第七章刚体力学
刚体的平衡
第七章 刚体力学
y
F
Fy j
C
C´
E
Fxi30W°
B W
x
A FN
M z EA FN sin30 W (EB cos 30 CB sin30 )
W (EB cos 30 CB sin30 ) 0
解以上三方程得 FN 8.75 kN
Fx 4.38 kN, Fy 2.08 kN F Fx2 Fy2 4.85 kN, tan 0.4748
Fiy 0
Miz 0
上页 下页 返回 结束
第七章 刚体力学
其中
Miz 0
是力对z轴力矩的代数和为零,z是垂直于Oxy面的任意轴.
刚体平衡方程的其它形式
(1) 诸力对任意轴的力矩和为零. 在力的作用平面内选O
和O´ 两个参考点,OO´ 连线不与Ox轴正交
Fix 0
Miz 0
Miz 0
(2) 在力的作用平面内选O、O´ 和O´´ 三个参考点,
O、O´ 和O´´ 三点不共线
Miz 0
Miz 0
Miz 0
上页 下页 返回 结束
§7.6.2 杆的受力特点
第七章 刚体力学
在下面三个条件下,可认为杆仅受两力而平衡. 1. 杆件两瑞与其它物体的联结是光滑铰链联结.对 光滑铰链联结,只有通过节点的压力.
上页 下页 返回 结束
第七章 刚体力学 [例题2]将长为l ,质量为 m1 的均匀梯子斜靠在墙角下, 已知梯子与墙面间以及梯子与地面间的静摩擦因数分
别为1 和2 ,为使质量为m2 的人爬到梯子顶端时,梯
子尚未发生滑动.试求梯子与地面间的最小夹角.
上页 下页 返回 结束
y
工程力学-材料力学-第7章 刚体的基本运动(唐学彬)
T
可见,在经过平衡位置时,重心的全加速度等于法向加速 度,方向指向摆的转角。ω和v表达式中的“+”号对应于由左向 右的摆动,“-”对应于由右向左的摆动。
例7-3 汽轮机叶轮由静止开始做匀加速运动。轮上M点距 轴心O为r=0.4 m,在某瞬时的全加速度a=40 m/s2,与转动半径 的夹角θ=300(见图7-7)。若t=0时,位置角φ0=0,求叶轮的转 动方程及t=2 s时M点的速度和法向加速度。 解 将M点在某瞬时的全加速度a沿其轨迹的切向及法向 分解,则切向加速度及角加速度分别为
2v 2 2.4 m s 240 d5 d5 rad s v 5 4 或 4 d5 0.46m 23 2 2
如α与ω的符号相同时,则角速度的绝对值随时间而增加, 这时称为加速转动;反之,则角速度的绝对值随时间而减小,这 时称为减速转动。 由上述讨论可以看出:刚体的定轴转动与点的曲线运动的 研究方法是完全相似的,刚体的位置角φ 、角速度ω及角加速度 α对应于点的弧坐标s、速度v及切向加速度at。所以,当刚体的 角加速度α恒为常量时,称为匀变速转动,则有
例7-2
图7-6所示为一可绕固定水平轴转动的摆,其转动方
2 t T
程为 0 cos
,式中T是摆的周期。设由摆的重心C至转轴O
的距离为l,求在初瞬时(t=0)及经过平衡位置时( φ =0)摆的重 心的速度和加速度。 解:由转动方程可以求出摆的角速度和角加速度为
在初瞬时(t=0)摆的角速度和角加速度为
这就表明:刚体绕定轴转动的角速度等于位置角对于时间的 一阶导数。 ω是一个代数量。其大小表示刚体转动的快慢程度。当ω为正 时,位置角φ的代数值随时间增大,从z轴的正向朝负向看,刚体作 逆时针转动;反之,则作顺时针转动。 角速度的单位是rad/s。在工程上还常用n转速来表示刚体转动 的快慢。转速是每分钟的转数,其单位是r/min(转/分)。角速度 与转速之间的关系是
第七章 刚体动力学(讲义)
MO = ∑ MO ( Fi ) = ∑ (ri × Fi )
i =1 i =1
n
n
注意,主矩的的计算与参考点的选取有关。例如,将参考点由 O 改成 O′ ,于是
MO = ∑ ri × Fi = ∑
i =1 i =1
n
n
(ri′ + OO′) × Fi = ∑ (ri′ × Fi ) + OO′ × ∑ Fi
R = ∑ Fi
i =1
n
这是个自由矢量,它只给出矢量的大小和方向,不过问作用点的位置。 对力系的矩也可作类似的讨论。对于共点力系,合力的矩等于各个力对同一点的矩的矢量 和,即
MO ( F) = r × F = r × ∑ Fi = ∑ (r × Fi )
i =1 i =1
n
n
一般的力系中不一定存在合力,因此也就谈不上求合力的矩。但是每个力相对于同一参考 点的力矩是矢量,我们可以求这些矢量的和,并称为主矩,记为 MO ,即有
(II)刚体绕质心的转动:
dLc = ∑ ric × Fi (对质心的角动量定理) dt i
第一个式子求质心运动等同于质点动力学,可以解出刚体的平动运动部分(三个方程解三个运 动变量) 。第二个式子又可求出刚体的转动角速度 ω ( L 与 ω 有一定的关系) ,于是刚体的运动 就完全确定了。由角动量定理求刚体的转动角速度是重点讨论的内容。 7.2 作用在刚体上的力和力矩 通常矢量指的是所谓自由矢量(free vector) :只有大小和方向,它可以平行自由移动。 作为物理量的矢量则不然,例如,力矢量 F ,为了完全确定这个力,还要说明力的作用点, 若用 r 表示作用点的话,则要有两个矢量 F 和 r ,这个力才完全被确定下来。这种矢量被称为定 位矢量(bound vector) 。除了力矢量是定位矢量外,质点的速度和加速度等也是定位矢量的例 子。 还有一种矢量,称为滑动矢量(sliding vector) ,它可在包含该矢量的一直线上自由移动。 例如,作用在刚体上的力(见下面的讨论) 。
第七章 刚体力学
R / 2 cos y R
因 dy tan dx
(1)
又 1 tan 2 sec2
故得所求曲线的方程
dy 2 2 1 ( ) [ ( R y )]2 dx R
(2)
采用
sec ,(1)式变成
dy 2 R / 2 y R, 又有1+( ) 2 dx dy dy d R d dx d dx 2 dx
令t 0,刚体在一瞬刻的运动情况可以这样来描述:刚 体随着基点 A 以速度 v A 平动( v A 即基点A的速度),并以角 速 ω绕基点 A 转动,平动的速度 v即基点的速度,与基点的选 取有关,转动的角速度ω则与基点的选取无关。 基于以上论述,可将刚体平面运动视为随基点的平动与绕
基点的转动的合成,事实上,平动与转动是同时进行的。
匀变速转动 =常量
0 (t )dt
0
t
0 t
1 2 0 t t 2 2 0 2 2( 0)
与质点匀变速直线运动公式相对应.
(6) 角量与线量的关系
线量——质点做圆周运动的位移r、速度v、加速度a 角量——描述刚体转动整体运动的 ,,
(2)组内任意两点间的距离保持不变.
§7.1 刚体运动的描述
刚体运动学的任务在于研究如何描述刚体运动但不涉及运
动变化的原因, 只有给出刚体上所有质元的运动状况,才算 完整描述了刚体的运动。
§7.1.1 刚体的平动
平动——如果在运动中,刚体上任意两质元连线的空间方向 始终保持不变,这种运动就称为刚体的平动。例如电梯的升 降、活塞的往返等都是平动。
Δ d lim Δt 0 Δt dt
第13讲--第七章刚体力学(2)
w0
3g l
理学院 物理系 陈强
第七章 刚体力学
(2) 轴对杆的力
设N1,N2如图,对质心C有:
N1 cos
N2
sin
mgsin
m
l 2
N2
cos
N1
sin
m g cos
mw 2
l 2
l/2
l/2
w0
由(1)
:
3g
sin ;
2l
w2
w02
3g l
1
cos
mg N2
解得:
N1
mg
sin
9 4
求1) w ( ), m; 2) 轴对杆的力.
l/2
解: (1) mg l sin I 1 ml2 dw
2
3 dt
l/2
3g sin dw w dw
w0
2l
dt
d
mg
3g sind
w
wdw
0 2l
w0
w
w
2 0
3g l
1
cos
令w 0 , 得
m
cos11
w02l
3g
vC w R
w R vC (纯滚)
vC
vC gt
其解为:
w
w0
dw
dt
t
I dw mgR(-1)
dt
vC w R (纯滚条件)
t
w0R g(1 mR2
/
I)
l
1 2
gt 2
w02 R2 2 g(1 mR2
/
I )2
vC
w0R
(1 mR2
/
I)
最新《力学》漆安慎(第二版)答案07章
力学(第二版)漆安慎习题解答第七章刚体力学第七章 刚体力学 一、基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c //求质心方法:对称分析法,分割法,积分法。
⒉刚体对轴的转动惯量定义:∑⎰==dm r I r m I ii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y.常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==c c a m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==c c c c I a m F βτ(不必考虑惯性力矩)动能:221221cc c k I mv E ω+= ⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ二、思考题解答7.1 火车在拐弯时所作的运动是不是平动?答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。
若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。
但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。
7.2 对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动?答:对静止的刚体施以外力作用,当合外力为了零,即0i c F ma ==∑时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。
所以,对某一确定点刚体所受合外力的力矩i i iM M r F ==⨯∑∑不一定为零。
由刚体的转动定律M J α=可知,刚体将发生转动。
比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。
刚体力学
三、教学重点与难点:
重点: 刚体运动的描述方法;刚体定轴转动的运动学与动力学;刚体的平 衡。 难点: 转动惯量的理解和计算;学生学习思维方式的转变;刚体转动的角 动量,应用刚体力学有关规律解决实际问题。 教材分析:(分为6个单元) 1、刚体运动学(§7—1); 2、刚体平动的动力学(§7—2); 3、刚体定轴转动动力学(§7—3、§7—4)是全章的重点; 4、刚体的平面平行动力学(§7—5); 5、刚体的平衡(静力学)(§7—6); 6、刚体的自转与旋进(7—7)
积分限为:
z=0
z=R
例题2:已知图中物体由均匀等厚的两个半径不同的圆板和刚性细杆组 成,三个部分的质量均为M,尺寸如图所示.试求质心的位置.
解: 因为物体均匀等厚,且具有对称性,,所以质心在其几何对称轴上,建立图 示的坐标系: 。
二、刚体的动量与质心运动定理
1、刚体的动量: 特殊的质点组 2、动量守恒定律 若刚体所受外力矢量和为零,即,则=恒量 3、刚体的质心运动定理 例题1:教材P201[例1] 解: 例题2:如图所示:长为L的匀质杆在力F和光滑地面支持力的作用下保持 平衡,当外力撤消后,杆子倒下.试求杆子A端的运动方程。
(4)应用转动定理解题的基本方法(隔离体法)一般步骤为: 1. 将运动系统用假想平面分成若干个作定轴转动的刚体和质点的隔 离体.分别应用不同定理解题 2. 分析各隔离体的受力情况,作出受力图 3. 建立适当的坐标系 4. 建立动力学方程 ( 转动刚体根据转动定理列方程 质点根据牛 二定律列方程) 5. 建立各个隔离体之间的动力学和运动学关系 6. 由联立方程求解 例题: 如图所示是一阿特武德机,绳子一端悬挂一重物m1=500g,另一 端悬挂一重物m2=460g,半径r=5.0cm 的滑轮绕水平光滑轴转动,自静 止开始释放重物、并测得m1在5.0s内下降75cm,试由这些数据确定定滑 轮的转动惯量。(不计绳的质量及伸长,且绳与滑轮之间无相对滑动)
普通物理学教程力学课后答案高等教育出版社刚体力学习题解答
第七章刚体力学习题解答7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。
⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。
边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。
⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。
解:0.222.1==+==dtd dtd t ωθβω⑴t=0时,s m R v v y x /12.01.02.10,2.1=⨯====ωω2222/2.01.00.2/144.01.0/12.0/sm R a a s m R v a a y y n x =⨯===-=-=-=-=βτ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/ssm R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =⨯⨯=︒=-=⨯⨯-=︒-=ωω222222222222/182.0)14.20.2(1.0)(45sin 45sin 45sin /465.0)14.20.2(1.0)(45cos 45cos 45cos s m R R R a s m R R R a y x -=-⨯=-︒=︒-︒=-=+⨯-=+︒-=︒-︒-=ωβωβωβωβ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s2222/77.01.078.2/2.01.00.20/278.01.078.2s m R a s m R a v s m R v y x y x -=⨯-=-=-=⨯-=-==-=⨯-=-=ωβω7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω=10rad/s 逆时针转动,求臂与铅直成45º时门中心G 的速度和加速度。
第七章 刚体力学习题及解答
第七章刚体力学习题及解答7。
1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度。
估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据)。
解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min。
(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0。
1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上。
x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影。
解:( 1)( 2) 时,由( 3)当时,由7。
1。
5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同.所以:7。
1.6 收割机拔禾轮上面通常装4到6个压板。
拔禾轮一边旋转,一边随收割机前进。
压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1。
2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。
取收割机前进的方向为坐标系正方向7。
1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min。
(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹。
力学(专)第七章 刚体力学
16
例: 圆柱体作无滑滚动的条件: 圆柱体作无滑滚动的条件:滚动圆柱体边缘上各 点与支承面接触的瞬时,与支承面无相对滑动, 点与支承面接触的瞬时,与支承面无相对滑动,称圆 柱体作无滑滚动。如右图:以中心C点为基点, 柱体作无滑滚动。如右图:以中心C点为基点,则:
v r D
D
v v v v vD = vC +ω×rD v v v v ˆ ˆ j =vCi +ω(−k)×(−R ) v v v ˆ ˆ ( ˆ R R =vCi −ω i = vC −ω )i = 0 v R ∴vC =ω
v v drA = dsτ , s =θ rA v dθ v v drA ds v v 线速度: 线速度:v = τ = τ = rA τ = rAω A dt dt dt
线位移: 线位移:
v dω v v2 v v dvA ˆ τ+ τ n aA = = rA 线加速度: 线加速度: dt dt rA
v v ∑Fi = Mac
i
3、平动的自由度:3个 平动的自由度:
自由度:决定物体的空间位置所需要的独立坐标个数。 自由度:决定物体的空间位置所需要的独立坐标个数。 是描述物体运动自由程度的物理量 。 独立坐标:描写物体位置所需的最少的坐标数 。 独立坐标:
3
二、刚体绕固定轴的转动(较简单) 刚体绕固定轴的转动(较简单) 1、定义
θ =θ0 +∫ ω(t)dt
t 0
对角速度不随时间变化的转动叫匀速转动 对角度不随时间变化的转动叫匀速转动
ω =常 ⇒ θ= t +θ0 量 ω
8
(2) 已知叫速度的初始条件和角加速度,可得任意时刻的角速度 已知叫速度的初始条件和角加速度,
第七章 刚体力学
i
rc
mi ri
i
即:重心和质心重合。
M
注意:
① 该结论成立的条件是:刚体不是特别
大,各处的重力加速度相同。 ②重心仅在重力场中存在,若物体失重, 则无重心;但质心仍存在,故质心比重心更常 用到。
§7.2 刚体的平衡
刚体所受合外力为零,对任意参考点的力矩为零,则刚 体平衡。其充分必要条件可以表示为: Fi 0
解:
Q T1 T2
m1 g T1 m1a T m g m a 2 2 1 2 T1 R T2 R J a R , J MR 2 / 2
( m1 m 2 ) g a m1 m 2 M / 2
R
M
R
T1 '
Mg T ' 2
2
连续体的转动惯量: J
dm dl :质量线密度 dm dS :质量面密度 dm dV :质量体密度
3.决定刚体转动惯量的因素 ⑴与刚体的体密度有关(即与m有关); ⑵与刚体的几何形状有关(即与m的分布有关); ⑶与刚体的转轴位置有关。
r 2 dm
dm :质量元
即:与刚体的质量、质量的分布、以及转轴位置 有关。
P
R O m
4、垂直轴定理
如果薄板位于o-xy平面内, 则 J z J x J y
J z mi ri mi xi mi yi J y J x
2 2 2
z
yi
xi x
ri
y
mi
5. 常见对称刚体绕对称轴的转动惯量:
单个质点: I mr ,如图 7.2.2-1 (a)所示。
2
普通物理学第二版第七章课后习题答案
第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s 估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转[解 答](1)22(30001200)1/601.57(rad /s )t 12ωπβ⨯-⨯===V V(2)222220()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为球t 时刻的角速度和角加速度.[解 答]7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45o 时,(3)转过90o时,A 点的速度和加速度在x 和y 轴上的投影.[解 答](1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==v(2)45θ=o时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v R πθωω=+==∴==⨯v v v得(3)当90θ=o时,由7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45o 时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D点相同。
所以:7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反. 已知收割机前进速率为1.2m/s ,拔禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度.[解 答]取地面为基本参考系,收割机为运动参考系。
第7章 刚体力学习题课
Cm
h
mg 1 2 hm2 v1 2I11 21 2I22 2
不打滑:有 vR1 1R2 2
考虑到: I11 2m 1R1 2 I21 2m 2R2 2
得 v2
mgh
m1 m2 2m
解二:应用牛顿第二定律和转动定律
A: T1R1I11
(1)
m1, R1
A
T O 1
1
T1 m2, R2
解:在剪断的瞬间:
Fix0, FiymgT
acy
mg T m
(质心运动定理)
T
L 2
1 12
mL2
(转动定理)
acy
L
2
解得:
a
cy
3 4
g
F
1 4
mg
例12.如图,知A: m,l,质量均匀,开始时水平静止
B:m , , A竖直时被碰,然后
滑行距离S.
m
A
l
O
求 :碰后A的质心可达高度h.
第7章 刚体力学习题课
例2.均匀细棒 oA 可绕通过其一端 o 而与棒垂直
的水平固定光滑轴转动,如图所示.今使棒从水
平位置由静止开始自由下落,在棒摆动到竖直位
置的过程中,下列情况哪一种说法是正确的?
( A)
(A) 角速度从小到大,角加速度从大到小.
(B) 角速度从小到大,角加速度从小到大.
(C) 角速度从大到小,角
aR
I 1 MR2 2
(4)
m2
M,R
T1 m1
m1g T 2
m1
M,R
T1
m2
T2
联立方程,求解得:a Nhomakorabeam1g
0第七章 刚体静力学基础
二、理想约束类型和确定约束力方向的方法
(一) 理想刚性约束的常见类型 1.光滑接触面约束 2.光滑铰链约束 (1)固定铰链支座 (2)滚动铰链支座 (3)铰链 (4)球形铰链
1.光滑接触面约束 约束反力作用在接触点处,方向沿公法线,指向受力物体
P P
N N NA
NB
N
N
凸轮顶杆机构
N
2.光滑铰链约束 (1)固定铰支座 物体与固定在地基或机架上的支座有相同直径的孔,用 一圆柱形销钉联结起来,这种构造称为固定铰支座。
1. 不要漏画力 除重力、电磁力外,物体之间只有通过接触 才有相互机械作用力,要分清研究对象(受 力体)都与周围哪些物体(施力体)相接触, 接触处必有力,力的方向由约束类型而定。
要注意力是物体之间的相互机械作用。因此对 2. 不要多画力 于受力体所受的每一个力,都应能明确地指出 它是哪一个施力体施加的。
推论2:三力平衡汇交定理 刚体受三力作用而平衡,若其中两
力作用线汇交于一点,则另一力的作
用线必汇交于同一点,且三力的作用 线共面。(必共面,在特殊情况下,
力在无穷远处汇交—平行力系。) [证] ∵ F1 , F2 , F3 为平衡力系,
∴ FR , F3 也为平衡力系。 又∵ 二力平衡必等值、反向、共线, ∴ 三力 F , F , F 必汇交,且共面。 1 2 3
固定铰支座
固定铰支座
铰
固定铰支座
(2)滚动铰链支座 工程结构中为了减少因温度变化而引起的约束力,通 常在固定铰链支座的底部安装一排辊轮或辊轴,可是支座 沿固定支承面只有移动,这种约束称为滚动铰链支座。
滚动铰链支座
上摆
销钉 底板 滚轮
滚动铰链支座
滚动铰链支座
理论力学-刚体地平面运动
第七章 刚体的平面运动一、是非题 1.刚体作平面运动时,绕基点转动的角速度和角加速度与基点的选取无关。
( )2.作平面运动的刚体相对于不同基点的平动坐标系有相同的角速度与角加速度。
( )3.刚体作平面运动时,平面图形两点的速度在任意轴上的投影相等。
( )4.某刚体作平面运动时,若A 和B 是其平面图形上的任意两点,则速度投影定理AB B AB A u u ][][ 永远成立。
( )5.刚体作平面运动,若某瞬时其平面图形上有两点的加速度的大小和方向均相同,则该瞬时此刚体上各点的加速度都相同。
( )6.圆轮沿直线轨道作纯滚动,只要轮心作匀速运动,则轮缘上任意一点的加速度的方向均指向轮心。
( )7.刚体平行移动一定是刚体平面运动的一个特例。
( )二、选择题1.杆AB 的两端可分别沿水平、铅直滑道运动,已知B 端的速度为B u ,则图示瞬时B 点相对于A点的速度为 。
①u B sin; ②u B cos; ③u B /sin; ④u B /cos。
2.在图示啮合行星齿轮转动系中,齿轮Ⅱ固定不动。
已知齿轮Ⅰ和Ⅱ的半径各为r1和r2,曲柄OA以匀角速度0逆时针转动,则齿轮Ⅰ对曲柄OA的相对角速度1r应为。
①1r=(r2/ r1)0(逆钟向);②1r=(r2/ r1)0(顺钟向);③1r=[(r2+ r1)/ r1] 0(逆钟向);④1r=[(r2+ r1)/ r1] 0(顺钟向)。
3.一正方形平面图形在其自身平面运动,若其顶点A、B、C、D的速度方向如图(a)、图(b)所示,则图(a)的运动是的,图(b)的运动是的。
①可能;③不确定。
②不可能;4.图示机构中,O1A=O2B。
若以1、与2、2分别表示O1A杆与O2B杆的1角速度和角加速度的大小,则当O1A∥O2B时,有。
①1=2,1=2;②1≠2,1=2;③1=2,1≠2;④1≠2,1≠2。
三、填空题1.指出图示机构中各构件作何种运动,轮A(只滚不滑)作;杆BC作;杆CD作;杆DE作。
第七章-刚体力学I
弧长
s r
y
et
线速度
切向加速度 法向加速度
vt r
at r
an vt r
2
r O
2
s
x
r
注: r 的原点必须在转轴上.
三、角速度矢量
角速度是矢量,其方向沿转轴且与
刚体转动方向成右手螺旋系统.
若刚体同时参与两个轴的转动,则 合成角速度按平行四边形法则进行合成.
k
r1
r2
v1 v 2 r
2.转轴为非对称轴
如图, k 对O点同样有
L1 r1 m 1 v 1 m 2v2 L 2 r2 L L1 L 2
L1 r1m 1 v 1 L 2 r2 m 2 v 2
轴与屏幕垂直.
y
2 1
r A
y
rB
B
x
x
O
刚体平面运动 = 基点B的平动 + 绕B点轴定轴转动
rB ( t ) x B ( t )i y B ( t ) j
(t )
3. 平面运动的刚体上任意一点的速度
y
平面上A点相对于Oxy系的位置矢量
r rB r
*注:角速度总是与无限小角位移相联系, 无限小角位移是矢量, 所以角速度也是矢量.
A'
O
A''
2
而有限角位移不是矢量.
O
1
A
角速度和角加速度在直角坐标系的正交分解式为
x i y j z k
d dt x i y j z k
第七章刚体力学
第七章刚体力学在前面几章的学习中,我们先后讨论了质点、质点组在外力和内力作用下的运动规律。
在本章的学习中,我们将讨论质点组内各质点间无相对运动的一种特殊情况——刚体在外力作用下的运动规律。
刚体:在任何情况下形状大小都不发生变化的质点及合或各质点间没有相对运动的特殊质点系。
0,≡j i r d(i,j=1,2, )刚体这一概念虽然是一种理想化抽象模型,但却十分有用,因此又必要将刚体力学作一番深入地探讨。
同质点力学的情况相同,我们也是从两方面研究刚体力学。
刚体力学今天学习的内容:§7﹒1刚体运动的描述所做的工作:讨论刚体定轴转动和平面运动的运动学特征。
§7﹒1刚体运动的描述与质点力学的情况相同,所谓对刚体运动进行描述,就是研究刚体内任一点随时间的变化情况——研究刚体内任一点的速度、加速度随时间的变化规律。
目前,我们着重讨论前三种类型的刚体运动。
(一) 刚体的平动刚体最基本的运动形式是平动和绕固定轴的转动。
所以在学习刚体运动学时,都是从研究平动和绕固定轴的转动开始的。
所谓平动指的是:在运动过程中,刚体中任意一条直线在各个时刻的位置都保持平行或平行与自身的运动。
如图7-1所示,对刚体上任意二质点之间有关系式:ij i j r r r+=平动≡⇒ij r恒矢量,故而dtr d dt r d j i =及2222dt r d dt r d j i=所以,刚体平动时体内各质元的速度、加速度相等——任一点的运动均可代表整体的运动。
(二) 刚体绕固定轴的转动定轴转动,所有质元都在与某一直线垂直的诸平面上作圆周运动,且圆心在该直线上,并称该直线为转轴。
刚体运动学:研究刚体的运动情况以及如何对刚体的运动进行描述 刚体动力学:研究引起刚体运动状态发生变化的原因,进而阐明各种运动是如何由所受外力产生的。
刚体运动可分为五种类2、定轴转动 1、平动3、平面平行运动4、定点转动5、一般运动图7-1x图7-2建立直角坐标系,令z 轴与转轴重合,如图7-2有相同的x-y 坐标但z 不同质点都有相同的运动状态(a v,),任截面的运动可以代表整体的运动。
基础物理第七章刚体力学
5
理学院 物理系 陈强
二.刚体运动的自由度
1.自由度 确定对象运动位置的独立变量的个数,简 称为对象运动的自由度.
例如: 1个自由质点 ——3个自由度 (x,y,z) (r,,)
N个自由质点 ——3N个自由度 1个平面运动质点 ——2个自由度 1个曲线运动质点 ——1个自由度
m R2
理学院 物理系 陈强
例1: 如图, 已知2质点的m, 求Iz.
解: I miri2 2m(l 2)2 ml2 2
z m l/2 l/2 m
例2:如图, 已知均匀圆环M, R,求Iz.
z
解: I r 2dm R2 dm MR2 L
例3:如图, 已知匀质园盘M, R,求Iz.
注意:1.瞬心位置可以在刚体之外;一般随时间也在变化.
2.选瞬心为基点,刚体运动学问题可简化.
理学院 物理系 陈强
6.质元角速度与基点选择无关 :
选C基点: vP vC ω R
选C基点:
vP vC ω R
R
•P
C• R
RC
•C
注意 vC vC ω RC R RC R
L x2dx 1 ML2
1
ML2
M
L
2
L0
3
12
2
推广得平行轴定理: I IC md 2
IC — 对过质心转轴的转动惯量;d —平行轴间距
理学院 物理系 陈强
例6:均匀长方形薄片的边长为a与b,质量为m,求 此长方形薄片绕其对角线转动时的转动惯量。
解:取对角线为x轴,在o点和 它垂直的直线为y轴,并令t为 薄片的厚度,为密度。
演示文稿第七章刚体力学
M滚 FN —滚动摩擦因数,由实验测定.
第26页,共34页。
FN
FNO
W
FP
M滚
FN
O W FP
M滚 使物体角速度减小,则接触面各点有向前滑动趋势,从而 产生反向摩擦力(滚动摩擦)使物体减速.
滚动阻力因数´: / r, r是轮半径.
表7.2 是常见汽车轮在几种典型路面上的´ 值
第27页,共34页。
O
第10页,共34页。
[解] (1)由机械能守恒得
mghc
1 2
I 2
hc
1 2
l
I 1 ml 2 3
联立得
v l 3gl
FN
en
et
Ep=0
C
W
(2)根据质心运动定理
FN W mac
分量式
FNn
mg
m
vc2 rc
FNt mact
第11页,共34页。
杆处于铅直位置时不受力矩作用,由转动定理
如何理解滚动摩擦 << 滑动摩擦 ?
F
M滚
FN
C
W
Ff
F' A C
设滚子匀速滚动,则阻力和阻力矩分别为
Ff F FN W Ff r M滚 0 M滚 FN
联立得
F
Ff
r
FN
r
W
W
若滚子匀速平动 F FN W
表7.2与表3.2相比,有 F F
第28页,共34页。
§7.6 刚体的平衡
第20页,共34页。
[P239 例题2]质量为m的汽车在水平路面上急刹车,前后轮均 停止转动. 前后轮相距L,与地面的摩擦因数为 .汽车质心离 地面高度为h,与前轮轴水平距离为l .求前后车轮对地面的压力
07刚体力学
B
x' x
6
o
y'
⒉平面运动刚体上任意 一点的速度、加速度
x o 考虑刚体上任意一点A: r rB r ' v vB v ' vB r '
A y r' B r rB
x'
表明:刚体上任一点的速度等于该点随基点坐标系的平动速 度加上该点绕基点坐标系的转动速度 d ( r ' ) d dr ' a aB aB r ' a B r ' v ' dt dt dt 表明:刚体上任意一点的加速度等于该点随基点坐标系的平 动加速度加上该点绕基点坐标系的转动加速度
r
B vC
C
r
8
§7.2 刚体的质心和刚体的动量
㈠刚体的质心
⒈质心计算公式
y
o
x • 质量分立分布:rC mi ri / mi xC mi xi / mi yC mi yi / mi zC mi zi / mi • 质量连续分布:rC rdm / dm xC xdm/ dm, yC ydm/ dm, zC zdm / dm ⒉求质心的几种方法 ⑴对称法:根据刚体质心的定义式可知,刚体的质心必定 在刚体的对称中心、对称轴、对称平面上
x
y
z
y
θ
x
A
2
⒈定轴转动的角量描述
角坐标: (t )
角位移: (t t ) (t )
角速度: d / dt 角加速度: d / dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 刚体力学 习题7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]-527.2710(rad/s)243600πω==⨯⨯自-72 2.0410(rad/s)365243600πω==⨯⨯⨯公R νω=自22n a RRνω==7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?[解 答] (1)22(30001200)1/601.57(rad /s )t12ωπβ⨯-⨯===(2)22222()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为34at bt ct θ=+- (:rad,t :s).θ球t 时刻的角速度和角加速度.[解 答]34at bt ct θ=+-23d a 3bt 4ct dt θω==+-2d 6bt 12ct dt ωβ==-7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45时,(3)转过90时,A 点的速度和加速度在x 和y 轴上的投影.[解 答]21.2t t 1.22t 2θωβ=+=+=(1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴== 22n a a 0.144(m /s )Ryx ν==-=-2y a R 0.2(m/s )β==(2)45θ=时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v Rπθωω=+==∴==⨯得ˆˆˆ i j kˆˆ 0 0 0.15j0.15i R cos R sin 0ωθθ==-x y A A 0.15(m /s),015(m /s)d dˆˆa (R sin i R cos j)dt dt νννωθωθ∴=-===-+221222x y dˆˆR(sin i cos j)dtˆˆR[(cos sin )i (sin cos )j ˆˆ0.183j0.465i(m /s )a 0.465(m /s ),a 0.183(m /s )ωθωθωθβθωθβθ-=-+=--+-+=--∴=-=-(3)当90θ=时,由2A x y 2x 22x y 1.2t t ,t 0.7895(s), 2.78(rad /s)2ˆˆv R i 0.278i(m/s)0.278(m /s),0(m /s)a R 0.2(m /s )a 0.77(m /s )Rπθωωννβν=+====-⨯=-∴=-==-=-=-=-得7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D 点相同。
所以:G 222G AB 1.51015(m/s)a AB 1.510150(m/s )νωω=⋅=⨯==⋅=⨯=7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为1.2m/s ,拔禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度.[解 答]取地面为基本参考系,收割机为运动参考系。
ννν∴=+板牵轮取收割机前进的方向为坐标系正方向n D1.20.53(m /s)3020.53(m /s)ˆ0.53i(m /s)πννννν∴-=-+=-⨯+=-∴=∴=-板对地板对轴轴对地板对地板对地7.1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm ,发动机转速2000rev/min.(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h 的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹.[解 答]取地球为基本参考系,飞机为运动参考系。
(1)研究桨头相对于运动参考系的运动:nR 1.5314.16(m /s)30πνω==⨯=相(2)研究桨头相对于基本参考系的运动:,(314.16)321.7(m /s)3600νννννν=+⊥∴=+= ⎝绝相牵相牵绝由于桨头同时参与两个运动:匀速直线运动和匀速圆周运动。
故桨头轨迹应是一个圆柱螺旋线。
7.1.8 桑塔纳汽车时速为166km/h.车轮滚动半径为0.26m.自发动机至驱动轮的转速比为0.909.问发动机转速为每分多少转.[解 答]设发动机转速为n 发,驱动轮的转速为n 轮。
由题意:n 0.909,n 0.909n n ==发发轮轮 (1)汽车的速率为316610,60⨯ 3166102R n 60π⨯=轮轮316610n 2R 60π⨯∴=轮轮 (2) (2)代入(1)3316610n 0.9091.5410(rev /min)2R 60π⨯==⨯发轮7.2.2 在下面两种情况下求直圆锥体的总质量和质心位置.(1)圆锥体为均质;(2)密度为h 的函数:h (1),Lρρρ=-为正常数.[解 答]建立如图坐标O-x,由对称轴分析知质心在x 轴上。
由cdm dv dv dm dv dv x x x x ρρ===⎰⎰⎰⎰⎰⎰ 得:(1质量 21m v a L 3ρπρ==(2)L200c 200a h ()(1)d 4L L L(h=L )h a 5(1)()d L L x x x x x x x ππρρπ⋅⋅-==--⋅⎰⎰质量22000h a Lm (1)()d a L L 4x x πρπρπ=-⋅=⎰ 7.2.3 长度为的均质杆,令其竖直地立于光滑的桌面上,然后放开手,由于杆不可能绝对沿铅直方向,故随即到下.求杆子的上端点运动的轨迹(选定坐标系,并求出轨迹的方程式).[解 答]建立坐标系,水平方向为x 轴,竖直方向为y 轴.杆上端坐标为(x,y ),杆受重力、地面对杆竖直向上的支承力,无水平方向力。
由i c F a m =∑外(质心运动定理)质心在杆的中点,沿水平方向质心加速度为零。
开始静止,杆质心无水平方向移动。
由杆在下落每一瞬时的几何关系可得:222(2x)y +=即杆上端运动轨迹方程为:x2224x y +=7.3.1 (1)用积分法证明:质量为m 长为的均质细杆对通过中心且与杆垂直的轴线的转动惯量等于21m12.[解 答]建立水平方向o —x 坐标2m dI x dx=2220m1I 2x dx m 12==⎰(2)用积分法证明:质量为m 、半径为R 的均质薄圆盘对通过中心且在盘面内的转动轴的转动惯量为21mR 4.[解 答]3RR2222221m 4m I 2(R x )dx12R 3R ππ=-⎰⎰令x Rsin θ=322244222224m 4mI (R R sin )R cos d R cos d 3R 3R ππθθθθθππ=-=⎰⎰=22224m1cos 21()d mR 3R24πθθπ+=⎰或3R22224mI (R x )dx,3Rπ=-⎰利用公式n n n 22221222222u(u a )na (u a )du (u a )du n 1n 1-±±=±±++⎰⎰7.3.2 图示实验用的摆,0.92m =,r 0.08m =,m 4.9kg =,r m 24.5kg =,近似认为圆形部分为均质圆盘,长杆部分为均质细杆.求对过悬点且与摆面垂直的轴线的转动惯量.[解 答]将摆分为两部分:均匀细杆(1I ),均匀圆柱(2I ) 则12I I I =+1I =221m L0.14(kg m )32I =22r r1m r m (L r)2++ (用平行轴定理)22.51(kg m ) I=0.14+2.51=2.652(kg m ) 7.3.3 在质量为M 半径为R 的均质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量.[解 答]设未挖两个圆孔时大圆盘转动惯量为I 。
如图半径为r 的小圆盘转动惯量为1I 和2I 。
则有x 12I I I I =-- (12I I =)222222211m M R MR 2[r r r ()]22R R 2ππππ=-+422212r M(R r )2R =--7.3.5 一转动系统的转动惯量为2I 8.0kg.m =,转速为41.9rad /s ω=,两制动闸瓦对轮的压力都为392N ,闸瓦与轮缘间的摩擦系数为0.4μ=,轮半径为r 0.4m =,从开始制动到静止需要用多少时间?[解 答] zz z MI β=∑z2z zM15.68(rad /s )I β∴==-∑z 0z z t=41.915.68tt=2.67(s)ωωβ=+-7.3.6 均质杆可绕支点O 转动,当与杆垂直的冲力作用某点A 时,支点O 对杆的作用力并不因此冲力之作用而发生变化,则A 点称为打击中心.设杆长为L ,求打击中心与支点的距离.[解 答]杆不受F 作用时,支点O 对杆的作用力N ,方向竖直向上,大小为杆的重量。
依题意,当杆受力F 时,N 不变。
建立如图坐标系,z 轴垂直纸面向外。
由质心运动定理得:(O x -方向投影)c F ma =(质心在杆中点) (1)由转动定理得:201F OA I mL 3ββ⋅== (2)有角量与线量的关系c 1a L 2β=(3)(1)(2)(3)联立求解21mL 23OA L 13L 2ββ==7.3.7 现在用阿特伍德机测滑轮转动惯量.用轻线且尽可能润滑轮轴.两端悬挂重物质量各为1m 0.46kg =,且2m 0.5kg =.滑轮半径为0.05m .自静止始,释放重物后并测得5.0s 内2m 下降0.75m .滑轮转动惯量是多少?[解 答]分析受力。
建立坐标系,竖直向下为x 轴正方向,水平向左为y 轴正方向。
z 轴垂直纸面向里。
根据牛顿第二定律,转动定理,角量与线量关系可列标量方程组:()1111222212m g T m a m g T m (a )T T R I β⎧-=⎪-=-⎨⎪''-=⎩已知21121122121a R ,a a ,T T ,T T ,at m ,m ,R,,t 2x x β''=====(其中为已知)求解上列方程组:2122221212112a 0.06(m /s )tR I [(m m )g (m m )a ]1.3910(kg m )a x-===-++=⨯⋅7.3.8 斜面倾角为θ,位于斜面顶端的卷扬机鼓轮半径为R ,转动惯量为I ,受到驱动力矩M ,通过绳索牵引斜面上质量为m 的物体,物体与斜面间的摩擦系数为μ,求重物上滑的加速度.绳与斜面平行,不计绳质量.[解 答]分析受力及坐标如图。