(3)设甲龙舟队的y 与x 的函数关系式为y =kx.把(25,3 000)代入,可得3 000=25k ,解得k =120.∴甲龙舟队的y 与x 的函数关系式为y =120x(0≤x ≤25).设乙龙舟队的y 与x 函数关系式为y =ax +b.把(5,0),(20,3 000)代入,可得⎩⎨⎧0=5a +b ,3 000=20a +b ,解得⎩⎪⎨⎪⎧a =200,b =-1 000. ∴乙龙舟队的y 与x 的函数关系式为y =200x -1 000(5≤x ≤20).(4)令120x =200x -1 000,可得x =12.5.即当x =12.5时,两龙舟队相遇.当x <5时,令120x =200,则x =53(符合题意); 当5≤x <12.5时,令120x -(200x -1 000)=200,则x =10(符合题意);当12.5<x ≤20时,令200x -1 000-120x =200,则x =15(符合题意);当20<x ≤25时,令3 000-120x =200,则x =703(符合题意). 综上所述,甲龙舟队出发53分钟或10分钟或15分钟或703分钟时,两支龙舟队相距200米.。
人教版八年级下册第19章《一次函数》综合练习题解析版
人教版八年级下册第19章《一次函数》综合练习题一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+25004.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7 5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.16.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+17.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是.12.当m=时,函数y=(m﹣1)x+m是常值函数.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为.14.已知函数,则自变量x的取值范围.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.16.若函数y=(m﹣2)是正比例函数,则m的值是.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb0(填“>”、“=”或“<”).18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y =0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为cm;当AC=2AD时,AB的长度约为cm.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x时,y>2.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.参考答案与试题解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y【分析】根据函数的定义进行解答即可.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、一天的气温和时间的关系是函数关系,故本选项不合题意;B、y2=x中的y与x的关系不是函数关系,故本选项符合题意;C、在银行中利息与时间是函数关系,故本选项不合题意;D、正方形的周长与面积是函数关系,故本选项不合题意;故选:B.3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+2500【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.【解答】解:由题意可得,y=0.5x+(5000﹣x)×1=﹣0.5x+5000,故选:C.4.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得x﹣3≥0且7﹣x≥0,解得x≥3且x≤7,所以3≤x≤7.故选:C.5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.1【分析】把x的值代入函数关系式计算,得到答案.【解答】解:当x=3时,函数y=x﹣2=3﹣2=1,故选:D.6.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+1【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.根据一次函数的定义条件进行逐一分析即可.【解答】解:A、y=不是一次函数,是反比例函数,不合题意;B、y=3x+1是一次函数,符合题意;C、y=不是一次函数,不合题意;D、y=3x2+1不是一次函数,是二次函数,不合题意.故选:B.7.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化【分析】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A、S=x2是二次函数,故A错误;B、C=4x是正比例函数,故B正确;C、V=10﹣0.5t,是一次函数,故C错误;D、a=,是反比例函数,故D错误.故选:B.8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.【分析】根据一次函数图象的性质加以分析即可,一次项系数决定直线的走向,常数项决定直线与y轴的交点位置.【解答】解:根据一次函数的图象与性质分析如下:A.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a<0,b<0.A错误;B.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a>0,b<0.B正确;C.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a<0,b<0.C错误;D.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a>0,b<0.D错误;故选:B.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.【分析】根据一次函数的图象与系数的关系,由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,kb<0;正比例函数y=kbx的图象可知kb<0,故此选项正确;B、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与正比例函数y=kbx的图象可知kb<0,矛盾,故此选项错误;C、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;D、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;故选:A.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限【分析】利用一次函数的性质逐一判断后即可确定正确的选项.【解答】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∵y的值随着x增大而减小,∴当x>0时,y<2,∴选项B符合题意;C、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项C不符合题意;D、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项D不符合题意;当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:B.二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是5.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【解答】解:单价5元固定,是常量.故答案为:5.12.当m=1时,函数y=(m﹣1)x+m是常值函数.【分析】直接利用常值函数的定义分析得出答案.【解答】解:当m﹣1=0时,函数y=(m﹣1)x+m是常值函数,故m=1时,y=1.故答案为:1.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为y=0.25x+6.【分析】根据题意可得等量关系:话费=月租费16元+超出40分钟部分话费,根据等量关系列出函数解析式即可.【解答】解:由题意得:y=16+(x﹣40)×0.25=16+0.25x﹣10=0.25x+6,故答案为:y=0.25x+6.14.已知函数,则自变量x的取值范围x>.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣3>0,解得x>.故答案为:x>.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.16.若函数y=(m﹣2)是正比例函数,则m的值是﹣2.【分析】直接利用正比例函数的定义直接得出答案.【解答】解:∵函数y=(m﹣2)是正比例函数,∴m2﹣3=1,m﹣2≠0,解得:m=±2,m≠2,故m=﹣2.故答案为:﹣2.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb<0(填“>”、“=”或“<”).【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴kb<0.故答案为:<18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=60千米代入剩余油量公式,计算即可;(3)计算出35﹣3=32升油能行驶的距离,与200千米比较大小即可得.【解答】解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米),∴行驶路程x(千米)与剩余油量Q(升)的关系式为Q=35﹣0.125x;(2)当x=60时,Q=35﹣0.125×60=27.5(升),答:当x=60(千米)时,剩余油量Q的值为27.5升;(3)他们能在汽车报警前回到家,(35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.【分析】(1)解方程得到y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时当a<0时,根据题意求出结论即可;(2)解方程得到y=(x2﹣4)a+2,根据一次函数的性质解答即可..【解答】解:(1)∵y﹣ax2+2a﹣1=0,∴y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时,﹣3a+2≤y≤5a+2,∴y的最大值是5a+2,对应的x的取值﹣1,最小值是﹣3a+2,对应的x的取值是3,当a<0时,5a+2≤y≤﹣3a+2,∴y的最大值是﹣3a+2,对应的x的取值3,最小值是5a+2,对应的x的取值是﹣1;(2)∵y﹣ax2+2a﹣1=0,∴y=(x2﹣4)a+2,当x2﹣4>0时,y随a的增大而增大,即x<﹣2或x>2时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:当0<x<1时,y随x的增大而减小.【分析】(1)根据表中x,y的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是 5.5;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为 5.7cm;当AC=2AD时,AB的长度约为 4.2cm.【分析】(1)由位置可知,AB=0时,即AB两点重合,此时AC=BC=8,AD=BD=2.5,再根据当y1=AC时,即A与重合即可求出表格中m=CD.(2)根据表中数据描点连线即可.(3)根据函数图象分别找出y1=y2和y1=2y2时对应的x即可.【解答】解:(1)∵当x=0时,y1=8,y2=2.5,∴BC=8cm,BD=2.5,∴当x=8.0时,即A点与C点重合,∴y2=AB=CD=BC﹣BD=8﹣2.5=5.5(cm),故答案为:5.5(2)(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为5.7cm;当AC=2AD时,AB的长度约为4.2cm.故答案为:5.7;4.2.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数【分析】(1)直接利用一次函数的定义得出答案;(2)直接利用正比例函数的定义得出答案.【解答】解:(1)∵函数y=(m﹣1)x+n,∴当m﹣1≠0时,该函数是一次函数,即m≠1;(2)当m≠1,且n=0时,该函数是正比例函数.24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x<1时,y>2.【分析】(1)分别求出直线与x轴、y轴的交点,画出函数图象即可;(2)根据函数图象可直接得出结论.【解答】解:(1)∵当x=0时y=4,∴函数y=﹣2x+4的图象与y轴的交点坐标为(0,4);∵当y=0时,﹣2x+4=0,解得:x=2,∴函数y=﹣2x+4的图象与x轴的交点坐标(2,0).函数图象如图所示.(2)由图象可得,当x<1时,y>2.故答案为:<1.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.【分析】(1)根据一次函数的图象是直线,画出图象即可;(2)根据图象过定点,代入得出k的值即可.【解答】(1)解:如图:共同特点是:此组直线均经过(2,4),∵解方程组得,,∴直线y=2x,y=﹣x+6过(2,4)点.对于直线y=x+2,当x=2时,y=4;对于直线y=4x﹣4,当x=2时,y=4;∴验证发现此组直线均经过(2,4);(2)把(2,4)代入y=kx+5得4=2k+5,得k=﹣.。
人教版初中数学八年级下册《19.1 函数》同步练习卷(4)
人教新版八年级下学期《19.1 函数》同步练习卷一.选择题(共10小题)1.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是()A.a B.p C.S D.p,a2.下列各曲线表示的y与x之间的关系中,y不是x的函数的是()A.B.C.D.3.下列式子:①y=3x﹣5;②y=;③y=;④y2=x;⑤y=|x|,其中y是x的函数的个数是()A.2个B.3个C.4个D.5个4.根据如图所示的程序计算:若输入自变量x的值为,则输出的结果是()A.B.C.D.5.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米6.某市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A地方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路240米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1680米.其中正确的说法有()A.4个B.3个C.2个D.1个7.如图,是某蓄水池的横断面示意图,蓄水池分为深水区和浅水区,如果向这个蓄水池以固定的速度注水,下面能表示水的深度h与时间t的关系的图象大致是()A.B.C.D.8.如图(1),在矩形ABCD中,动点M从点B出发,沿B→C→D→A方向运动至点A处停止,设点M运动的路程为x,△ABM的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是()A.55B.30C.16D.69.一个矩形的周长为100,则其一边长y与相邻的另一边长x的函数解析式为()A.y=50﹣x(0<x<50)B.y=50﹣x(0<x≤50)C.y=100﹣2x(0<x<50)D.y=100﹣2x(0<x≤50)10.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.当交电费20.5元时,用电量为37千瓦时D.若用电量为8千瓦时,则应交电费4.4元二.填空题(共1小题)11.函数中自变量x的取值范围是.人教新版八年级下学期《19.1 函数》2019年同步练习卷参考答案与试题解析一.选择题(共10小题)1.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是()A.a B.p C.S D.p,a【分析】根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.【解答】解:根据题意长方形的周长p=60m,所以常量是p,故选:B.【点评】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.2.下列各曲线表示的y与x之间的关系中,y不是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选:C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.3.下列式子:①y=3x﹣5;②y=;③y=;④y2=x;⑤y=|x|,其中y是x的函数的个数是()A.2个B.3个C.4个D.5个【分析】根据以下特征进行判断即可:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.【解答】解:①y=3x﹣5,y是x的函数;②y=,y是x的函数;③y=,y是x的函数;④y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;⑤y=|x|,y是x的函数.故选:C.【点评】本题主要考查的是函数的概念,掌握函数的定义是解题的关键.4.根据如图所示的程序计算:若输入自变量x的值为,则输出的结果是()A.B.C.D.【分析】根据x的值得出应该输入的公式,计算即可.【解答】解:∵1<x=≤2,∴y=﹣+2=,故选:C.【点评】本题考查了函数值,掌握x的取值范围是解题的关键.5.如图,OA和BA分别表示甲乙两名学生运动的一次函数的图象,图s和t分别表示路程和时间,根据图象判定快者比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米【分析】利用图象分别得出快、慢者行驶的路程和时间,进而求出速度差.【解答】解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),故快者比慢者的速度每秒快:8﹣6.5=1.5(m/s).故选:C.【点评】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.6.某市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A地方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路240米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1680米.其中正确的说法有()A.4个B.3个C.2个D.1个【分析】①运用乙工程队4天修的长度除以时间就可以求出乙工程队每天修的米数;②运用甲工程队4天修的长度除以时间就可以求出甲工程队每天修的米数;③根据图象得出甲比乙多工作的天数;④根据甲和乙的修路总米数得出A、B两地之间的公路总长即可.【解答】解:①乙工程队每天修公路=240米,正确;②甲工程队每天修公路=120米,正确;③甲比乙多工作10﹣4=6天,正确;④A、B两地之间的公路总长是960+120×10=2160米,错误;故选:B.【点评】本题考查了工程问题的数量关系,工作总量=工作效率×工作时间的运用,解答时理解函数图象的意义和抓住工程问题的基本数量关系是关键.7.如图,是某蓄水池的横断面示意图,蓄水池分为深水区和浅水区,如果向这个蓄水池以固定的速度注水,下面能表示水的深度h与时间t的关系的图象大致是()A.B.C.D.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变化为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选:C.【点评】本题考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.8.如图(1),在矩形ABCD中,动点M从点B出发,沿B→C→D→A方向运动至点A处停止,设点M运动的路程为x,△ABM的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是()A.55B.30C.16D.6【分析】根据图象找到点M在DC边上运动的自变量取值范围,则矩形边长和面积可知.【解答】解:由图象可知,点M的路程x取值范围为5≤x≤11时,△ABM的面积保持不变,此时点M在CD边上运动则CB=5,CD=11﹣5=6则矩形面积为5×6=30故选:B.【点评】本题是动点问题的图象探究题,考查了动点到达临界点前后的图象变化规律,解答时注意数形结合.9.一个矩形的周长为100,则其一边长y与相邻的另一边长x的函数解析式为()A.y=50﹣x(0<x<50)B.y=50﹣x(0<x≤50)C.y=100﹣2x(0<x<50)D.y=100﹣2x(0<x≤50)【分析】先设出矩形的另一条边长,再根据矩形的周长公式即可求出x关于y的函数解析式;再根据矩形的边长一定为正数即可求出x的取值范围.【解答】解:设矩形的另一条边长为y,则y=,即y=50﹣x,∵y>0,∴50﹣x>0,x<50,∵x>0,∴0<x<50.∴y关于x的函数解析式是y=50﹣x;x的取值范围是0<x<50.故选:A.【点评】本题考查的是矩形的周长公式,即周长=2(长+宽),需要注意的是矩形的边长均为正数.10.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.当交电费20.5元时,用电量为37千瓦时D.若用电量为8千瓦时,则应交电费4.4元【分析】根据图表,先写出函数关系,再逐个判断各个选择支.【解答】解:由图表可知:应交电费与用电量间的关系为y=0.55x,对于这个函数关系,x、y都是变量,x是自变量,y是x的函数.所以选项A正确;根据图表可知,用电量每增加1千瓦时,电费增加0.55元,选项B正确;当y=20.5元时,x=≈37.3(千瓦时),故选项C错误;当x=8千瓦时,y=0.55×8=4.4(元),故选项D正确.故选:C.【点评】本题考查了函数的相关知识.题目难度不大,根据图表列出函数关系是解决本题的关键.二.填空题(共1小题)11.函数中自变量x的取值范围是x>1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故答案为:x>1.【点评】本题考查了函数自变量的取值范围.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.。
八年级数学下册《函数的图象》练习题及答案(人教版)
八年级数学下册《函数的图象》练习题及答案(人教版)班级姓名考号一、单选题1.小明步行到学校参加联欢会,到学校时发现演出道具忘在家中,于是他马上按照原来的速度步行回家取道具,随后骑自行车加快速度返回学校,下面是小明离开家的距离S(米)和时间t(分)的函数图象,那么最符合小明实际情况的大致图象是()A.B.C.D.2.小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离h与散步时间t之间的函数关系可能是()A.B.C.D.3.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是【】A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回4.下列是y关于x的函数是().A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A .8.6分钟B .9分钟C .12分钟D .16分钟7.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程y (km )与行进时间t (h )之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;①乙用了4.5个小时到达目的地:①乙比甲迟出发0.5小时;①甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个8.如图1,点P 从菱形ABCD 的顶点A 出发,沿着折线ABCDA 匀速运动,图2是线段AP 的长度y 与时间x 之间的函数关系的图像(不妨设当点P 与点A 重合时,y =0),则菱形ABCD 的面积为( )A .12B .6C .5D .2.59.铅笔每支售价0.20元,在平面直角坐标系内表示小明买1支到10支铅笔需要花费的钱数的图像是( ) A .一条直线 B .一条射线 C .一条线段 D .10个不同的点10.如图,60MAN ∠=︒,点B 在射线AN 上,2AB =.点P 在射线AM 上运动(点P 不与点A 重合),连接BP ,以点B 为圆心,BP 为半径作弧交射线AN 于点Q ,连接PQ .若,AP x PQ y ==,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.13.如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止,右图为P运动的路与ABP的面积14.学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.15.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是____米/分钟.三、解答题16.写出下列各问题中的函数关系式,并指出自变量的取值范围.(1)如果直角三角形中一个锐角的度数为α,另一个锐角的度数β与α之间的关系;(2)一支蜡烛原长为20cm,每分钟燃烧0.5cm,点燃x(分钟)后,蜡烛的长度y(cm)与x(分钟)之间的关系;(3)有一边长为2cm的正方形,若其边长增加xcm,则增加的面积y(cm2)与x之间的关系.17.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.他本次上学所用的时间与路程的关系示意图如图所示.(1)小明在书店停留了______分钟;(2)本次上学途中,小明一共行驶的路程为______;(1)在上升或下降过程中,无人机的速度是米/分;20.小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离()m y 与小雪离开出发地的时间()min x 之间的函数图象如图所示,请根据图象解答下列问题:(1)小雪跑步的速度为多少米/分?(2)小松骑自行车的速度为米/分?(3)当小松到家时,小雪离图书馆的距离为多少米?参考答案1.C2.C3.D4.C5.C6.C7.C8.B9.D10.C(3)由图象可知:图象关于直线x =2对称;故答案为:图象关于直线x =2对称;(4)进一步探究函数图象发现:①函数图象与x 轴有2个交点,对应的方程2|x ﹣2|﹣1=0有2个实数根; ①若关于x 的方程2|x ﹣2|﹣1=a 有两个实数根,则a 的取值范围是a >﹣1 故答案为2,2;a >﹣1.20.(1)解:由函数图象可知小雪跑步5分钟的路程为450035001000m -= ①小雪跑步的速度为10005200m /min ÷=;(2)解:由(1)得小雪步行的速度为100m/min设小雪在第t 分钟改为步行①()200100354500t t +-=解得10t =①由函数图象可知,当第10分钟时,小雪改为步行,此时两人相距1000m ①小松骑车的速度为()()4500200101000105300m /min -⨯-÷-=; (3)解:由(2)得小松到家的时间为4500300520min ÷+= ①小雪离图书馆的距离为()45002001010020101500m -⨯-⨯-=.。
人教版八年级数学下册函数(配套练习附答案)
【解析】
【分析】
将n的值与s的值对应起来,找出规律,即可得出s与n的关系式.
【详解】解:n=1时,s=1+2= ×(1+1)×(1+2)=3;
n=2时,s=1+2+3= ×(2+1)×(2+2)=6;
n=3时,s=1+2+3+4= ×(3+1)×(3+2)=10;
…
∴n=n时,s= .
故答案为s= .
【点睛】本题主要考查学生去绝对值的能力,去掉绝对值,整个函数就清楚了.
二、填空题
9.已知等腰三角形的周长为24,底边y关于腰长x的函数解析式是_______.
【答案】y=24-2x(6<x<12)
【解析】
【分析】
根据周长=2x+y,可得出函数关系式,再根据三角形三边的关系确定自变量的取值范围即可.
【详解】解:由题意得:2x+y=24,
根据原有 面积加增长的面积,可得答案.
【详解】解:由题意,得
y=2x+2,
故选C.
【点睛】本题考查了函数关系式,利用原有的面积加增长的面积是解题关键.
5.长方形的周长为24cm,其中一边长为xcm(其中x>0),面积为ycm2,则y与x的关系式为( )
A. B. C. D.
【答案】D
【解析】
【分析】
C. 多边形内角和公式
D. 多边形外角和公式
5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是( )
A 3个B.4个C.5个D.6个
6.如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册函数习题一.选择题(共15小题)1.下列图象中,表示y是x的函数的个数有()A.1个…B.2个C.3个D.4个2.下列图象中,不能表示函数关系的是()】A .B .C.D.、3.下列关系中,y不是x函数的是()A.y=﹣B .y=C.y=x2|D.|y|=x4.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.}y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数5.如图中的每次个图是由若干盆花组成的四边形图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数是S,按此规律推断,S与n的函数关系式是()[A.S=n2B.S=4n C.S=4n﹣4{D.S=4n+46.当x=0时,函数y=2x2+1的值是()A.1B.0!C.3D.﹣1 7.函数y=的自变量x的取值范围是()A.x≥﹣2`B.x≥﹣2且x≠﹣1C.x≠﹣1D.x>﹣1 8.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()|A.B.~C.D.9.小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是()—A.B.C .D.>A.}B .C.D.11.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B﹣C﹣D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为()]D .12.下列函数中,是正比例函数的是()A.y=﹣8x B .y=5x2+6D.y=﹣﹣1y=$C.13.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()b=1C.a≠2且b=1D.a,b可取任意实数A.a≠2^B.14.当k>0时,正比例函数y=kx的图象大致是()·A.B.C.D.*15.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.{当x1<x2时,y1>y2D.当x1<x2时,y1<y2二.填空题(共12小题)16.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,_________随_________变化而变化,其中自变量是_________,因变量是_________.17.下列:①y=x2;②y=2x+1;③y2=2x(x≥0);④y=(x≥0),具有函数关系(自变量为x)的是_________.18.按图示的运算程序,输入一个实数x,便可输出一个相应的实数y,写出y与x之间的函数关系式:y=_________.|19.某人购进一批苹果到集贸市场零售,已知卖出苹果的数量x与售价y之间的关系如下表,写出x表示y的关系式.数量x(kg)1234售价y(元)【2+4+6+8+20.函数中,自变量x的取值范围是_________.21.函数y=中,自变量x的取值范围是_________.22.在函数中,自变量x的取值范围是_________.23.函数y=+中自变量x的取值范围是_________.。
24.函数,当x=3时,y=_________.25.若函数y=(2﹣m)x|m﹣1|是正比例函数,则常数m的值是_________.26.若函数是正比例函数,则常数m的值是_________.27.若函数y=(k﹣1)x|k|是正比例函数,则k=_________.三.解答题(共3小题)28.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离S(m)与时间t(s)的数据如下表:时间t(s)1}234…距离S(m)2818:32…(1)这一变化过程中的自变量,因变量各是什么(2)写出用t表示s的关系.(3)求第6秒时,小球滚动的距离为多少m(4)小球滚动200m用了多长时间29.为了迎接深圳第26届大运会,小明在某周末上午9时骑自行车离开家去绿道锻炼,15时回家,已知自行车离家的距离s(km)与时间t(h)之间的关系如图所示.根据图象回答下列问题:(1)小明骑自行车离家的最远距离是_________km;,(2)小明骑自行车行驶过程中,最快的车速是_________km/h,最慢的车速是_________km/h;(3)途中小明共休息了_________次,共休息了_________小时;(4)小明由离家最远的地方返回家时的平均速度是_________km/h.一.选择题(共15小题)、1.(2012•河池)下列图象中,表示y是x的函数的个数有()A.1个B.2个C.`3个D.4个解答:解:第一个图象,对每一个x的值,都有唯一确定的y值与之对应,是函数图象;第二个图象,对每一个x的值,都有唯一确定的y值与之对应,是函数图象;第三个图象,对给定的x的值,有两个y值与之对应,不是函数图象;/第四个图象,对给定的x的值,有两个y值与之对应,不是函数图象.综上所述,表示y是x的函数的有第一个、第二个,共2个.故选B.2.下列图象中,不能表示函数关系的是()A.—B.C.D.[解答:解:根据函数的概念:如果在一个变化过程中,有两个变量x、y,对于x的每一个值,y都有唯一确定的值与之对应,这时称y是x的函数.选项C,对于一个x有两个y与之对应,故不是函数图象,故选C.3.下列关系中,y不是x函数的是()A.y=﹣…B.y=C.y =x2D.|y|=x解答:]解:A、y=﹣,是一次函数,故此选项不合题意;B、y=,是反比函数,故此选项不合题意;C、y=x2,是二次函数,故此选项不合题意;D、|y|=x,x每取一个值,y有两个值与其对应,则y不是x函数,符合题意.故选:D.4.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.¥y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径}D.y:一个正数的平方根,x:这个正数解答:解:A、y=(x)2=x2,y是x的函数,故本选项错误;B、每一个学生对应一个身高,y是x的函数,故本选项错误;C、y=π(x)2=πx2,y是x的函数,故本选项错误;D、y=±,每一个x的值对应两个y值,y不是x的函数,故本选项正确."故选D.5.(2010•广元)如图中的每次个图是由若干盆花组成的四边形图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数是S,按此规律推断,S与n的函数关系式是()A.S=n2B.S=4n—C.S=4n﹣4D.S=4n+4解答:解:第1个图形中,每条边上有2盆花,共有4×2﹣4=4盆花,第2个图形中,每条边上3盆花,共有4×3﹣4=8盆花,¥…∴S=4n﹣4,故选C.6.(2003•湖州)当x=0时,函数y=2x2+1的值是()A.1B.,C .3D.﹣1解答:解:当x=0时,函数y=2×02+1=1.,故选A.7.(2006•黄石)函数y=的自变量x的取值范围是()A.x≥﹣2B.x≥﹣2且x≠﹣1C.。
x≠﹣1D.x>﹣1解答:解:由题意得:x+1≠0,解得x≠﹣1,故选C.*8.(2013•玉林)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()D .A.B ./C.解答:解:因为水面高度开始增加的慢,后来增加的快,所以容器下面粗,上面细.¥故选B.9.(2013•湘西州)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是()D.A .B .…C.解答:解:小芳的爷爷点的形成分为三段:①漫步到公园,此时y随x的增大缓慢增大;¥②打太极,y随x的增大,不变;③跑步回家,y随x的增大,快速减小,结合图象可得选项C中的图象符合.故选C.10.(2013•绥化)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A)运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是(B .C .D.·A .!解答:解:∵长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y随点P走过的路程s之间的函数关系图象可以分为4部分,∴P点在AB上,此时纵坐标越来越小,最小值是1,P点在BC上,此时纵坐标为定值1.当P点在CD上,此时纵坐标越来越大,最大值是2,P点在AD上,此时纵坐标为定值2.·故选D.11.(2012•营口)如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B﹣C﹣D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为()A.B.<C.D.解答:解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则(当0<x≤2,y=x,当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C.故选C.12.(2012•南充)下列函数中,是正比例函数的是()A.《y=﹣8xB.y=C.y=5x2+6D.y=﹣﹣1%解答:解:A、y=﹣8x是正比例函数,故本选项正确;B、y=,自变量x在分母上,不是正比例函数,故本选项错误;C、y=5x2+6,自变量x的指数是2,不是1,不是正比例函数,故本选项错误;D、y=﹣﹣1,是一次函数,不是正比例函数,故本选项错误.故选A.13.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()·A.a≠2B.b=1C.a≠2且b=1D.!a,b可取任意实数解答:解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.14.(2011•湘西州)当k>0时,正比例函数y=kx的图象大致是()(A.B.C.D.>解答:解:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.故选A.15.(2009•衢州)P1(x1,y1),P2(x2,y2)是正比例函数y=﹣x图象上的两点,则下列判断正确的是()》A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y2!解答:解:根据k<0,得y随x的增大而减小.故选C.二.填空题(共12小题)16.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.解答:解:“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是:时间,因变量是:温度.…故答案是:温度、时间、时间、温度.7.下列:①y=x2;②y=2x+1;③y2=2x(x≥0);④y=(x≥0),具有函数关系(自变量为x)的是①②.解答:解:∵对于x的每一个取值,y都有唯一确定的值,∴①y=x2;②y=2x+1当x取值时,y有唯一的值对应;故具有函数关系(自变量为x)的是①②.故答案为:①②.:18.按图示的运算程序,输入一个实数x,便可输出一个相应的实数y,写出y与x之间的函数关系式:y=y=5x+6.解答:解:由题意可知:y=(x+2)×5﹣4,即y=5x+6.19.某人购进一批苹果到集贸市场零售,已知卖出苹果的数量x与售价y之间的关系如下表,写出x表示y的关系式.!数量x(kg)1234售价y(元)2+4+)6+8+解答:解:∵(2+)÷1=;(4+)÷2=;(6+)÷3=;…~∴可知y=.20.(2013•营口)函数中,自变量x的取值范围是x≠5.解答:解:根据题意得,x﹣5≠0,解得x≠5.故答案为:x≠5.21.(2013•岳阳)函数y=中,自变量x的取值范围是x≥﹣2.解答:'解:根据题意得:x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.22.(2013•云南)在函数中,自变量x的取值范围是x≥﹣1且x≠0.解答:解:根据题意得:x+1≥0且x≠0解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0;23.(2004•哈尔滨)函数y=+中自变量x的取值范围是3<x≤5.解答:解:根据题意得:,解得:3<x≤5.24.(2011•宁德)函数,当x=3时,y=﹣3.解答:解:当x=3时,y==﹣3.故答案为:﹣3.…25.若函数y=(2﹣m)x|m﹣1|是正比例函数,则常数m的值是0.解答:解:由题意得:2﹣m≠0,|m﹣1|=1,解得:m=0,故答案为:0.26.若函数是正比例函数,则常数m的值是2.解答解:由正比例函数的定义可得:m2﹣3=1,且m+2≠0,解得:m=±2.m=2故答案为2.}27.若函数y=(k﹣1)x|k|是正比例函数,则k=﹣1.解答:解:∵根据正比例函数的定义,可得:k﹣1≠0,|k|=1,k=﹣1.故答案为:﹣1.三.解答题(共3小题)28.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离S(m)与时间t(s)的数据如下表:时间t(s)1234…距离S(m)281832…(1)这一变化过程中的自变量,因变量各是什么(2)写出用t表示s的关系.(3)求第6秒时,小球滚动的距离为多少m(4)小球滚动200m用了多长时间解答:解:(1)滚动的距离s是因变量,时间t是自变量;(2)由表格可得s=2t2;(3)当t=6时,s=2×62=72(m);(4)当s=200时,t=10.29.为了迎接深圳第26届大运会,小明在某周末上午9时骑自行车离开家去绿道锻炼,15时回家,已知自行车离家的距离s(km)与时间t(h)之间的关系如图所示.根据图象回答下列问题:(1)小明骑自行车离家的最远距离是35km;(2)小明骑自行车行驶过程中,最快的车速是20km/h,最慢的车速是10km/h;(3)途中小明共休息了2次,共休息了小时;(4)小明由离家最远的地方返回家时的平均速度是km/h.解答:解:(1)利用图象的纵坐标得出小明骑自行车离家的最远距离是35km;故答案为:35;(2)小明行驶中第一段行驶时间为;1小时,行驶距离为;15千米,故行驶速度为;15km/h,小明行驶中第二段行驶时间为;小时,行驶距离为;10千米,故行驶速度为;20km/h,小明行驶中第三段行驶时间为;1小时,行驶距离为;10千米,故行驶速度为;15km/h,故最快的车速是20km/h,最慢的车速是10km/h;故答案为:20;10;(3)根据图象得出有两段时间纵坐标标不变,得出途中小明共休息了2;利用横坐标得出休息时间为:小时;故答案为:;(4)∵返回时所走路程为35km,使用时间为2小时,∴返回时的平均速度h.故答案为:.30.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q立方米与时间t(时)之间的函数关系式.(2)写出自变量t的取值范围.(3)10小时后,池中还有多少水(4)几小时后,池中还有100立方米的水解答:解:(1)由已知条件知,每小时抽50立方米水则t小时后抽水50t立方米而水池中总共有800立方米的水那么经过t时后,剩余的水为800﹣50t故剩余水的体积Q立方米与时间t(时)之间的函数关系式为:Q=800﹣50t;(2)由于t为时间变量,所以t≥0又∵当t=16时将水池的水全部抽完了故自变量t的取值范围为:0≤t≤16;(3)根据(1)式,当t=10时,Q=300故10小时后,池中还剩300立方米水;(4)当Q=100时,根据(1)式解得t=14故14小时后,池中还有100立方米的水.。