洛必达法则巧解高考压轴题
(完整word版)导数结合洛必达法则巧解高考压轴题
6 0001lim()limlim11xxxxxeegxx, 即当0x时,()1gx 所以()1gx,即有1a. 综上所述,当1a,0x时,()0fx成立. (全国大纲理)设函数()1xfxe. (Ⅰ)证明:当1x时,()1xfxx; (Ⅱ)设当0x时,()1xfxax,求a的取值范围. 解:(Ⅰ)略 (Ⅱ)应用洛必达法则和导数 由题设0x,此时()0fx. ①当0a时,若1xa,则01xax,()1xfxax不成立; ②当0a时,当0x时,()1xfxax,即11xxeax; 若0x,则aR; 若0x,则11xxeax等价于111xexax,即1xxxxeeaxex. 记1()xxxxeegxxex,则2222221'()=(2)()()xxxxxxxxexeeegxexexexxex. 记2()2xxhxexe,则'()2xxhxexe,''()+20xxhxee. 因此,'()2xxhxexe在(0),上单调递增,且'(0)0h,所以'()0hx, 即()hx在(0),上单调递增,且(0)0h,所以()0hx. 因此2'()=()0()xxegxhxxex,所以()gx在(0),上单调递增. 由洛必达法则有 000011lim()limlimlim122xxxxxxxxxxxxxxxeexeexegxxexexeexe,即当0x时, 1()2gx,即有1()2gx,所以12a.综上所述,a的取值范围是1(,]2. (全国2理)设函数sin()2cosxfxx. (Ⅰ)求()fx的单调区间; (Ⅱ)如果对任何0x≥,都有()fxax≤,求a的取值范围. 解:(Ⅰ)22(2cos)cossin(sin)2cos1()(2cos)(2cos)xxxxxfxxx. 当2π2π2π2π33kxk(kZ)时,1cos2x,即()0fx;
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11axx f x e x -+=-.(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围.(全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. (辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.(新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-.(Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. (新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++其中(01)θ<<;2. 231ln(1)(1),2!3!!n n n x x x x x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n x θ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn x R x k θ+=-+;4. 24221cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+-,其中2(1)cos (2)!kk n x R x k θ=-; 第三部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x ax af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim()x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. 1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=. (i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x kf x x x>+-; (ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,. 注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升. 洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x kx x x x+>++-,也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x xg x x=+-,0x >,且1x ≠ 则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---, 即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,.注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x xg x x =+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法. 2.(新课标理)设函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21xe x ax --≥等价于21x e xa x--≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)1x h x x e =-+,当(0+)x ∈∞,时,''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有,即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12a ≤且0x ≥时,()0f x ≥成立. 例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x ->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-.因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“0”型式子.(海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥. ①当0x =时,a R ∈;②当0x >时,2(1)xx e ax -≥等价于1xe ax -≥,也即1x e a x-≤.记1()x e g x x-=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x xe =>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x →所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1xf x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x xe ax --≤+;若0x =,则a R ∈;若0x >,则11xxe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x -+≤-. 记1()x x xxe e g x xe x-+=-,则2222221'()=(2)()()x x x x x x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+,则'()2x x h x e x e -=--,''()+20x x h x e e -=->. 因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >,即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >. 因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增.由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时, 1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x =+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 若0x =,则a R ∈; 若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )x g x x x =+则222cos 2sin sin cos '()(2cos )x x x x x x g x x x --+=+.记()2cos 2sin sin cos h x x x x x x x =--+,因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减, 而00sin cos 1lim ()limlim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
(完整版)洛必达法则巧解高考压轴题
洛必达法则巧解高考压轴题洛必达法则:法则1若函数f(x)和g(x)满足下列条件:(1)lim f (x )=0及lim g (x )=0;x →a x →a(2)在点a 的去心邻域内,f(x)与g(x)可导且g'(x)≠0;(3)lim x →a f '(x )=l ,g '(x )f (x )f '(x )0那么lim =lim =l 。
型x →a g (x )x →a g '(x )0法则2若函数f(x)和g(x)满足下列条件:(1)lim f (x )=∞及lim g (x )=∞;x →a x →a(2)在点a 的去心邻域内,f(x)与g(x)可导且g'(x)≠0;f '(x )=l ,(3)lim x →a g '(x )那么lim x →a f (x )g (x )=lim x →a f '(x )∞=l 。
型g '(x )∞注意:○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x →a +,x →a -洛必达法则也成立。
2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
○典例剖析例题1。
求极限∞ln x (型)lim (1)+1∞x →0x(2)lim p 0sin x -1(型)0cos x x 2ln cos x 0(型)2x 0ln x∞lim (型)(4)x →+∞x ∞lim (3)x →0变式练习:求极限(1)lim ln(1+x )sin x -sin alim x →0x →a x x -a(2)e x -e -x ln sin xlim lim π(π-2x )2x →0sin x (3)(4)x →2例题2。
已知函数f (x )=m (x -1)e +x ,m ∈R x 2(1)当m =-1时,求f (x )在[-2,1]上的最小值(2)若x +(m +2)x >f (x )在(-∞,0)上恒成立,求m 的取值范围2'例题3.已知函数f (x )=ax +(1)用a 表示b ,cb +c ,(a >0)的图像在点(1,f (1))处的切线方程为y =x -1,x(2)若f (x )≥ln x 在[1,+∞)上恒成立,求a 的取值范围例题4.若不等式sin x >x -ax 在x ∈ 0,例题5.已知f (x )=x (e -1)-ax (1)若f (x )在x =-1时有极值,求函数f (x )的解析式(2)当x ≥0时,f (x )≥0,求a 的取值范围强化训练1.设函数f (x )=1-e (1)证明:当x >-1时,f (x )≥(2)当x ≥0时f (x )≤x 3⎛⎝π⎫⎪是恒成立,求a 的取值范围2⎭x 2-xx 。
12洛必达法则巧解高考压轴题-解析版-2023届高考数学二轮复习
第12讲 洛必达法则巧解 高考压轴题知识与方法数压轴题第2问中,如果是不等式恒成立来求参数的取值范围问题,我们可以用洛必达法则来处理.先给大家介绍一下什么是洛必达法则: 法则1:若函数()f x 和()g x 满足下列条件: (1)lim ()0x af x →=及lim ()0x ag x →=;(2)在点a 的去心邻域内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()()()lim lim x a x a f x f x l g x g x →→'=='.法则2:若函数()f x 和()g x 满足下列条件: (1)lim ()x af x →=∞及lim ()x ag x →=∞;(2)在点a 的去心邻域内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()()()lim lim x a x a f x f x l g x g x →→'=='.了解了什么是洛必达法则,那么,什么情况下可以使用它去解 决问题呢? 首先,先逐条诠释一下洛必达法则需要满足的条件.对于(1),这样给大家解 释,我们用洛必达法则处理的式子形式为00或∞∞的形式,也是唯一判定标准.对于(2),我们在高中阶段几乎不研究不可导函数,所以大家不用担心. 对于(3),高中阶段,当出现00或∞∞的时候,对分子分母分别求导,若值存在,则值不变,洛必达法则可以在一个式子中多次使用,直到可以求出定值为止.典型例题【例1】 设函数2()1xf x e x ax =---. (1)若a =0,求()f x 的单调区间;(2)若当x ≥0时,()0f x ≥,求a 的取值范围.【解析】 (1)0a =时,()e 1,()e 1x x f x x f x =--'=-.当(,0)x ∈-∞时,()0f x '<,当(0,)x ∈+∞时,()0f x '>.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加.(2)【解法1】 ()e 12x f x ax '=--,由(1)知e 1x x +,当且仅当0x =时等号成立.故()f x x '-2(12)ax a x =-,从而当120a -,即12a 时,()0(0)f x x ',而(0)0f =,所以当0x 时,()0f x .由e 1(0)xx x >+≠可得e 1(0)x x x ->-≠.因此当12a >时,(()e 12e x x f x a -'<-+()()1)e e 1e 2x x x a --=--,故当(0,ln 2)x a ∈时,()0f x '<,而(0)0f =,所以当(0,ln 2)x a ∈时,()0f x <.综合得a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.【解法2】 当0x =时,()0f x =,对任意实数a ,均在()0f x ;当0x >时,()0f x 等价于2e 1x x a x--, 令2e 1()(0)x x g x x x --=>,则3e 2e 2()x x x x g x x -++'=,令()e 2e 2(0)x x h x x x x =-++>,则()e e 1,()e 0x x x h x x h x x '=-+''=>,知()h x '在(0,)+∞上为增函数,()(0)0h x h '>'=;知()h x 在(0,)+∞上为增函数,()(0)0;()0,()h x h g x g x >=∴'>在(0,)+∞上为增函数.由洛必达法则知,2000e 1e 1e 1lim lim lim 222x x x x x x x x x +++→→→---===,故12a , 综上,知a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.【例2】 已知函数ln ()=1a x f x x xb++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (1)求,a b 的值;(2)当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.【解析】 (1)221ln ()(1)x x b x f x x x α+⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过.点(1,1),故(1)1,1(1),2f f =⎧⎪⎨'=-⎪⎩故1,122b a b =⎧⎪⎨-=-⎪⎩,解 得a 1,1b ==.(2)【解法1】 由(1)知ln 1()1x f x x x =++,所以2ln 1()(2ln 11x k f x x x x x ⎛⎫-+=+ ⎪--⎝⎭()2(1)1k x x⎫--⎪⎪⎭,考虑函数()2(1)1()2ln (0)k x h x x x x--=+>,则()22(1)12()k xxh x x -++'=.①设0k ,由()2221(1)()k x x h x x +--'=知,当1x ≠时,()0,()h x h x '<递减.而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x >-; 当(1,)x ∈+∞时,()0h x <,可得21()01h x x>-, 从而当0x >,且1x ≠时,ln ()01x k f x x x ⎛⎫-+> ⎪-⎝⎭,即ln ()1x k f x x x >+-.②设01k <<.由于()22(1)12(1)2k x k k x x -++=-+1k +-的图象开口向下,且244(1)0k ∆=-->,对称轴111x k =>-.当11,1x k ⎛⎫∈ ⎪-⎝⎭时,()2(1)120k x x -++>,故()0h x '>,而(1)0h =,所以当11,1x k ⎛⎫∈ ⎪-⎝⎭时,()0h x >, 可得21()01h x x <-,与题设矛盾.③设1k .此时()2212,(1)120()0x x k x x h x +-++>⇒'>,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x <-,与题设矛盾. 综合得,k 的取值范围为(,0]-∞.【解法2】由题设可得,当0,1x x >≠时,22ln 11x xk x <+-恒成立.令22ln ()1(0,1)1x xg x x x x =+>≠-,则()()22221ln 1()21x x x g x x +-+'=⋅-, 再令()22()1ln 1(0,1)h x x x x x x =+-+>≠,则1()2ln ,()2ln 1h x x x x h x x x '=+-''=+-21x,易知21()2ln 1h x x x ''=+-在(0,)+∞上为增函数,且(1)0h ''=;故当(0,1)x ∈时,()h x ''<0,当(1,)x ∈+∞时,()0h x ''>;∴()h x '在(0,1)上为减函数,在(1,)+∞上为增函数;故()(1)0,()h x h h x '>'=∴在(0,)+∞上为增函数.∵(1)0,h =∴当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0,h x >∴当(0x ∈,1)时,()0g x '<,当(1,)x ∈+∞时,()0,()g x g x '>∴在(0,1)上为减函数,在(1,)+∞上为增函数. ∵由洛必达法则法2111ln 1ln 1lim ()2lim 12lim 1210,122x x x x x x g x k x x →→→+⎛⎫=+=+=⨯-+=∴ ⎪--⎝⎭0,即k 的取值范围为(,0]-∞.【例3】设函数sin ()=2cos xf x x+.(1)求()f x 的单调区间;(2)如果对任何0x ,都有()f x ax ,求a 的取值范围. 【解析】(1)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2222()33k x k k ππππ-<<+∈Z 时,1cos 2x >-,即()0f x '>;当2422()33k x k k ππππ+<<+∈Z 时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间222,2()33k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z 内是增函数, ()f x 在每一个区间(2k π+24,2()33k k πππ⎫+∈⎪⎭Z 内是减函数. (2)应用洛必达法则和导数sin ()2cos xf x ax x=+,若0x =,则a ∈R ;若0x >,则sin 2cos xax x+等价于sin (2cos )x ax x +.即sin ()(2cos )x g x x x =+, 则222cos 2sin sin cos ()(2cos )x x x x x xg x x x --+'=+. 记()2cos 2sin sin cos h x x x x x x x =--+,2()2cos 2sin 2cos cos 212sin cos 212sin 2sin 2sin h x x x x x x x x x x x x x '=---+=--+=-=(sin )x x -.因此,当(0,)x π∈时,()0,()h x h x '<在(0,)π上单调递减,且(0)0h =,故()0g x '<,所以()g x 在(0,)π上单调递减,而000sin cos 1lim ()limlim (2cos )2cos sin 3x x x x x g x x x x x x →→→===++-. 另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=<+,因此13a .【例4】 设函数()(1)ln(1)f x x x =++,若对所有的0x 都有()f x ax 成立,求实数a 的取值范围. 【解析】【解法1】 令()(1)ln(1)g x x x ax =++-,对函数()g x 求导数:()ln(1)1g x x a '=++-,令()0g x '=,解 得1e 1u x -=-.(1)当1a 时,对所有0,()0x g x >'>,所以()g x 在[0,)+∞上是增函数.又(0)0g =,所以对0x ,有()(0)g x g ,即当1a 时,对于所有0x ,都有()f x ax . (2)当1a >时,对于10e 1,()0u x g x -<<-'<,所以()g x 在()10,e 1α--是减函数.又(0)0g =.所以对10e 1a x -<<-,有()(0)g x g <,即()f x ax <.所以当1a >时,不是对所有的0x ,都有()f x ax 成立. 综上a 的取值范围是(,1]-∞. 【解法2】 令()(1)ln(1)g x x x ax =++-,于是不等式()f x ax 成立即为()(0)g x g 成立.对()g x 求导数得()ln(1)1g x x a '=++-,令()0g x '=,解得1e 1a x -=-,当1e 1a x ->-时,()0,()g x g x '>为增函数,当11e 1u x --<<-时,()0,()g x g x '<为减函数.要对所有0x 都有()(0)g x g 充要条件为1e 10a --.由此得1a ,即a 的取值范围是(,1]-∞.。
洛必达法则巧解高考数学压轴题——函数与导数中的参数问题求解
式 ,而这是大学数学中的不定式 问题 ,解决这类问题 的有效 方法 就是 洛必 达法 则 。
一 、 不 等式恒 成 立 (存 在性 )问题 若在等式或不等式 中出现两个变量 ,其中一个变 量 的范 围已知 ,另 一个变 量 的范 围为所求 ,且容 易通过 恒等变形将两个变量分别置于等号或不等号的两边 , 则可将恒成立问题转化成函数的最值问题求解。 二 、洛 必达 法则 若函数 x)和 g(x)满足下列条件 :
由 洛 必 达 法 则 知 ,
limo = =一l-i÷r ao + 一2e x = 一li -m + 手e2 =11,执 故0≤ 圭Z1
综上所述一的取值范围为(一 圭)。
总 之 ,对 于 函数 与导数 中 的参 数取 值 范 围 问 题 ,可 以将参 数与变 量分离 (注意讨论 ),转 化 为不 等式恒成立 (存在性 )问题 ,然后转化为 函数 的最值 问题 求解 。如果 分离 出来 的函数式 的最值 有点麻 烦 ,则可 以利用 洛必达法 则处理它 的最值 。这种方 法思 路简单 ,讨论直 接 ,可有 效提 高学生解 决 问题 的效 率 。
. ‘五( )在(0,+。。)上为增函数,又‘. (1)=0
. ·.当 ∈(0,1)】时, ( )<0,当 ∈(1,+∞)时, ( )<0,当 ∈(1,+∞)时,g x)>0
‘ .
( )在(0,1)上为减函数,在(1,+∞)上为增函数
· . ‘由洛 必达 法则 知
令 g (x) =
g
‘
十1 ( >0, ≠1), 则
,
知 ( )在(0,+。。)上为增函数 ,^ ( )> (0)=o;知 ( )在(0,+。o)上为增函数 ,h(x)> (0):0;._.g ( )>0,g (X)在(0,+∞)上为增 函数。
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题○2 洛必达法则可处理00 0,,0 ,1 ,,0 ,型。
2010 年和2011 年高考中的全国新课标卷中的第21 题中的第○2 步,由不等式恒成立来求参数0 0的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
则不适用,应从另外途径求极限。
洛必达法则简介:○4 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
法则 1 若函数f(x) 和g(x) 满足下列条件:(1) lim 0f x 及limg x 0;x a x a(2) a f(x) g(x) g'(x) 0在点的去心邻域内,与可导且≠;二.高考题处理1.(2010 年全国新课标理)设函数x 2f (x) e 1 xax 。
(3) limx a f xg xl ,(1)若a 0,求 f (x) 的单调区间;(2)若当x 0 时f (x) 0,求a的取值范围那么limx a f xg x= limx af xg xl 。
x x原解:(1)a 0时,f ( x) e 1 x,f '( x) e 1.法则 2 若函数f(x) 和g(x) 满足下列条件:(1) lim 0f x 及limg x 0;x x 当x ( ,0) 时, f '( x) 0 ;当x (0, ) 时, f '(x) 0 .故f (x) 在( ,0) 单调减少,在(2) A 0,f(x) 和g(x) 在, A 与A, 上可导,且g'(x) ≠0;(0, ) 单调增加(3) limx f xg xl ,x(II )f '(x) e 1 2axx由(I)知 1e x ,当且仅当x 0 时等号成立.故那么limx f xg x=limxf xg xl 。
f '( x) x 2ax (1 2a)x ,法则 3 若函数f(x) 和g(x) 满足下列条件:(1) limx a f x 及limx ag x ;从而当1 2a 0 ,即1a 时, f '(x) 0 ( x 0) ,而 f (0)0 ,2(2) 在点 a 的去心邻域内,f(x) 与g(x) 可导且g'( x) ≠0;于是当x 0 时, f ( x) 0 .(3) limx a f xg xl ,x x由e 1 x(x 0)可得e 1 x(x 0) .从而当1a 时,2那么limx a f xg x= limx af xg xl 。
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题 之樊仲川亿创作创作时间:二零二一年六月三十日第一部份:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1), 若对所有的x ≥0, 都有f (x )≥ax 成立, 求实数a 的取值范围. (全国1理)已知函数()11axx f x e x-+=-. (Ⅰ)设0a >, 讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >, 求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥, 求a 的取值范围. (全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥, 都有()f x ax ≤, 求a 的取值范围. (辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由. (新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a , 求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0, 求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值, 求函数()f x 的解析式; (Ⅱ)那时0x ≥, ()0f x ≥, 求a 的取值范围. (全国年夜纲理)设函数()1x f x e -=-. (Ⅰ)证明:那时1x >-, ()1xf x x ≥+; (Ⅱ)设那时0x ≥, ()1xf x ax ≤+, 求a 的取值范围. (新课标理)已知函数ln ()1a x b f x x x=++, 曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >, 且1x ≠时, ln ()1x kf x x x>+-, 求k 的取值范围. 例题:若不等式3sin x x ax >-对(0,)2x π∈恒成立, 求a 的取值范围第二部份:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++其中(01)θ<<; 2.231ln(1)(1),2!3!!nn n x x xx x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n xθ++=-++;3.35211sin (1)3!5!(21)!k k nx x xx x R k --=-+-+-+-, 其中21(1)cos (21)!k kn x R x k θ+=-+;4.24221cos 1(1)2!4!(22)!k k nx x x x R k --=-+-+-+-, 其中2(1)cos (2)!kkn x R x k θ=-;第三部份:洛必达法则及其解法 洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x a x a f x g x →→==;(2)在()U a 内, ()f x '和()g x '都存在, 且()0g x '≠;(3)()lim ()x af x Ag x →'=' (A 可为实数, 也可以是±∞). 则()()limlim ()()x a x a f x f x A g x g x →→'=='. 1.(新课标理)已知函数ln ()1a x bf x x x=++, 曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >, 且1x ≠时, ln ()1x kf x x x>+-, 求k 的取值范围. 惯例解法(Ⅰ)略解得1a =, 1b =.(Ⅱ)方法一:分类讨论、假设反证法 由(Ⅰ)知ln 1()1x f x x x=++, 所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >, 则22(1)(1)2'()k x xh x x -++=. (i)那时0k ≤, 由222(1)(1)'()k x x h x x +--=知, 那时1x ≠, '()0h x <.因为(1)0h =,所以那时(0,1)x ∈, ()0h x >, 可得21()01h x x ⋅>-;那时(1,)x ∈+∞, ()0h x <, 可得21()01h x x ⋅>-, 从而当0x >且1x ≠时, ln ()()01x kf x x x-+>-, 即ln ()1x kf x x x>+-;(ii )那时01k <<, 由于那时1(1,)1x k∈-, 2(1)(1)20k x x -++>, 故'()0h x >, 而(1)0h =, 故那时1(1,)1x k∈-, ()0h x >, 可得21()01h x x ⋅<-, 与题设矛盾. (iii )那时1k ≥, '()0h x >, 而(1)0h =, 故那时(1,)x ∈+∞, ()0h x >, 可得21()01h x x⋅<-, 与题设矛盾.综上可得, k 的取值范围为(0]-∞,.注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥②01k <<时, 许多考生都停留在此层面, 举反例1(1,)1x k∈-更难想到.而这方面根据分歧题型涉及的解法也不相同, 这是高中阶段公认的难点, 即便通过训练也很难提升. 洛必达法则解法当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 即ln 1ln 11x x kx x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--, 记22ln ()11x x g x x =+-, 0x >, 且1x ≠则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++, 则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增, 且(1)0h =, 因此那时(0,1)x ∈,()0h x <, 那时(1,)x ∈+∞, ()0h x >;那时(0,1)x ∈, '()0g x <, 那时(1,)x ∈+∞, '()0g x >, 所以()g x 在(0,1)上单调递加, 在(1,)+∞上单调递增.由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---, 即那时1x →, ()0g x →, 即当0x >, 且1x ≠时, ()0g x >.因为()k g x <恒成立, 所以0k ≤.综上所述, 当0x >, 且1x ≠时,ln ()1x kf x x x>+-成立, k 的取值范围为(0]-∞,. 注:本题由已知很容易想到用分离变量的方法把参数k 22ln ()11x xg x x =+-“那时=1x , 函数()g x 值没有意义”这一问题, 很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用, 再通过强化训练就能掌握解决此类难题的这一有效方法.2.(新课标理)设函数2()1x f x e x ax =---. (Ⅰ)若0a =, 求()f x 的单调区间;(Ⅱ)那时0x ≥, ()0f x ≥, 求a 的取值范围. 应用洛必达法则和导数(Ⅱ)那时0x ≥, ()0f x ≥, 即21x e x ax --≥.①那时0x =, a R ∈;②那时0x >, 21xe x ax --≥等价于21x e xa x --≤.记21()x e x g x x --= (0+)x ∈∞,, 则3(2)2'()x x e x g x x-++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,, 则'()(1)1x h x x e =-+, 那时(0+)x ∈∞,, ''()0x h x xe =>, 所以'()(1)1x h x x e =-+在(0+)∞,上单调递增, 且'()'(0)0h x h >=, 所以()(2)2x h x x e x =-++在(0+)∞,上单调递增, 且()(0)0h x h >=, 因此那时(0+)x ∈∞,, 3()'()0h x g x x =>, 从而21()x e xg x x --=在(0+)∞,上单调递增. 由洛必达法则有,即那时0x →, 1()2g x →, 所以那时(0+)x ∈∞,, 所以1()2g x >, 因此12a ≤.综上所述, 当12a ≤且0x ≥时, ()0f x ≥成立.例题:若不等式3sin x x ax >-对(0,)2x π∈恒成立, 求a 的取值范围.应用洛必达法则和导数那时(0,)2x π∈, 原不等式等价于3sin x xa x->. 记3sin ()x x f x x -=, 则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =--, 则'()2cos sin 2g x x x x =+-. 因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<, 所以''()g x 在(0,)2π上单调递加, 且''()0g x <,所以'()g x 在(0,)2π上单调递加, 且'()0g x <.因此()g x 在(0,)2π上单调递加,且()0g x <, 故4()'()0g x f x x =<, 因此3sin ()x x f x x -=在(0,)2π上单调递加.由洛必达法则有320000sin 1cos sin cos 1lim ()limlim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即那时0x →, 1()6g x →, 即有1()6f x <.故16a ≥时, 不等式3sin x x ax >-对(0,)2x π∈恒成立.通过以上例题的分析, 我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③呈现“00”型式子. (海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值, 求函数()f x 的解析式; (Ⅱ)那时0x ≥, ()0f x ≥, 求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 那时0x ≥, ()0f x ≥, 即2(1)x x e ax -≥. ①那时0x =, a R ∈;②那时0x >, 2(1)x x e ax -≥等价于1x e ax -≥, 也即1x e a x-≤.记1()x e g x x-=, (0,)x ∈+∞, 则(1)1'()x x e g x x -+=.记()(1)1x h x x e =-+, (0,)x ∈+∞, 则'()0x h x xe =>, 因此()(1)1x h x x e =-+在(0,)+∞上单调递增, 且()(0)0h x h >=, 所以()'()0h x g x x =>, 从而1()x e g x x-=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即那时0x →, ()1g x → 所以()1g x >, 即有1a ≤.综上所述, 当1a ≤, 0x ≥时, ()0f x ≥成立. (全国年夜纲理)设函数()1x f x e -=-. (Ⅰ)证明:那时1x >-, ()1xf x x ≥+; (Ⅱ)设那时0x ≥, ()1xf x ax ≤+, 求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥, 此时()0f x ≥. ①那时0a <, 若1x a>-, 则01x ax <+, ()1xf x ax ≤+不成立; ②那时0a ≥, 那时0x ≥, ()1x f x ax ≤+, 即11x xe ax --≤+;若0x =, 则a R ∈; 若0x >, 则11xx e ax --≤+等价于111x e x ax --≤+, 即1x x x xe e a xe x-+≤-. 记1()x x x xe e g x xe x-+=-, 则2222221'()=(2)()()x x x x x xx x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+, 则'()2x x h x e x e -=--, ''()+20x x h x e e -=->.因此, '()2x x h x e x e -=--在(0)+∞,上单调递增, 且'(0)0h =, 所以'()0h x >,即()h x 在(0)+∞,上单调递增, 且(0)0h =, 所以()0h x >.因此2'()=()0()xx eg x h x xe x >-, 所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+, 即那时0x →, 1()2g x →, 即有1()2g x >, 所以12a ≤.综上所述, a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥, 都有()f x ax ≤, 求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时, 1cos 2x >-, 即()0f x '>;当2π4π2π2π33k x k +<<+(k ∈Z )时, 1cos 2x <-, 即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数若0x =, 则a R ∈; 若0x >, 则sin 2cos x ax x ≤+等价于sin (2cos )x a x x ≥+, 即sin ()(2cos )xg x x x =+则222cos 2sin sin cos '()(2cos )x x x x x xg x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+,因此, 那时(0,)x π∈, '()0h x <, ()h x 在(0,)π上单调递加, 且(0)0h =, 故'()0g x <, 所以()g x 在(0,)π上单调递加,而000sin cos 1lim()lim lim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面, 那时[,)x π∈+∞, sin 111()(2cos )3x g x x x x π=≤≤<+, 因此13a ≥.。
用洛必达定理来解决高考压轴题
用洛必达定理来解决高考压轴题一.洛必达法则法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g'(x )≠0;(3)()()lim x f x l g x →∞'=',那么 ()()lim x f x g x →∞=()()lim x f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()limx a f x l g x →'=', 那么 ()()limx af xg x →=()()limx af x lg x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a-→洛必达法则也成立。
○2洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
(word完整版)导数结合洛必达法则巧解高考压轴题.doc
导数结合洛必达法则巧解高考压轴题○2 洛必达法则可处理0 0, ,0 ,1 ,,0 , 型。
2010 年和 2011 年高考中的全国新课标卷中的第 21 题中的第 ○2 步,由不等式恒成立来求参数的0 0取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
则不适用,应从另外途径求极限。
洛必达法则简介: ○4 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
法则 1 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及 lim g x 0;x a x a(2) a f(x) g(x) g'(x) 0 在点 的去心邻域内, 与 可导且 ≠ ;二.高考题处理1.(2010 年全国新课标理 )设函数x 2f (x) e 1 x ax 。
(3) limx af xg xl ,(1) 若a 0,求 f (x) 的单调区间; (2) 若当 x 0时 f (x) 0,求 a 的取值范围那么 limx af xg x= limx af xg xl 。
x x原解:(1) a 0时, ( ) 1f x e x , f '( x) e 1.法则 2 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及lim g x 0;x x当 x ( ,0) 时, f '( x) 0;当 x (0, ) 时, f '( x) 0 .故 f (x) 在( ,0) 单调减少,在(2) A f 0,f(x) 和 g(x) 在 ,A 与 A, 上可导,且 g'(x) ≠0;(0, ) 单调增加(3) limxf xg x l ,x(II ) '( ) 1 2f x e ax那么 limxf xg x=limxf xg xl。
x 由(I )知 1e x ,当且仅当 x 0时等号成立 .故f '( x) x 2ax (1 2a)x ,法则 3 若函数 f(x) 和 g(x) 满足下列条件: (1) limx af x 及 lim x ag x ;从而当 1 2a 0,即 1 a 时, f '( x) 0 ( x 0) ,而 f (0) 0 ,2(2) 在点 a 的去心邻域内, f(x) 与 g(x) 可导且 g'(x) ≠0;于是当 x 0时, f (x) 0 .(3) limx af xg xl ,x x由 e 1 x(x 0) 可得 e 1 x(x 0) .从而当1 a 时, 2那么 limf x= limx af xl 。
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题 之吉白夕凡创作第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围. (全国1理)已知函数()11axx f x e x-+=-. (Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. (辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由. (新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-.(Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. (新课标理)已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++其中(01)θ<<; 2. 231ln(1)(1),2!3!!n n n x x x x x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n xθ++=-++; 3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn x R x k θ+=-+;4. 24221cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+-,其中2(1)cos (2)!kk n x R x k θ=-; 第三部分:洛必达法则及其解法 洛必达法则:设函数()f x 、()g x 满足: (1)lim ()lim ()0x a x a f x g x →→==;(2)在()Ua 内,()f x '和()g x '都存在,且()0g x '≠;(3)()lim()x a f x A g x →'=' (A 可为实数,也可以是±∞). 则()()limlim ()()x a x a f x f x A g x g x →→'=='. 1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 惯例解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法 由(Ⅰ)知ln 1()1x f x x x=++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--.考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x xh x x -++=. (i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当x >且1x ≠时,ln ()()01x kf x x x-+>-,即ln ()1x kf x x x>+-;(ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据分歧题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升. 洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x kx x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x xg x x=+-,0x >,且1x ≠ 则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>,从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增.由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---,即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,. 注:本题由已知很容易想到用分离变量的方法把参数k 22ln ()11x xg x x=+-“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法. 2.(新课标理)设函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21xe x ax --≥等价于21x e xa x--≤.记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=. 记()(2)2xh x x e x =-++ (0+)x ∈∞,,则'()(1)1xh x x e =-+,当(0+)x ∈∞,时,''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()xe xg x x --=在(0+)∞,上单调递增. 由洛必达法则有,即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤.综上所述,当12a ≤且0x ≥时,()0f x ≥成立.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-. 因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有320000sin 1cos sin cos 1lim ()limlim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立.通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“00”型式子. (海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 当0x ≥时,()0f x ≥,即2(1)x x e ax -≥.①当0x =时,a R ∈;②当0x >时,2(1)x x e ax -≥等价于1x e ax -≥,也即1xe a x-≤. 记1()xe g x x-=,(0,)x ∈+∞,则(1)1'()xx e g x x -+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x xe =>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x-=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x → 所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.(全国大纲理)设函数()1x f x e -=-.(Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数由题设0x ≥,此时()0f x ≥. ①当0a <时,若1x a>-,则01x ax <+,()1xf x ax ≤+不成立; ②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x xe ax --≤+;若0x =,则a R ∈; 若0x >,则11xx eax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x-+≤-. 记1()x x x xe e g x xe x -+=-,则2222221'()=(2)()()x x x xx x x x e x e e e g x e x e xe x xe x ---+=--+--.记2()2x x h x e x e -=--+,则'()2x x h x e x e -=--,''()+20x x h x e e -=->. 因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >,即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时, 1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 若0x =,则a R ∈;若0x >,则sin 2cos x ax x ≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )xg x x x =+则222cos 2sin sin cos '()(2cos )x x x x x xg x x x --+=+.记()2cos 2sin sin cos h x x x x x x x =--+,因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减,而000sin cos 1lim()lim lim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
导数结合洛必达法则巧解高考压轴题
导数结合洛必达法则巧解高考压轴题第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11axx f x e x -+=-.(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围. (全国1理)设函数()e e x x f x -=-. (Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.(辽宁理)设函数ln ()ln ln(1)1xf x x x x=-+++. ⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a …的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由. (新课标理)设函数)(x f =21x e x ax ---. (Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围. (新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. (全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围. (新课标理)已知函数ln ()1a x bf x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++其中(01)θ<<; 2.231ln(1)(1),2!3!!nn n x x x x x R n -+=-+-+-+其中111(1)()(1)!1n nn n x R n xθ++=-++;3.35211sin (1)3!5!(21)!k k nx x x x x R k --=-+-+-+-,其中21(1)cos (21)!k kn xR x k θ+=-+;4. 24221cos 1(1)2!4!(22)!k k nx x xx R k --=-+-+-+-,其中2(1)co s(2)!k kn x R x k θ=-; 第三部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足:(1)lim ()lim ()0x ax af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim()x a f x A g x →'=' (A 可为实数,也可以是±∞).则()()lim lim ()()x a x a f x f x A g x g x →→'=='. 1.(新课标理)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知l n1()1x f x x x=++,所以22l n 1(1)(1()()(2ln11x kk x f x x x x x x---+=+--.考虑函数()2lh x x =+2(1)(1)k x x--(0x >,则22(1)(1)2'()k x x h x x -++=.(i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x kf x x x-+>-,即ln ()1x k f x x x>+-;(ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升. 洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x kx x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x xg x x=+-,0x >,且1x ≠则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. 由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---, 即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >. 因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x kf x x x>+-成立,k 的取值范围为(0]-∞,. 注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x xg x x =+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法. 2.(新课标理)设函数2()1x f x e x ax =---. (Ⅰ)若0a =,求()f x 的单调区间; (Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围. 应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21x e x a x --≥等价于21x e xa x--≤. 记21()x e x g x x --= (0+)x ∈∞,,则3(2)2'()x x e x g x x -++=. 记()(2)2x h x x e x =-++ (0+)x ∈∞,,则'()(1)xh x x e =-+,当(0+)x ∈∞,时,''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x=>,从而21()x e x g x x --=在(0+)∞,上单调递增. 由洛必达法则有, 即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤. 综上所述,当12a ≤且0x ≥时,()0f x ≥成立. 例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,)2x π∈时,原不等式等价于3sin x xa x->. 记3sin ()x x f x x -=,则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-. 因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,)2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减.由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====, 即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立. 通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:① 可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“0”型式子.(海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥.①当0x =时,a R ∈;②当0x >时,2(1)xx e ax -≥等价于1xe ax -≥,也即1x e a x-≤.记1()x e g x x -=,(0,)x ∈+∞,则(1)1'()x x e g x x -+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0xh x x e=>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x=>,从而1()x e g x x -=在(0,)+∞上单调递增. 由洛必达法则有0001lim ()lim lim 11x xx x x e e g x x→→→-===, 即当0x →时,()1g x → 所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.(全国大纲理)设函数()1x f x e -=-. (Ⅰ)证明:当1x >-时,()1xf x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1xf x ax ≤+不成立;②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x xe ax --≤+;若0x =,则a R ∈;若0x >,则11xxe ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x-+≤-.记1()x x x xe e g x xe x-+=-,则2222221'()=(2)()()x x x xx x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x xh x e x e -=--+,则'()x xh x e x e -=--,''()+20x x h x e e -=->.因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >,即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增.由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时,1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围. 解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. 当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. 解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数 若0x =,则a R ∈; 若0x >,则sin 2cos xax x≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )xg x x x =+则222cos 2sin sin cos '()(2cos )x x x x x xg x x x --+=+. 记()2cos 2sin sin cos h x x x x x x x =--+,因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减,而00sin cos 1lim ()limlim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
妙用洛必达法则-2023年新高考数学导数压轴题(解析版)
妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。
用洛必达法则巧解高考数学压轴题-李文星
用洛必达法则巧解高考教学压轴题甘肃省永昌县第一髙级中学(737200)李文星•现在许多省市的高考试卷的压轴题都是导数的应用问题,其中求参数的取值范围问题就是一类重点考査的题型.这类题型学生容易想到用分离参数的方法解决,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.原因是出现了3”型的式子,而这就是大学数学中的待定型问题.解决这类问题的有效方法就是洛必达法则,现给出供读者参考.一、洛必达法則简介法则:若函数/■(,)和g(x)满足下列条件:(1 )lim/{x) =0 及limg(x) =0;x—*a r—HI(2)在点G的去心邻域内JG)与gG)可导且,G) 部;⑶若或今。
'则回捋=崂齧顼.二、洛比达法则应用例1设函数/<x)=l-e*.(1)证明:当*〉-1 时土;(2)设当时/(%) W亠r,求a的取值范围.说明此题(2)的标准解答技巧性很强,略显突兀, 学生普遍反映能看懂但想不到.能否有更好更自然的解答思路呢?用洛必达法则来处理可达到事半功倍的效果.解(1)略.(2)由题设*N0,此时/(x) ^0.①当亦0时,若■>■,则二^7<0/(,)〈詬%a ax ± I ax + L 不成立;②当Q二。
时/(%) W—Qi 在4G [0, +ax + 18 )上成立;% e* 1③当a > 0 时J(%) W - <=>a W - -- =a W' ox +1 e 1 xI e* I x f设"=片-+,")=弋艺措“ 设g(x) = - e,x2 + e* -2e* + 1,则g(0) =O,g'(.x)= e'( -x2-2x+ 2e* -2).令h(x) - -x2 -2x +2e,-2.当%>0 时,"(x) =2(^-x-1) ,h"(x)=2(e, -1) >0,.•&(«)是增函数,h'(x) >h'(0) =0"⑴是增函数,.*• h(x) > A(0) =0. g(x)在[0, + 8 )上是增函数,g(x)mg(0)=0. .•.F'S)mo,F(*)在[o, + 8)上是增函数. '由洛比达法则可得,WmF(x)=甄"'m'.t l = xe -Xlim ―- = lim^,+Xe,=。
用洛必达法则巧解高考数学压轴题-李文星
用洛必达法则巧解高考数学压轴题-李文星洛必达法则是高等数学中的一个重要定理,可以用来解决一些极限问题。
在高考数学中,也经常会遇到一些需要使用洛必达法则来解决的压轴题。
以我遇到的一个高考数学压轴题为例,题目如下:
已知函数\(f(x) = \frac{x^2-2x+1}{x^2-1}\),求函数\(y = f(x)\)在点\(x = 1\)处的极限。
根据洛必达法则,我们需要计算\(\lim_{x\to 1}\frac{f(x)}{x-
1}\)。
首先,我们计算\(\lim_{x\to 1}(x-1)\)。
显然,当\(x\)趋近于1时,\(x-1\)也趋近于0。
接下来,我们计算\(\lim_{x\to 1}f(x)\)。
将函数\(f(x)\)代入后,得到:
\(\lim_{x\to 1}\frac{x^2-2x+1}{x^2-1}\)。
因此,我们有\(\lim_{x\to 1}\frac{f(x)}{x-1} = \lim_{x\to
1}\frac{0}{x-1} = 0\)。
所以,函数\(y=f(x)\)在点\(x=1\)处的极限为0。
通过以上步骤,我们成功地使用洛必达法则解决了这个压轴题。
洛必
达法则的核心思想是将问题转化为求导数的问题,通过求导数的方式来计
算极限。
在解决高考数学压轴题时,洛必达法则可以帮助我们更快地得到
答案,提高解题效率。
除了洛必达法则,高考数学中还有许多其他的解题方法和技巧。
在备战高考数学时,我们不仅需要掌握这些方法和技巧,还需要多做题、多总结,提高自己的解题能力。
希望我们都能在高考中取得好成绩!。
导数结合洛必达法则巧解高考压轴题
求 k 的取值范围.
整理课件
10.自编
自编:若不等式 sin x x ax3 对于 x (0, )
2
恒成立,求 a 的取值范围.
整理课件
第二部分:泰勒展开式
整理课件
泰勒展开式
1. ex 1 x x2 x3
(k
1)(x2 1) 2x x2
.
整理课件
2.2011新课标理的常规解法
(i)当 k
0
时,由 h '(x)
k(x2
1) (x x2
1)2
知,当
x
1 时, h '(x)
0 .因为 h(1)
0
,
所以当
x
(0,1) 时,
h(x)
0
,可得
1
1 x
2
h(x)
0
;当
x (1, ) 时,
h(x)
0
,可
得
1 h(x) 0 ,从而当 x 0 且 x 1 时, f (x) ( ln x k ) 0 ,即 f (x) ln x k ;
1 x2
x 1 x
x 1 x
(ii)当 0 k 1时,由于当 x (1, 1 ) 时, (k 1)(x2 1) 2x 0,故 h '(x) 0 ,而 1 k
整理课件
2.2011新课标理的常规解法
注:分三种情况讨论:① k 0 ;② 0 k 1;③ k 1 不易想到. 尤其是② 0 k 1时,许多考生都停留在此层面,举反例 x (1, 1 )
1 k
更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段 公认的难点,即便通过训练也很难提升.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛必达法则巧解高考压
轴题
This model paper was revised by LINDA on December 15, 2012.
洛必达法则巧解高考压轴题
洛必达法则:
法则1 若函数f(x) 和g(x)满足下列条件:
(1) ()lim 0x a f x →= 及()lim 0x a g x →=;
(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;
(3)()
()lim x a f x l g x →'=',
那么 ()()lim x a f x g x →=()
()lim x a f x l g x →'='。
0
0型
法则2 若函数f(x) 和g(x)满足下列条件:
(1) ()lim x a f x →=∞及()lim x a g x →=∞;
(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;
(3)()
()lim x a f x l g x →'=',
那么 ()
()lim x a f x g x →=()
()lim x a f x l g x →'='。
∞
∞型
注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必
达法则
也成立。
○
2若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
典例剖析
例题1。
求极限
(1)x
x x 1ln lim 0
+→ (∞∞型) (2)lim x ®p 2
sin x -1cos x (00型) (3) 20cos ln lim x x x → (00
型) (4)x x x ln lim +∞
→ (∞∞型) 变式练习: 求极限(1)x x x )1ln(lim 0+→ (2)a x a x a x --→sin sin lim (3)x e e x x x sin lim 0-→- (4)22
)2(sin ln lim x x x -→ππ 例题2。
已知函数R m x e x m x f x ∈+-=,)1()(2
(1)当1-=m 时,求)(x f 在[]1,2-上的最小值
(2)若)()2('2x f x m x >++在()0,∞-上恒成立,求m 的取值范围
例题3.已知函数)0(,)(>++
=a c x b ax x f 的图像在点())1(,1f 处的切线方程为1-=x y ,
(1)用a 表示c b ,
(2)若x x f ln )(≥在[)+∞,1上恒成立,求a 的取值范围
例题4.若不等式3sin ax x x ->在⎪⎭
⎫ ⎝⎛∈2,0πx 是恒成立,求a 的取值范围 例题5.已知2)1()(ax e x x f x --=
(1)若)(x f 在1-=x 时有极值,求函数)(x f 的解析式
(2)当0≥x 时,0)(≥x f ,求a 的取值范围
强化训练
1. 设函数x e x f -1)(-=
(1)证明:当1->x 时,1)(+≥
x x x f 。
(2)当0≥x 时1
)(+≤ax x x f 求a 的取值范围 2.设函数2()1x f x e x ax =---。
(1)若0a =,求()f x 的单调区间;
(2)若当0x ≥时()0f x ≥,求a 的取值范围
3.已知函数x b x x a x f ++=
1ln )(,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;
(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x
>+-,求k 的取值范围。
4.若函数x
x x f cos 2sin )(+=, (1)求)(x f 的单调区间。
(2)对0≥∀x ,都有ax x f ≤)(,求a 的取值范围。