初一数学整式乘法公式专题训练
七年级数学下---整式的乘法综合练习题
七年级数学下---整式的乘法综合练习题(一)填空1.a8=(-a5)____.2.a15=(?)5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=_____.6.(-a2b)3·(-ab2)=____.7.(2x)2·x4=(?)2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x.12.m是x的六次多项式,n是x1415.{[(-1)4]m}n=______.17.一长方体的高是(a+2).5=______(a-b)n+9.n+1-8,那么x=______.2122.(8a3)m÷[(4a2)n·2a]=______.23.若24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.2+2y4)的最高次项是______.2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[???]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x?(乘法交换律)=-20(a2a3)·(x4x)??(乘法结合律)=-20a5x5.(??????)A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[???]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[??]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[???]A.(x+1)(x+4)=x2+5x+42C.(y+4)(y-5)=y2+9y-20;31.计算-a2b2·(-ab3A.a4b8;B.-a4b8;32.下列计算中错误的是[?]A.;C.[(x+y)m]n=(x+y)mn;D33.=2a16m;D.(-m)(-m)4=-m5.m-1的结果是[???].(b-a)2n+m;D.以上都不对.的值一定是?[???]D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是?[???]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[???]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[???]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[???]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[???](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,A.只有(1)与(2)正确;C.只有(1)与(4)正确;42.(-6x n y)2·3x n-1yA.18x3n-1y2;B.-36x2n-1y3;[???]B.2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;[???]A.2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[???]47.把下列各题的计算结果写成10的幂的形式,正确的是[???]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[???]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[???] A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[???]A.m,n都应是偶数;B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以;D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=73n222nA.833;B.2891;(三)计算52.(6×108)(7×10954.(-3ab)·(-a2c)·6ab2.55..57.(x+2y)(5a+3b).58.x n+1(x n60.(-ab)3·(-a2b)·(-a2b4c)262.2).65..68.(-4xy3)·(-xy)+(-3xy2)2..(5a3+2a-a2-3)(2-a+4a2)..72.[(-a2b)3]3·(-ab2).73、75.(-2x m y n)3·(-x2y n)·(-3xy2)2.76.(-2ab2)3·(3a2b-2ab-4b2).77.(0.2a-1.5b+1)(0.4a-4b-0.5).78.(x+3y+4)(2x-y).79.y[y-3(x-z)]+y[3z-(y-3x)].80.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简求值;81.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.82.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=83.已知ab2=-6,求-ab(a2b5-ab3-b)的值.84.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.85.已知(x-1)(x+1)(x-2)(x-4)=(x2-3x)2+a(x2-3x)+b,求a,b的值.86.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.87.比较2100与375的大小.88.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).89.已知2a=3b=6c(a,b,c90.求证:对于任意自然数n,91.已知有理数x,y,z满足-x=0.92.已知x=b+c,y=c+a,z=a+b.93.证明(a-1)(a2-3)+a294.试证代数式、=2x+5y-3=0则=44;c=533则有();C.a<c<b D.c<a<b,则x=6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5)8、计算9、计算,当a6=64时,该式的值。
人教版初中数学《整式的乘法》专题突破含答案解析
专题07 整式的乘法一、单选题1.(2021·福建长乐·八年级期中)计算()42x的结果是()A.6x B.8x C.10x D.16x【答案】B【分析】根据幂的乘方公式,即可求解.【详解】解:()42x=8x,故选B.【点睛】本题主要考查幂的乘方公式,掌握幂的乘方等于底数不变指数相乘,是解题的关键.2.(2021·福建省福州延安中学八年级期中)下列运算正确的是()A.x2+x=x3B.x2+x3=5x C.x2•x3=x5D.(x2)3=x5【答案】C【分析】直接利用合并同类项法则以及同底数幂的乘法运算法则和幂的乘方运算法则分别化简求出答案即可得出选项.【详解】解:A、22+=+,故此选项错误;x x x xB、2323x x x x+=+,故此选项错误;C、235=,故此选项正确;x x x·D、()326=,故此选项错误;x x故选:C.【点睛】题目主要考查了合并同类项以及同底数幂的乘法运算和幂的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(2021·贵州黔西·七年级期中)已知多项式2x³-8x²+x-1与多项式3x³+2mx²-5x+3的和不含二次项,则m 的值为()A .-4B .-2C .2D .4【答案】D【分析】先把两多项式相加,令x 的二次项为0即可求出m 的值.【详解】解:2x ³-8x ²+x -1+3x ³+2mx ²-5x +3=325(28)42x m x x +--+,依题意:280m -=,解得:4m =,故选择:D【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.(2021·湖北江汉·八年级期中)若128m a =,8n a =,则m n a -值是()A .120B .-120C .16D .116【答案】C【分析】直接利用同底数幂的乘除运算法则计算得出答案.【详解】解:∵如果128m a =,8n a =,∴128168m m n n a a a -===.故选:C .【点睛】此题主要考查了同底数幂除法运算,正确掌握运算法则是解题关键.5.(2021·全国·八年级单元测试)若2x ﹣5是多项式4x 2+mx ﹣5(m 为系数)的一个因式,则m 的值是( )A .8B .﹣6C .﹣8D .﹣10【答案】C根据题意可得设4x 2+mx -5=(2x -5)(kx +b ),进而解出k 、b 再根据m=2b -5k 即可得出答案.【详解】解:∵2x -5是多项式4x 2+mx -5(m 为系数)的一个因式,设4x 2+mx -5=(2x -5)(kx +b ),∴2kx 2+(2b -5k )x -5b =4x 2+mx -5,∴2k =4,5b =5,解得k =2,b =1,∴m=2b -5k =-8.故选:C .【点睛】本题考查因式分解的应用,根据题意得出另一个因式并让每一项系数一一对应是解答本题的关键.6.(2021·全国·七年级单元测试)如图是一个由5张纸片拼成的一个大长方形,相邻纸片之间互不重叠也无缝隙,其中两张大正方形纸片大小一样,面积记为S 1,另外两张长方形纸片大小一样,面积记为S 2,中间一张小正方形纸片的面积记为S 3,则这个大长方形的面积一定可以表示为( )A .123S S +B .124S S +C .14S D .24S 【答案】A【分析】设S 3的边长为x ,S 2的长为y ,则S 1的边长为y -x ,S 2的宽为y -2x ,然后根据长方形面积公式结合整式混合运算的运算法则进行分析计算.【详解】解:设S 3的边长为x ,S 2的长为y ,则S 1的边长为y -x ,S 2的宽为y -2x ,∴大长方形的长为2y -x ,大长方形的宽为2y -3x ,∴S 大长方形=(2y -x )(2y -3x )=4y 2-6xy -2xy +3x 2=3(x2-2xy+y2)+(y2-2xy),又∵S1=(y-x)2=y2-2xy+x2,S2=y(y-2x)=y2-2xy,∴S大长方形=3S1+S2,故选:A.【点睛】本题考查了整式的混合运算的应用,掌握多项式乘多项式的运算法则,完全平方公式(a+b)2=a2+2ab+b2结构是解题关键.7.(2021·福建省福州延安中学八年级期中)已知等式(x+p)(x+q)=x2+mx+36(p,q为正整数),则m的值不可能是()A.13B.16C.20D.37【答案】B【分析】利用多项式乘多项式的法则,把等式的左边进行运算,再根据条件进行分析即可.【详解】解:(x+p)(x+q)=x2+(p+q)x+pq,∵(x+p)(x+q)=x2+mx+36,∴p+q=m,pq=36,∵36=4×9,则p+q=13,36=1×36,则p+q=37,36=2×18,则p+q=20,36=3×12,则p+q=15,36=6×6,则p+q=12,∴p+q不可能为16,即m不可能为16.故选:B.【点睛】本题主要考查多项式乘多项式,解答的关键是理解清楚题意,求得m与p+q,pq的关系.8.(2021·全国·七年级期中)如图,长为50cm,宽为x(cm)的大长方形被分割成7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y(cm).要使阴影A与阴影B的面积差不会随着x 的变化而变化,则定值y 为( )A .5B .253C .252D .10【答案】B【分析】根据图中的关系先分别表示出A 长方形的长、宽及B 长方形的长、宽,再根据长方形的面积公式表示出阴影A 的面积及阴影B 的面积,然后作差得到关于x 、y 的式子,根据“不会随着x 的变化而变化”得50-6y =0,求解即可得出答案.【详解】解:由题意可知A 长方形的长为(50-3y )cm ,宽为(x -2y )cm ,B 长方形的长为3y cm ,宽为x -50+3y ,∴阴影A 的面积为(50-3y )(x -2y )=50x -100y -3xy +6y 2,阴影B 的面积为3y (x -50+3y )=3xy -150y +9y 2,∴阴影A 的面积-阴影B 的面积=(50x -100y -3xy +6y 2)-(3xy -150y +9y 2)=(50-6y )x +50y -3y 2,∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,∴50-6y =0解之:253y =.故答案为:B .【点睛】本题考查了整式的混合运算的应用以及一元一次方程的应用,解此题的关键是能根据题意列出算式.9.(2021·全国·八年级专题练习)下列计算中,错误的个数是( ).①326(3)6x x =;②5521010(5)25a b a b -=-;③3328()327x x -=-;④23467(3)81x y x y =;⑤235x x x ×=A .2个B .3个C .4个D .5个【答案】B【分析】根据同底数幂的乘法和积的乘方的知识求解即可求得答案.【详解】解:①(3x 3)2=9x 6,故①错误;②(-5a 5b 5)2=-25a 10b 10,故②错误;③3328()327x x -=-,故③正确;④234812(3)81x y x y =;故④错误;⑤235x x x ×=;故⑤正确;①②④错误.故选择:B【点睛】此题考查了同底数幂的乘法,积的乘法及幂的乘方等知识,熟记法则是解题的关键.10.(2021·浙江浙江·七年级期中)如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+;③若x 为定值,则阴影A 和阴影B 的周长和为定值;④当15x =时,阴影A 和阴影B 的面积和为定值.A .①③B .②④C .①③④D .①④【答案】A【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y -15)cm ,说法①正确;②由大长方形的宽及小长方形的长、宽,可得出阴影A ,B 的较短边长,将其相加可得出阴影A 的较短边和阴影B 的较短边之和为(2x +5-y )cm ,说法②错误;③由阴影A ,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A和阴影B的周长之和为2(2x+5),结合x为定值可得出说法③正确;④由阴影A,B的相邻两边的长度,利用长方形的面积计算公式可得出阴影A和阴影B的面积之和为(xy-25y+375)cm2,代入x=15可得出说法④错误.【详解】解:①∵大长方形的长为y cm,小长方形的宽为5cm,∴小长方形的长为y-3×5=(y-15)cm,说法①正确;②∵大长方形的宽为x cm,小长方形的长为(y-15)cm,小长方形的宽为5cm,∴阴影A的较短边为x-2×5=(x-10)cm,阴影B的较短边为x-(y-15)=(x-y+15)cm,∴阴影A的较短边和阴影B的较短边之和为x-10+x-y+15=(2x+5-y)cm,说法②错误;③∵阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,∴阴影A的周长为2(y-15+x-10)=2(x+y-25),阴影B的周长为2(15+x-y+15)=2(x-y+30),∴阴影A和阴影B的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5),∴若x为定值,则阴影A和阴影B的周长之和为定值,说法③正确;④∵阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,∴阴影A的面积为(y-15)(x-10)=(xy-15x-10y+150)cm2,阴影B的面积为15(x-y+15)=(15x-15y+225)cm2,∴阴影A和阴影B的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm2,当x=15时,xy-25y+375=(375-10y)cm2,说法④错误.综上所述,正确的说法有①③.故选:A.【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.二、填空题11.(2021·江苏阜宁·七年级期中)按照如图的操作步骤,若输入x 的值为-3,则输出的值是_______.【答案】17【分析】根据题目中程序流程图按顺序计算即可.【详解】解:当3x =-时;()239-=;9327⨯=;271017-=.故答案为:17.【点睛】本题考查根据程序流程图进行代数式求值,正确列出代数式并计算是解题关键.12.(2021·北京·清华附中朝阳学校八年级期中)5x a =,3y a =,则x y a -=____.【答案】53【分析】根据同底数幂除法的逆运算求解即可.【详解】解:∵5x a =,3y a =,∴53x x y y a a a -÷==,故答案为:53.【点睛】本题考查了同底数幂除法的逆运算,解题关键是熟记同底数幂除法法则,熟练运用它的逆运算解答.13.(2021·黑龙江·哈尔滨工业大学附属中学校八年级月考)已知9310a =⨯,3210b =⨯,则⋅=a b________.【答案】12610⨯【分析】根据整式的乘法:系数乘以系数,同底数的幂相乘,可得答案.【详解】解:939312(310)(210)3210610a b +⋅=⨯⨯⨯=⨯⨯=⨯,故答案为:12610⨯.【点睛】本题考查了整式的乘法,掌握系数乘以系数,同底数的幂相乘是解题的关键.14.(2021·上海市南洋模范初级中学七年级期中)若二项式3x +a 与x +2相乘,化简后结果中不出现一次项,则a 的值是 ___.【答案】-6【分析】利用多项式乘以多项式法则将已知多项式化简,合并同类项后令一次项系数等于0,即可求出a 的值.【详解】解:(3x +a )(x +2)=3x 2+6x +ax +2a =3x 2+(a +6)x +2a ,∵此多项式不含x 的一次项,∴a +6=0,即a =-6.故答案为:-6.【点睛】本题考查了多项式乘以多项式法则,解决这类问题的方法是:不含哪一项,就合并同类项后让这一项的系数等于0.15.(2021·山东沂南·七年级期中)已知9个小球,把它们分别标号为1,2,…9,现从中随机摸取两个小球,按照下面的操作步骤,若输入第一个小球上的数字a (记第二个小球上的数字为b ),输出的值为63,则=a ______.【答案】4【分析】根据题意列出代数式,结合a 和b 只能为1,2,3…9中任意一个数字,从而推导得到满足条件的a 的数值,【详解】解:由题意知:()52363a b ++=化简得:1048a b +=∵a 可以取1,2,3…9中任意一个数字∴ 10a 可能为10、20、30、40又∵b 只可取1,2,3…9中任意一个数字∴10a 只能为40此时:4,8a b ==故答案为:4.【点睛】.本题考查代数式的值,根据题意列出等量关系,进行分类讨论是解题的关键.16.(2021·黑龙江·哈尔滨市松雷中学校七年级月考)某车间一天生产零件12000套,若将当天生产的零件配套后出售,有几个销售商想合伙购买全部的成套零件后平分,在决定购买时有6个销售商退出,剩下的每个销售商都需要多分担200元,在交款时,又有8个销售商临时退出,剩下的每个销售商还需要再多分担500元,如果销售商每套零件想获得10元的利润,那么每套零件的售价是____元.【答案】12【分析】设一开始每人分担x 元,一开始销售商的个数为y 个,根据题意列出方程组,化简后解出方程的解,再求出每个经销商拿的零件套数与成本,故可求解.【详解】设一开始每人分担x 元,一开始销售商的个数为y 个,根据题意得()()()()200620050068xy x y xy x y ⎧=+-⎪⎨=++--⎪⎩化简得2006120007001498000y x y x --=⎧⎨--=⎩解得80030x y =⎧⎨=⎩∴一开始每人分担800元,一开始销售商的个数为30个所以现在每个销售商分担1500元,销售商的个数为16个则每个经销商分得零件套数为12000÷16=750套,每套成本为1500÷750=2元∴销售商每套零件想获得10元的利润,售价应为10+2=12元.故答案为:12.【点睛】此题主要考查方程组的实际应用,解题的关键是根据题意找到数量关系列方程组.17.(2021·上海松江·七年级期中)已知220x x +-=,那么代数式3231x x ++的值等于______.【答案】5【分析】根据220x x +-=可得22x x =-+,22x x +=,由此代入即可求得答案.【详解】解:∵220x x +-=,∴22x x =-+,22x x +=,∴323223121x x x x x ++=+++2()2(2)1x x x x =++-++2241x x =-++5=,故答案为:5.【点睛】本题考查了因式分解的应用以及代数式求值,熟练掌握整体代入求值是解决本题的关键.18.(2021·北京十四中八年级期中)如果n x y =,那么我们规定(),x y n =.例如:因为239=,所以()3,92=.根据上述规定,()2,8=_______,若(),16m p =,(),5m q =,(),m t r =,且满足p q r +=,则t =______.【答案】380【分析】由328=,根据规定易得(2,8)=3;由规定可得p q r m ,m ,m t ===165,根据同底数幂的运算及已知p +q =r ,即可求得t 的值.【详解】∵328=∴(2,8)=3故答案为:3;由规定得:p q r m ,m ,m t===165∴p+q m =⨯=16580∵p +q =r∴r m =80∴t =80故答案为:80【点睛】本题考查了同底数幂的运算,关键理解题意,能熟练进行同底数幂的运算.三、解答题19.(2021·四川·成都实外七年级期中)计算下列各题:(1)13513 1.252488+-+;(2)(34-)×(﹣113)﹣8÷4;(3)32﹣36×(5721293--);(4)﹣32﹣(﹣2)3×|14-|+(﹣1)2014【答案】(1)6;(2)1-;(3)69;(4)6-【分析】(1)按照有理数的加减混合运算法则计算即可;(2)按照有理数的乘除混合运算法则计算即可;(3)按照乘法分配律先分配,然后再进行计算即可;(4)按照幂的计算和绝对值的计算法则进行化简即可.【详解】解:(1)原式=1351 1.2532488⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=0+6=6(2)原式=34243⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭=12-=-1(3)原式=572 323636361293 -⨯+⨯+⨯32152824 =-++ 172824=++69=(4)原式=()19814---⨯+()921=---+6=-【点睛】本题考查有理数的加减混合运算,有理数的乘除混合运算,幂的乘方和绝对值的运算,牢记运算法则并能准确计算是解题的重点.20.(2021·福建省福州延安中学八年级期中)计算:(1)(x2y3)4+(﹣x)8(y6)2;(2)(9x2y3﹣27x3y2)÷(3xy)2.【答案】(1)2x8y12;(2)y﹣3x.【分析】(1)原式先计算乘方运算,再合并同类项;(2)原式先计算积的乘方运算,再计算多项式除以单项式求出结果即可.【详解】解:(1)原式=x8y12+x8y12=2x8y12;(2)原式=(9x2y3﹣27x3y2)÷9x2y2 =9x2y3÷9x2y2﹣27x3y2÷9x2y2 =y﹣3x.【点睛】本题考查了整式的混合运算,掌握幂的乘方(a m)n=a mn和积的乘方(ab)m=a m b m,多项式除以单项式的运算法则是解题关键.21.(2021·全国·七年级单元测试)计算(1)3m2•(2m2n)2÷6m5;(2)a(3a﹣1)+(1﹣a)(3a+2);(3)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b);(4)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn].【答案】(1)2mn2;(2)2;(3)3a2b﹣ab2;(4)mn【分析】(1)先计算乘方,再从左往右计算,即可求解;(2)先算乘法,再合并同类项,即可求解;(3)先去括号,再合并同类项,即可求解;(4)先去括号,再合并同类项,即可求解.【详解】(1)解:3m2•(2m2n)2÷6m5=3m2•4m4n2÷6m5=12m6n2÷6m5=2mn2;(2)解:a(3a﹣1)+(1﹣a)(3a+2)=3a2﹣a+3a+2﹣3a2﹣2a=2;(3)解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)=15a2b﹣5ab2+4ab2﹣12a2b,=3a2b﹣ab2;(4)解:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn,=mn.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的混合运算法则是解题的关键.22.(2021·黑龙江·哈尔滨市萧红中学八年级期中)如图,学校有一块长为(2a+b)米,宽为(2a-b)米的长方形地块,其中有两条宽为b米的甬道,学校计划将除甬道外其余部分进行绿化.(1)用含有a、b的式子表示绿化的总面积;(结果写成最简形式);(2)若a=5,b=2 ,请你计算出绿化的总面积;【答案】(1)2-;(2)6044a ab【分析】(1)长方形地块的长与宽分别减小b米后的长方形面积就是要绿化的总面积,最后化简即可;(2)把a与b的值代入(1)中化简后的代数式中,求值即可.【详解】(1)长方形地块的长、宽分别减小b米后的长方形长为2a+b-b=2a(米),宽为2a-b-b=(2a-2b)米,从而要绿化的总面积为:2a(2a-2b)=(4a2-4ab)平方米;即绿化的总面积为(4a2-4ab)平方米;(2)当a=5,b=2时,2⨯-⨯⨯=(平方米).4545260【点睛】本题考查了列代数式及求代数式的值,正确表示去掉路宽后的长方形的长与宽是关键.23.(2021·上海黄浦·七年级期中)有7张如图1规格相同的小长方形纸片,长为a,宽为b(a>b),按如图2、3的方式不重叠无缝隙地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.(1)如图2,点E、Q、P在同一直线上,点F、Q、G在同一直线上,右下角阴影部分矩形QPCG的面积为 (用含a、b的代数式表示),左上角阴影部分矩形AFQE的面积为 (用含a、b的代数式表示),矩形ABCD的面积为 .(用含a、b的代数式表示)(2)如图3,点F、H、Q、G在同一直线上,设右下角与左上角的阴影部分的面积的差为S,PC=x.①用a、b、x的代数式表示AE②当BC的长度变化时,按照同样的放置方式,如果S的值始终保持不变,那么a、b必须满足什么条件?【答案】(1)2a ,24312b b b ⨯=,22712a ab b ++(2)①4AE x b a =+-;②30a b -=【分析】(1)右下角的图形为边长为a 的正方形,左上角图形为长方形,其长宽分别为4b ,3b ,分别计算面积,找到矩形ABCD 的长宽分别为a +4b ,a +3b 计算面积即可.(2) ①AE =FQ ,PC =HG ,有FQ =HG +FH -QG ,从而得到AE ;②把S 表示出来,令与相乘的因式为零,即可得到S 与BC 长度无关.【详解】(1) 右下角的图形为边长为a 的正方形,面积为2a .左上角图形为长方形,其长宽分别为4b ,3b ,面积为24312b b b ⨯= .矩形ABCD 的长宽分别为a +4b ,a +3b ,面积为()()2243712a b a b a ab b ++=++故答案为:2a ,24312b b b ⨯=,22712a ab b ++(2) ①∵AE =FQ ,PC =HG ,有FQ =HG +FH -QG∴AE =PC +FH -QG即AE =x +4b -a②图2中,右下角的矩形长宽分别为x ,a ,则面积为xa .左上角矩形长宽分别为x +4b -a ,3b ,则面积为3b (x +4b -a ).则34S xa b x b a =-+-()整理得到,()2231233123S xa bx b ab x a b b ab=--+=--+当BC 的长度变化时,S 始终保持不变,则30a b -=时成立.【点睛】本题考查了列代数式,多项式的乘法,找准各部分图形的边长与边长之间的关系,准确表示出面积的代数式是解题的关键.24.(2021·江苏滨湖·七年级期中)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解决下列问题.(1)在图4中,黑色瓷砖有 块,白色瓷砖有 块;(2)已知正方形白色瓷砖边长为1米,长方形黑色瓷砖长为1米,宽为0.5米.现准备按照此图案进行装修,瓷砖无需切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.请回答下列问题:①铺设图2需要的总费用为 元;②铺设图n 需要的总费用为多少元?(用含n 的代数式表示)【答案】(1)20;20;(2)①1380; ②2115345230n n ++.【分析】(1)通过观察发现规律得出,第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +,将4n =代入即可求解;(2)①求得图2的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可;②求得图n 的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可;【详解】解:(1)通过观察图形可知,1n =时,黑色瓷砖的块数为8,白色瓷砖的块数为22n =时,黑色瓷砖的块数为12,白色瓷砖的块数为63n =时,黑色瓷砖的块数为16,白色瓷砖的块数为12则第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +当4n =时,黑色瓷砖的块数为20,白瓷砖的块数为20故答案为20,20(2)①图2,黑色瓷砖的块数为12,白色瓷砖的块数为6,所占用的面积为1210.561112⨯⨯+⨯⨯=(平方米)所需的费用为1250610012151380⨯+⨯+⨯=(元)故答案为1380②第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +占用的面积为4(1)10.5(1)112(1)(1)(1)(2)n n n n n n n n +⨯⨯++⨯⨯=+++=++所需的费用为24(1)50(1)10015(1)(2)115345230n n n n n n n +⨯++⨯+⨯++=++故答案为2115345230n n ++【点睛】此题考查了图形类规律的探索问题,涉及了列代数式,整式的乘法等运算,解题的关键是根据前面图形,找到规律.25.(2021·湖北江汉·八年级期中)(1)已知2x 2+6x =3,求代数式x (x +1)(x +2)(x +3)的值;(2)如果多项式4x 2+kx -7被4x +3除后余2,求k 的值.【答案】(1)214;(2)-9【分析】(1)由已知可得:332x x +=,然后把多项式分别按(3),(1)(3)x x x x +++展开即可求得代数式的值;(2)由题意可凑得商为3x -,则计算(43)(3)2x x +-+即可求得k 的值.【详解】(1)由2x 2+6x =3,得2332x x +=∴x (x +1)(x +2)(x +3)=223321(3)(32)2224x x x x ⎛⎫+++=⨯+= ⎪⎝⎭;(2)∵多项式4x 2+kx -7是二次多项式,除式4x+3是一次多项式∴多项式4x 2+kx -7被4x +3除,则商应为一次多项式∵多项式4x 2+kx -7的二次项系数为4∴商的一次项系数为1∵多项式4x 2+kx -7的常数项为-7,余数为2∴商的常数项为-3∴商为3x -∴4x 2+kx -7=2(43)(3)2497x x x x +-+=--∴k =-9【点睛】本题考查了整体法求代数式的值,多项式乘以多项式,(1)的计算需要一定的技巧,能够根据已知条件对相乘的多项式适当的组合以便运用条件;(2)则要凑,要求对多项式的乘法及除法熟练.26.(2021·北京·101中学八年级期中)(知识回顾)我们在学习代数式求值时,遇到这样一类题:代数式6351ax y x y -++--的值与x 的取值无关,求a 的值.通常的解题思路是:把x 、y 看作字母,a 看作系数,合并同类项。
初中数学北京版七年级下册第六章 整式的运算二 整式的乘法6.4 乘法公式-章节测试习题(2)
章节测试题1.【题文】已知:x+y=6,xy=4.(1)求x2+y2的值;(2)求(x-y)2的值;(3)求x4+y4的值【答案】(1)28;(2)20;(3)368【分析】(1)利用x2+y2=(x+y)2-2xy计算即可;(2)利用(x-y)2=x2+y2-2xy计算即可;(3)利用x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2计算即可.【解答】∵x+y=6,xy=4,∴(1)x2+y2=(x+y)2-2xy=62-2×4=28;(2)(x-y)2=x2+y2-2xy=28-2×4=20;(3)x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2=202-2×42=368.2.【题文】已知:x2+xy+y=14,y2+xy+x=28,求x+y的值.【答案】-7或6【分析】由x2+xy+y=14,y2+xy+x=28,即可求得x2+2xy+y2+x+y=42,则变形得(x+y)2+(x+y)-42=0,将x+y看作整体,利用因式分解法即可求得x+y的值.【解答】∵x2+xy+y=14①,y2+xy+x=28②,∴①+②,得:x2+2xy+y2+x+y=42,∴(x+y)2+(x+y)-42=0,∴(x+y+7)(x+y-6)=0,∴x+y+7=0或x+y-6=0,解得:x+y=-7或x+y=6.3.【题文】若x2+y2=86,xy=-16,求(x-y)2.【答案】118【分析】根据完全平方公式得到(x-y)2=x2+y2-2xy,然后把x2+y2=86,xy=-16代入计算即可.【解答】∵(x-y)2=x2+y2-2xy,且x2+y2=86,xy=-16,∴(x-y)2=86-2×(-16)=118.4.【题文】计算:(1)29.8×30.2;(2)46×512;(3)2052.【答案】①899.96;②1012;③42025.【分析】(1)利用平方差公式进行简便计算,(2)先将46变形为212,再利用积的乘方进行简便计算,(3)利用完全平方公式进行简便计算.【解答】(1)29.8×30.2=(30+0.2)(30-0.2)=302-0.22=900-0.04=899.96,(2)46×512=212×512=(2×5)12=1012,(3)2052=(200+5)2=40000+2000+25=42025.5.【题文】已知(a+b)2=24,(a-b)2=20,求:(1)ab的值是多少?(2)a2+b2的值是多少?【答案】(1)ab=1;(2)a2+b2=22.【分析】(1)根据(a-b)2=, (a+b)2=,可推导出(a+b)2-(a -b)2=4ab,代入即可求解,(2)根据(a+b)2=,可推导出,代入即可求解.【解答】∵(a+b)2=24,(a-b)2=20,∴a2+b2+2ab=24①,a2+b2-2ab=20②,(1)①-②得:4ab=4,则ab=1,(2)①+②得:2(a2+b2)=44,则a2+b2=22.6.【题文】阅读理解:若x满足(x-2015)(2002-x)=-302,试求(x-2015)2+(2002-x)2的值.解:设x-2015=a,2002-x=b,则ab=-302且a+b=(x-2015)+(2002-x)=-13.∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2-2ab=(-13)2-2×(-302)=773,即(x-2015)2+(2002-x)2的值为773.解决问题:请你根据上述材料的解题思路,完成下面一题的解答过程,若y满足(y-2015)2+(y-2016)2=4035,试求(y-2015)(y-2016)的值.【答案】2017.【分析】设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,根据(a-b)2=a2-2ab+b2,可以求出ab,即可解决问题.【解答】设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,∵(a-b)2=a2-2ab+b2,∴ab=[a2+b2-(a-b)2]=2017.∴(y-2015)(y-2016)=2017.7.【题文】化简:(a-b)2+(b-c)2+(c-a)2/【答案】2a2+2b2+2c2-2ab-2bc-2a c【分析】利用完全平方公式展开,然后合并即可.【解答】(a-b)2+(b-c)2+(c-a)2=a2-2ab+b2+b2-2bc+c2+c2-2ac+a2=2a2+2b2+c2-2ab-2ac-2bc;8.【题文】先化简,再求值:,其中,.【答案】【分析】去括号,合并同类项,再把字母的值代入运算即可.【解答】解:原式,,当,时,原式.9.【题文】考古学家从幼发拉底河附近的一座寺庙里,发掘出数千块泥板书,他们从泥板书中发现美索不达米亚的祭祀已经知道平方表的用法,并能够利用平方表算出任意两个自然数的乘积.例如:计算乘以,祭祀们会按下面的流程操作:第一步:加上,将和除以得;第二步:减去,将差除以得;第三步:查平方表,得的平方是;第四步:查平方表,得的平方是;第五步:减去,得到答案.于是他们便得出.请你利用所学的代数知识,设两个自然数分别为、,对泥板书计算两个自然数乘积的合理性做出解释.【答案】见解析【分析】按照题中所给的步骤进行推导即可.【解答】解:.10.【题文】已知,求代数式的值.【答案】15【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并后,将已知方程变形后代入计算即可求出值.【解答】解:,,,,∵,∴,∴原式.11.【题文】计算:.【答案】【分析】先利用平方差公式进行计算,然后再利用完全平方公式进行计算即可.【解答】解:原式.12.【题文】先化简,再求值:(a﹣b)2+(2a﹣b)(a﹣2b)-a(3a-b),其中│a-1│+(2+b)2 =0【答案】3b2-6ab,24.【分析】先将原式去括号化简,再由│a-1│+(2+b)2 =0可以求出a、b的值,将a、b的值代入化简后的式子即可.【解答】解:原式=a2-2ab+b2+2a2-4ab-ab+2b2-3a2+ab=3b2-6ab;∵│a-1│+(2+b)2 =0,∴a-1=0,2+b=0,∴a=1,b=-2;将a=1,b=-2代入化简后的式子可得:原式=3×(-2)2-6×1×(-2)=24.13.【题文】已知:a+b=3,ab=2,求的值.【答案】5.【分析】把a+b=3两边平方,再利用完全平方公式展开,再把ab=2代入进行计算即可得解.【解答】解:∵a+b=3,∴(a+b)2=9,即a2+2ab+b2=9,∵ab=2,∴a2+b2=9-2ab=9-2×2=5.14.【题文】先化简,再求值: ,其中. 【答案】原式==-4【分析】原式利用平方差公式及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣9x2﹣6x﹣1+9x2﹣1=﹣6x﹣2当x=时,原式=﹣1﹣2=﹣3.15.【题文】计算:(m-n)(m+n)+(m+n)2-2m2.【答案】2mn【分析】原式第一项利用平方差根式化简,第二项利用完全平方公式展开,计算即可得到结果.【解答】解:(m-n)(m+n)+(m+n)2-2m2=m2-n2+m2+2mn+n2-2m2=2mn.16.【题文】用乘法公式计算:99.82.【答案】9960.04.【分析】把99.8写成(100-0.2),然后利用完全平方公式计算即可得解;【解答】解:99.82=(100﹣0.2)2=1002﹣2×100×0.20+22=9960.04.17.【题文】已知(x+y)2=25,xy=,求x﹣y的值.【答案】±4【分析】首先,根据完全平方公式将(x+y)2打开,并根据xy的值求出x2+y2;然后,根据完全平方公式求出(x-y)2的值,开平方即可求解.【解答】解:∵(x+y)2=25,∴x2+2xy+y2=25,又∵xy=94,∴x2+y2=412,∴(x-y)2=x2-2xy+y2=412-2×94=16,∴x-y=±4.18.【题文】现有边长分别为a,b的正方形Ⅰ号和Ⅱ号,以及长为a,宽为b的长方形Ⅲ号卡片足够多,我们可以选取适量的卡片拼接成几何图形.(卡片间不重叠、无缝隙)尝试解决:(1)图1是由1张Ⅰ号卡片、1张Ⅱ号卡片、2张Ⅲ号卡片拼接成的正方形,那么这个几何图形表示的等式是______;(2)小聪想用几何图形表示等式(a+b)(2a+b)=2a2+3ab+b2,图2给出了他所拼接的几何图形的一部分,请你补全图形;(3)小聪选取1张Ⅰ号卡片、3张Ⅱ号卡片、4张Ⅲ号卡片拼接成一个长方形,那么拼接的几何图形表示的等式是______;拓展研究:(4)如图3,大正方形的边长为m,小正方形的边长为n,若用m、n表示四个直角三角形的两直角边边长(b>a),观察图案,以下关系式中正确的有______.(填写序号)①ab=;②a+b=m;③a2+b2=m2;④a2+b2=.【答案】(1)(a+b)2=a2+2ab+b2;(2)答案见解析;(3)(a+b)(a+3b)=a2+4ab+3b2;(4)①③.【分析】(1)根据图形,有直接求和间接求两种方法,列出等式即可;(2)根据已知等式画出相应的图形,如图所示;(3)根据题意列出关系式,分解因式后即可得到结果.根据完全平方公式判断即可.【解答】解:(1)这个几何图形表示的等式是(2)如图:(3)拼接的几何图形表示的等式是根据图③得:∴∵∴∴①③正确,故答案为:①③19.【题文】已知,,求下列代数式的值:(1);(2).【答案】(1)10;(2)±8.【分析】(1)把两边平方,利用完全平方公式化简,再将代入计算即可求出值;(2)利用完全平方公式及平方根定义求出的值,原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:(1)把x+y=4两边平方得:将xy=3代入得:(2)∵∴∴x−y=2或x−y=−2,则原式=(x+y)(x−y)=8或−8.20.【题文】先化简,再求值.,其中=-2,=.【答案】7b2+ab,.【分析】先化简题目中的式子,然后将的值代入即可解答本题;【解答】解:当时,原式。
初一数学上册综合算式专项练习题带绝对值与整式乘法公式的混合运算
初一数学上册综合算式专项练习题带绝对值与整式乘法公式的混合运算在初一数学上册中,综合算式是一个非常重要的部分。
为了帮助同学们更好地掌握这一知识点,现在进行综合算式专项练习题,其中还涉及到绝对值和整式乘法公式的混合运算。
让我们一起来解答以下练习题吧!1. 计算下式的值:(3x - 5)(x + 2) - 2(2x - 1)解答:首先应用整式乘法公式展开括号:3x^2 + 6x - 5x - 10 - 4x + 2接着将同类项合并:3x^2 - 3x - 82. 计算下式的绝对值:|5 - 8| + |2x - 3x|解答:首先计算绝对值内部的数值:|-3| + |-x|根据绝对值的定义,|-3| = 3 且 |-x| = |x|,所以可以得到:3 + |x|3. 计算下式的值:(3x - 2)(5 + 2x) - |x - 1|解答:首先应用整式乘法公式展开括号:15x + 6x^2 - 10 - 4x - |x - 1|接下来要处理绝对值,当x ≥ 1 时,|x - 1| = x - 1;当 x < 1 时,|x - 1| = -(x - 1) = 1 - x。
因此,可以将问题分成两种情况:a) 当x ≥ 1 时:15x + 6x^2 - 10 - 4x - (x - 1)化简得:6x^2 + 10x - 9b) 当 x < 1 时:15x + 6x^2 - 10 - 4x - (1 - x)化简得:6x^2 + 20x - 114. 计算下式的绝对值:|-3 + x| + |1 - 4x|解答:根据绝对值的定义:|-3 + x| = |x - 3|,且 |1 - 4x| = |4x - 1|5. 计算下式的值:(2x - y)(x + y) - |x - y|解答:首先应用整式乘法公式展开括号:2x^2 + 2xy - xy - y^2 - |x - y|接下来要处理绝对值,当x ≥ y 时,|x - y| = x - y;当 x < y 时,|x - y| = -(x - y) = y - x。
整式的乘法综合练习题(乘法公式三套)
整式的乘法综合练习题(125题)(一)填空1.a8=(-a5)______.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=______.6.(-a2b)3·(-ab2)=______.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______.16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______.22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0.24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[ ]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4;B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20;D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是 [ ]A.a4b8;B.-a4b8;C.a4b7;D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6;B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn;D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7;B.-8x27y64;C.-8x9y12;D.-6xy10.34.下列计算正确的是[ ]A.(a3)n+1=a3n+1;B.(-a2)3a6=a12;C.a8m·a8m=2a16m;D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是[ ]A.(a-b)2n+m;B.-(a-b)2n+m;C.(b-a)2n+m;D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是 [ ]A.正的;B.非负;C.负的;D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是 [ ]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[ ]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,(4)2164=(64)3,(5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确;B.只有(1)与(3)正确;C.只有(1)与(4)正确;D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是[ ]A.18x3n-1y2;B.-36x2n-1y3;C.-108x3n-1y;D.108x3n-1y3.[ ]44.下列计算正确的是[ ]A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1;C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]58.(3m-n)(m-2n).59.(x+2y)(5a+3b).60.(-ab)3·(-a2b)·(-a2b4c)2.61.[(-a)2m]3·a3m+[(-a)5m]2.62.x n+1(x n-x n-1+x).63.(x+y)(x2-xy+y2).65.5x(x2+2x+1)-(2x+3)(x-5).67.(2x-3)(x+4).74.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5).70.(-2a m b n)(-a2b n)(-3ab2).75.(2a2-1)(a-4)(a2+3)(2a-5).76.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).77.(0.3a3b4)2·(-0.2a4b3)3.78.(-4xy3)·(-xy)+(-3xy2)2.80.(5a3+2a-a2-3)(2-a+4a2).81.(3x4-2x2+x-3)(4x3-x2+5).86.[(-a2b)3]3·(-ab2).83.(3a m+2b n+2)(2a m+2a m-2b n-2+3b n).91.(-2x m y n)3·(-x2y n)·(-3xy2)2.87.(-2ab2)3·(3a2b-2ab-4b2).92.(0.2a-1.5b+1)(0.4a-4b-0.5).93.-8(a-b)3·3(b-a).94.(x+3y+4)(2x-y).96.y[y-3(x-z)]+y[3z-(y-3x)].97.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简(五)求值;104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=106.光的速度每秒约3×105千米,太阳光射到地球上需要的时间约是5×102秒.问地球与太阳的距离约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.110.已知(x-1)(x+1)(x-2)(x-4)≡(x2-3x)2+a(x2-3x)+b,求a,b的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6≡(x-1)(x2+mx+n),求m,n的值.113.已知一个两位数的十位数字比个位数字小1,若把十位数字与个位数字互换,所得的新两位数与原数的乘积比原数的平方多405,求原数.114.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.115.比较2100与375的大小.116.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).118.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.121.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.122.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.123.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m2-3m)2-2(m2-3m)-8.整式的运算练习(提高27题)1、=2、若2x + 5y-3 = 0 则=3、已知a = 355 ,b = 444 ,c = 533则有( )A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5) 8、计算9、计算,当a6 = 64时, 该式的值。
七年级数学第一章整式的运算练习题及答案
第一章《整式的运算》一、知识点填空:1、只有数与字母的 的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。
下列代数式中,单项式共有 个,多项式共有 个。
-231a , 52243b a -, 2, ab ,)(1y x a +, )(21b a +, a ,712+x , x y π+ 2、一个单项式中,所有 的指数和叫做这个单项式的次数;一个多项式中,次数 的项的次数叫做这个多项式的次数。
(单独一个非零数的次数是0)(1)单项式232z y x -的系数是 ,次数是 ;(2)π的次数是 。
(3)22322--+ab b a c ab 是单项式 和,次数最高的项是 ,它是 次 项式,二次项是 ,常数项是 .3、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
如:()=⎪⎭⎫ ⎝⎛-xy z xy 3122。
(2)单项式与多项式相乘:()b a ab ab 22324+= 。
(3)多项式与多项式相乘:()()=-+y x y x 22。
4、平方差公式:两数和与这两数差的积,等于它们的平方差。
即:()()______a b a b +-=。
公式逆用:22_________a b -= 计算:(1)()()=-+x x 8585,(2)()()33_________x y x y -++=, (3)_______5.175.3722=-。
5、完全平方公式:()2222b ab a b a ++=+,()2222b ab a b a +-=-。
公式变形:(1)22_____________a b += (2)()22()______a b a b +--=。
公式推广:(3)()2__________________a b c ++= (4)()3_________a b +=。
七年级数学试卷整式乘法与因式分解易错压轴解答题复习题(含答案)
七年级数学试卷整式乘法与因式分解易错压轴解答题复习题(含答案)一、整式乘法与因式分解易错压轴解答题1.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;……根据这一规律计算:(1)(x﹣1)(x4+x3+x2+x+1)=________.(x﹣1)(x n+x n﹣1+…+x+1)=________. (2)22020+22019+22018+…+22+2+1.(3)32020﹣32019+32018﹣32017+…+32﹣3+1.2.如图1是一个长为,宽为的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为;(2)观察图2请你写出,,之间的等量关系是________;(3)根据(2)中的结论,若,,则 ________;(4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式.在图形上把每一部分的面积标写清楚.3.好学小东同学,在学习多项式乘以多项式时发现:( x+4)(2x+5)(3x-6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(-6)=-120,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是: ×5×(-6)+2×(-6)×4+3×4×5=-3,即一次项为-3x.请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+2)(3x+1)(5x-3)所得多项式的一次项系数为________.(2)( x+6)(2x+3)(5x-4)所得多项式的二次项系数为________.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式不含一次项,求a的值;(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,则a2020=________.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如, ···,因此都是奇巧数.(1)是奇巧数吗?为什么?(2)奇巧数是的倍数吗?为什么?5.阅读材料:把形如的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即 .例如:是的一种形式的配方,是的另一种形式的配方请根据阅读材料解决下列问题:(1)比照上面的例子,写出的两种不同形式的配方;(2)已知,求的值;(3)已知,求的值.6.【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题。
整式的乘法专题训练
整式的乘法专题训练题目一:(2x)(3x)解析:根据单项式乘以单项式法则,系数相乘,字母部分按同底数幂相乘,结果为6x²。
题目二:(-3a²b)(4ab²)解析:系数相乘为-12,同底数幂相乘,a 的次数为2+1 = 3,b 的次数为1+2 = 3,结果是-12a³b³。
题目三:(2x²y)(-3xy³)解析:系数相乘为-6,x 的次数为2+1 = 3,y 的次数为1+3 = 4,答案是-6x³y⁴。
题目四:(5m²n)(-2m³n²)解析:系数相乘为-10,m 的次数为2+3 = 5,n 的次数为1+2 = 3,结果是-10m⁴n³。
题目五:(3x)(x² - 2x + 1)解析:用3x 分别乘以括号里的每一项,3x·x² = 3x³,3x·(-2x) = -6x²,3x·1 = 3x,结果为3x³ - 6x² + 3x。
题目六:(2x - 1)(x + 3)解析:用2x 乘以(x + 3)得2x² + 6x,再用-1 乘以(x + 3)得-x - 3,最后相加,2x² + 6x - x - 3 = 2x² + 5x - 3。
题目七:(x - 2)(x² + 3x - 1)解析:x 乘以(x² + 3x - 1)得x³ + 3x² - x,-2 乘以(x² + 3x - 1)得-2x² - 6x + 2,相加得x³ + 3x² - x - 2x² - 6x + 2 = x³ + x² - 7x + 2。
题目八:(3x + 2)(2x² - 5x + 1)解析:3x 乘以(2x² - 5x + 1)得6x³ - 15x² + 3x,2 乘以(2x² - 5x + 1)得4x² -10x + 2,相加得6x³ - 15x² + 3x + 4x² - 10x + 2 = 6x³ - 11x² - 7x + 2。
整式的乘法公式练习题
整式的乘法公式练习题在代数学中,整式的乘法是一项基本的运算,它在解决各种代数问题中起着重要的作用。
本文将为大家提供一些整式的乘法公式练习题,通过练习巩固并加深对整式乘法的理解。
练习题一:将下列整式相乘,并将结果化简。
1. (2x + 3)(x + 4)解析:首先使用分配律,将前一项的每个项与后一项的每个项相乘:= 2x * (x + 4) + 3 * (x + 4)接下来使用分配律将每个相乘得到的结果进行合并并化简:= 2x^2 + 8x + 3x + 12最终结果为:2x^2 + 11x + 122. (3x - 5)(2x + 7)解析:同样地,使用分配律将每个项相乘:= 3x * (2x + 7) - 5 * (2x + 7)然后合并并化简结果:= 6x^2 + 21x - 10x - 35最终结果为:6x^2 + 11x - 35练习题二:将下列整式相乘,并将结果化简。
1. (a + 5)(a - 2)解析:使用分配律将每一项相乘:= a * (a - 2) + 5 * (a - 2)合并并化简结果:= a^2 - 2a + 5a - 10最终结果为:a^2 + 3a - 102. (2x + 3)(2x - 3)解析:应用分配律进行乘法运算:= 2x * (2x - 3) + 3 * (2x - 3)合并并化简结果:= 4x^2 - 6x + 6x - 9最终结果为:4x^2 - 9练习题三:将下列整式相乘,并将结果化简。
1. (3a - 2b)(4a + 5b)解析:通过使用分配律进行乘法运算:= 3a * (4a + 5b) - 2b * (4a + 5b)合并并化简结果:= 12a^2 + 15ab - 8ab - 10b^2最终结果为:12a^2 + 7ab - 10b^2 2. (2x - 3y)(x + 4y)解析:使用分配律将每一项相乘:= 2x * (x + 4y) - 3y * (x + 4y)合并并化简结果:= 2x^2 + 8xy - 3xy - 12y^2最终结果为:2x^2 + 5xy - 12y^2通过以上的练习题,我们可以对整式乘法公式进行更好的掌握。
整式的乘除整章练习题(完整)
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )
初一数学奥数专题讲义——整式乘法
整式乘法一.例题精选例1.如果x 2+x -1=0,则x 3+2x 2+3=________。
例2.已知012210101111121262)1(a x a x a x a x a x a x x ++++++=++ ,求1357911a a a a a a +++++的值。
例3.已知a 1,a 2,a 3,…,a 1996,a 1997均为正数,又M=(a 1+a 2+…+a 1996)·(a 2+a 3+…+a 1997), N=(a 1+a 2+…+a 1997)(a 2+a 3+…+a 1996),则M 与N 的大小关系是( )A.M=NB.M 〈NC.M>N D 。
关系不确定例4.已知x 2-xy -2y 2—x —7y —6=(x —2y+A)(x+y+B ),求A 、B 的值.例5.观察下列各式:(x-1)(x+1)=x 2—1;(x -1)(x 2+x+1)=x 3—1;(x —1)(x 3+x 2+x+1)=x 4—1。
根据前面的规律可得 (x -1)(x n +x n-1+…+x+1)=_______。
例6.由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3.①我们把等式①叫做多项式乘法的立方公式.下列应用这个立方公式进行的变形不正确...的是( ) A .(x +4y )(x 2-4xy +16y 2)=x 3+64y 3 B .(2x+y )(4x 2-2xy+y 2)=8x 3+y 3C .(a +1)(a 2+a +1)=a 3+1D .x 3+27=(x +3)(x 2-3x +9)例7.新知识一般有两类:第一类是不依赖于其他知识的新知识,如“数”、“字母表示数”这样的初始性的知识;第二类是在某些就只是的基础上进行联系、拓广等方式产生的知识,大多数知识是这样的知识.(1)多项式乘以多项式的法则,是第几类知识?(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条即可)(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项式的法则时如何获得的?(用(a+b)(c+d )来说明)例8.正数a 、b 、c 满足3=++=++=++a c ca c b bc b a ab ,求)1)(1)(1(+++c b a 的值.二.同步练习1.已知a-b=3,b+c=-5,则代数式ac-bc+a 2-ab 的值为( )A 。
初一数学整式的乘法试题答案及解析
初一数学整式的乘法试题答案及解析1.计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab2【答案】C【解析】根据幂的乘方法则:底数不变,指数相乘,进行计算即可.解:原式=a2b2.故选C.2.计算(﹣2a3)2的结果是()A.2a5B.4a5C.﹣2a6D.4a6【答案】D【解析】根据积的乘方与幂的乘方的运算法则求解即可求得答案;注意幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.解:(﹣2a3)2=(﹣2)2•(a3)2=4a6.故选D.3.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【答案】D【解析】根据积的乘方的性质进行计算,然后直接选取答案即可.解:(ab2)3=a3•(b2)3=a3b6.故选D.4.计算(﹣x2y)2的结果是()A.﹣x4y B.x2y2C.x4y2D.2x4y2【答案】C【解析】根据积的乘方法则,把积的每一个因式分别乘方,再把所得的积相乘,求出即可.解:(﹣x2y)2=x4y2,故选C.5.若(a m b n)3=a9b15,则m、n的值分别为()A.9;5B.3;5C.5;3D.6;12【答案】B【解析】根据积的乘方法则展开得出a3m b3n=a9b15,推出3m=9,3n=15,求出m、n即可.解:∵(a m b n)3=a9b15,∴a3m b3n=a9b15,∴3m=9,3n=15,∴m=3,n=5,故选B.6.(﹣a2b3c)3=()A.a6b9c3B.﹣a5b6c3C.﹣a6b9c3D.﹣a2b3c3【答案】C【解析】根据积的乘方的运算性质求解.解:(﹣a2b3c)3=﹣a6b9c3.故选C.7.地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏级地震释放的能量是3级地震释放能量的324倍.【答案】7【解析】设里氏n级地震释放的能量是3级地震释放能量的324倍,根据题意得出方程32n﹣1=323﹣1×324,求出方程的解即可.解:设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n﹣1=323﹣1×324,32n﹣1=326,n﹣1=6,n=7.故答案为:7.8.运算结果为a6b12的一个算式是(答案不唯一).【答案】(a3b6)2=a6b12【解析】只要是根据积的乘方和幂的乘方运算方法列的算式均可.解:如(a3b6)2=a6b12等,答案不唯一.9.计算:(﹣ab2)2=.【答案】4【解析】根据积的乘方的性质把(﹣ab2)2展开,然后根据它们的倍数关系即可求解.解:∵(﹣ab2)2=×(﹣ab2)2,∴4×(﹣ab2)2=(﹣ab2)2.故应填4.10.计算(﹣a2b)2的结果是.【答案】a4b2【解析】根据幂的乘方的性质,积的乘方的性质即可求得答案.解:(﹣a2b)2=a4b2.故答案为:a4b2.11.计算=.【答案】﹣a6b9【解析】根据积的乘方公式,积的乘方等于把每个因式分别平方,再把所得的幂相乘.然后利用幂的乘方法则即可求解.解:原式=﹣()3(a2)3(b3)3=﹣a6b9.故答案是:﹣a6b9.12.计算:﹣(﹣3a2b3)4的结果是.【答案】﹣81a8b12【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘进行计算.解:﹣(﹣3a2b3)4=﹣(﹣3)4a8b12=﹣81a8b12.13.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y2【答案】A【解析】根据积的乘方的知识求解即可求得答案.解:(2x3y)2=4x6y2.故选:A.14.下列运算正确的是()A.a2•a3=a6B.(a4)3=a12C.(﹣2a)3=﹣6a3D.a4+a5=a9【答案】B【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解:A、a2•a3=a2+3=a5≠a6,故本选项错误;B、(a4)3=a4×3=a12,故本选项正确;C、(﹣2a)3=(﹣2)3a3=﹣8a3,故本选项错误;D、a4与a5不是同类项,不能合并,故本选项错误.故选B.15.计算(2a)3的结果是()A.6a B.8a C.2a3D.8a3【答案】D【解析】利用积的乘方以及幂的乘方法则进行计算即可求出答案.解:(2a)3=8a3;故选D.16.已知a=75,b=57,则下列式子中正确的是()A.ab=1212B.ab=3535C.a7b5=1212D.a7b5=3535【答案】D【解析】根据幂的乘方和积的乘方求出ab和a7b5的值,再进行判断即可.解:∵a=75,b=57,∴ab=75×57≠1212,ab≠3535,a7b5=(75)7×(57)5=735×535=(7×5)35=3535,而a7b5≠1212,∴选项A、B、C都不正确;只有选项D正确;故选D.17. a14不等于下列各式中的()A.a7•a7B.a3•a5•a6C.(a7)7D.2a14﹣a14【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分别进行分析即可.解:A、a7•a7=a14,故本选项正确;B、a3•a5•a6=a14,故本选项正确;C、(a7)7=a49,故本选项错误;D、2a14﹣a14=a14,故本选项正确;故选C.18.已知32+m=27•3n,当m=4时,n等于()A.0B.3C.4D.﹣4【答案】B【解析】根据同底数幂的乘法运算法则得出27•3n=33+n,进而求出即可.解:∵32+m=27•3n,m=4,∴36=33+n,则3+n=6,解得:n=3.故选:B.19.下列各式正确的是()A.(m2)3=m8B.(m2)3=m6C.[(m2)2]2=m6D.﹣(﹣m2)2=m4【答案】B【解析】根据幂的乘方法则对各选项进行判断.解:A、(m2)3=m6,所以A选项错误;B、(m2)3=m6,所以B选项正确;C、[(m2)2]2=m8,所以C选项错误;D、﹣(﹣m2)2=﹣m4,所以D选项错误.故选B.20. a12不能写成()A.(a3)4B.(a6)2C.(a2)10D.a2•a10【答案】C【解析】根据幂的乘方、积的乘方、同底数幂的乘法法则判断即可.解:a12=(a3)4=(a6)2=a2•a10,a12≠(a2)10,即选项A、B、D正确,只有选项C错误;故选C.21.化简()1999•32000等于()A.3B.C.1D.9【答案】A【解析】把()1999化为3﹣1999,然后根据同底数幂的乘法法则求解即可.解:原式=3﹣1999•32000=3.故选A.22.计算:(x n+1)2•(x2)n﹣1所得结果是()A.x4n+2B.x4n﹣1C.x4n D.x4n+1【答案】C【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘计算.解:(x n+1)2•(x2)n﹣1=x2n+2•x2n﹣2=x4n.故选:C.23.如果(a3)6=86,则a等于()A.2B.﹣2C.±2D.以上都不对【答案】A【解析】由于指数相同,令底数相同即可进行计算.解:∵(a3)6=86,∴a3=8,∴a=2.故选A.24.计算2m•4n的结果是()A.(2×4)m+n B.2•2m+n C.2n•2mn D.2m+2n【答案】D【解析】先用幂的乘方法则转化为同底数幂的乘法运算,再运用同底数幂的乘法法则进行运算.解:2m•4n=2m•22n=2m+2n.故选D.25.计算:(2a2)2=.【答案】4a4【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可.解:(2a2)2=22a4=4a4.26.计算:(﹣m2)5=.【答案】﹣m10【解析】根据幂的乘方的法则求解.解:(﹣m2)5=﹣m10.故答案为:﹣m10.27.计算:(a2b)2=.【答案】a4b2【解析】根据幂的乘方法则及积的乘方法则,进行运算即可.解:原式=a4b2.故答案为:a4b2.28.已知a是整数,且,则a的值是.【答案】﹣4【解析】首先把化为2a=,再根据2﹣4=可得a=﹣4.解:∵,∴2a=,∵2﹣4=,∴a=﹣4,故答案为:﹣4.29.化简(2x3)2=.【答案】4x6【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,进行计算即可.解:(2x3)2=22(x2)3=4x6.故答案为:4x6.30.比较大小:(23)4(34)2.【答案】<【解析】根据幂的乘方把两个数写成指数相同的数,再比较.解:∵(23)4=642,(34)2=812,而642<812∴(23)4<(34)2.。
整式乘法公式专项练习题
整式乘法公式专项练习题乘法公式》练题(一)一、填空题1.(a+b)(a-b)=a^2-b^22.(x-1)(x+1)=x^2-1.(2a+b)(2a-b)=4a^2-b^2.(x-y)(x+y)=x^2-y^23.(x+4)(-x+4)=-x^2+16.(x+3y)(x-3y)=9y^2-x^2.(-m-n)(m-n)=m^2-n^24.4.98×10^2=(7+1)(7-1)=48.(a+b+c)(a+b-c)=a^2+b^2+c^2-2ab-2ac+2bc5.-(2x^2+3y)(3y-2x^2)=-6x^2y+9y^26.(a-b)(a+b)(a^2+b^2)=a^4-b^47.(a-4b)(a+4b)=9a^2-16b^2.(x-2x)(x+2x)=4x^2-25y^28.(xy-z)(z+xy)=-z^2+xy^2.(x-0.7y)(x+0.7y)=x^2-0.49y^29.(x+y^2)(x-y^2)=y^4-x^210.(x-1)(xn+xn-1+。
+x+1)=xn-1二、选择题11.C。
(-a-b)(a-b)可以使用平方差公式计算。
12.B。
(x+4)(x-4)=x^2-16.13.B。
(xy+z)(xy-z)不能使用平方差公式计算。
14.A。
需要乘以-4x^2-5y才能使用平方差公式计算。
XXX(1-a)(1+a)(1+a^2)=a^4+1-a^2-a^3-a^2-a^4-a^2=a^4-2a^2+1+2a^4=a^4+a^4-2a^2+1=(2a^4-2a^2+1)-a^4=2a^4-2a^2+1.16.A。
(x+5y)(-x+5y)=x^2-25y^2.三、解答题,无需修改。
1.17.1.03×0.9718.(-2x2+5)(-2x2-5)19.a(a-5)-(a+6)(a -6)20.(2x-3y)(3y+2x)-(4y-3x)(3x+4y)D.(x-5y)(5y-x)111 21.(x+y)(x-y)(x2+y2)22.(x+y)(x-y)-x(x+y)339 23.3(2x+1)(2x -1)-2(3x+2)(2-3x)1/3 24.9982-425.2003×2001-1.(-2x²+5)(-2x²-5)的乘积为多少?2.求解a(a-5)-(a+6)(a-6)的值。
初一整式的乘法(含答案)
整式的乘法一、基础知识1、整式的乘法:单项式与单项式相乘,把它们系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘,就是把单项式与多项式的每一项相乘,再把所得的积相加。
多项式与多项式相乘,就是用多项式的每一项和另一个多项式的每一项相乘,再把所得的积相加。
2、乘法公式平方差公式:22))((b a b a b a -=-+ 完全平方公式:2222)(b ab a b a +±=± 二、课前预习 (5分钟训练) 1.计算下列各式:(1)(2×103)×(3×104)×(5×102); (2)(13×105)3(9×103)2;(3)45x 2(-53xy 3); (4)(-3ab)(2a 2-13ab+5b 2);2.若x m =3,x n =2,则x 2m+3n =________. 三、课中强化(10分钟训练) 1.下列计算正确的是( )A.(-4x 2)(2x 2+3x -1)=-8x 4-12x 2-4xB.(x+y)(x 2+y 2)=x 3+y 3C.(-4a -1)(4a -1)=1-16a 2D.(x -2y)2=x 2-2xy+4y 22.计算:(1)2(a5)2·(a2)2-(a2)4·(a2)2·a2;(2)(b n)3·(b2)m+3(b3)n·b2·(b m-1)2;(3)(27×81×92)2.3.(1)化简求值:(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),其中x=-7 18;(2)已知|a-2|+(b-12)2=0,求-a(a2-2ab-b2)-b(ab+2a2-b2)的值.4.如图15-2-2,某长方形广场的四角都有一块半径相同的四分之一圆形草地,若圆的半径为r米,长方形长为a米,宽为b米.(1)请用代数式表示空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留π).图15-2-2四、课后巩固(30分钟训练)1.化简(-2a)·a-(-2a)2的结果是( )A.0B.2a2C.-6a2D.-4a22.下列5个算式中,错误的有( )①a 2b 3+a 2b 3=2a 4b 6 ②a 2b 3+a 2b 3=2a 2b 3 ③a 2b 3·a 2b 3=2a 2b 3 ④a 2b 3·a 2b 3=a 4b 6 ⑤2a 2b·3a 3b 2=6a 6b 2A.1个B.2个C.3个D.4个3.现规定一种运算:a*b =ab+a -b ,其中a 、b 为实数,则a*b+(b -a)*b 等于( )A.a 2-bB.b 2-bC.b 2D.b 2-a4.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为( ) A.(45n+m)元 B.(54n+m)元 C.(5m+n)元 D.(5n+m)元 8.填“输出”结果:(1)输入22321(1)(1)?2x x x x x x x x =→-+--+-→输出 (2)输入323,2,5[3()][3(3)]?37x y z y y x z y z y x =-=-=-→--+--→输出参考答案一、课前预习(5分钟训练)1.计算下列各式:(1)(2×103)×(3×104)×(5×102);(2)(13×105)3(9×103)2;(3)45x2(-53xy3);(4)(-3ab)(2a2-13ab+5b2);(5)(a+13)(a-14).答案:(1)3×1010; (2)3×1021;(3)-43x3y3; (4)-6a3b+a2b2-15ab3;二、课中强化(10分钟训练)1.下列计算正确的是( )答案:C2.计算:解:(1)原式=2a10·a4-a8·a4·a2=2a14-a14=a14.(2)原式=b3n·b2m+3b3n·b2·b2m-2=b3n+2m+3b3n+2m=4b3n+2m.(3)(27×81×92)2=(33×34×34)2=(311)2=322.3解:(1)(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13)=18x-93. 当x=-718时,原式=-100.(2)因为|a-2|+(b-12)2=0,所以a-2=0,b-12=0.因此a=2,b=12.-a(a2-2ab-b2)-b(ab+2a2-b2)=-a3+2a2b+ab2-ab2-2a2b+b3=-a3+b3.当a=2,b=12时,原式=-778.4.如图15-2-2,某长方形广场的四角都有一块半径相同的四分之一圆形草地,若圆的半径为r米,长方形长为a米,宽为b米.(1)请用代数式表示空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留π).图15-2-2思路分析:利用长方形的面积公式.解:(1)空地面积为(ab-πr2)平方米.(2)当a =300,b =200,r =10时,ab -πr 2=300×200-100π=(60 000-100π)平方米.答:广场空地的面积为(60 000-100π)平方米.三、课后巩固(30分钟训练)1.化简(-2a)·a -(-2a)2的结果是( ) 答案:C2.下列5个算式中,错误的有( )思路解析:掌握加法运算与乘法运算的法则,①运算错误,用合并同类项法则,应为a 2b 3+a 2b 3=2a 2b 3;②为合并同类项,运算正确;③为单项式的乘法,运算错误,正确的运算为a 2b 3·a 2b 3=a 4b 6;④正确;⑤为单项式的乘法,运算错误,正确的运算为2a 2b·3a 3b 2=6a 5b 3. 答案:C3.现规定一种运算:a*b =ab+a -b ,其中a 、b 为实数,则a*b+(b -a)*b 等于( )A.a 2-bB.b 2-bC.b 2D.b 2-a 答案:B4.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为( )A.(45n+m)元B.(54n+m)元 C.(5m+n)元 D.(5n+m)元 思路解析:原售价为120%n-+m. 答案:B8.填“输出”结果:(1)输入22321(1)(1)?2x x x x x x x x =→-+--+-→输出(2)输入323,2,5[3()][3(3)]?37x y z y y x z y z y x =-=-=-→--+--→输出思路分析:这是一道混合化简求值题,由单项式和多项式相乘组成,运算顺序依然是先乘法后加减,化简时前后的单项式相乘可以同时进行.对于这类求代数式值的问题,不便直接将字母的值代入代数式,而应先将代数式化简成最简形式,然后再代入求值. (1)x2(x2-x+1)-x(x3-x2+x-1)=x4-x3+x2-x4+x3-x2+x=x,当x=12时,原式=12.(2)y[y-3(x-z)+y[3z-(y-3x)]=y(y-3x+3z)+y(3z-y+3x)=y2-3xy+3yz+3yz-y2+3xy=6yz,当x=-23337,y=-2,z=-5时,原式=6×(-2)×(-5)=60.答案:(1)12(2)60。
初一数学整式乘法公式专题训练
初一数学整式乘法公式专题训练一.解答题(共30小题)1.(2016春•威海期中)20152﹣2014×2016(利用整式的乘法公式计算)2.(2016春•房山区期中)计算:(x+7)(x﹣6)﹣(x﹣2)(x+2)3.(2016春•龙口市期中)乘法公式的探究及应用.(1)将左图阴影部分裁剪下来,重新拼成一个长方形(右图所示),那么这个长方形的宽是,长是,面积是.(2)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(3)运用你所得到的公式,计算(2m+n﹣p)(2m﹣n+p)4.(2016春•邵阳县校级月考)通过学习同学们已经体会到灵活运用整式乘法公式给计算和化简带来的方便、快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.例:用简便方法计算195×205.解:195×205=(200﹣5)(200+5)①=2002﹣52②=39 975.(1)例题求解过程中,第②步变形是利用(填乘法公式的名称);(2)用简便方法计算:①9×11×101×10 001;②(2+1)(22+1)(24+1)…(232+1)+1.5.(2016春•顺德区校级月考)计算:(2+1)(22+1)(24+1)…(264+1)6.(2016春•枣庄校级月考)不用计算器计算:2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)﹣364.7.(2015秋•柘城县期末)用乘法公式计算:(1)2016×2014;(2)(3a+2b﹣1)(3a﹣2b+1)8.(2015秋•天门期末)如图,在边长为a的正方形中剪去一个边长为b小正方形(a>b),把剩下的部分拼成一个梯形,请利用甲、乙两图验证我们本学期学过的一个乘法公式.9.(2015春•灵璧县校级期末)乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是.(写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式.(用式子表达)(4)运用你所得到的公式,计算下列各题:①10.3×9.7②(2m+n﹣p)(2m﹣n+p)10.(2015秋•封开县期末)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(用式子表达)(4)运用你所得到的公式计算:10.3×9.7.11.(2015春•雅安期末)(1)将下列左图剪切拼成右图,比较两图的阴影部分面积,可以得到乘法公式:(用式子表达).(2)运用你所得到的乘法公式,计算:(a+b﹣c)(a﹣b﹣c).12.(2015春•盐都区期中)问题:阅读例题的解答过程,并解答(1)(2):例:用简便方法计算195×205解:195×205=(200﹣5)(200+5)①=2002﹣52②=39975(1)例题求解过程中,第②步变形依据是(填乘法公式的名称).(2)用此方法计算:99×101×10001.13.(2015春•南县校级期中)利用乘法公式计算:5002﹣499×501.14.(2014秋•太和县期末)观察下列各式:32﹣12=4×2,102﹣82=4×9,172﹣152=4×16…你发现了什么规律?(1)试用你发现的规律填空:352﹣332=4×,642﹣622=4×.(2)请你用含一个字母n(n≥1)的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.15.(2016春•忻城县期中)已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.16.(2016春•江阴市期中)已知a﹣b=3,ab=2,求:(1)(a+b)2(2)a2﹣6ab+b2的值.17.(2016春•丹阳市期中)已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.18.(2016春•昆山市期中)已知:x+y=6,xy=4,求下列各式的值(1)x2+y2(2)(x﹣y)2.19.(2016春•淮安期中)已知x2+y2=86,xy=﹣16,求(x+y)2的值.20.(2016春•岱岳区期中)已知:a+b=7,ab=12.求:(1)a2+b2;(2)(a﹣b)2的值.21.(2016春•泰兴市期中)(1)已知2x=8y+2,9y=3x﹣9,求x+2y的值.(2)已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.22.(2016春•吴中区期中)已知a+b=3,ab=﹣2,求下列各式的值:(1)a2+b2(2)(a﹣2)(b﹣2)23.(2016春•杭州期中)按要求完成下列各题:(1)已知实数a、b满足(a+b)2=1,(a﹣b)2=9,求a2+b2﹣ab的值;(2)已知(2015﹣a)(2016﹣a)=2047,试求(a﹣2015)2+(2016﹣a)2的值.24.(2016春•锡山区期中)若x、y满足x2+y2=,xy=﹣,求下列各式的值.(1)(x+y)2(2)x4+y4.25.(2016春•工业园区期中)如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分的面积为;(2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(3)根据(2)中的结论,若x+y=5,x•y=,则x﹣y=;(4)实际上通过计算图形的面积可以探求相应的等式.如图3,你有什么发现?.26.(2016春•昆山市期中)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为.(2)若m+2n=7,mn=3,利用(1)的结论求m﹣2n的值.27.(2016春•东港市期中)已知图甲是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.(1)你认为图乙中阴影部分的正方形的边长等于多少?.(2)请用两种不同的方法求图乙中阴影部分的面积.方法一:;方法二:.(3)观察图乙,你能写出下列三个代数式之间的等量关系吗?(m+n)2;(m﹣n)2;mm(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,求(a﹣b)2的值.28.(2016春•丰县期中)先阅读材料,解答下列问题:我们已经知道,多项式与多项式相乘的法则可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:等式(a+2b)(2a+b)=2a2+5ab+2b2就可以用图形①的面积来表示.(1)请写出图②所表示的代数恒等式.(2)画出一个几何图形,使它的面积能表示(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(3)请仿照上述方法写出另一个含a、b的代数恒等式,并画出与之对应的几何图形.29.(2016春•市北区期中)图a是一个长为2m,宽为2n的长方形,沿图a中虚线用剪刀把它均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)请用两种不同的方法求图b中阴影部分的面积:方法1:(只列式,不化简)方法2:(只列式,不化简)(2)观察图b,写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系:;(3)根据(2)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2=.30.(2016春•江阴市校级期中)如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).①图2中的阴影部分的面积为;②观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;③根据(2)中的结论,若x+y=5,x•y=,则(x﹣y)2=;④实际上通过计算图形的面积可以探求相应的等式.如图3,你发现的等式是.初一数学整式乘法公式专题训练参考答案一.解答题(共30小题)1.;2.;3.a-b; a+b;a2-b2;(a+b)(a-b)=a2-b2;4.平方差公式;5.;6.;7.;8.;9.a2-b2;a-b;a+b;(a+b)(a-b);(a+b)(a-b)=a2-b2;10.a2-b2;a+b;a-b;(a+b)(a-b);(a+b)(a-b)=a2-b2;11.a2-b2;12.平方差公式;13.;14.32;63;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.(b-a)2;(a+b)2-(a-b)2=4ab;±4;(a+b)•(3a+b)=3a2+4ab+b2;26.(m+n)2-4mn=(m-n)2;27.m-n;(m+n)2-4mn;(m-n)2;28.(2a+b)(a+b)=2a2+3ab+b2;29.(m-n)2;(m+n)2-4mn;(m-n)2=(m+n)2-4mn;29;30.(b-a)2;(a+b)2-(a-b)2=4ab;16;(a+b)•(3a+b)=3a2+4ab+b2;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图 3,你发现的等式是
.
学习必备
欢迎下载
初一数学整式乘法公式专题训练
参考答案
一.解答题(共 30 小题)
1.
; 2.
; 3. a-b; a+b; a2-b2; (a+b)( a-b) =a2-b2; 4.平方差公
式; 5.
; 6.
; 7.
; 8.
; 9.a2-b2; a-b;
a+b; ( a+b)(a-b); ( a+b)(a-b) =a2-b2; 10. a2-b2; a+b; a-b;
;
学习必备
欢迎下载
(3)根据( 2)中的结论,若 x+y=5 , x?y= ,则 x﹣y=
;
(4)实际上通过计算图形的面积可以探求相应的等式.如图
3,你有什么发
现?
.
26.( 2016 春 ?昆山市期中)图 ① 是一个长为 2m、宽为 2n 的长方形,沿图中虚线用剪刀平 均分成四块小长方形,然后按图 ② 的形状拼成一个正方形.
x
2 =8
y+2
,
9y=3
x
﹣9,求
x+2y 的值.
(2)已知(
a+b)
2
=6,(
a﹣
2
b) =2,试比较
22
a +b
与
ab 的大小.
22.( 2016 春 ?吴中区期中)已知 a+b=3, ab=﹣ 2,求下列各式的值: (1) a2+b2
(2)( a﹣ 2)( b﹣ 2)
23.( 2016 春 ?杭州期中)按要求完成下列各题:
2
4
64
5.( 2016 春 ?顺德区校级月考)计算: ( 2+1)( 2 +1)( 2 +1)…( 2 +1 )
2
4
8
16
32
6.(2016 春?枣庄校级月考) 不用计算器计算: 2( 3+1)( 3 +1)( 3 +1)( 3 +1)( 3 +1)( 3 +1)
﹣ 3 64.
7.( 2015 秋 ?柘城县期末)用乘法公式计算: (1) 2016×2014;
( a+b)(a-b); ( a+b)(a-b) =a2-b2; 11. a2-b2; 12.平方差公式;
13.
; 14. 32; 63; 15.
; 16.
;
17.
; 18.
; 19.
; 20.
; 21.
;
22.
; 23.
; 24.
;
25.( b-a) 2;
( a+b)2-
(
a-b)
2
=4ab
;
±4;(
(2)( 3a+2b﹣ 1)( 3a﹣2b+1 )
8.( 2015 秋 ?天门期末)如图,在边长为 a 的正方形中剪去一个边长为 b 小正方形( a>b), 把剩下的部分拼成一个梯形,请利用甲、乙两图验证我们本学期学过的一个乘法公式.
学习必备
欢迎下载
9.( 2015 春 ?灵璧县校级期末)乘法公式的探究及应用. (1)如图 1,可以求出阴影部分的面积是
(1) x 2+y2( 2)( x ﹣ y) 2.
19.( 2016 春 ?淮安期中)已知
22
x +y =86 ,xy= ﹣ 16,求(
x+y ) 2 的值.
20.( 2016 春 ?岱岳区期中)已知:
a+b=7,
ab=12.求:(
1)
2
a +b
2;(
2)(
a﹣
b)
2
的值.
21.( 2016 春 ?泰兴市期中) (1)已知
(1)你认为图乙中阴影部分的正方形的边长等于多少?
.
(2)请用两种不同的方法求图乙中阴影部分的面积.
方法一:
;方法二:
.
(3)观察图乙,你能写出下列三个代数式之间的等量关系吗?
(m+n ) 2;( m﹣ n)2; mm
(4)根据( 3)题中的等量关系,解决如下问题:若
a+b=8,ab=5,求( a﹣ b) 2 的值.
学习必备
欢迎下载
初一数学整式乘法公式专题训练
一.解答题(共 30 小题) 1.( 2016 春 ?威海期中) 20152﹣ 2014 ×2016 (利用整式的乘法公式计算)
2.( 2016 春 ?房山区期中)计算: ( x+7 )( x﹣ 6)﹣( x﹣ 2)( x+2 )
3.( 2016 春 ?龙口市期中)乘法公式的探究及应用.
(1)将图 ② 中的阴影部分面积用 2 种方法表示可得一个等式,这个等式为
.
(2)若 m+2n=7, mn=3,利用( 1)的结论求 m﹣ 2n 的值.
27.( 2016 春 ?东港市期中)已知图甲是一个长为 2m,宽为 2n 的长方形,沿图中虚线用剪 刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.
a 中虚线用剪刀
学习必备
欢迎下载
方法 1:
(只列式,不化简)
方法 2:
(只列式,不化简)
(2)观察图 b,写出代数式( m+n ) 2,( m﹣ n)2, mn 之间的等量关系:
(3)根据( 2)题中的等量关系, 解决如下问题: 若 a+b=7,ab=5,则( a﹣ b)2=
; .
30.( 2016 春 ?江阴市校级期中)如图 1 是一个长为 4a、宽为 b 的长方形,沿图中虚线用剪
解: 195×205
=(200﹣ 5)( 200+5 )① =2002﹣ 52② =39975
1)( 2):
学习必备
欢迎下载
(1)例题求解过程中,第 ② 步变形依据是
(填乘法公式的名称) .
(2)用此方法计算: 99×101×10001.
13.( 2015 春 ?南县校级期中)利用乘法公式计算: 5002﹣499×501. 14.( 2014 秋 ?太和县期末)观察下列各式: 32﹣12=4×2, 102﹣ 82=4×9, 172﹣ 152=4×16…你
a+b)
?(
3a+b)
2
=3a +4ab+b
2;
26.(
m+n
)
2
-4mn=
(mΒιβλιοθήκη n)2;27. m-n;
2
(m+n) -4mn ;
(m-n )2;
28.( 2a+b)( a+b)=2a2+3ab+b 2;
29.( m-n)2;
(
m+n
)
2
-4mn;
2
2
( m-n) =( m+n) -4mn; 29;
(1)已知实数
a、 b
满足(
a+b)
2
=1
,(
a﹣
b)
2
=9
,求
a2+b2﹣ ab 的值;
(2)已知(
2015﹣ a)( 2016 ﹣a) =2047,试求(
a﹣
2015)
2
+
(
2016
﹣
a)
2
的值.
22
24.( 2016 春 ?锡山区期中)若 x、 y 满足 x +y = , xy= ﹣ ,求下列各式的值.
28.( 2016 春 ?丰县期中)先阅读材料,解答下列问题:
我们已经知道, 多项式与多项式相乘的法则可以用平面几何图形的面积来表示,
实际上还有
一些代数恒等式也可以用这种形式表示,例如:等式(
a+2b)( 2a+b) =2a2+5ab+2b 2 就可以
用图形 ① 的面积来表示.
(1)请写出图 ② 所表示的代数恒等式 (2)画出一个几何图形,使它的面积能表示(
16.( 2016 春 ?江阴市期中)已知 (1)( a+b) 2
(2) a2﹣ 6ab+b2 的值.
a﹣ b=3, ab=2,求:
17.( 2016 春 ?丹阳市期中)已知
(
1)
5x
2
+5y
2;
(2)( x﹣ y) 2.
x+y=2 , xy= ﹣ 1,求下列代数式的值:
18.( 2016 春 ?昆山市期中)已知: x+y=6 , xy=4 ,求下列各式的值
10.( 2015 秋 ?封开县期末)乘法公式的探究与应用:
(1)如图甲,边长为 a 的大正方形中有一个边长为
是
(写成两数平方差的形式)
b 的小正方形,请你写出阴影部分面积
(2)小颖将阴影部分裁下来, 重新拼成一个长方形, 如图乙,则长方形的长是
,
宽是
,面积是
(写成多项式乘法的形式) .
(3)比较甲乙两图阴影部分的面积,可以得到公式
刀平均分成四块小长方形,然后用四块小长方形拼成的一个
“回形 ”正方形(如图 2).
① 图 2 中的阴影部分的面积为
;
② 观察图 2 请你写出 (a+b) 2、( a﹣ b) 2、ab 之间的等量关系是
;
2
③ 根据( 2)中的结论,若 x+y=5 , x?y= ,则( x﹣ y) =
;
④ 实际上通过计算图形的面积可以探求相应的等式.
(写成两数平方差的形式) ;
(2)如图 2,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是