(完整版)二次函数最大利润应用题(含答案)
二次函数的实际应用(利润最值问题)附答案
第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元 y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x ∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m . 解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元).,应选乙地.。
二次函数最大利润求法经典
一、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件。
已知商品的进价为每件40元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价涨了多少元?可表示为 (x-60)问题3:售价为x 元,销售数量会减少,减少的件数为 -60202x ⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+ 因为0600x x ⎧⎨-≥⎩f 自变量x 的取值范围是 60x ≥问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元知商品的进价为每件40元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价降了多少元?可表示为 (60-x )问题3:售价为x 元,销售数量会增加,增加的件数为 60402x -⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为60300402x y -=+⨯= 30020(60)x +-= 201500x -+ 因为0600x x ⎧⎨-≥⎩f 所以,自变量x 的取值范围是 060x ≤≤问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量根据题目内容,完成下列各题:1、涨价时(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+ 因为0600x x ⎧⎨-≥⎩f 自变量x 的取值范围是 60x ≥(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为1(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?1W = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元2、降价时:(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为 60300402x y -=+⨯= 30020(60)x +-= 201500x -+ 因为0600x x ⎧⎨-≥⎩f2W =(40)x -y= (40)x -(201500x -+)= 220230060000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为2W =(40)x -(60300402x -+⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元本题解题过程如下:解:设售价为x 元,利润为W(1)涨价时,1W =(40)x -(300 --60202x ⨯) = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元(2)降价时,2W =(40)x -(300+60402x -⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。
二次函数的实际应用(利润最值问题)附答案
第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(20XX 年青岛市)在20XX 年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x 160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元).,应选乙地.。
二次函数最大值最小值应用题
二次函数最大值最小值应用题
一家公司生产成本函数为 y=2x^2+30x+1000,其中 x 表示生产数量(每周单位)。
每周的经销商订购量为 120 个,出售价格为 15 美元,而每个产品的制造成本为 5 美元,求该公司实现最大利润时每周需要生产多少个产品。
利润就是收入减去成本,每周的收入是 120*15=1800 美元。
而成本函数为 y=2x^2+30x+1000,其中的 x 表示每周的生产数量。
每个产品的制造成本是 5 美元,因此成本 y=5x。
利润方程为:Profit(x) = 1800 - 5x - (2x^2 + 30x + 1000)
整理后变成二次函数 y=-2x^2 + 25x - 800
这个二次函数的 a=-2<0,因此它是一个开口向下的抛物线。
最大利润可以通过找到函数的最高点来确定。
最高点的 x 坐标是通过求导数为 0 的 x 值得到的。
求导数
f'(x) = -4x + 25,令其等于 0,解得 x=6.25。
因此,该公司必须每周生产6.25 x 2 ≈ 12.5 个产品,以最大化其利润。
二次函数利润问题含答案
1 / 7二次函数综合题的分类一二次函数综合题的分类一1、 为了落实国务院副总理李克强同志到恩施考察时的指示精神。
为了落实国务院副总理李克强同志到恩施考察时的指示精神。
最近,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量W (千克)与销售价X (元(元//千克)有如下关系,千克)有如下关系,W=W=W=——2X+802X+80.设:这种农产品每天的销售利润为.设:这种农产品每天的销售利润为y (元)(元) (1)求y 与X 之间的函数关系式;之间的函数关系式;(2)当销售价总为多少元时,每天的销售利润最大?最大利润是多少?)当销售价总为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?元的销售利润,销售价应定为多少元?(1)y =(x-20x-20))W=W=((x-20x-20))(-2x+80-2x+80))=-2x 2+120x-1600∴ y 与x 的函数关系式为y=y=--2x 2+120x-1600 +120x-1600(2)y =-2x 2+120x-1600=-2(x-30)2+200 ∴当x=30 时,时,y y有最大值200 所以当销售价定为30元/千克时,每天可获得最大销售利润200元(3)当y =150时,可得方程时,可得方程-2(x-30)-2(x-30)2+200=150 用这个方程,得x 1=25 =25 x 2=35 根据题意x 2=35不合题意,应舍去.不合题意,应舍去.∴当销售量为25元/千克时,该农户每天可获得销售利润150元.元.2、某公司生产的某种时令商品每件成本为20元,经过市场调查发现,这种商品在未来40天内的月销售量m (件)与时间t (天)的关系如下表:(天)的关系如下表:时间t (天)(天) 13 5 10 36 月销售量m (件)9490867624未来40天内,前20天每天的价格y 1(元(元 / /件)件)与时间t (天)的函数关系式为y 1=0.25t+25(1(1≤≤ t ≤20且t 为整数为整数))后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为(天)的函数关系式为 y 2=-0.5t+400.5t+40((2121≤≤t ≤40且t 为整数)下面我们就来研究销售这种商品有关问题。
二次函数的实际应用(利润最值问题)附答案
第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中,•“某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x 当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(20XX 年青岛市)在20XX 年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x 160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元).,应选乙地.。
二次函数的应用(利润问题)(2012.9 答案)
二次函数的实际应用(2012.9)1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_ _元,最大利润为_ _元.2. 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?4.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?5.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系若日销售量y是销售价x的一次函数.⑴求出日销售量y(件)与销售价x(元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?6.“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30 x )存在如下图所示的一次函数关系式.⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).7.在2012 年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大?8.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?参考答案1解:设每件价格降价x 元,利润为y 元,则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润则)10300)(4060(1x x y -+-=)60010(102---=x x 6250)5(102+--=x 当5=x ,即:定价为65元时,6250max =y (元) )20300)(4060(2x x y +--=)15)(20(20+--=x x 6125)5.2(202+--=x 当5.2=x ,即:定价为57.5元时,6125max =y (元)综合两种情况,应定价为65元时,利润最大.3解:设每件价格提高x 元,利润为y 元,则:)20400)(2030(x x y --+=)20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润. 4解:设旅行团有x 人)30(≥x ,营业额为y 元,则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,可以获得最大营业额. 5解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,即一次函数表达式为40+-=x y . ⑵ 设每件产品的销售价应定为x 元,所获销售利润为w 元 y x w )10(-=)40)(10(+--=x x 400502-+-=x x 225)25(2+--=x当25=x ,225max =y (元)答:销售价应定为25元时,每日获得最大销售利润为225元6解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得,即100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值. 当35)20(21400=-⨯=x 时,4500max =P (元) 答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x •≤34或36≤x≤39. 7解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 ,∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.8.解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x 160012022-+-=x x 当30=x ,200max =y (元) (1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元.(3) 150200)30(22=+--x ,25)30(2=-x 28351>=x (舍去)252=x 答:该农户想要每天获得150元的销售利润,销售价应定为25元.,应选乙地.。
(完整版)二次函数最大利润应用题(含答案)
二次函数最大利润应用题参考答案与试题解析1.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.2.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【解答】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w=513(元);最大②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w=741(元);最大③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w=768(元);最大综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w=(6+a﹣p)(30x+120)=510(a+1.5),13∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.。
二次函数最大利润问题练习
二次函数最大利润问题练习例1:某旅社共有120间客房,每间客房的日租金为50元,每天都客满。
旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房数会减少6间。
不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?变式1:某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元。
为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。
经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。
①若商场平均每天要盈利1200元,每件衬衫应降价多少元?②若每件衬衫降价x元时,商场平均每天盈利y元,写出y与x的函数关系式。
例2:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台。
为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施。
调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。
1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式。
2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?变式2:某商品的进价为每件40元,售价为每件50元,每个月可卖出210件。
如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。
设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元。
1)求y与x的函数关系式并直接写出自变量x的取值范围。
2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元。
例3:某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家。
经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。
九年级数学上册二次函数的应用——最大利润问题同步练习及答案
最大利润问题——典型题专项训练知识点 1 利润最大化问题1.毕节某旅行社在十一黄金周期间接团去外地旅游,经计算所获营业额y(元)与旅行团人员x(人)之间满足关系式y=-x2+100x+28400,要使所获营业额最大,则旅行团应有( )A.30人B.40人C.50人D.55人2.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.36元3.2017·贵阳模拟某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元/件)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式.(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少时,商场可获得最大利润,最大利润是多少?知识点 2 利用二次函数的最值解决其他实际问题4.两个数的和为6,这两个数的积最大可以达到________.5.某果园有90棵橘子树,平均每棵树结520个橘子.根据经验估计,每多种一棵橘子树,平均每棵树就会少结4个橘子.设果园里增种x棵橘子树,橘子总个数为y个,则果园里增种________棵橘子树时,橘子总个数最多.6.生物学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测量出这种植物高度的增长情况(如下表).科学家经过猜想,推测出y与x之间是二次函数关系.(1)求y与x之间的函数表达式;(2)推测最适合这种植物生长的温度,并说明理由.图2-4-127.如图2-4-13所示,正方形ABCD的边长为4,E,F分别是边BC,CD上的两个动点,且AE⊥EF,则AF的最小值是________.图2-4-138.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小明和小华提出的问题.图2-4-149.经市场调查,某种商品在第x天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求y与x之间的函数关系式;(2)销售该商品第几天时,当天销售利润最大?最大利润是多少?10.东坡商贸公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的销售单价p(元/千克)与时间t(天)之间的函数关系式为p=\f(1412)t+48(25≤t≤48,t为整数),且其日销售量y(千克)与时间t(天)的关系如下表:(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少;(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1千克水果就捐款n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐款后的日销售利润随时间t的增大而增大,求n的取值范围.详解1.C 2.A3.解:(1)根据题意,得65k+b=55,75k+b=45,)解得k=-1,b=120.)∴一次函数的表达式为y=-x+120.(2)根据题意,得W=(x-60)(-x+120)=-x2+180x-7200=-(x-90)2+900.∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而60≤x≤87,∴当x=87时,W最大=-(87-90)2+900=891.∴当销售单价定为87元/件时,商场可获得最大利润,最大利润是891元.4.95.20 [解析] 设果园里增种x棵橘子树,那么果园里共有(x+90)棵橘子树,∵每多种一棵树,平均每棵树就会少结4个橘子,∴平均每棵树结(520-4x)个橘子.∴y=(x+90)(520-4x)=-4x2+160x+46800,∴当x=-b2a=-1602×(-4)=20时,y最大,橘子总个数最多.6.解:(1)设y=ax2+bx+c(a≠0),选(0,49),(2,41),(-2,49)代入后得方程组c=49,4a-2b+c=49,4a+2b+c=41,解得a=-1,b=-2,c=49,∴y与x之间的函数表达式为y=-x2-2x+49.(2)最适合这种植物生长的温度是-1 ℃.理由:由(1)可知,当x=-b2a=-1时,y取最大值50,即说明最适合这种植物生长的温度是-1 ℃.7.5 [解析] 在Rt△ADF中,AF2=AD2+DF2=42+(4-CF)2,若AF最小,则CF最大.设BE=x,CF=y,∵∠B=∠AEF=90°,则∠BAE+∠AEB=∠FEC+∠AEB=90°,∴∠BAE=∠FEC,∴△ABE∽△ECF,∴ABEC=BECF,即44-x=xy,化简得y=-x2+4x4=-14(x-2)2+1,∴当x=2时,y有最大值为1,此时DF最小,为3,由勾股定理得到AF=AD2+DF2=5.8.解:(1)小华的问题解答:设利润为W元,每个定价为x元,则W=(x-2)·[500-100(x-3)]=-100x2+1000x -1600=-100(x-5)2+900.当W=800时,解得x=4或x=6,又因为2×240%=4.8(元),所以x=6不符合题意,舍去,故每个定价为4元时,每天的利润为800元.(2)小明的问题解答:当x<5时,W随x的增大而增大.所以当x=4.8时,W最大,为-100(4.8-5)2+900=896(元).所以800元销售利润不是最多,每个定价为4.8元时,才会使每天利润最大.9.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.(2)当1≤x<50时,二次函数图象的开口向下,对称轴为直线x=-b2a=45,∴当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y随x的增大而减小,∴当x=50时,y最大=-120×50+12000=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.10.解:(1)依题意,得y=120-2t.当t=30时,y=120-60=60.答:在第30天的日销售量为60千克.(2)设日销售利润为W元,则W=(p-20)y.当1≤t≤24时,W=(14t+30-20)(120-2t)=-12t2+10t+1200=-12(t-10)2+1250.当t=10时,W最大=1250.当25≤t≤48时,W=(-12t+48-20)(120-2t)=t2-116t+3360=(t-58)2-4.由二次函数的图象及性质知,当t=25时,W最大=1085.∵1250>1085,∴在第10天的销售利润最大,最大日销售利润为1250元.(3)依题意,得每天扣除捐款后的日销售利润W=(14t+30-20-n)(120-2t)=-12t2+2(n+5)t+1200-120n.其图象对称轴为直线t=2n+10,要使W随t的增大而增大.由二次函数的图象及性质知,2n+10≥24,解得n≥7.又∵n<9,∴7≤n<9.。
人教版初三数学上册二次函数与最大利润问题(作业及答案)
第2课时 二次函数与最大利润问题1.烟花厂为扬州“烟花三月”国际经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1,若这种礼炮在最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s2.某旅行社有100张床位,每床每晚收费20元时,客床可全部租出,若每床每晚每次收费提高4元时,则减少10张床位租出;以每次提高4元的这种方法变化下去,为了投资少而获利大,每床每晚应提高( )A .8元或12元B .8元C .12元D .10元3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =___元时,一天出售该种手工艺品的总利润y 最大.4.将进货单价为70元的某种商品按零售单价100元售出时,每天能卖出20个,若这种商品零售价在一定范围内每降价1元,其日销售量就增加1个,为获得最大利润,应降价__ 元.5.某化工材料经销公司购进了一种化工原料共7 000千克,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于每千克30元,市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不是一天时,按整天计算).设销售单价为x 元,日均获利为y 元,那么:(1)y 关于x 的二次函数关系式为_ _;(2)当销售单价定为____元时,日均获利最大,日均获利最大为___元.6.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖出10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?7.在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?8.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元时,未租出的车将增加1辆;公司平均每日的各项支出共4 800元.设公司每日租出x辆车,日收益为y元(日收益=日租金收入-平均每日各项支出).(1)公司每日租出x辆车时,每辆车的日租金为________元(用含x的代数式表示);(2)当每日租出多少辆车时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆车时,租赁公司的日收益不盈也不亏?9.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图22-3-6所示的关系:图22-3-6(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?10.水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图22-3-7所示的一次函数关系.图22-3-7①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)第2课时 二次函数与最大利润问题(答案)1.烟花厂为扬州“烟花三月”国际经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1,若这种礼炮在最高点处引爆,则从点火升空到引爆需要的时间为( B )A .3 sB .4 sC .5 sD .6 s【解析】 当t =-b 2a 时,即t =-202×⎝⎛⎭⎫-52=4(s)时,礼炮升到最高点,故选B. 3.某旅行社有100张床位,每床每晚收费20元时,客床可全部租出,若每床每晚每次收费提高4元时,则减少10张床位租出;以每次提高4元的这种方法变化下去,为了投资少而获利大,每床每晚应提高( C )A .8元或12元B .8元C .12元D .10元【解析】 设每床每晚应提高x 元,则减少出租床x 4·10张,所获利润y =(20+x )⎝⎛⎭⎫100-x 4·10,即y =-52x 2+50x +2 000=-52(x -10)2+2 250. 由x 是4的正整数倍和抛物线y =-52(x -10)2+2 250关于x =10对称可知,当x =8或x =12时,获利最大,又因为出租床位较少时,投资费用少,故选C.3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =__4__元时,一天出售该种手工艺品的总利润y 最大.【解析】 依题意得y =x (8-x )=-(x -4)2+16,当x =4时,y 取得最大值.4.将进货单价为70元的某种商品按零售单价100元售出时,每天能卖出20个,若这种商品零售价在一定范围内每降价1元,其日销售量就增加1个,为获得最大利润,应降价__5元__.【解析】 设降价x 元,所获利润为y 元,则有y =(100-70-x )(20+x )=-x 2+10x +600=-(x -5)2+625.当x =5时,y 值最大,故应降价5元.5.某化工材料经销公司购进了一种化工原料共7 000千克,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于每千克30元,市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不是一天时,按整天计算).设销售单价为x元,日均获利为y元,那么:(1)y关于x的二次函数关系式为__y=-2x2+260x-6__500(30≤x≤70)__;(2)当销售单价定为__65__元时,日均获利最大,日均获利最大为__1__950__元.【解析】(1)当销售单价为x元时,实际降价了(70-x)元,日均销售量为千克,日均获利为x-30-500=(x-30)-500,所以y=(x-30)-500=-2x2+260x-6 500(30≤x≤70).(2)因为y=-2x2+260x-6 500=-2(x-65)2+1 950,所以当销售单价定为65元时,日均获利最大,最大利润为1 950元.6.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖出10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?解:(1)依题意有y=(60+x-50)(200-10x)(0<x≤12且x为整数),即y=-10x2+100x+2 000(0<x≤12且x为整数).(2)y=-10x2+100x+2 000=-10(x2-10x)+2 000=-10(x-5)2+2 250,∴当x=5时,y有最大值2 250,即当每件商品的售价定为65元时,每个月可获得最大利润,最大月利润是2 250元.7.在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y (件)与销售价格x (元/件)满足一个以x 为自变量的一次函数.(1)求y 与x 满足的函数关系式(不要求写出x 的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P 最大?解:(1)设y 与x 满足的函数关系式为:y =kx +b由题意可得:⎩⎪⎨⎪⎧36=24k +b 21=29k +b . 解得⎩⎪⎨⎪⎧k =-3b =108. 故y 与x 的函数关系式为:y =-3x +108.(2)每天获得的利润为:P =(-3x +108)(x -20)=-3x 2+168x -2 160=-3(x -28)2+192.故当销售价定为28元时,每天获得的利润最大.8.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元时,未租出的车将增加1辆;公司平均每日的各项支出共4 800元.设公司每日租出x 辆车,日收益为y 元(日收益=日租金收入-平均每日各项支出).(1)公司每日租出x 辆车时,每辆车的日租金为________元(用含x 的代数式表示);(2)当每日租出多少辆车时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆车时,租赁公司的日收益不盈也不亏?解:(1)1 400-50x ;(2)y =x (-50x +1 400)-4 800=-50x 2+1 400x -4 800=-50(x -14)2+5 000,当x =14时,在0≤x ≤20范围内,y 有最大值5 000,∴当每日租出14辆时,租赁公司日收益最大,最大是5 000元.(3)要使租赁公司日收益不盈也不亏,则y =0,即-50(x -14)2+5 000=0,解得x 1=24,x 2=4,但x 2=24不合题意,舍去,∴当每日租出4辆时,租赁公司日收益不盈也不亏.9.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x (元/件)与每天销售量y (件)之间满足如图22-3-6所示的关系:图22-3-6(1)求出y 与x 之间的函数关系式;(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0).由所给函数图象得⎩⎪⎨⎪⎧130k +b =50150k +b =30,解得⎩⎪⎨⎪⎧k =-1b =180 ∴函数关系式为y =-x +180.(2)W =(x -100)y =(x -100)(-x +180)=-x 2+280x -1 8000=-(x -140)2+1 600,当售价定为140元时,W 最大=1 600.∴售价定为140元/件时,每天最大利润W =1 600元.10.水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y (千克)与销售单价x (元/千克)满足如图22-3-7所示的一次函数关系.图22-3-7①求y 与x 之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)解:(1)设现在实际购进这种水果每千克a 元,根据题意,得:80(a +2)=88a解之得:a =20答:现在实际购进这种水果每千克20元.(2)①∵y 是x 的一次函数,设函数关系式为y =kx +b将(25,165),(35,55)分别代入y =kx +b ,得:⎩⎪⎨⎪⎧25k +b =16535k +b =55 解得:k =-11,b =440∴y =-11x +440②设最大利润为W 元,则W =(x -20)(-11x +440)=-11(x -30) 2+1 100∴当x =30时,W 最大值=1 100答:将这种水果的单价定为每千克30元时,能获得最大利润1 100元.。
二次函数应用-利润(含答案及解析)
二次函数应用一.解答题(共19小题)1.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤.时间x(天)1≤x<99≤x<15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+400设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数解析式,并求出第几天时销售利润最大.2.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.3.在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?4.小宝大学毕业后回家乡透行园艺创业,第一期培植盆景与花卉各50盆,售后进行统计得知:盆景的平均每盆利润是160元,花卉的平均每盆利润是20元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元:每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均际盆利润始终不变,小宝计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1、W2(单位:元)(1)用含x的代数式分别表示W1、W2;(2)当x取何值时,第二期培植的盆景与花卉销售完所获得的总利润最大?最大总利润是多少?5.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y (万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?6.温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.7.商场经营一种新型商品,进价为150元,据市场调查,销售单价是200元时,平均每月销售量是80件,而销售价每降低1元,平均每月就可以多售出2件.为了减少库存,尽快回笼资金,商场打算降价销售.(注:销售利润=销售收入﹣购进成本)(1)若降价2元,商场每月销售这种商品的利润是多少元?(2)假定每件商品降价x元,商场每月销售这种商品的利润是y元,请写出y与x之间的函数关系式.(2)每件商品销售价定为是多少元时,商场每月销售这种商品的利润最大?最大利润是多少元?8.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.9.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放,某日从上午7点到10点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的变化趋势如图1,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的变化趋势是以原点为顶点的抛物线的一部分,如图2,若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.(1)求图2中所确定抛物线的解析式;(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?10.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)在(2)的前提下,若许愿瓶的进货成本不超过900元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.11.为了扶持大学生自主创业,某市政府提供了50万元无息贷款,用于某大学生开办公司,生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件20元,员工每人每月的工资为2500元,公司每月需支付其他费用5万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式.(2)当销售单价定为25元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有40名员工,则该公司最早可在几个月后还清无息贷款?12.某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x 取整数)之间的函数关系如下表:月份x123456789价格y1(元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.13.在“春季经贸洽谈会”上,我市某服装厂接到生产一批出口服装的订单,要求必须在12天(含12天)内保质保量完成,且当天加工的服装当天立即空运走.为了加快进度,车间采取工人轮流休息,机器满负荷运转的生产方式,生产效率得到了提高.这样每天生产的服装数量y(套)与时间x(元)的关系如表:时间x(天)1234…每天产量y(套)22242628…由于机器损耗等原因,当每天生产的服装数达到一定量后,平均每套服装的成本会随着服装产量的增加而增大,这样平均每套服装的成本z(元)与生产时间x(天)的关系如图所示.(1)判断每天生产的服装的数量y(套)与生产时间x(元)之间是我们学过的哪种函数关系?并验证.(2)已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w (元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?(3)从第6天起,该厂决定该车间每销售一套服装就捐a元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金?14.九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x 为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天)13060901981408020每天销售量p(件)(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.15.为加速南充森林建设,市政府决定对树苗育苗基地实行政府补贴,规定每年培植一亩树苗一次性补贴若干元,随着补贴数字的不断增大,某地苗圃每年育苗规模也不断增加,但每年每亩苗圃的收益会相应下降,经调查每年培植亩数y(亩)与政府每亩补贴数额x (元)之间有如下关系(政府补贴为100元的整数倍,且每亩补贴不超过1000元):x(元)0100200300400y(亩)6001000140018002200而每年每亩的收益p(元)与政府每亩补贴数额x(元)之间满足一次函数关系p=﹣5x+9000(1)请观察题中的表格,用学过的一次函数、反比例函数或二次函数的有关知识求出育苗亩数y(亩)与政府每亩补贴数额x(元)之间的函数关系式;(2)当2012年政府每亩补贴数额x(元)是多少元时,该地区苗圃收益w(元)最大,最大收益是多少元?(3)在2012年苗圃取得最大收益的育苗情况下,该地区培植面积刚好达到最大化,要想增收,只能提高每亩收益.经市场调查,培育银杏树苗畅销,每亩的经济效益相应会更好.2013年该地区用去年育苗面积的(30﹣a)%的土地培育银杏树苗,其余面积继续培植一般类树苗,预计今年培育银杏类树苗每亩收益在去年培植一般类树苗每亩收益的基础上增加了(100+3a)%,由于培育银杏类树苗每亩多支出1000元,2013年该地区因培育银杏类树苗预计比去年增收399万元.请参考以下数据,通过计算,估算出a的整数值.(参考数据:=5.916,=6.082,=6.244)16.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?17.某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价﹣进价)】18.小丽、小强和小红三位同学到某超市参加了社会实践活动,他们进行某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系;小丽:如果以10元/千克的价格销售,那么每天可售出300千克;小强:如果以13元/千克的价格销售,那么每天可获取利润750元.(1)写出以13元/千克的价格销售的销售数量y;(2)①求出y(千克)与x(元)(x>0)的函数关系式;②设该超市销售这种水果每天获取的利润为w元,求出w与x的函数关系式;并求当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?.19.已知:某种水果的进价为每千克2元,据市场预测,日销售量y(千克)与售价x(元)的关系是y=60﹣x(2<x≤60).(1)请直接写出售价为10元时的日销售量;(2)在销售期间的累计折损费用z(元)与售价x(元)的关系式为z=x2+bx+c,若售价为2元时,该种水果的累计折损费用为5元;若售价为3元时,该种水果的累计折损费用为8元.①求z关于x的函数关系式;②设该种水果日销售的总利润为W元,若日销售量y不少于45千克,试求W的最大值.(总利润=总收入﹣总支出)二次函数应用参考答案与试题解析一.解答题(共19小题)1.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤.时间x(天)1≤x<99≤x<15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+400设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数解析式,并求出第几天时销售利润最大.【分析】(1)设这个百分率是x,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x<9时和9≤x<15时销售单价,由利润=(售价﹣进价)×销量﹣费用列函数关系式,并根据增减性求最大值,作对比.【答案】解:(1)设该种水果每次降价的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去),答:该种水果每次降价的百分率是10%;(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y随x的增大而减小,∴当x=1时,y有最大值,y大=﹣17.7×1+352=334.3(元),当9≤x<15时,第2次降价后的价格:8.1元,∴y=(8.1﹣4.1)×(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵﹣3<0,∴当9≤x≤10时,y随x的增大而增大,当10<x<15时,y随x的增大而减小,∴当x=10时,y有最大值,y大=380(元),综上所述,第10天时销售利润最大;【点评】本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x的取值,两个取值中的最大值才是最大利润.2.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)求得对称轴为x=35+a,若0<a <6,则30a,则当x=35+a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a=2.【答案】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,且0<a≤6,则30a≤38,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10(35+a)+500]=1960∴a1=2,a2=58(不合题意舍去)‘’,∴a=2.【点评】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.3.在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?【分析】(1)钢笔、笔记本的单价分别为x、y元,根据题意列方程组即可得到结论;(2)设钢笔的单价为a元,购买数量为b元,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,求得w=﹣0.1(b﹣35)2+722.5,于是得到700≤w≤722.5;②当50<b ≤60时,求得w=8b+6(100﹣b)=2b+600,700<w≤720,于是得到当30≤b≤60时,w的最小值为700元,于是得到结论.【答案】解:(1)钢笔、笔记本的单价分别为x、y元,根据题意得,,解得:,答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a元,购买数量为b只,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,a=10﹣0.1(b﹣30)=﹣0.1b+13,w=b(﹣0.1b+13)+6(100﹣b)=﹣0.1b2+7b+600=﹣0.1(b﹣35)2+722.5,∵当b=30时,w=720,当b=50时,w=700,∴当30≤b≤50时,700≤w≤722.5;②当50<b≤60时,a=8,w=8b+6(100﹣b)=2b+600,700<w≤720,∴当30≤b≤60时,w的最小值为700元,∴这次奖励一等奖学生50人时,购买奖品总金额最少,最少为700元.【点评】本题考查了二次函数的应用,二元一次方程组的应用,正确的理解题意求出二次函数的解析式是解题的关键.4.小宝大学毕业后回家乡透行园艺创业,第一期培植盆景与花卉各50盆,售后进行统计得知:盆景的平均每盆利润是160元,花卉的平均每盆利润是20元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元:每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均际盆利润始终不变,小宝计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1、W2(单位:元)(1)用含x的代数式分别表示W1、W2;(2)当x取何值时,第二期培植的盆景与花卉销售完所获得的总利润最大?最大总利润是多少?【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.【答案】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=20(50﹣x)=﹣20x+1000;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣20x+1000=﹣2x2+40x+9000=﹣2(x﹣10)2+9200,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9200,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9200元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,据此列出函数解析式及二次函数的性质.5.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y (万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?【分析】(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC 的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.【答案】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,∵工资及其它费用为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,当6<x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,当6<x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,∴==6,即最快在第7个月可还清10万元的无息贷款.【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.6.温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲65﹣x2(65﹣x)15乙x x130﹣2x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式,用x表示总利润利用二次函数性质讨论最值.【答案】解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,。
利用二次函数解决利润问题专项练习附答案
利用二次函数解决利润问题基础题知识点利用二次函数解决利润问题1.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y与x的函数关系是( )A.y=x2+a B.y=a(x-1)2 C.y=a(1-x)2D.y=a(1+x)2 2.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,可卖出(350-10x)件商品,则商品所赚钱y元与售价x元之间的函数关系为( ) A.y=-10x2-560x+7 350 B.y=-10x2+560x-7 350 C.y=-10x2+350x D.y=-10x2+350x-7 350 3.某商店经营某种商品,已知所获利润y(元)与销售单价x(元)之间的表达式为y=-x2+24x+2 956,则获利最多为( ) A.3 144元B.3 100元C.144元D.2 956元4.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x 为正整数),每星期销售该商品的利润为y元,则y与x的函数表达式为( )A.y=-10x2+100x+2 000 B.y=10x2+100x+2 000 C.y=-10x2+200x D.y=-10x2-100x+2 000 5.某水果店销售一批水果,每箱进价为40元,售价为60元,每天可卖50箱,则一天的销售利润为____________元.由于积压时间不能太长,所以该店决定降价售出,若每降价5元,则每天可多售出10箱.若现在售价为x元(40<x<60),则现在每天可多卖出________箱,每天共卖出_____箱,每箱的利润为_____元,即每天的总利润为________________________元.6.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).每年最多可投入100万元的销售投资,则5年所获利润的最大值是____________.7.(沈阳中考)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为____________元.8.某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种____________棵橘子树,橘子总个数最多.9.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了获得最大利润,每个售价应定为多少元?中档题10.某体育商店试销一款成本为50元的足球,规定试销期间单价不低于成本价,且获利不得高于50%.经试销发现,每天的销售量y(个)与销售单价x(元)之间满足一次函数y=-x+120,那么可求出该超市试销中一天可获得的最大利润为____________元.11.(龙岩中考)小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以13元/千克的价格销售,那么每天可获取利润750元.【利润=(销售价-进价)×销售量】(1)(2)价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数表达式;(3)设该超市销售这种水果每天获取的利润为W元,求W与x 之间的函数表达式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?综合题12.(莆田中考)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数表达式y2=mx2-8mx+n,其变化趋势如图2所示.(1)求y2的表达式;(2)第几月销售这种水果,每千克所获得的利润最大?最大利润是多少?参考答案1.D 2.B 3.B 4.A 5.1 000 (120-2x) (170-2x) (x -40) (x -40)(170-2x) 6.205万元 7.25 8.10 9.设售价在90元的基础上上涨x 元,总利润为y 元, 由题意,得y =(10+x)(400-20x)=-20(x -5)2+4 500. ∴当x =5时,y 有最大值,最大值为4 500.此时90+x =95. ∴售价为95元时可获得最大利润. 10.1 12511.(1)300 250 150(2)y 是x 的一次函数.设y =kx +b ,∵当x =10时,y =300;当x =11时,y =250, ∴⎩⎪⎨⎪⎧10k +b =300,11k +b =250.解得⎩⎪⎨⎪⎧k =-50,b =800. ∴y =-50x +800.经检验:x =13,y =150也适合上述表达式. ∴y 与x 的函数表达式为y =-50x +800.(3)由题意,得W =(x -8)y =(x -8)(-50x +800)=-50x 2+1 200x -6 400=-50(x -12)2+800. ∵a =-50<0,∴当x =12时,W 取最大值,为800.答:当销售单价为12元时,每天可获得的利润最大,最大利润是800元. 12.(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7.解得⎩⎨⎧m =18,n =638.∴y 2的表达式为y 2=18x 2-x +638(1≤x ≤12).(2)设y 1=kx +b.∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10.解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的表达式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12).∴当x =3时,w 取最大值214.答:第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.。
二次函数应用之利润最大化题目
利用二次函数解决最大利润问题
1、某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?
2、某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50
元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x元(x≥50),一周的销售量为y件.
(1)写出y与x的函数关系式(标明x的取值范围);
(2)设一周销售利润为S,写出S与x的函数关系式,单价在什么范围内变化时,利润随着单价的增大而增大?
(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售额达到8000元,销售单价应定为多少?
3、 某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数,其图象如图10所示. (1)每天的销售数量m (件)与每件的销售价格x (元)
的函数表达式是 .
(2)求该商场每天销售这种商品的销售利润y (元)
与每件的销售价格x (元)之间的函数表达式; (3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?
4、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.
(1)求商家降价前每星期的销售利润为多少元?
(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?
x )元。
二次函数最大利润问题完整版
二次函数最大利润问题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】二次函数最大利润问题44.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大最大利润是多少(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内(每天的总成本=每件的成本×每天的销售量)45.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)设每天盈利w元,求出w关于x的函数关系式,并说明每天盈利是否可以达到8000元(2)若该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元46.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元(成本=进价×销售量)47.某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润4320元,则每件商品应降价多少元②求出y与x之间的函数关系式,当x取何值时,商场获利润最大并求最大利润值.48.某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件元.经市场调研发现:该款工艺品每天的销售量件与售价元之间存在着如下表所示的一次函数关系.(1)求销售量件与售价元之间的函数关系式;(2)设每天获得的利润为元,当售价为多少时,每天获得的利润最大并求出最大值.49.某商场要经营一种新上市的文具,进价为20元/件。
二次函数最大利润应用题
二次函数最大利润问题这类问题只需围绕一点来求解,那就是总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y , 而自变量可能有两种情况:1)自变量x是所涨价多少,或降价多少2)自变量x是最终的销售价格而这种题型之所以是二次函数,就是因为总利润=单件商品利润*销售数量这个等式中的单件利润里必然有个自变量x,销售数量里也必然有个自变量x,至于为什么它们各自都有一个x,后面会给出解释,那么两个含有x的式子一相乘,再打开后就是必然是一个二次的多项式,所以如果在列表达式时发现单利润里没有x,或销售数量里没有x, 那恭喜你,此题0分!下面借助例题加以理解:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件现设一天的销售利润为y元,降价x元。
(1)求按原价出售一天可得多少利润?解析:总利润=单利润*数量所以按原价出售的话,则y=140*(100-80)=2800 元答案:(1)y=140*(100-80)=2800(元)(2)求销售利润y与降价x的的关系式解析:总利润=数量*单利润这么想:因为降价,所以单利润会有变动,又因为进价不可能变,那降多少元,利润减少多少元,降价x元,利润就减少x元,所以单利润就减少x元,即单利润变为:(100-80-x)又想:因为降价卖的就多,那么数量怎么变?原来一天140件,降1元多卖10件,降x元就应该多卖10x件,所以数量就变为:(140+10x)(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润解析:因为要是利润最大,所以需要求因变量y的最大值,(一)涨价或降价为未知数例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。
二次函数最大利润问题
一.解答题(共7小题)1.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?2.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?3.进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?4.某商店准备进一批小工艺品,每件的成本是40元,经市场调查,销售单价为50元,每天销售量为100个,若销售单价每增加1元,销售量将减少10个.(1)求每天销售小工艺品的利润y(元)和销售单价x(元)之间的函数解析式;(2)商店若准备每天销售小工艺品获利960元,则每天销售多少个?销售单价定为多少元?(3)直接写出销售单价为多少元时,每天销售小工艺品的利润最大?最大利润是多少?5.某水果店销售某种水果,原来每箱售价60元,每星期可卖200箱,为了促销,该水果店决定降价销售.市场调查反映:每降价1元,每星期可多卖20箱.已知该水果每箱的进价是40元,设该水果每箱售价x元,每星期的销售量为y箱.(1)求y与x之间的函数关系式:(2)当销售量不低于400箱时,每箱售价定为多少元时,每星期的销售利润最大,最大利润多少元?6.2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?7.某商品的进价为每件20元,当销售单价是25元时,每天的销售量为250件,如果调整价格,销售单价每上涨1元,每天的销售量就减少10件.①求每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式,并写出x的取值范围.②求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?③若商场要每天获得销售利润2000元,同时让利于顾客,销售单价应定为多少元?一.解答题(共7小题)1.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【分析】(1)根据“总利润=单件利润×销售量”列出函数解析式,由“确保盈利”可得x的取值范围.(2)将所得函数解析式配方成顶点式可得最大值.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【点评】本题主要考查二次函数的应用,解题的关键是根据题意确定相等关系,并据此列出函数解析式.2.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值,即可确定销售单价应控制在什么范围内.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,=4500;∴当x=80时,y最大值(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点评】本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程,再求解.3.进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?【分析】(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.【解答】解:(1)由题意可得,y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+3125∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为3125,即当售价x(元/包)定为4,5元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是3125元.【点评】本题考查二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.4.某商店准备进一批小工艺品,每件的成本是40元,经市场调查,销售单价为50元,每天销售量为100个,若销售单价每增加1元,销售量将减少10个.(1)求每天销售小工艺品的利润y(元)和销售单价x(元)之间的函数解析式;(2)商店若准备每天销售小工艺品获利960元,则每天销售多少个?销售单价定为多少元?(3)直接写出销售单价为多少元时,每天销售小工艺品的利润最大?最大利润是多少?【分析】(1)根据题意可以得到y与x的函数关系式,从而可以解答本题;(2)根据(1)中的函数关系式,令y=960,求出相应的x的值,即可解答本题;(3)根据(1)中关系式,将它化为顶点式即可解答本题.【解答】解:(1)销售单价为x元时,每销售一个获利(x﹣40)元,每天共销售[100﹣10(x﹣50)]个,∴y=(x﹣40)[100﹣10(x﹣50)]=﹣10x2+1000x﹣24000,即每天销售小工艺品的利润y(元)和销售单价x(元)之间的函数解析式是y=﹣10x2+1000x﹣24000;(2)根据题意,得(x﹣40)[100﹣10(x﹣50)]=960,解得,x1=48,x2=52,当x1=48时,销售量为100﹣10(x﹣50)=120(个),当x2=52时,销售量为100﹣10(x﹣50)=80(个),答:每天销售120个,定价为48元或每天销售80个,定价为52元;(3)∵y=﹣10x2+1000x﹣24000=﹣10(x﹣50)2+1000,∴销售单价为50元时,每天的销售利润最大,最大利润是1000元,答:销售单价为50元时,每天的销售利润最大,最大利润是1000元.【点评】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用函数和方程的思想解答.5.某水果店销售某种水果,原来每箱售价60元,每星期可卖200箱,为了促销,该水果店决定降价销售.市场调查反映:每降价1元,每星期可多卖20箱.已知该水果每箱的进价是40元,设该水果每箱售价x元,每星期的销售量为y箱.(1)求y与x之间的函数关系式:(2)当销售量不低于400箱时,每箱售价定为多少元时,每星期的销售利润最大,最大利润多少元?【分析】(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【解答】解:(1)由题意可得:y=200+20(60﹣x)=﹣20x+1400(0<x<60);(2)设每星期利润为W元,W=(x﹣40)(﹣20x+1400)=﹣20(x﹣55)2+4500,∵﹣20x+1400≥400,∴x≤50,∵﹣20<0,抛物线开口向下,=4000.∴x=50时,W最大值∴每箱售价定为50元时,每星期的销售利润最大,最大利润4000元.【点评】本题考查二次函数的应用,解题的关键是构建二次函数解决最值问题,属于中考常考题型.6.2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?【分析】(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据“当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个”,即可得出y关于x的函数关系式;(2)设王大伯获得的利润为W,根据“总利润=单个利润×销售量”,即可得出W关于x的函数关系式,代入W=840求出x的值,由此即可得出结论;(3)利用配方法将W关于x的函数关系式变形为W=﹣10(x﹣20)2+1000,根据二次函数的性质即可解决最值问题.【解答】解:(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据题意可知:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30).(2)设王大伯获得的利润为W,则W=(x﹣10)y=﹣10x2+400x﹣3000,令W=840,则﹣10x2+400x﹣3000=840,解得:x1=16,x2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x2+400x﹣3000=﹣10(x﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.【点评】本题考查了二次函数的应用,解题的关键是:(1)根据数量关系找出y 关于x的函数关系式;(2)根据数量关系找出W关于x的函数关系式;(3)利用二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数的关系式是关键.7.某商品的进价为每件20元,当销售单价是25元时,每天的销售量为250件,如果调整价格,销售单价每上涨1元,每天的销售量就减少10件.①求每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式,并写出x的取值范围.②求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?③若商场要每天获得销售利润2000元,同时让利于顾客,销售单价应定为多少元?【分析】①直接利用总利润=每件商品利润×每天的销售量,进而得出答案.②将以上所得函数解析式配方成顶点式,再利用二次函数的性质求解可得;③在所求函数解析式中令w=2000,得出关于x的方程,解之可得,根据“让利给顾客”对所求x的值取舍即可得.【解答】解:①w=(25+x﹣20)(250﹣10x)=﹣10x2+200x+1250(0≤x≤25 );②w=﹣10x2+200x+1250=﹣10(x﹣10)2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=10时,w max=2250,故当单价为35元时,该文具每天的利润最大,最大利润为2250元.③当w=2000时,得﹣10x2+200x+1250=2000解得:x1=5,x2=15,因为让利给顾客,所以,商场要每天获得销售利润2000元,销售单价应定为30元;【点评】本题考查了二次函数的应用、一元二次方程的应用等知识,最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数最大利润应用题参考答案与试题解析1.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点 D 的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1 与x 之间的函数表达式;【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42 元;(2)设线段AB所表示的y1 与x 之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60 (0≤x≤90);(3)设y2 与x 之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120 (0≤x≤130),设产量为xkg 时,获得的利润为W元,2当0≤x≤90 时,W=x([﹣0.6x+120 )﹣(﹣0.2x+60 )]= ﹣0.4(x﹣75)2+2250,∴当x=75 时,W的值最大,最大值为2250;当90≤x≤130 时,W=x[(﹣0.6x+120 )﹣42]=﹣0.6(x﹣65)2+2535,由﹣0.6 <0知,当x>65时,W随x 的增大而减小,∴90≤x≤130时,W≤2160,2∴当x=90 时,W=﹣0.6 (90﹣65)2+2535=2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.2.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足下列关系式:y=(1)李明第几天生产的粽子数量为420 只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w元,求w与x 之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【解答】解:(1)设李明第n 天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420 只.2)由图象得,当0≤x≤9时,p=4.1 ;当9≤x≤15 时,设P=kx+b,把点(9,4.1),(15,4.7 )代入得,解得,∴p=0.1x+3.2 ,①0≤x≤5时,w=(6﹣ 4.1 )× 54x=102.6x ,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1 )×(30x+120)=57x+228,∵x是整数,∴当x=9 时,w最大=741(元);③9<x≤15 时,w=(6﹣0.1x ﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12 时,w最大=768(元);综上,当x=12 时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价 a 元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1 .答:第13 天每只粽子至少应提价0.1 元.3.近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克销售(元)40 39 38 37 ⋯30每天销量(千克)60 65 70 75 ⋯110设当单价从40 元/ 千克下调了x 元时,销售量为y 千克;(1)写出y 与x 间的函数关系式;(2)如果凤梨的进价是20 元/ 千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/ 千克,问一次进货最多只能是多少千克?(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?【解答】解:(1)y=60+5x2(2)w=(40﹣x﹣20)y=﹣5(x﹣4)2+1280 ∴下调 4 元时当天利润最大是1280元(3)设一次进货m千克,由售价32 元/千克得x=40﹣32=8,此时y=60+5x=100,∴m≤100×(30﹣7)=2300,答:一次进货最多2300 千克(4)下调 4 元时当天利润最大,由x=4,y=60+5x=80,m=80×(30﹣7)=1840 千克∴每次进货1840千克,售价36 元/ 千克时,销售部利润最大.4.某店因为经营不善欠下38400 元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/ 件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82 元,每天还应支付其它费用为106 元(不包含债务).(1)求日销售量y(件)与销售价x(元/ 件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/ 件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有 2 名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?设y 与x 的函数解析式为y=k1x+b1,由图解得象∴y=﹣2x+140.当58< x≤71 时,设y 与x 的函数解析式为y=k2x+b2,由图象得,解得∴y=﹣x+82,综上所述:(2)设人数为a,当x=48 时,y=﹣2×48+140=44,∴(48﹣40)× 44=106+82a,解得a=3;3)设需要 b 天,该店还清所有债务,则:b[ (x ﹣40)?y ﹣82×2﹣ 106] ≥68400,x=﹣ 时,﹣ 2x 2+220x ﹣5870的最大值为 180,∴b ,即 b ≥380;当 x=﹣ =61 时,﹣ x 2+122x ﹣3550 的最大值为 171,∴b ,即 b ≥400.综合两种情形得 b ≥380,即该店最早需要 380 天能还清所有债务,此时每件服 装的价格应定为 55 元.5.某公司经营杨梅业务,以 3 万元/吨的价格向农户收购杨梅后,分拣成 A 、B 两类, A 类杨梅包装后直接销售; B 类杨梅深加工后再销售. A 类杨梅的包装成 本为 1万元/吨,根据市场调查,它的平均销售价格 y (单位:万元 /吨)与销售 数量 x (x ≥2)之间的函数关系如图; B 类杨梅深加工总费用 s (单位:万元) 与加工数量 t (单位:吨)之间的函数关系是 s=12+3t ,平均销售价格为 9 万元/ 吨.(1)直接写出 A 类杨梅平均销售价格 y 与销售量 x 之间的函数关系式; ( 2)第一次,该公司收购了 20吨杨梅,其中 A 类杨梅有 x 吨,经营这批杨梅所 获得的毛利润为 w 万元(毛利润 =销售总收入﹣经营总成本) .①求 w 关于 x 的函数关系式;②若该公司获得了 30 万元毛利润,问:用于直销的 A 类杨梅有多少吨? (3)第二次,该公司准备投入 132 万元资金,请设计一种经营方案,使公司获b= 当 58< x ≤ 71时,当 40≤ x ≤ 58 时,=【解答】 解:(1)①当 2≤x <8 时,如图, 设直线 AB 解析式为: y=kx+b ,将 A (2,12)、B ( 8,6)代入得: ,解得∴y=﹣ x+14;②当 x ≥8时, y=6.所以 A 类杨梅平均销售价格 y 与销售量 x 之间的函数关系式为:y=(2)设销售 A 类杨梅 x 吨,则销售 B 类杨梅( 20﹣x )吨.①当 2≤x <8 时,2w A =x (﹣ x+14)﹣ x=﹣x +13x ; w B =9(20﹣x )﹣[12+3(20﹣x )]=108﹣6x ∴w=w A +w B ﹣3×20=(﹣x 2+13x )+(108﹣6x )﹣60 =﹣x 2+7x+48; 当 x ≥8时,w A =6x ﹣ x=5x ; w B =9(20﹣x )﹣[12+3(20﹣x )]=108﹣6x ∴w=w A +w B ﹣3×20 =(5x )+(108﹣6x )﹣60 =﹣x+48.∴w 关于 x 的函数关系式为: w= .2②当 2≤x <8 时,﹣ x 2+7x+48=30,解得 x 1=9,x 2=﹣2,均不合题意; 当 x ≥8时,﹣ x+48=30,解得 x=18.∴当毛利润达到 30万元时,直接销售的 A 类杨梅有 18 吨.(3)设该公司用 132万元共购买了 m 吨杨梅,其中 A 类杨梅为 x 吨,B 类杨梅 为( m ﹣x )吨,则购买费用为 3m 万元, A 类杨梅加工成本为 x 万元, B 类杨梅加工成本为[12+3 (m ﹣x )] 万元,∴3m+x+[12+3(m ﹣x )]=132,化简得: x=3m ﹣60. ①当 2≤x <8 时,2 w A =x (﹣ x+14)﹣ x=﹣x +13x ; w B =9(m ﹣x )﹣[12+3 ( m ﹣ x ) ]=6m ﹣ 6x ﹣12 ∴w=w A +w B ﹣3×m 2=(﹣x 2+13x )+(6m ﹣6x ﹣12)﹣ 3m 2 =﹣x +7x+3m ﹣12. 将 3m=x+60代入得: w=﹣ x 2+8x+48=﹣( x ﹣ 4) 2+64 ∴当 x=4 时,有最大毛利润 64 万元, 此时 m= ,m ﹣x= ;②当 x ≥8时,w A =6x ﹣ x=5x ; w B =9(m ﹣x )﹣[12+3 ( m ﹣ x ) ]=6m ﹣ 6x ﹣12∴w=w A +w B ﹣3×m=(5x )+(6m ﹣6x ﹣12)﹣ 3m=﹣x+3m ﹣12.将 3m=x+60代入得: w=48∴当 x >8 时,有最大毛利润 48 万元.综上所述,购买杨梅共吨,其中A类杨梅 4 吨,B类吨,公司能够获得最大6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20 元,市场调查发现,该产品每天的销售量y(千克)与销售价x (元/ 千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w 元.(1)求w 与x 之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28 元,该农户想要每天获得150 元的销售利润,销售价应定为每千克多少元?【解答】解:(1)由题意得出:w=(x﹣20)?y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w 与x 的函数关系式为:w=﹣2x2+120x﹣1600;22(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30 元时,每天销售利润最大,最大销售利润200 元.23)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x 1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150 元的销售利润,销售价应定为每千克25元.7.某公司销售一种进价为20 元/个的计算器,其销售量y(万个)与销售价格x (元/ 个)的变化如下表:价格x(元/ 个)⋯30 40 50 60 ⋯销售量y(万个)⋯ 5 4 3 2 ⋯同时,销售过程中的其他开支(不含进价)总计40 万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/ 个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/ 个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40 万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?【解答】解:(1)根据表格中数据可得出:y 与x 是一次函数关系,设解析式为:y=ax+b,则,,解得:故函数解析式y=﹣x+8;为:(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,2=﹣(x2﹣100x)﹣200=﹣[ (x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50 万元.3)当公司要求净得利润为40 万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.2+50的图象,可知按照公司要求使净得利润不低于40 万元,则销售价格的取值范围为:而y 与x 的函数关系式为:y=﹣40≤x ≤60.x+8,y 随x 的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40 元/ 个.8.某大学生利用暑假40 天社会实践参与了一家网店的经营,了解到一种成本为20 元/ 件的新型商品在x 天销售的相关信息如表所示.销售量p(件)p=50﹣x销售单价q(元/件)当1≤x≤20 时,q=30+ x当21≤x≤40 时,q=20+(1)请计算第几天该商品的销售单价为35元/ 件?(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40 天中该网店第几天获得的利润最大?最大的利润是多少?【解答】解:(1)当1≤x≤20 时,令30+ x=35,得x=10,当21≤x≤40 时,令20+ =35,得x=35,经检验得x=35 是原方程的解且符合2)当1≤x≤20 时,y=(30+ x ﹣20)(50﹣x)=﹣x2+15x+500,题意即第10天或者第35 天该商品的销售单价为35元/件.当21≤x≤40 时,y=(20+ ﹣20)(50﹣x)= ﹣525,即y= ,3)当1≤x≤20 时,y=﹣x2+15x+500=﹣(x﹣15)2+612.5 ,∵﹣ <0,∴当x=15时,y 有最大值y1,且y1=612.5 ,当21≤x≤40 时,∵ 26250> 0,∴ 随x 的增大而减小,当x=21 时,最大,于是,x=21时,y= ﹣525有最大值y2,且y2= ﹣525=725,∵y1<y2,∴这40天中第21 天时该网店获得利润最大,最大利润为725 元.9.某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为 6 千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:y=y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t (千件)的关系为(1)用x 的代数式表示t 为:t= 6﹣x ;当0<x≤4时,y2与x 的函数关系为:y2= 5x+80 ;当 4 ≤x< 6 时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x (千件)的函数关系式,并指出x 的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?【解答】解:(1)由题意,得x+t=6 ,∴t=6﹣x;∵,∴当0<x≤4时,2≤6﹣x<6,即2≤t<6,此时y2 与x 的函数关系为:y2=﹣5(6﹣x)+110=5x+80;当4≤x<6 时,0<6﹣x≤2,即0<t≤2,此时y2=100.故答案为:6﹣x ;5x+80;4,6;(2)分三种情况:①当0<x≤2时,w=(15x+90)x+(5x+80)(6﹣x)=10x2+40x+480;2②当2<x≤4时,w=(﹣5x+130)x+(5x+80)(6﹣x)=﹣10x2+80x+480;2③当4<x≤6时,w=(﹣5x+130)x+100(6﹣x)=﹣5x2+30x+600;综上可知,w= ;22(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,此时x=2 时,w最大=600;当2<x≤4时,w=﹣10x2+80x+480=﹣10(x﹣4)2+640,此时x=4 时,w 最大=640;当4<x≤6时,w=﹣5x2+30x+600=﹣5(x﹣3)2+645,4<x<6 时,w<640;∵a=﹣5,∴当x>3时,w随x的增大而减小,∴没有w 最大.故该公司每年国内、国外的销售量各为 4 千件、2千件,可使公司每年的总利润最大,最大值为640 千元.10.某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30 元,生产乙种产品每件还需成本费20 元.经市场调研发现:甲种产品的销售单价为x (元),年销售量为y (万件),当35≤x< 50时,y与x之间的函数关系式为y=20﹣0.2x ;当50≤x≤70 时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45 元(含)之间,且年销售量稳定在10 万件.物价部门规定这两种产品的销售单价之和为90 元.(1)当50≤x≤70 时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W (万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70 范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85 万元.请直接写出第二年乙种产品的销售单价m(元)的范围.【解答】解:(1)设y 与x 的函数关系式为y=kx+b(k≠0),∵函数图象经过点(50,10),(70,8),∴,∴,解得,所以,y=﹣0.1x+15 ;(2)∵乙种产品的销售单价在25 元(含)到45 元(含)之间,∴,∴,解之得45≤x≤65,①45≤x<50时,W=(x﹣30)(20﹣0.2x )+10(90﹣x﹣20),2=﹣0.2x 2+16x+100,2=﹣0.2 (x2﹣80x+1600)+320+100,=﹣0.2 (x﹣40)2+420,∵﹣0.2 <0,∴x>40时,W随x 的增大而减小,∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;②50≤x≤65 时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),2=﹣0.1x 2+8x+250,=﹣0.1 (x2﹣80x+1600)+160+250,=﹣0.1 (x﹣40)2+410,∵﹣0.1 <0,∴x>40时,W随x 的增大而减小,∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.综上所述,当x=45,即甲、乙两种产品定价均为45 元时,第一年的年销售利润最大,最大年销售利润是415 万元;22(3)根据题意得,W=﹣0.1x 2+8x+250+415﹣700=﹣0.1x 2+8x﹣35,令W=85,则﹣0.1x 2+8x﹣35=85,解得x1=20,x2=60.又由题意知,50≤x≤65,根据函数与x 轴的交点可知50≤x≤60,即50≤90﹣m≤60,∴30≤m≤40.11.某电子厂商投产一种新型电子产品,每件制造成本为18 元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350 万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32 元,如果厂商要获得每月不低于350 万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?【解答】解:(1)z=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,2∴z与x 之间的函数解析式为z=﹣2x2+136x﹣1800(x>18);2(2)由z=350,得350=﹣2x2+136x﹣1800,解这个方程得x1=25,x2=43 所以,销售单价定为25 元或43 元,将z=﹣2x2+136x﹣1800 配方,得z=﹣2(x﹣34)2+512(x>18),答;当销售单价为34 元时,每月能获得最大利润,最大利润是512 万元;(3)结合(2)及函数z=﹣2x2+136x﹣1800 的图象(如图所示)可知,当25≤x≤43 时z≥350,又由限价32 元,得25≤x≤32,根据一次函数的性质,得y=﹣2x+100中y 随x 的增大而减小,∵x最大取32,∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元),答:每月最低制造成本为648 万元.12.某科技开发公司研制出一种新型的产品,每件产品的成本为2400 元,销售单价定为3000 元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【解答】解:(1)设件数为x,依题意,得3000﹣10(x﹣10)=2600,解得x=50,答:商家一次购买这种产品50 件时,销售单价恰好为2600 元; ( 2)当0≤x≤10 时,y=(3000﹣2400)x=600x,当10<x≤50时,y=[3000﹣10(x﹣10)﹣2400]x,即y=﹣10x2+700x 当x>50 时,y=(2600﹣2400)x=200x∴y=(3)由 y=﹣ 10x 2+700x 可知抛物线开口向下,当 y 有最大值,此时,销售单价为 3000﹣10(x ﹣10)=2750 元, 答:公司应将最低销售单价调整为 2750 元.13.某商家经销一种绿茶,用于装修门面已投资 3000 元,已知绿茶每千克成本 50元,在第一个月的试销时间内发现,销量 w (kg )随销售单价 x (元/kg )的 变化而变化,具体变化规律如下表所示销售单价 x (元⋯ 70 75 8085 90 ⋯/kg ) 销售量 w ( kg )⋯ 100 90 80 70 60 ⋯设该绿茶的月销售利润为 y (元)(销售利润 =单价×销售量﹣成本﹣投资) . ( 1)请根据上表,写出 w 与 x 之间的函数关系式(不必写出自变量 x 的取值范 围);( 2)求 y 与 x 之间的函数关系式(不必写出自变量 x 的取值范围).并求出 x 为何值时, y 的值最大?( 3)若在第一个月里,按使 y 获得最大值的销售单价进行销售后,在第二个月 里受物价部门干预,销售单价不得高于 90 元,要想在全部收回投资的基础上使 第二个月的利润达到 1700 元,那么第二个月里应该确定销售单价为多少元?【解答】 解:(1)设 w=kx+b ,将( 70, 100),(75, 90)代入上式得:,,解得: ,则 w=﹣ 2x+240;2(2)y=(x ﹣50)?w=(x ﹣50)?(﹣ 2x+240)=﹣2x 2+340x ﹣9000, 因此 y 与 x 的关系式为: 2y=﹣2x 2+340x ﹣9000, 2=﹣2(x ﹣85)2+2450, 故当 x=85时, y 的值最大为 2450. (3)故第 1 个月还有 3000﹣2450=550元的投资成本没有收回, 则要想在全部收回投资的基础上使第二个月的利润达到 1700元,即 y=2250才可 以,可得方程﹣ 2(x ﹣85)2+2450=2250, 解这个方程,得 x 1=75,x 2=95;根据题意, x 2=95 不合题意应舍去.答:当销售单价为每千克 75元时,可获得销售利润 2250 元,即在全部收回投资 的基础上使第二个月的利润达到 1700 元.14.某大众汽车经销商在销售某款汽车时,以高出进价 20%标价.已知按标价的 九折销售这款汽车 9 辆与将标价直降 0.2 万元销售 4 辆获利相同.(1)求该款汽车的进价和标价分别是多少万元?( 2)若该款汽车的进价不变,按( 1)中所求的标价出售,该店平均每月可售x=﹣ =35 时,利润出这款汽车20 辆;若每辆汽车每降价0.1 万元,则每月可多售出 2 辆.求该款汽车降价多少万元出售每月获利最大?最大利润是多少?【解答】解:(1)设进价为x 万元,则标价是 1.2x 万元,由题意得:1.2x ×0.9 ×9﹣9x=(1.2x﹣0.2)×4﹣4x,解得:x=10,1.2 ×10=12(万元),答:进价为10 万元,标价为12 万元;(2)设该款汽车降价 a 万元,利润为w万元,由题意得:w=(20+ ×2)(12﹣10﹣a),=﹣20(a﹣)2+45,∵﹣20<0,∴当a= 时,w 最大=45,答:该款汽车降价0.5 万元出售每月获利最大,最大利润是45 万元.15.荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费 2.7 万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9 ;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3 万元.每公顷蔬菜年均可卖7.5 万元.(1)基地的菜农共修建大棚x(公顷),当年收益(扣除修建和种植成本后)为y(万元),写出y 关于x 的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得 5 万元收益,工作组应建议他修建多少公顷大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3 年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.2【解答】解:(1)y=7.5x ﹣(2.7x+0.9x 2+0.3x )2=7.5x ﹣ 2.7x ﹣0.9x 2﹣0.3x2=﹣0.9x 2+4.5x .(2)当﹣0.9x 2+4.5x=5 时,2整理得:9x2﹣45x+50=0,解得:x1= ,x2= ,12从投入、占地与当年收益三方面权衡,应建议修建公顷大棚.(3)设 3 年内每年的平均收益为Z(万元)2Z=7.5x ﹣( 0.9x+0.3x 2+0.3x )2=7.5x ﹣ 0.9x ﹣ 0.3x 2﹣ 0.3x2=﹣ 0.3x 2+6.3x=﹣0.3 (x ﹣10.5)2+33.075(10 分) 不是面积越大收益越大.当大棚面积为 10.5 公顷时可以得到最大收益. (11 分) 建议:①在大棚面积不超过 10.5 公顷时, 可以扩大修建面积, 这样会增加收益. ②大棚面积超过 10.5 公顷时,扩大面积会使收益下降. 修建面积不宜盲目扩大.③ 当﹣ 0.3x 2+6.3x=0 时,x 1=0,x 2=21.大棚面积超过 21 公顷时,不但不能收益, 反而会亏本.(说其中一条即可) ( 12分) 16.今年我国多个省市遭受严重干旱,受旱灾的影响, 4 月份,我市某蔬菜价格 呈上升趋势,其前四周每周的平均销售价格变化如下表:周数 x 12 3 4价格 y (元/kg )22.2 2.4 2.6进入 5 月,由于本地蔬菜的上市,此种蔬菜的平均销售价格 y (元/ 千克)从 5 月第 1周的 2.8 元/千克下降至第 2周的 2.4 元/千克,且 y 与周数 x 的变化情况(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关 知识直接写出 4 月份 y 与 x 的函数关系式,并求出 5月份 y 与 x 的函数关系式;(2)若 4 月份此种蔬菜的进价 m (元/千克)与周数 x 所满足的函数关系为 m= x+1.2 ,5月份此种蔬菜的进价 m (元/千克)与周数 x 所满足的函数关系为 m= x+2.试问 4 月份与 5 月份分别在哪一周销售此种蔬菜一千克的利润最大? 且最大利润分别是多少?(3)若 5 月份的第 2 周共销售 100 吨此种蔬菜.从 5 月份的第 3 周起,由于受 暴雨的影响,此种蔬菜的可供销量将在第 2 周销量的基础上每周减少 a%,政府 为稳定蔬菜价格, 从外地调运 2吨此种蔬菜, 刚好满足本地市民的需要, 且使此 种蔬菜的销售价格比第 2 周仅上涨 0.8a%.若在这一举措下,此种蔬菜在第 3 周 的总销售额与第 2 周刚好持平,请你参考以下数据,通过计算估算出 a 的整数值.2 2 2 2 2(参考数据: 372=1369,382=1444, 392=1521,402=1600,412=1681)【解答】 解:(1)4 月份 y 与 x 满足的函数关系式为 y=0.2x+1.8把 x=1,y=2.8 和 x=2, y=2.4 ,分别代入 y=﹣ +bx+c 得解得: ,∴5月份 y 与x 满足的函数关系式为 y=﹣0.05x 2﹣0.25x+3.1 ; (2)设4月份第x 周销售此种蔬菜一千克的利润为 W 1元, 5月份第 x 周销售此 种蔬菜一千克的利润为 W 2 元.则:W 1=(0.2x+1.8 )﹣( x+1.2 )=﹣0.05x+0.6满足二次函数 y=﹣∵﹣0.05<0,∴W1随x的增大而减少∴当x=1 时,W1最大=﹣0.05+0.6=0.55W2=(﹣0.05x 2﹣0.25x+3.1 )﹣(﹣x+2)=﹣0.05x2﹣0.05x+1.1∵对称轴为x=﹣=﹣0.5 ,且﹣0.05 <0,∴当x=1 时,W2最大=1∴4月份销售此种蔬菜一千克的利润在第 1 周最大,最大利润为0.55 元,5 月份销售此种蔬菜一千克的利润在第 1 周最大,最大利润为 1 元.(3)由题意知:[100000 (1﹣a%)+2000]×2.4 (1+0.8a%)=2.4×100000,整理,得a2+23a﹣250=0,解得a=∵392=1521,402=1600,而1529 更接近1521,∴取≈39∴a≈﹣31(舍去)或a≈8.17.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/ 件)与月销量x(件)的函数关系式为y= x+150,成本为20元/ 件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额﹣成本﹣广告费).若只在国外销售,销售价格为150元/ 件,受各种不确定因素影响,成本为 a 元/ 件(a 为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额﹣成本﹣附加费).(1)当x=1000时,y= 140 元/ 件,w内= 57500 元;(2)分别求出w 内,w外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求 a 的值;(4)如果某月要将5000 件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是().【解答】解:(1)x=1000,y= ×1000+150=140,w内=(140﹣20)×1000﹣62500=57500.2)w内=x(y﹣20)﹣62500= x2+130x﹣62500,2w外= x +(150﹣a)x.3)当x= =6500 时,w 内最大;由题意在国外销售月利润的最大值与在国内销售月利润的最大值相同,得:解得a1=30,a2=270(不合题意,舍去)∴a=30.(4)当x=5000 时,w内=337500,w外=﹣5000a+500000.若w内<w外,则a<32.5 ;若w内=w外,则a=32.5 ;若w内>w外,则a>32.5 .∴当10≤a< 32.5 时,选择在国外销售;当a=32.5 时,在国外和国内销售都一样;当32.5 < a≤40 时,选择在国内销售.18.红星公司生产的某种时令商品每件成本为20 元,经过市场调研发现,这种商品在未来40 天内的日销售量m(件)与时间t (天)的关系如下表:时间t (天) 1 3 6 10 36 ⋯日销售量m(件)94 90 84 76 24 ⋯未来40天内,前20 天每天的价格y1(元/ 件)与时间t (天)的函数关系式为y1= t+25(1≤t≤20且t 为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为y2=﹣t+40 (21≤t ≤40 且t 为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t (天)之间的关系式;(2)请预测未来40 天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20 天中,该公司决定每销售一件商品就捐赠 a 元利润( a <4)给希望工程.公司通过销售记录发现,前20 天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a的取值范围.解答】解:(1)设一次函数为m=kt+b,和代入一次函数m=kt+b 中∴m=﹣2t+96 .经检验,其它点的坐标均适合以上解析式,故所求函数解析式为m=﹣2t+96 ;(2)设前20天日销售利润为p1元,后20 天日销售利润为p2元.由p1=(﹣2t+96 )(t+25 ﹣20)=﹣t 2+14t+480=﹣(t ﹣14)2+578,∵1≤t ≤20,∴当t=14 时,p1有最大值578(元).由p2=(﹣2t+96 )(﹣t+40 ﹣20)=(﹣2t+96 )(﹣t+20 )=t 2﹣88t+19202=(t ﹣44)2﹣16.∵21≤t ≤40,此函数对称轴是t=44,∴函数p2在21≤t ≤40 上,在对称轴左侧,随t 的增大而减小.∴当t=21 时,p2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∵578> 513,故第14 天时,销售利润最大,为578 元;2(3)p1=(﹣2t+96)(t+25﹣20﹣a)=﹣t 2+(14+2a)t+480 ﹣96a 对称轴为t=14+2a.∵1≤t ≤20,∴当t ≤2a+14 时,P 随t 的增大而增大,又∵每天扣除捐赠后的日利润随时间t 的增大而增大,∴20≤2a+14,又∵a< 4,∴3≤a< 4.。